Stochastic calculus - exam 2023

Phones and lecture notes are not allowed.
We always work on a filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ on which is defined a $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion $B=\left(B_{t}\right)_{t \geq 0}$.

Exercise 1 (5 points)

Explicitate all bounded functions $v \in \mathcal{C}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ that solve the partial differential equation

$$
\partial_{t} v(t, x)=-v(t, x)-x \partial_{x} v(t, x)+\frac{1}{2} \partial_{x x} v(t, x)
$$

with initial condition $v(0, x)=\cos (x)$ for all $x \in \mathbb{R}$.
This is a differential equation of the form

$$
\left\{\begin{aligned}
\partial_{t} v(t, x) & =-h(x) v(t, x)+b(x) \partial_{x} v(t, x)+\frac{\sigma^{2}(x)}{2} \partial_{x x} v(t, x) \\
v(0, x) & =f(x)
\end{aligned}\right.
$$

with $h(x)=1, b(x)=-x, \sigma(x)=1$, and $f(x)=\cos (x)$ for all $x \in \mathbb{R}$. Feyman-Kac's formula guarantees that the only bounded solution $v \in \mathcal{C}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}\right)$ (if any) must be given by

$$
v(t, x)=\mathbb{E}_{x}\left[f\left(X_{t}^{x}\right) e^{-\int_{0}^{t} h\left(X_{u}^{x}\right) \mathrm{d} u}\right]=e^{-t} \mathbb{E}\left[\cos \left(X_{t}^{x}\right)\right]
$$

where X_{t}^{x} denotes the unique solution to the SDE

$$
\left\{\begin{aligned}
\mathrm{d} X_{t}^{x} & =b\left(X_{t}^{x}\right) \mathrm{d} t+\sigma\left(X_{t}^{x}\right) \mathrm{d} B_{t} \\
X_{0}^{x} & =x
\end{aligned}\right.
$$

With $b(x)=-x$ and $\sigma(x)=1$, we recognize the Langevin equation, whose solution is

$$
X_{t}^{x}=x e^{-t}+e^{-t} \int_{0}^{t} e^{u} \mathrm{~d} B_{u} \stackrel{d}{=} \mathcal{N}\left(x e^{-t}, \frac{1-e^{-2 t}}{2}\right)
$$

In particular, its characteristic function is $\mathbb{E}\left[e^{i X_{t}^{x}}\right]=\exp \left(i x e^{-t}-\frac{1-e^{-2 t}}{4}\right)$. Taking real parts, we obtain $\mathbb{E}\left[\cos \left(X_{t}^{x}\right)\right]=\cos \left(x e^{-t}\right) \exp \left(-\frac{1-e^{-2 t}}{4}\right)$, and we conclude that

$$
v(t, x)=\cos \left(x e^{-t}\right) \exp \left\{-t-\frac{1-e^{-2 t}}{4}\right\}
$$

Conversely, it is easy to check that this is indeed a bounded solution to the desired PDE.

Exercise 2 (5 points)

Fix two continuous functions $b, \sigma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ and consider the stochastic differential equation

$$
\mathrm{d} X_{t}:=b(t) \mathrm{d} t+\sigma(t) X_{t} \mathrm{~d} B_{t},
$$

with initial condition $X_{0}=\zeta \in L^{2}\left(\Omega, \mathcal{F}_{0}, \mathbb{P}\right)$.

1. Justify that this equation admits a unique solution $X=\left(X_{t}\right)_{t \geq 0}$.

This is an SDE of the form $\mathrm{d} X_{t}:=b(t, x) \mathrm{d} t+\sigma(t, x) \mathrm{d} B_{t}$, with coefficients $b(t, x)=b(t)$ and $\sigma(t, x)=\sigma(t) x$. The first is constant (hence uniformly Lipschitz) in the space variable x. The second is uniformly Lipschitz in x, provided we restrict the time variable t to a compact interval (being continuous, σ is bounded on any compact interval). Finally, the functions $t \mapsto b(t, 0)$ and $t \mapsto \sigma(t, 0)$ are continuous, hence locally square-integrable. Thus, the stochastic Picard-Lindelhöf Theorem applies.
2. Solve this equation explicitly in the special case where $b \equiv 0$, and express the solution in terms of the process $W=\left(W_{t}\right)_{t \geq 0}$ defined as follows:

$$
W_{t}:=\int_{0}^{t} \sigma(u) \mathrm{d} B_{u}-\frac{1}{2} \int_{0}^{t} \sigma^{2}(u) \mathrm{d} u
$$

When $b=0$, we recognize the SDE satisfied by the Black-Scholes process $X=\zeta e^{W}$.
3. Coming back to the general case, compute the stochastic differential of the process $X e^{-W}$ and deduce an explicit expression for X, in terms of b, ζ and W.
By Itô's formula, we know that e^{-W} is an Itô process with stochastic differential

$$
\begin{aligned}
\mathrm{d}\left(e^{-W_{t}}\right) & =e^{-W_{t}}\left(-\mathrm{d} W_{t}+\frac{1}{2} \mathrm{~d}\langle W\rangle_{t}\right) \\
& =e^{-W_{t}}\left(\sigma^{2}(t) \mathrm{d} t-\sigma(t) \mathrm{d} B_{t}\right)
\end{aligned}
$$

By the stochastic integration-by-parts formula, $X e^{-W}$ is in turn an Itô process, with

$$
\begin{aligned}
\mathrm{d}\left(X_{t} e^{-W_{t}}\right) & =X_{t} \mathrm{~d}\left(e^{-W_{t}}\right)+e^{-W_{t}} \mathrm{~d} X_{t}+\mathrm{d}\left\langle X, e^{-W}\right\rangle_{t} \\
& =e^{-W_{t}}\left(\sigma^{2}(t) X_{t} \mathrm{~d} t-\sigma(t) X_{t} \mathrm{~d} B_{t}+\sigma(t) X_{t} \mathrm{~d} B_{t}+b(t) \mathrm{d} t-\sigma^{2}(t) X_{t} \mathrm{~d} t\right) \\
& =b(t) e^{-W_{t}} \mathrm{~d} t .
\end{aligned}
$$

Recalling that $X_{0}=\zeta$, we obtain $X_{t} e^{-W_{t}}=\zeta+\int_{0}^{t} b(u) e^{-W_{u}} \mathrm{~d} u$, or equivalently,

$$
X_{t}=\zeta e^{W_{t}}+\int_{0}^{t} b(u) e^{W_{t}-W_{u}} \mathrm{~d} u
$$

Problem (10 points)

The goal of this problem is to compute the following Laplace transform:

$$
L_{t}(a, b):=\mathbb{E}\left[\exp \left\{-a B_{t}^{2}-\frac{b^{2}}{2} \int_{0}^{t} B_{u}^{2} d u\right\}\right] \quad(a, b, t \geq 0)
$$

1. Compute $L_{t}(a, 0)$ for all $a, t \geq 0$. We henceforth assume that $b>0$.

By definition, we have for all $a, t \geq 0$,

$$
L_{t}(a, 0)=\mathbb{E}\left[e^{-a B_{t}^{2}}\right]=\mathbb{E}\left[e^{-a t B_{1}^{2}}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{(1+2 a t) z^{2}}{2}} \mathrm{~d} z=\frac{1}{\sqrt{1+2 a t}}
$$

2. Find $\psi \in \mathbb{M}_{\text {loc }}^{1}$ so that the process Z defined below is a local martingale:

$$
Z_{t}:=\exp \left\{-b \int_{0}^{t} B_{u} \mathrm{~d} B_{u}-\int_{0}^{t} \psi_{u} \mathrm{~d} u\right\} .
$$

We simply choose $\psi=\frac{b^{2}}{2} B^{2}$, so that $Z=Z^{\phi}$ is the exponential local martingale associated with the process $\phi=-b B$.
3. Express Z_{t} in terms of the random variables B_{t} and $\int_{0}^{t} B_{u}^{2} \mathrm{~d} u$ only, and deduce that

$$
L_{t}(a, b)=\mathbb{E}\left[Z_{t} \exp \left\{\left(\frac{b}{2}-a\right) B_{t}^{2}\right\}\right] \exp \left(-\frac{b t}{2}\right)
$$

Using the identity $2 \int_{0}^{t} B_{u} \mathrm{~d} B_{u}=B_{t}^{2}-t$, we readily find

$$
Z_{t}=\exp \left\{-\frac{b}{2}\left(B_{t}^{2}-t\right)-\frac{b^{2}}{2} \int_{0}^{t} B_{t}^{2} \mathrm{~d} u\right\}
$$

It follows that

$$
Z_{t} \exp \left\{\left(\frac{b}{2}-a\right) B_{t}^{2}-\frac{b t}{2}\right\}=\exp \left\{-a B_{t}^{2}-\frac{b^{2}}{2} \int_{0}^{t} B_{u}^{2} d u\right\}
$$

and taking expectations gives the desired expression for $L_{t}(a, b)$.
4. Fix $t \geq 0$. Construct a probability measure \mathbb{Q}_{t} on $\left(\Omega, \mathcal{F}_{t}\right)$ under which the process $W=\left(W_{s}\right)_{s \in[0, t]}$ defined by $W_{s}:=B_{s}+b \int_{0}^{s} B_{u} \mathrm{~d} u$ is a Brownian motion.
From the expression of Z found in the previous question, it is clear that $0 \leq Z_{s} \leq e^{\frac{b s}{2}}$ for all $s \in[0, t]$. In particular, we have $\mathbb{E}\left[\sup _{s \in[0, t]}\left|Z_{s}\right|\right]<\infty$, so the local martingale Z is a martingale. By Girsanov's theorem, we know that the formula

$$
\mathbb{Q}_{t}(A):=\mathbb{E}\left[Z_{t} \mathbf{1}_{A}\right], \quad A \in \mathcal{F}_{t},
$$

defines a probability measure on $\left(\Omega, \mathcal{F}_{t}\right)$ under which $\left(W_{s}\right)_{s \in[0, t]}$ is a Brownian motion.
5. Show that for all $t \geq 0$,

$$
B_{t}=\int_{0}^{t} e^{b(u-t)} \mathrm{d} W_{u}
$$

By the stochastic integration by parts formula, we have

$$
\mathrm{d}\left(e^{b t} B_{t}\right)=e^{b t}\left(\mathrm{~d} B_{t}+b B_{t} \mathrm{~d} t\right)=e^{b t} d W_{t} .
$$

In integral form, this gives $e^{b t} B_{t}=\int_{0}^{t} e^{b u} \mathrm{~d} W_{u}$, and the desired identity readily follows.
6. Determine the law of B_{t} under \mathbb{Q}_{t} and deduce the formula

$$
L_{t}(a, b)=\frac{1}{\sqrt{\cosh (b t)+\frac{2 a}{b} \sinh (b t)}}
$$

Under \mathbb{Q}_{t}, the process $\left(W_{u}\right)_{u \in[0, t]}$ is a Brownian motion, so the integral $\int_{0}^{t} e^{b u} \mathrm{~d} W_{u}$ is a Wiener integral. In particular, it is Gaussian with mean 0 and variance $\int_{0}^{t} e^{2 b u} \mathrm{~d} u=$ $\frac{e^{2 b t}-1}{2 b}$. Dividing through by $e^{b t}$, we see that under \mathbb{Q}_{t}, the variable B_{t} is Gaussian with mean 0 and variance $\frac{1-e^{-2 b t}}{2 b}$. Using this together with Question 3 and 1, we get

$$
e^{\frac{b t}{2}} L_{t}(a, b)=\mathbb{E}^{\mathbb{Q}_{t}}\left[e^{\left(\frac{b}{2}-a\right) B_{t}^{2}}\right]=\mathbb{E}\left[e^{-\alpha B_{1}^{2}}\right]=L_{1}(\alpha, 0)=\frac{1}{\sqrt{1+2 \alpha}}
$$

where we have introduced the short-hand $\alpha:=\frac{1-e^{-2 b t}}{2 b}\left(a-\frac{b}{2}\right)$. The result now readily follows from the observation that $(1+2 \alpha) e^{b t}=\cosh (b t)+\frac{2 a}{b} \sinh (b t)$.

