
Stochastic calculus – exam 2023

Phones and lecture notes are not allowed.

We always work on a filtered probability space (Ω,F , (Ft)t≥0,P) on which is defined a

(Ft)t≥0−Brownian motion B = (Bt)t≥0.

Exercise 1 (5 points)

Explicitate all bounded functions v ∈ C1,2(R+×R) that solve the partial differential equation

∂tv(t, x) = −v(t, x)− x∂xv(t, x) +
1

2
∂xxv(t, x),

with initial condition v(0, x) = cos(x) for all x ∈ R.
This is a differential equation of the form{

∂tv(t, x) = −h(x)v(t, x) + b(x)∂xv(t, x) +
σ2(x)

2
∂xxv(t, x)

v(0, x) = f(x),

with h(x) = 1, b(x) = −x, σ(x) = 1, and f(x) = cos(x) for all x ∈ R. Feyman-Kac’s formula

guarantees that the only bounded solution v ∈ C1,2(R+ × R) (if any) must be given by

v(t, x) = Ex

[
f(Xx

t )e
−

∫ t
0 h(Xx

u) du
]

= e−tE [cos(Xx
t )] ,

where Xx
t denotes the unique solution to the SDE{

dXx
t = b(Xx

t ) dt+ σ(Xx
t ) dBt

Xx
0 = x.

With b(x) = −x and σ(x) = 1, we recognize the Langevin equation, whose solution is

Xx
t = xe−t + e−t

∫ t

0

eu dBu
d
= N

(
xe−t,

1− e−2t

2

)
.

In particular, its characteristic function is E[eiXx
t ] = exp

(
ixe−t − 1−e−2t

4

)
. Taking real parts,

we obtain E[cos(Xx
t )] = cos(xe−t) exp

(
−1−e−2t

4

)
, and we conclude that

v(t, x) = cos(xe−t) exp

{
−t− 1− e−2t

4

}
.

Conversely, it is easy to check that this is indeed a bounded solution to the desired PDE.
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Exercise 2 (5 points)

Fix two continuous functions b, σ : R+ → R and consider the stochastic differential equation

dXt := b(t) dt+ σ(t)Xt dBt,

with initial condition X0 = ζ ∈ L2(Ω,F0,P).

1. Justify that this equation admits a unique solution X = (Xt)t≥0.

This is an SDE of the form dXt := b(t, x) dt+σ(t, x) dBt, with coefficients b(t, x) = b(t)

and σ(t, x) = σ(t)x. The first is constant (hence uniformly Lipschitz) in the space

variable x. The second is uniformly Lipschitz in x, provided we restrict the time

variable t to a compact interval (being continuous, σ is bounded on any compact

interval). Finally, the functions t 7→ b(t, 0) and t 7→ σ(t, 0) are continuous, hence

locally square-integrable. Thus, the stochastic Picard-Lindelhöf Theorem applies.

2. Solve this equation explicitly in the special case where b ≡ 0, and express the solution

in terms of the process W = (Wt)t≥0 defined as follows:

Wt :=

∫ t

0

σ(u) dBu −
1

2

∫ t

0

σ2(u) du.

When b = 0, we recognize the SDE satisfied by the Black-Scholes process X = ζeW .

3. Coming back to the general case, compute the stochastic differential of the process

Xe−W and deduce an explicit expression for X, in terms of b, ζ and W .

By Itô’s formula, we know that e−W is an Itô process with stochastic differential

d(e−Wt) = e−Wt

(
− dWt +

1

2
d⟨W ⟩t

)
= e−Wt

(
σ2(t) dt− σ(t) dBt

)
.

By the stochastic integration-by-parts formula, Xe−W is in turn an Itô process, with

d(Xte
−Wt) = Xt d(e

−Wt) + e−Wt dXt + d⟨X, e−W ⟩t
= e−Wt

(
σ2(t)Xt dt− σ(t)Xt dBt + σ(t)Xt dBt + b(t) dt− σ2(t)Xt dt

)
= b(t)e−Wt dt.
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Recalling that X0 = ζ, we obtain Xte
−Wt = ζ +

∫ t

0
b(u)e−Wu du, or equivalently,

Xt = ζeWt +

∫ t

0

b(u)eWt−Wu du.

Problem (10 points)

The goal of this problem is to compute the following Laplace transform:

Lt(a, b) := E
[
exp

{
−aB2

t −
b2

2

∫ t

0

B2
u du

}]
(a, b, t ≥ 0).

1. Compute Lt(a, 0) for all a, t ≥ 0. We henceforth assume that b > 0.

By definition, we have for all a, t ≥ 0,

Lt(a, 0) = E
[
e−aB2

t

]
= E

[
e−atB2

1

]
=

1√
2π

∫
R
e−

(1+2at)z2

2 dz =
1√

1 + 2at
.

2. Find ψ ∈ M1
loc so that the process Z defined below is a local martingale:

Zt := exp

{
−b

∫ t

0

Bu dBu −
∫ t

0

ψu du

}
.

We simply choose ψ = b2

2
B2, so that Z = Zϕ is the exponential local martingale

associated with the process ϕ = −bB.

3. Express Zt in terms of the random variables Bt and
∫ t

0
B2

u du only, and deduce that

Lt(a, b) = E
[
Zt exp

{(
b

2
− a

)
B2

t

}]
exp

(
−bt

2

)
.

Using the identity 2
∫ t

0
Bu dBu = B2

t − t, we readily find

Zt = exp

{
− b
2
(B2

t − t)− b2

2

∫ t

0

B2
t du

}
.
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It follows that

Zt exp

{(
b

2
− a

)
B2

t −
bt

2

}
= exp

{
−aB2

t −
b2

2

∫ t

0

B2
u du

}
,

and taking expectations gives the desired expression for Lt(a, b).

4. Fix t ≥ 0. Construct a probability measure Qt on (Ω,Ft) under which the process

W = (Ws)s∈[0,t] defined by Ws := Bs + b
∫ s

0
Bu du is a Brownian motion.

From the expression of Z found in the previous question, it is clear that 0 ≤ Zs ≤ e
bs
2

for all s ∈ [0, t]. In particular, we have E
[
sups∈[0,t] |Zs|

]
< ∞, so the local martingale

Z is a martingale. By Girsanov’s theorem, we know that the formula

Qt(A) := E[Zt1A], A ∈ Ft,

defines a probability measure on (Ω,Ft) under which (Ws)s∈[0,t] is a Brownian motion.

5. Show that for all t ≥ 0,

Bt =

∫ t

0

eb(u−t) dWu.

By the stochastic integration by parts formula, we have

d(ebtBt) = ebt( dBt + bBt dt) = ebtdWt.

In integral form, this gives ebtBt =
∫ t

0
ebu dWu, and the desired identity readily follows.

6. Determine the law of Bt under Qt and deduce the formula

Lt(a, b) =
1√

cosh(bt) + 2a
b
sinh(bt)

.

Under Qt, the process (Wu)u∈[0,t] is a Brownian motion, so the integral
∫ t

0
ebu dWu is a

Wiener integral. In particular, it is Gaussian with mean 0 and variance
∫ t

0
e2bu du =

e2bt−1
2b

. Dividing through by ebt, we see that under Qt, the variable Bt is Gaussian with

mean 0 and variance 1−e−2bt

2b
. Using this together with Question 3 and 1, we get

e
bt
2 Lt(a, b) = EQt

[
e(

b
2
−a)B2

t

]
= E

[
e−αB2

1

]
= L1(α, 0) =

1√
1 + 2α

,

where we have introduced the short-hand α := 1−e−2bt

2b

(
a− b

2

)
. The result now readily

follows from the observation that (1 + 2α)ebt = cosh(bt) + 2a
b
sinh(bt).
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