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Numerical simulations of �bilinear� quantum control often rely on either monotonically convergent
algorithms or tracking schemes. However, despite their mathematical simplicity, very limited
intuitive understanding exists at this time to explain the former type of algorithms. Departing from
the usual mathematical formalization, we present in this paper an interpretation of the monotonic
algorithms as finite horizon, local in time, tracking schemes. Our purpose is not to present a new
class of procedures but rather to introduce the necessary rigorous framework that supports this
interpretation. As a by-product we show that at each instant, estimates of the future quality of the
current control field are available and used in the optimization. When the target is expressed as
reaching a prescribed final state, we also present an intuitive geometrical interpretation as the
minimization of the distance between two correlated trajectories: one starting from the given initial
state and the other backward in time from the target state. As an illustration, a stochastic monotonic
algorithm is introduced. Numerical discretizations of the two procedures are also presented. © 2006
American Institute of Physics. �DOI: 10.1063/1.2170085�
I. INTRODUCTION

Laser control of complex molecular and solid-state sys-
tems is becoming feasible, especially since the introduction1

of closed-loop laboratory learning techniques and their suc-
cessful implementation.2–6 Accompanying these advances,
the computer simulations have the advantage to overcome
experimental restrictions and have access to the whole dy-
namics, allowing further insight and also providing hints in
devising future experiments. Many algorithms have been
proposed to solve the ensuing optimization problem, among
which two distinct classes can be identified. The first one
contains the local tracking methods7–12 that propose explicit
formula of the driving field in an open-loop dependence on
the evolving state. The formula is obtained from the require-
ment to decrease a certain functional defined at each time
instant and related to the “distance” to the target or by
demanding strict adherence to a predefined observable
trajectory. The second class contains the monotonic
algorithms13–15 that solve the Euler-Lagrange equations asso-
ciated with the optimization of a quality functional defined at
a final time T. The two classes can also be combined as in
Ref. 12.

Whereas the local tracking methods enable a very con-
crete geometric interpretation, the monotonic schemes are
only designed by algebraic manipulations, which make their
understanding difficult. Building on striking similarities be-
tween the two methods, we present in this paper an intuitive
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understanding of the operation of the monotonic algorithms.
We show that these can be viewed as finite horizon local
tracking procedures that ensure the convenient behavior of a
time-dependent index encoding the distance to the target. We
can go even further demonstrating that at each instant the
algorithm is aware, when the target enters linearly, of the
future quality �i.e., at the final time T� of the current driving
field. The monotonic algorithms use this value to optimize
locally in time. When the target enters quadratically, only a
lower bound of the quality index �functional� is available and
powerlike methods are used to iterate on the nonlinearity.

Further intuitive interpretation is given when the goal is
to reach a prescribed final state. We show that minimization,
with respect to the control field, operates on the distance
between two important trajectories: the direct that starts from
the given initial state and the reference backward in time
from the target state.

We want to emphasize that the algorithms which are
presented here—either tracking procedures or monotonic
schemes—are not new and are not to be considered as inno-
vative. We do try instead to give an intuitive meaning of the
monotonic schemes. Indeed, as far as we know, no concrete
interpretation of this class of algorithms has ever been pre-
sented and the only base of these algorithms consists in a
technical computation, where the algebraic manipulations do
not illuminate the concrete meaning of the result. This lack
of comprehension makes the monotonic schemes difficult to
analyze, improve, or combine with other optimization proce-
© 2006 American Institute of Physics02-1
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dures. To illustrate the prospects that our work allows to
consider, we introduce a stochastic monotonic algorithm that
makes early use of the information available through the
forward quality functional.

The paper is balanced as follows. The necessary back-
ground on tracking procedures is presented in Sec. II. Then,
in Sec. III we develop our theory for the density-matrix for-
mulation, followed in Sec. IV by that for wave functions.
The stochastic monotonic algorithm is introduced in Sec. V.
We then illustrate our results with a numerical simulation in
Sec. VI. Finally, we present concluding remarks in Sec. VII.

II. TRACKING PROCEDURES

Consider a state variable x�t� driven by a control u�t�
according to the equation

dx�t�
dt

= �A + u�t�B�x�t� . �1�

The tracking approach consists in introducing a tracking in-
dex y̌�t�=y��0

t u2�s�ds ,x�t�� measuring the quality of the con-
trol u; this index is required to increase through an appropri-
ate choice of u. In order to design u, one may compute the
derivative of y̌�t�,

dy̌�t�
dt

= D1yu�t� + D2y�A + u�t�B�x�t� ,

where Dj is the partial derivative with respect to the jth
variable. This can be further expressed as

dy̌�t�
dt

= f�F�t�,x�t�� + u�t�g�F�t�,x�t�� , �2�

where F�t�=�0
t u2�s�ds. It is seen that, except for the points

where g vanishes �which will be called singularities and will
be treated separately� for any desired trajectory ỹ with ỹ�0�
=y0, the condition y̌�t�= ỹ�t� uniquely determines the field
u�t� by the formula

u�t� =
�dỹ�t�/dt� − f�F�t�,x�t��

g�F�t�,x�t��
. �3�

From dF /dt=u2�t� one obtains that �3� is, in fact, an ordinary
differential equation �ODE� on F of the form

dF/dt = Y�F,x� �4�

that is to be solved jointly with �1� in order to ensure adher-
ence to the prescribed trajectory ỹ.

Same considerations apply if only weaker properties are
required, typically the increase/decrease of y̌�t� which can be
enforced through the tracking condition �dy̌�t� /dt��0 ��0�.
The difficulty of this approach is to find a suitable reference
tracking trajectory ỹ that does not encounter singular points
of the systems �2� and �4�, i.e., where g�F ,x�=0. In general
singular points cannot be avoided beforehand and techniques
were designed to treat such situations: see Ref. 10 for de-
signs that locally alter the trajectory to circumvent the sin-
gular points and Refs. 12 and 16 for a study of the stopping

points and procedures to improve their optimality.
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III. DENSITY-MATRIX FORMULATION

Consider a quantum system with internal dynamics de-
scribed by the Hamiltonian H0. Its interaction with an exter-
nal field is modeled by introducing the time-independent di-
pole moment operator � and the field intensity ��t�. If the
system is represented in the density-matrix formulation with
initial state �0, its dynamics will obey the time-dependent
Schrödinger equations

i
�

�t
��x,t� = �H0 − ��t��,��x,t�� ,

�5�
��x,t = 0� = �0�x� ,

where x denotes the relevant spatial coordinates and �.,.� the
commutator of two operators. We used the convention �=1.
We introduce the Liouville space representation, by defining
the scalar product ��a ,b��=Tr�a†b�, where a† denotes the
adjoint of the matrix a, and the associated norm �a��

=	��a ,a��. Instead of the commutators above, we define the
linear operators H and M that act on the density matrices as
H�= �H0 ,�� and M�= �� ,��. Equation �5� becomes

i
�

�t
��x,t� = �H − ��t�M���x,t� ,

�6�
��x,t = 0� = �0�x� ,

with t� �0,T�. The control goal can be expressed through the
introduction of an observable operator O by the requirement
that the quantity R��O ,��T��� be maximized �R denotes the
real part of a complex number�. The corresponding quality
functional to be maximized can be defined by

J��� = 2R��O,��T��� − 

0

T

��2�t�dt . �7�

A. Tracking algorithm

The methodology described in Sec. II does not specify
any particular time of control. However, several problems
consider a bounded total control time, e.g., when maximizing
J. In order to tackle such a problem, consider the backward
trajectory �ref�t� defined by

i
�

�t
�ref�x,t� = �H − �̃�t�M��ref�x,t� ,

�8�
�ref�x,t = T� = O ,

where �̃ is a given field.
Let us denote by ��,�̃,t the field obtained by taking ��s�

up to t and �̃�s� afterward,

��,�̃,t�s� = ���s� , 0 � s � t

�̃�s� , t 	 s � T .
� �9�

If ��s� is only known up to a time t� �0,T�, a natural can-
didate for the control field is ��,�̃,t. Since R���ref�t� ,��t���
=R���ref�T� ,��T���, its functional value J���,�̃,t� is

t 2 T ˜2
2R���ref�t� ,��t���−�0�� �s�ds−�t �� �s�ds. Let us introduce

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074102-3 Quantum optimal control J. Chem. Phys. 124, 074102 �2006�
the tracking index J�,�̃
fwd to be maximized, called in this

case forward quality functional,

J�,�̃
fwd�t� = 2R���ref�t�,��t��� − 


0

t

��2�s�ds − 

t

T

��̃2�s�ds .

�10�

Note that if the field � drives � from ��0�=�0 to ��T�=O
then �̃=� drives �ref from �ref�T�=O to �ref�0�=�0. Following
this remark, an adaptation of the local tracking approach
consists in recursively computing a backward propagation
�8� with �̃= �̃k followed by a forward propagation by �6� with
�=�k+1 while ensuring that the forward quality functional
increases in time for the forward propagation and increases
in reverse time for the backward propagation. We obtain the
tracking conditions

d

dt
J�k,�̃k

fwd �t� � 0 �11�

and

d

dt
J�k+1,�̃k

fwd �t� � 0. �12�

A computation similar to the one in �2� shows that the mono-

FIG. 1. Schematic illustration of the convergence of the monotonic algorithm
reference trajectory �ref

k . Without any optimization during the backward pr
constant distance from �k+1 because both use the same field �k+1. This shrin
functional toward optimal values. This observation is currently used in the c
problems �Ref. 17�. In the general case, the decreasing character of the dist
of trajectories will be a tube whose nonzero width is related to the driving
tonicities �11� and �12� are equivalent to
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��̃k�t� − �k�t���2I���ref
k �t�,M�k�t��� + ���k�t� + �̃k�t���

� 0 �13�

and

��̃k�t� − �k+1�t���2I���ref
k �t�,M�k+1�t��� + ���k+1�t�

+ �̃k�t��� � 0, �14�

where I denotes the imaginary part of a complex number.
These inequalities are the tracking conditions corresponding
to the forward quality functional J�,�̃

fwd. It is important to note
that

J�,�̃
fwd = �O��

2 + ��0��
2 − ��k�t� − �ref

k �t���
2 − 


0

t

��2�s�ds

− 

t

T

��̃2�s�ds . �15�

The procedure above suggests the following interpretation.
For any candidate solution �k two trajectories can be com-
puted: �k�t� that starts from the correct initial condition �0

but whose final state �k�T� may not yet be satisfactory close
to the matrix O, and the state �ref

k �t� that propagates back-
ward from the matrix O but may not reach the correct initial
state �0; the idea is to diminish the intertrajectory distance by
computing �k+1 such that �k+1�t� approaches monotonically
�ref

k �t� and vice versa. In the approximation where the fluence
penalty ��0

T�2�t� is negligible before the control part ��k�t�
k

negligible fluence. The evolving state �k+1 is approaching monotonically the
tion �i.e., choosing �̃k+1=�k+1�, at the next iteration, �ref

k+1 will remain at a
distance between the two trajectories ensures the progression of the quality
t of efficient parallelization of the numerical resolution of quantum control

between the curves is weighted by the field fluence and the optimal couple
field fluence.
s for
opaga
king
ontex
ance
laser
−�ref�t��� the distance between the two trajectories will de-
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crease during the propagation. The next propagation carries
on this process further and so on. The situation is schemati-
cally depicted in Fig. 1.

We are now in position to claim the following result.
Theorem 1. Suppose that the sequences ��̃k�t��k�N and

��k�t��k�N fulfill the tracking conditions �11� and �12�. These
sequences optimize monotonically the quality functional J in
the sense that

J��k� � J��k+1� . �16�

Moreover

J���k,�̃k,t0�
� � J���k,�̃k,t0

�, J���k+1,�̃k,t0
� � J���k+1,�̃kt0�

�,

0 � t0 � t0� � T . �17�

Proof. A simple computation shows that

J���k,�̃k,t0�
� − J���k,�̃k,t0

�

= 

t0

t0�
��̃k�s� − �k�s���2I���ref

k �s�,M�k�s���

+ ���k�s� + �̃k�s���ds �18�

and

J���k+1,�̃k,t0�
� − J���k+1,�̃k,t0

�

= 

t0

t0�
��̃k�s� − �k+1�s���2I���ref

k �s�,M�k+1�s���

+ ���k+1�s� + �̃k�s���ds , �19�

which are positive quantities, since the tracking conditions
�11� and �12� are fulfilled; we thus obtained �17�. Monoto-
nicity �16� is a simple consequence,

J��k� = J���k,�̃k,T� � J���k+1,�̃k,T� = J��k+1� . �20�

Note that �18� and �19� also prove that for any intermediary
time t	T the quality functional will take the value J�k,�̃k

fwd �t�
�respectively, J�k+1,�̃k

fwd �t�� if the optimization is stopped at the
instant t�T during the backward �respectively, forward�
propagation. The value of J�,�̃

fwd�t� is readily computed at any
time t as soon as the backward propagation �8� is computed.
Armed with this tool, optimization need not wait till the final
time �T� but can instead already operate at the current time
�t� using local tracking procedures to optimize the value
J�,�̃

fwd�t�.
This particular observation can be framed into the more

general approach of model predictive control18–20 �MPC� that
aims to improve the standard feedback control by predicting
how a system will react to controls allowing to optimize the
future behavior of a plant. This prediction operates through
the introduction of an empirical model that describes the
system. Two particularities are to be observed to fully com-
pare our approach with MPC: firstly, we operate in regimes
very far from equilibrium or any perturbative approximation,
while MPC works better as stabilizer; secondly, in quantum
control, the future quality of a particular control is obtained
at no additional cost as algebraic manipulations on the nu-

merical data are already available. This latter fact of crucial
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importance enables us to see the monotonic algorithms as a
MPC of the simulated model, at the crossroad between track-
ing and iterative optimal control.

B. Monotonic schemes as local tracking procedures

In an approach different from tracking, monotonically
convergent algorithms, pioneered in Refs. 21 and 22 and
extended in Ref. 15 in the wave-function representation, are
used in the context of the density-matrix operator as in Refs.
23 and 24. These schemes seek the critical points of J���
under the constraint of satisfying �6�. Because of the con-
straint, a Lagrange multiplier, denoted as �ref�x , t� �for rea-
sons that will be made clear latter�, is introduced in the qual-
ity functional that now reads as

J��� = 2R��O,��T��� − 

0

T

��2�s�ds

− 2R�

0

T ���ref,
���s�

�t
�s�

−
�H − ��s�M���s�

i
��ds� . �21�

The critical-point equations read as

i
�

�t
��x,t� = �H − ��t�M���x,t� ,

��x,t = 0� = �0�x� ,

���t� + I���ref�t�,M��t��� = 0,

i
�

�t
�ref�x,t� = �H − ��t�M��ref�x,t� ,

�ref�x,T� = O . �22�

Note that the Lagrange multiplier �ref fulfills the same equa-
tions as the state �ref defined in Eq. �8� �hence our notations�.
Building on these relations, the monotonic algorithms pre-
scribe a particular order to iterate in these coupled equations
by constructing, at the iteration step k→k+1, a field �k+1�t�
with the important property �16�, hence the name of mono-
tonic algorithm. An example of such algorithm is24

i
�

�t
�ref

k �x,t� = �H − �k�t�M��ref
k �x,t� ,

�ref
k �x,T� = O ,

�̃k�t� = �1 − 
��k�t� −



�
I���ref

k �t�,M�k�t��� ,

i
�

�t
�k+1�x,t� = �H − �k+1�t�M��k+1�x,t� ,

k+1
� �x,t = 0� = �0�x� , �23�
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�k+1�t� = �1 − ���̃k�t� −
�

�
I���ref

k �t�,M�k+1�t��� . �24�

The following theorem specifies the link between this
scheme and a local tracking procedure.

Theorem 2. The sequences ��k�k�N and ��̃k�k�N defined
by �23� and �24� fulfill the tracking conditions �11� and �12�.
In particular, monotonicity �16� follows from Theorem 1.

Proof. Replacing scalar products in �13� and �14� via
�23� and �24�, we obtain

��̃k�t� − �k�t���2I���ref
k �t�,M�k�t��� + ���k�t� + �̃k�t���

= − 
 2



− 1���k�t� − �̃k�t��2, �25�

��̃k�t� − �k+1�t���2I���ref
k �t�,M�k+1�t��� + ���k+1�t�

+ �̃k�t��� = 
2

�
− 1���k+1�t� − �̃k�t��2, �26�

and �11� and �12� follows.

IV. WAVE-FUNCTION FORMULATION

Consider a quantum system with internal Hamiltonian
H0 prepared in the initial state �0�x�. In the presence of an
external interaction, the new Hamiltonian is H=H0−��t��
the state ��x , t� at time t satisfies the time-dependent
Schrödinger equations to be controlled,

i
�

�t
��x,t� = �H0 − ��t�����x,t� ,

��x,t = 0� = �0�x� . �27�

The control goal can be expressed through the introduction
of either a target wave function or an observable operator O,
by the requirement that the corresponding quantities
2R��target ���T�� or ���T��O���T�� be maximized. Two ex-
amples of quality functionals corresponding to these goals
can be defined by

J1��� = 2R��target���T�� − 

0

T

��2�s�ds , �28�

J2��� = ���T��O���T�� − 

0

T

��2�s�ds . �29�

Results similar to those of previous sections can be obtained
with this formulation.

A. Tracking algorithms for J1 and J2

As in Sec. III A, we define a backward trajectory �ref
k ˜
from a target wave function � f with a field �,
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i
�

�t
�ref�t,x� = �H0 − �̃�t����ref�t,x� ,

�30�
�ref

k �T,x� = � f
k�x� ,

where � f
k�x�=�target�x� when J1 is used and � f

k�x�
=O�k�x ,T� for J2. We introduce the forward quality func-
tional,

J�,�̃
fwd�t� = 2R��ref�t����t�� − 


0

t

��2�s�ds − 

t

T

��̃2�s�ds .

�31�

The monotonic progression of the functionals

d

dt
J�k,�̃k

fwd �t� � 0 �32�

and

d

dt
J�k+1,�̃k

fwd �t� � 0 �33�

is equivalent to the corresponding tracking conditions

��̃k�t� − �k�t���2I��ref
k �t�����k�t�� + ���k�t� + �̃k�t��� � 0

�34�

and

��̃k�t� − �k+1�t���2I��ref
k �t�����k+1�t�� + ���k+1�t�

+ �̃k�t��� � 0. �35�

A theorem similar to the Theorem 1 can be obtained for J1.
Theorem 3. Let us define ��,�̃,t0

by �9� and suppose that
the sequences ��̃k�t��k�N and ��k�t��k�N fulfill the tracking
conditions �32� and �33�. Then these sequences optimize
monotonically the quality functional J1 in the sense that

J��k� � J��k+1� . �36�

Moreover

J���k,�̃k,t0�
� � J���k,�̃k,t0

�, J���k+1,�̃k,t0
� � J���k+1,�̃k,t0�

�,

0 � t0 � t0� � T . �37�

The proof is similar to that of Theorem 1.
Remark 1. On the tracking algorithm corresponding to

J2: A problem embedded into the optimization of J2 is to
maximize �X�O�X� subject to �X�=1. This can be solved us-
ing the power method by computing recursively Xk with the
formula Xk+1=O�Xk� / �O�Xk��. Note that when O�0 this
convergence is monotonic too,

�Xk+1�O�Xk+1� � �Xk�O�Xk� .

A way to couple this method with a control problem over
�0,T� consists in redefining the target at each iteration of a
local tracking procedure by �target

k =O��k�T��. This modifica-
tion leads to a backward reference trajectory defined at the

step k by
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i
�

�t
�ref

k �x,t� = �H0 − �̃k�t����ref
k �x,t� ,

�38�
�ref

k �x,t = T� = �target
k �x� = O��k�T�� .

The definition of the tracking index �31� is the same. Ne-
glecting control fluence, we are led to maximize
2R��ref

k �t� ���t��. The optimal value under the constraint
���t��=1 is realized for ��t�=O��k�T�� / �O��k�T���. Thus,
this procedure is an adaptation of the power method. Further-
more, when O�0, the monotonicity of the algorithm is pre-
served at the final time since J�k+1,�̃k+1

fwd �T�−J�k,�̃k
fwd �T��0,

J��k+1� − J��k� = ��k+1�T� − �k�T��O��k+1�T� − �k�T��

+ J�k+1,�̃k
fwd �T� − J�k+1,�̃k

fwd �0� + J�k,�̃k
fwd �0�

− J�k,�̃k
fwd �T� ,

which is a sum of positive terms, provided that the tracking
conditions �34� and �35� are fulfilled.

B. Monotonic scheme as local tracking procedure

As in Sec. III B, monotonic schemes corresponding to J1

and J2 can be defined by

i
�

�t
�ref

k �x,t� = �H0 − �̃k�t����ref
k �x,t� ,

�39�
�ref

k �x,t = T� = � f
k�x� ,

�̃k�t� = �1 − 
��k�t� −



�
I��ref

k �t�����k�t�� , �40�

i
�

�t
�k+1�x,t� = �H0 − �k+1�t����k+1�x,t� ,

�41�
�k+1�x,t = 0� = �0�x� ,

�k+1�t� = �1 − ���̃k�t� −
�

�
I��ref

k �t�����k+1�t�� , �42�

where � f
k�x�=�target�x� in the case of J1 and � f

k�x�
=O�k�x ,T� in the case of J2. We have kept the notation �ref

since its evolution equation �39� is �38�. We recognize the
Zhu and Rabitz algorithm for �=1 and 
=1 and the Krotov
�as in Tannor et al.22� formulation for �=1 and 
=0. Note
that in the case of J2, the algorithm exactly coincides with
the tracking algorithm described in remark 1. These algo-
rithms converge monotonically in the sense that Ji��k+1�
�Ji��k� for i=1,2.

Although the latter class of schemes covers a large set of
monotonic algorithms, it does not represent all these proce-
dures. Further examples are presented in Ref. 25.

A computation similar to the one that had led to Theo-
rem 2 allows to obtain the following.

Theorem 4. The sequences ��k�k�N and ��̃k�k�N defined
by �41� and �40� fulfill the tracking conditions �32� and �33�.
In particular, if O is a semipositive-definite observable, the

convergence is monotonic in the sense of �36�.
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Proof. The proof of �32� and �33� is left to the reader. A
computation leads to

J1��k+1� − J1��k� = 

0

T

−
d

dt
J�k,�̃k

fwd �t� +
d

dt
J�k+1,�̃k

fwd �t�dt , �43�

J2��k+1� − J2��k� = ��k+1�T� − �k�T��O��k+1�T� − �k�T��

+ 

0

T

−
d

dt
J�k,�̃k

fwd �t� +
d

dt
J�k+1,�̃k

fwd �t�dt ,

�44�

which proves �36�.
Remark 2. On the monotonicity condition: The common

property of all the monotonic algorithms is that they guaran-
tee to improve at each step the value of a quality functional.
However, an attentive study of the proof of the monotonicity
of these schemes reveals that all these procedures ensure a
stronger condition than the mere monotonicity of quality
functional values. This condition relies on the standard for-
mulas �43� and �44�. In fact, all monotonic schemes are de-
signed so that each term in the integral is positive, which
exactly correspond to the tracking conditions. The identifica-
tion of the monotonic scheme with a local tracking algorithm
is intrinsic, and it exists for most monotonic schemes.

Remark 3. When the quality functional is J1, similar con-
siderations as those in Fig. 1 apply: the trajectories of the
direct state �k and reference �ref

k are at constant distance.
This distance is reduced by the choice of �k+1, and then
�k+1

¯ until convergence to a tube with diameter weighted
by the penalization of the field fluence.

V. STOCHASTIC MONOTONIC ALGORITHM

In order to better illuminate the perspectives rendered
accessible by our new interpretation of the monotonic algo-
rithms, we introduce a new procedure that uses the forward
quality functional in order to optimize the search while solv-
ing the Schrödinger equation.

It has been demonstrated16 that some monotonic algo-
rithms in the density-matrix formulation are slow to achieve
convergence or may stop in a local minima. It was seen that
the freedom to change the parameters � and 
 can bring the
required flexibility to circumvent this problem. To improve
even further such approaches, we present here the following
stochastic monotonic algorithm.

We start from the remark that in the case of a bad con-
vergence, the forward quality functional �10� stagnates while
the distance between the forward and backward propagations
is still large. An intuitive remedy consists then in detecting
when J�,�̃

fwd�t� does not sensibly increase any more and then
change the parameters � and 
 to continue the optimization
with a �presumably� more suitable algorithm. In this ap-
proach, the forward quality functional plays the role of an
indicator allowing to modify online the optimization process.
Unlike in Ref. 16 the change of parameters may be decided
during the propagation and need not wait the end of the
current iteration to be implemented.

Although a coherent procedure to govern the change of

the parameters has been documented �see Appendix B of
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Ref. 16� that acts through the evaluation of a gradient �re-
quiring an additional resolution of the Schrödinger equation�,
the possibility to immediately measure the improvement �if
any� allows for an even more practical proposal: at any time
step the growing rate of the forward quality functional is
computed. If the rate is lower than a given threshold, the
parameters � and 
 are redefined using a uniform random
number generator in �0,2�. Note that the parameters � and 

can be changed repeatedly at no additional cost at each time
step until satisfactory progression toward the target is ob-
tained.

VI. SIMULATIONS

A. Control of the O–H bond

In order to illustrate the theoretical results, we consider a
case already treated in the literature: the O–H bond that vi-
brates in a Morse-type potential. We refer the reader to Ref.
21 for the details of the definition of this system. The goal is
to localize the wave packet at x�=1.821; this is expressed
using J1,
T via a target state �target approximating a Dirac
function centered in x0. The system is initially in the ground
state. The time discretization method we have used is de-
scribed in the Appendix.

Figure 2 represents the values of the tracking index dur-
ing the control process as a function of the simulation time
�each resolution of the time-dependent Schrödinger equation
adds T to the simulation time�. As predicted by the theory, a
monotonic increase in the tracking index is observed.

This illustration speaks to the iterative character of the
algorithms: even if it is usually understood that the mono-
tonic algorithms are iterative, our findings, e.g., the availabil-
ity at any intermediary times of a solution candidate and the
interpretation as a local tracking trajectory procedure, sup-
port the view that the iterations are just a technical artifact
due to the prescription of a time interval to control. Figure 2
graphically illustrates this interpretation. Because tracking
algorithms usually deal with �0,�� as time interval of con-
trol, we prove here that, on the one hand, the tracking ap-

proach can easily be adapted to a bounded interval of control
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and, on the other hand, that the monotonic schemes can be
“unfolded” to be read as a local tracking algorithm on
�0, +��.

B. Test of the stochastic monotonic algorithm

The stochastic monotonic algorithm in Sec. V was tested
on a four-level system from the literature:16 the energy dif-
ferences are �31=30 and �43=�32=20 and the transition mo-
ment elements are �31=�32=�43. The goal is to transfer the
initial population from the lowest state �1� selectively to the
second state �2�. We employ a target operator W= �2��2�.

Two monotonic algorithms have been compared: in a
first test, the monotonic algorithms �23� and �24� have been
used with the values �=1.5 and 
=0. The value 
=0 has
been chosen for simplicity, while �=1.5 is the value in �0,2�
giving the best field after 15 iterations. In a second test, we
kept 
=0 and started from the same �=1.5 but we intro-
duced a random change if J�,�̃

fwd�tj�−J�,�̃
fwd�tj−1�	10−10, where

tj is the jth time step and 10−10 is the typical value of
J�,�̃

fwd�tj�−J�,�̃
fwd�tj−1� observed during the iterations of the first

test.
The stochastic monotonic algorithm produces better

fields of control than the fixed parameter monotonic algo-
rithm. Figure 3 represents the values of the cost functional
for the first 15 iterations of the two algorithms. In both cases,
the target was reached accurately, the difference in con-
verged functionals lies in the intensity of the control field,
with the stochastic algorithm arriving always faster to the
same functional quality.

VII. CONCLUSION

Starting from the need of intuitive understanding of the
monotonic schemes, this paper documents the relation be-
tween these procedures and finite horizon local tracking al-
gorithms. Despite the fact that all the presented algorithms
are already available in the literature, this structural relation-
ship has not, to the best of our knowledge, been documented.
We show that local behavior exploits the availability, before
the end of the current iteration, of the quality functional at

FIG. 2. The optimization procedure gives rise to suc-
cessive forward and backward propagations. We plot
alternatively, for 0� t�T, J


T,�k,�̃k
fwd �T− t� corresponding

to the abscissa t+2kT and J

T,�k+1,�̃k
fwd �t� corresponding

to the abscissa t+ �2k+1�T. Monotonic increase of the
indices all throughout the simulation is observed.
the final time T. We introduce the necessary mathematical

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



074102-8 J. Salomon and G. Turinici J. Chem. Phys. 124, 074102 �2006�
framework to support this interpretation and show that
monotonicity is a natural consequence of the operating con-
cepts. A proposal that exploits this information is the sto-
chastic monotonic algorithm whose convergence properties
are tested on a situation from the literature.

Furthermore, geometrical interpretation in terms of the
distance between the system state and a related reference
trajectory is also provided.

ACKNOWLEDGMENTS

One of the authors �G.T.� acknowledges support from
INRIA Rocquencourt and CERMICS-ENPC.

APPENDIX: RELEVANT TIME DISCRETIZATIONS

In practice, we must choose an appropriate discrete
propagation method to run these algorithms. Let us present it
within the wave-function formulation. We use here a second-
order potential centered split operator to solve numerically
the propagation equations �41� and �39�.

We consider two sequences �= �� j� j=0¯N−1 and �̃
= ��̃ j� j=0¯N−1 representing the time-discretized control fields
and the corresponding discretized wave functions �
= �� j� j=0¯N, recursively computed by

� j+1�x� = e−iH0�
T/2�ei��j
Te−iH0�
T/2�� j�x� �A1�

from a given initial condition �0. Consider also �ref

= ��ref,j� j=0¯N computed by

�ref,j�x� = eiH0�
T/2�e−i��̃j
TeiH0�
T/2��ref,j+1�x� , �A2�

with the final condition �ref,N=�target or �ref,N=O��N�, ac-
cording to the prescribed goal.

It is remarkable to notice that relevant discrete tracking
index and quality functionals can lead to the same equiva-
lence as before. We define a discrete forward quality func-

tional by
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J
T,�,�̃
fwd �n� = 2R��ref,n��n� − �
T�

j=0

n−1

� j
2 − �
T�

j=n

N−1

�̃ j
2.

�A3�

Let us also consider discrete quality functionals correspond-
ing to �28� and �29� defined by

J1,
T��� = 2R��target��N� − �
T�
j=0

N−1

� j
2 �A4�

or

J2,
T��� = ��N�O��N� − �
T�
j=0

N−1

� j
2. �A5�

The discrete derivative of the tracking index can be evalu-
ated by

J
T,�,�̃
fwd �n + 1� − J
T,�,�̃

fwd �n�

= 2R��̂ref,n�ei���n−�̃n�
T − Id��̂n� − �
T���n�2 − ��̃n�2�

= − 2R��̌ref,n+1�e−i���n−�̃n�
T − Id��̌n+1�

− �
T���n�2 − ��̃n�2� , �A6�

where we have used the following notations:

�̂m = e−iH0�
T/2��m, �̌m = eiH0�
T/2��m, �A7�

�̂ref,m = e−iH0�
T/2��ref,m, �̌ref,m = eiH0�
T/2��ref,m.

A simple computation leads to the discrete equivalent of �43�

FIG. 3. Values of the cost functional
during the 15 first iterations when us-
ing the algorithms �23� and �24� and
the stochastic monotonic algorithm de-
scribed in Sec. V. As �0=0 is a nonop-
timal critical point, the initial field �0

was chosen as a sum of oscillations
with frequencies �31 and �32.
and �44�,
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J1,
T��k+1� − J1,
T��k�

= �
n=0

N−1

− J
T,�k,�̃k
fwd �n + 1� + J
T,�k,�̃k

fwd �n�

+ �
n=0

N−1

J
T,�k+1,�̃k
fwd �n + 1� − J
T,�k+1,�̃k

fwd �n� , �A8�

J2,
T��k+1� − J2,
T��k�

= ��N
k+1 − �N

k �O��N
k+1 − �N

k �

+ �
n=0

N−1

− J
T,�k,�̃k
fwd �n + 1� + J
T,�k,�̃k

fwd �n�

+ �
n=0

N−1

J
T,�k+1,�̃k
fwd �n + 1� − J
T,�k+1,�̃k

fwd �n� . �A9�

The computations of �n
k and �̃n

k are then realized by a local
maximization of �A6� with respect to these variables.

Remark 4. These formulas have been used to define
monotonically discrete schemes in Refs. 26 and 27.
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