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In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a 
transient model in a nuclear reactor core. The neutrons calculation consists in numerically 
solving the time dependent diffusion approximation equation, which is a simplified 
transport equation. The numerical resolution is done with finite elements method based 
on a tetrahedral meshing of the computational domain, representing the reactor core, and 
time discretization is achieved using a θ-scheme. The transient model presents moving 
control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) 
are taken into account by interpolations with respect to the velocity of the control rods. 
The parallelism across the time is achieved by an adequate use of the parareal in time 
algorithm to the handled problem. This parallel method is a predictor corrector scheme 
that iteratively combines the use of two kinds of numerical propagators, one coarse and 
one fine. Our method is made efficient by means of a coarse solver defined with large time 
step and fixed position control rods model, while the fine propagator is assumed to be a 
high order numerical approximation of the full model.
The parallel implementation of our method provides a good scalability of the algorithm. 
Numerical results show the efficiency of the parareal method on large light water reactor 
transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Accurate knowledge of the time-dependent spatial flux density in nuclear reactors is required for nuclear safety and 
design. The motivation behind the development of methods for solving the energy-, space-, and time-dependent kinetics 
equations is not only the challenge of developing a method for solving a large set of coupled partial differential equations, 
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but also a real need to predict the performance and assess the safety of large commercial reactors, both those presently 
operating and those being designed for the future.

Modern reactor core design and safety depend heavily on the simulation of the reactor core and plants dynamics as 
well as their mutual interaction. Significant progress has been made during the last fifteen years in developing accurate 
techniques to simulate the computationally expensive reactor core models. Modeling the reactor core involves solving a 
large set of coupled time-dependent partial differential equations (PDEs), where the exact kinetic transport equation is 
simplified to a multi-group diffusion approximation equation. This model of neutron transport provides a scientific insight 
and is sufficiently realistic to study the energy of the reactor core for long time scale. The time-dependent multi-group 
neutron diffusion equation is used to model the scalar flux density. In the time dependent form, we take into account the 
delayed dynamic of neutrons caused by the presence of so-called precursors. Control rods are inserted to absorb neutrons 
and control the energy during the reaction.

Due to the limitation of the read–write memory in serial computers, it is relevant to propose parallel methods, which 
solve these large scale system with massively parallel computers. Much successful work has been done in the parallelization 
of neutron model simulations. For instance [1] studies the static case (eigenvalue problems) with space domain decomposi-
tion methods. A very nice strategy employed in [2] and [3] uses quasi-stationary approach to accelerate the simulation.

This paper focuses on neutrons behavior. We investigate the application of the parareal in time algorithm [4,5] on the 
neutron diffusion equation that governs the time-dependent flux density in the reactor core. The parareal in time algorithm 
is an iterative scheme, which improves computational time with parallel simulation. In several cases, parareal in time 
algorithm gives impressive rates of convergence, this is the case for example for linear diffusion equations and also for 
non-linear case [6]. Stability and convergence results for this algorithm are given in [7–11] particularly for diffusion system 
and others. The algorithm remains efficient in parallel computer simulation. We find a variety [8,12–24] of versions of this 
scheme that adapt the original algorithm to tackle new settings. Furthermore the parareal algorithm can be easily coupled 
with other iterative schemes such as domain decomposition methods (DDM) for instance the basic Schwarz algorithm or 
more complex ones [25], and optimal control based steepest descent algorithms [26–28].

The paper is organized as follows: After this introduction, we present the model of the kinetics of neutrons inside the 
reactor core. Section 3 gives a brief introduction of the parareal in time algorithm. Numerical tools are presented in Section 4
and adapt the parareal algorithm to the resolution of the handled problem. Finally, in Section 5, we present and discuss the 
numerical experiments that demonstrate the speedup following the fully-parallel implementation of the parareal algorithm 
in a parallel architecture.

2. Model

The neutron dynamics in a reactor core are governed by the kinetic transport Boltzmann equation [29]. The solution to 
this equation, denoted by Ψ , represents the directional neutron flux. It is a function of time t , the position �r within the 
reactor core R ⊂ R

3, and the velocity of neutrons �V = √
2E/m �Ω , where �Ω is a unit vector indicating the direction of the 

velocity, E stands for the energy of the neutron and m for its mass. For computational reason, a simplification of the model 
has been proposed in [29, Chap. XXI, Section 5] that consists in averaging over the velocity directional variable leading to 
the introduction of the new function φ(�r, t, E) = 1

4π

∫
S Ψ (�r, t, E, �Ω) d �Ω where S is the unit sphere. This method leads to 

accurate results in standard cases, unfortunately the computational time remains excessively long. Further simplifications 
consist in also averaging over the energy variable: the energy interval [Emin, Emax] is divided into ĝ non-overlapping inter-

vals around a set of discrete energies {E g}ĝ
g=1 and leads to a new unknown Φ ≡ Φ(�r, t) = {φg(�r, t)}ĝ

g=1 composed of the 
set of the neutron average flux over each subinterval around E g . This approach is known as the multi-group theory [30]
where for each energy group g = 1, . . . , ̂g and any position �r ∈R ⊂R

3, the equations are a set of coupled three-dimensional 
multi-energy-group neutron kinetics equations involving time delayed contributions due to the fission of some isotope pre-
cursors, denoted by C ≡ C(�r, t) = {Ck(�r, t)}K

k=1. The set of partial differential equation that govern the kinetics of neutrons in 
the reactor core is⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
V g

∂
∂t φ

g(�r, t) = div(D g∇φg(�r, t)) − Σ
g
t φg(�r, t) + χ

g
p

∑ĝ
g′=1(1 − β g′

)ν g′
Σ

g′
f φg′

(�r, t)

+ ∑ĝ
g′=1 Σ

g′⇀g
s φg′

(�r, t) + ∑K
k=1 χ

k,g
d λkCk(�r, t), ∀g ∈ {1..ĝ}, t ∈ [0, T ] and �r ∈ R,

φg(�r, t) = 0 on the boundary of the reactor core: ∀g ∈ {1..ĝ}, t ∈ [0, T ], �r ∈ ∂R,

φg(�r,0) = φ
g
0 (�r) the initial condition: ∀g ∈ {1..ĝ}, �r ∈ R.

(1)

The delayed neutron concentrations satisfy ∀k ∈ {1..K }:

∂Ck

∂t
(�r, t) = −λkCk(�r, t) +

ĝ∑
g′=1

βk,g′
ν g′

Σ
g′
f φg′

(�r, t), t ∈ [0, T ] and �r ∈ R. (2)

In Eqs. (1) and (2), the neutron velocity is defined as V g = √
2E g/m, the diffusion coefficient is denoted by D g . The total 

and production cross-sections are denoted by Σ g
t and νΣ

g respectively, and Σ g′⇀g
s stands for the transfer cross-section 
f
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from energy group g′ to energy group g . The fission spectra of prompt and delayed neutrons are denoted respectively by 
χ

g
p , χk,g

d . The concentration of each precursor group is denoted by Ck and their delay fraction and decay constant are 
denoted by βk,g and λk respectively. The total delay fraction is denoted by β g , where β g = ∑K

k=1 βk,g . For further details 
and analysis of the model we refer to [31] and reference therein.

For the sake of simplicity, the time dependent diffusion equation is written in terms of operators:

1

V g

∂

∂t
φg(t) = [Fβ Φ]g(t) − [MΦ]g(t) + Q g

d C(t), (3)

with the appropriate boundary conditions. In this equation the solution [Fβ Φ]g(t) := χ
g
p

∑ĝ
g′=1(1 − β g′

)ν g′
Σ

g′
f φg′

(t) repre-

sents the prompt fission source, while [MΦ]g(t) := −div(D g∇φg(t)) +Σ
g
t φg(t) −∑ĝ

g′=1 Σ
g′⇀g
s φg′

(t) represents the removal 
of neutrons via net leakage of neutrons to other points in the reactor plus absorption and scattering. The operator Q g

d C(t)

represents the delayed neutrons, and is given by Q g
d := (χ

1,g
d λ1, . . . , χ

K ,g
d λK ). The multi-group representation associated 

with Eq. (3) reads:[
1

V

]
∂

∂t
Φ(t) = (Fβ − M)Φ(t) + QdC(t), (4)

where [ 1
V ] = Blockdiag( 1

V 1 , . . . , 1
V ĝ ), the multi-group fission matrix operator Fβ = (χ1

p , . . . , χ ĝ
p )T ((1 − β1)ν1Σ1

f , . . . , (1 −
β ĝ)ν ĝΣ

ĝ
f ), the multi-group removal matrix operator M := L − N, where L := Blockdiag(−∇.D1∇ + Σ

g
t , . . . , −∇.D ĝ∇ + Σ

g
t ), 

N := ∑
i j Σ

j⇀i
s , and the operator related to delayed neutrons is given by Qd := ((Q 1

d )T , . . . , (Q ĝ
d )T )T .

The energy of the reactor core is computed as the sum over g of the squared L2(R)-norms of the fluxes φg ; which 
are solutions of the neutron model corresponding to Eq. (1). This energy remains a function of time, where its evolution is 
essentially caused by the chain reaction of the neutrons fission. In the reactor core this fission chain reaction produces new 
neutrons exponentially in time, which are responsible for the neutron distribution and hence the energy of the reactor. In 
order to control this effect, control rods that absorb neutrons are sequentially inserted and withdrawn inside the reactor 
core. This action ensures the stability of the reaction during the production of electricity.

The simulation of the neutron model generally starts from an equilibrium average flux density, which is characterized 
by a steady solution of Eq. (1) where the unique source of neutrons considered is fission and we disregard the contribution 
of the delayed neutron i.e. β g and χk,g

d are assumed nulls. Formally, the energy of distributed neutron population at each 
point of the domain must be exactly equal to the energy of the neutrons eliminated at this point, including leakage. In this 
case the neutron balance equation reduces to

MΦ = F0Φ, (5)

and the reactor is therefore critical. In the above equation F0 = Fβ(β = 0). It is worth noting that the knowledge of the 
material properties is never perfect, so in order to obtain a non-trivial solution, it is common to introduce an eigenvalue 
Λ ∈R, which multiplies the fission source term in Eq. (5), which becomes appropriate for the static diffusion equation. The 
eigenvalue problem reads: find Λ and ΦΛ such that

MΦΛ = ΛF0ΦΛ.

The closer Λ is to 1, the closer the system is to being critical. In practice it is never equal to unity, and so we will proceed 
by normalization as follows:

1. Compute the largest eigenpair (Λmax, ΦΛmax ),
2. Update the production operator F0,Λmax = ΛmaxF0.

In the reactor physics literature the eigenvalue keff is known as the effective multiplication factor and is defined as keff =
1/Λmax. It is easy to observe that by computing the largest eigenpair (keff, Φkeff ) of the new eigenvalue problem:

MΦ = 1

keff
F0,ΛmaxΦ, (6)

we simply obtain keff = 1. Note that the normalization at step 2 concerns the cross-sections. The multiplication of the 
balance equation at the equilibrium by the multiplication factor provides control of the equilibrium of the flux density. 
This feature will be very useful in the design of our algorithm. The solution Φkeff=1, associated with the largest eigenvalue 
keff = 1, is used as the initial condition to the normalized version of Eq. (1). The associated Ckeff=1, corresponding to Φkeff=1
through the steady state associated with Eq. (2), is chosen as the initial condition for the precursor concentrations.

For simplicity, from now on, the normalized production operator Fβ is identified with Fβ,Λmax , and hence Eqs. (1) and (2)
are assumed with a normalized fission term.
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3. The parareal in time algorithm

The parareal in time algorithm [4] is a “divide and conquer” method that enables parallelization across the time direction. 
Following the same strategy as in domain decomposition methods, the parareal in time algorithm is based on breaking up 
the time interval of simulation into subintervals and solve over each subinterval independently using different processors by 
updating iteratively the initial condition over each subinterval. The time evolution problem is thus broken up into a series of 
independent evolution problems on smaller time intervals. The parareal in time algorithm can be presented as a predictor 
corrector process [6,24], and also as a multi-shooting algorithm also as a kind of Newton method with a time coarse grid 
defining the Jacobian matrix [16]. Many improvements on the method, in particular for efficient iterative solution procedure 
on parallel architectures have been proposed. For some examples of these improvements see [23,32].

3.1. Propagation in time

To present our algorithm, we first rewrite Problems (1) and (2) in the following compact form:

∂

∂t

[
Φ

C

]
(t)

︸ ︷︷ ︸
ẏ(t)

=
[

Fβ − M Qd
Fc
β J

]
︸ ︷︷ ︸

A(t)

[
Φ

C

]
(t)

︸ ︷︷ ︸
y(t)

, on [0, T ] ×R, (7)

which is completed with the initial condition y(t = 0) = (Φkeff=1, Ckeff=1)
T . In the above equation J := Blockdiag(λ1, . . . , λK )

and Fc
β := (�T

β,1, . . . , �
T
β,K )T when �β,k := (βkν1Σ1

f , . . . , β
k,ĝν ĝΣ

ĝ
f ).

The dependence in time of the operator A(t) is due to the possible change of cross-sections values where the reaction 
occurs. The existence of a solution to this problem is proven in [29, Chap. XXI, Section 2]. It can be written thanks to a flow 
map as follows

∀t ≥ 0, ∀τ > 0, y(t + τ ) = Et
τ

(
y(t)

)
, (8)

where the uniqueness of the solution provides the semi-group property of the propagator E i.e.

Et+τ
τ ′ ◦ Et

τ = Et
τ+τ ′ .

3.2. Parareal iterations

Starting from the general formulation of Eq. (7), we consider a uniform partition of the time interval into N subintervals 
[tn, tn+1], such that 0 = t0 < t1 < .. < tn < tn+1 < .. < tN = T , and denote �t = tn+1 −tn , so tn = n�t . Based on the semigroup 
property stated in Eq. (8), we have

y(tn+1) = Etn
�t

(
y(tn)

) = Et0
(n+1)�t(y0) ∀0 ≤ n ≤ N − 1.

In practice, we have to provide a fine enough numerical approximation of the propagator E denoted by F and called fine 
propagator in what follows. In our case, it is based on an appropriate classical backward Euler scheme used with a small 
time step. Let us denote by Yn such a fine approximation to the solution of the Cauchy problem Eq. (7) at time tn i.e. 
Yn � y(tn). The sequence of solution (Yn)n=N−1

n=1 is a solution of

Yn+1 = F tn
�t(Yn), ∀0 ≤ n ≤ N − 1 with Y0 = y0.

This reflects the sequential nature of the time propagation: one needs to know first the actual solution at time tn to compute 
the solution at time tn+1. To circumvent this problem, the parareal in time algorithm involves a coarse propagator, denoted 
by G , which is a coarse approximation of F . The propagator G is assumed to be faster than F , in order to be able to rapidly 
carry out the sequential propagation of the solution from time t0 to tN . These propagators allow to define a sequence of 
approximate solutions (Y k

n)k>0 that converges to the right solution Yn when k goes to infinity. Specifically, given an initial 
guess

Y 0
n+1 = Gtn

�t

(
Y 0

n

)
, ∀0 ≤ n ≤ N − 1, Y 0

0 = y0, (9)

the numerical scheme of the parareal method consists of the iteration (from k to k + 1) knowing (Y k
n)n , compute (Y k+1

n )n

by the following

Y k+1
n+1 = Gtn

�t

(
Y k+1

n

) +F tn
�t

(
Y k

n

) − Gtn
�t

(
Y k

n

)
, with Y k

0 = y0. (10)

The first contribution on the right hand side of Eq. (10) is the prediction for the propagated solutions at time tn+1, whereas 
the rest of the right hand side corresponds to the correction scheme. The accurate solution associated with the accurate 
propagator F is used to correct the inaccurate solution predicted using the coarse propagator G .

The definitions of the fine propagator F and the coarse one G are given in the next section.
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4. Numerical method

In some cases, thanks to the property of symmetry in the reactor core, the computational domain is reduced to one 
of its quarters. Consequently, we consider Neumann boundary condition at these artificial interfaces, that is ∂φg

∂�n (�r, t) = 0, 
where �n is the outward normal of the domain.

Numerical discretization of the neutron equation is briefly presented in this subsection. Eq. (1) is composed by several 
time dependent partial differential equations of order two in space and order one in time for the flux density with ĝ energy 
group and K ordinary differential equations for the concentration of precursors. We first give the space discretization of 
those equations and then give the numerical scheme to approximate the time dependency.

The numerical scheme to approximate the space variable is based on a finite elements approximation, where the com-
putational domain R (identified to its quarter) is meshed with tetrahedral elements. We use P1-Lagrange finite elements 
for the average flux and P0-Lagrange finite elements for both concentration of precursors and the physical parameters. In 
what follows, the space–time approximation of the global unknown y(ti), is denoted by yi . We now assume the following 
partition of the time interval [t0, tN ] = ⋃N−1

n=0 [tn, tn+1] where [tn, tn+1] is also divided into I subintervals of equal size de-

noted by τ . Consequently we have [t0, tN ] = ⋃N−1
n=0

⋃I−1
i=0 [tn,i, tn,i+1]. With the obvious notations, tn,0 = tn and tn,I = tn+1. 

In the following the double subscript is dropped and the use of the subscript i = (n, i) stands for the index of any time ti , 
whereas the use of the subscript n stands only for time tn = n�t .

The evolution in time of the solution yi is approximated using the θ -scheme, which assumes at time ti+1 the solution 
yi is known. The solution at time ti+1 is thus computed by solving yi+1 − yi = τθAi+1 yi+1 + τ (1 − θ)Ai yi , where θ ∈ (0, 1), 
and Ai represents the approximation matrix of the operator A(ti) at time ti and we have used the notation i + 1 = (n, i + 1). 
Finite elements matrix representation can be found in, e.g., [33, Chap. 3]. The resolution in the forward time, with θ �= 0, 
requires matrix inversion at each time step, such that

yi+1 = (I − τθAi+1)
−1(I + τ (1 − θ)Ai

)
yi . (11)

The efficient choice of the parameter θ is discussed in the experimental part.
More technical discussion concerning the fine propagation, in addition to the classical discretization scheme presented 

above, is given below.

4.1. Fine propagator F tn
�t

The numerical approximation of the transient Langenbuch–Maurer–Werner (LMW) benchmark application [34] requires 
a particular attention to the control rods motion, where cross-sections have to be interpolated in order to avoid oscillations 
and instabilities of the numerical solver. Similar cross-sections interpolation techniques are applied in [35] for the neutron 
nodal expansion method.

The cross-sections are approximated with piecewise constant functions. To take into account the unsteadiness of the 
balance neutron equation, which is caused by the immersion of control rods within the reactor, one could refine the mesh 
in order to follow the exact motion of the rods. This would be quite expensive. Another possibility would be to tune the 
time step with the velocity of the motion so that the ends of rods match the mesh. This adds strong constraints to the 
design of the discretization. To cope with this, we assume that the triangulation of the domain is extracted from a first 
decomposition of R into several horizontal layers of prisms each of them being subsequently cut into three tetrahedrons as 
explained in Fig. 1 (left). This enables interpolating the cross-sections, as sketched in Fig. 1 (right) where the immersion of 
the control rod into the tetrahedron is illustrated. The cross section (represented with color) are interpolated relatively with 
the volume occupied by control rods. In this case positive values between 0 and 1, is attributed to the cross section related 
to the rods, whereas the cross section related to fuel are deduced automatically by interpolating using the complement 
value. It is worth noting that this procedure is done before the finite elements matrix assembly. We update cross-sections 
at each time step using interpolation, then assemble the main matrix and solve Eq. (11). Hence the definition of the fine 
propagator F tn

�t can be given as follows:
For a given set of solutions y0 ≡ yn,0 ≡ y0 at each initial time tn for the fine propagation, the solution at time tn+1

computed with the fine propagator is given by

F tn
�t(yn) = (I − τθAI )

−1(I + τ (1 − θ)AI−1
)
. . . (I − τθA0+1)

−1(I + τ (1 − θ)A0
)

︸ ︷︷ ︸
I times

yn.

4.2. Coarse propagator Gtn
�t using model reduction

In this subsection, we present and discuss a reduction of the previous model. The simplified system will be used in the 
parareal in time algorithm as a coarse solver, which is an inexpensive sequential solver. We shall neglect in Eq. (1) the 
coupling with precursors that are described by Eq. (2) in the fine model. Moreover, we simplify the model by reducing the 
motion of control rods to a two specific positions. This allows us to minimize computational complexity when updating the 
matrices according to the evolution of control rods position.
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Fig. 1. P0-interpolation of the cross-sections over one simplex (tetrahedron). The triangulation of the domain R ⊂ R
3 is structured in the sense that each 

tetrahedron has one vertical edge. If h is the height of one tetrahedron, we denote the length of the penetration of control rods in the tetrahedron and the 
rest of the length by hr and h f respectively. The distance hr and h f are therefore perfectly determined using the velocity of control rods. (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

Note that some care has to be taken so that the reduced system remains coherent with the exact dynamics. Indeed, 
the introduction of the effective multiplication factor keff (here different from the unity) allows us to tune the equations 
and further define subcritical, critical and supercritical states. Of course the motion of the rods changes the state of the 
core. Modifying the coarse model as we did substantially changes this equilibrium, both due to the fact that the delayed 
neutrons have a very important role in stability and because the damping of the constantly increasing energy produced 
by fission. The contribution of the concentrations of precursors is fundamental to access accurate information about flux 
density at time t during the reaction. Hence the absence of the delayed neutrons in the reaction behavior inside the reactor 
core reduces the damping and energy production is accelerated. It means that the rate of producing energy of the reduced 
model is therefore more important than the one of the fine model. One has to manipulate the velocity of neutrons in order 
to reach, approximately in time-reaction and quantity, the peak of the energy. Indeed, we tune the effective multiplication 
factor keff (in the normalized equations) to two values slightly larger and slightly smaller than one. Indeed, the first period 
of the benchmark corresponding to a supercritical nature is represented by a factor keff slightly larger than 1 whereas the 
second stage of the benchmark, associated with the rod going down, is represented by a keff slightly smaller than 1. For 
0 < ι � 1, the dynamics of the discussed reduced model can be described with the equations⎧⎪⎨

⎪⎩
[ 1

V (ι)

]
∂
∂t Φ(t) = ( 1

1+ιF0 − M
)
Φ(t), for t ∈ (0,24),[ 1

V (ι)

]
∂
∂t Φ(t) = ( 1

1−ιF0 − M
)
Φ(t), for t ∈ (24,80),

Φ(t = 0) = Φkeff=1.

(12)

In addition to Eq. (12) control rods are fixed during the simulation time. The resulting reduced model produces a good 
approximate state of the reactor before and after the peak. This reduction enables us to make computation cheaper while 
keeping accurate results. We show this explicitly in Section 5. Eq. (12) is designed to be solved in serial and the matrix is 
assembled only once at t = 0. The flux density during simulation is managed by the change of the factor keff as explained 
above.

4.3. The algorithm

We are now in the position to fully describe the algorithm, which we present below in Algorithm 1. The time-parallel 
algorithm is implemented with a master–slave strategy for which we have two types of communications: a distributive and 
a collective operations. In the distributive operation, the main processor sends information towards all of its agent processors. 
On the other hand, in the collective operation; the master itself receives and collects information from its agents. In both 
cases, it is about the same quantity of information which passes in the two directions. The second type of communication 
is devoted to the correction of the coarse error, which requires fine information to be communicated by agent processors 
toward master. We use some keywords from the parallel programing language to describe communication procedures. For 
instance, Recv(data, sender) and Send(data, receiver) mean that the processors which execute those commands receives the 
data from the sender and send data to the receiver. The Broadcast(sender, data) command means that the processor sender
sends data to all other processors.

5. Numerical experiments

In this section, we simulate the LMW benchmark [34], which is a kinetic model that describes the effect of control rod 
motion on the flux density. The LMW models the kinetics of neutrons as in Eq. (1), but with time and space dependent 
cross-section coefficients to take into account the rod motion. The LMW benchmark presented in Fig. 2, as a quarter of the 
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Algorithm 1: Parareal kinetics of neutrons.
Input: N := #slave proc, τF , �t
Input: Y 0

0 = (Φkeff=1, Ckeff=1)T as initial conditions, ε∞ a tolerance of the algorithm;
Input: Solver A, data vector y;
Routine(A, y)

1) Define the absorber rods position with respect to their dynamic chronology;
2) Assemble matrices related to Eqs. (1)–(2);
3) Solve iteratively in time the system of (11), the result is denoted by Ay;

end Routine;
k ←− 0;
repeat

if master processor then
foreach n ∈ {0, .., N − 1} do

1) Call: Routine(Gtn
�t , Y k

n) (i.e. coarse-serial propagation);
2)

if k = 0 then
repeat return to 1 with Y k

n+1 until n = N − 1
else

Construct (Y k
n )n≥1 with respect to Eq. (10);

end

3) Send (Y k
n , processor(n));

end
else

forall the slave processor(n)/n ∈ {0, . . . , N − 1} do
Recv (Y k

n , master processor);

Call: Routine(F tn
�t , Y k

n) (i.e. fine-parallel propagation);

Send (F tn
�t Y k

n , processor(n));
end

end
if master processor then

foreach n ∈ {0, .., N − 1} do
Recv (F tn

�t Y k
n , processor(n));

Evaluate εk
n+1 = ‖F tn

�t Y k
n − Y k

n+1‖2
2/‖Y k

n+1‖2
2;

end
end
k ← k + 1;

Broadcast (master processor, εk
n );

until maxn εk
n ≤ ε∞;

Fig. 2. LMW transient problem: cross-section configuration in regard to rods positioning. Horizontal cross-sections.

whole domain, initiates by withdrawing a bank of four partially inserted control rods inside the reactor core for certain 
time, after which, another bank of five control rods is inserted. The global transient time is about 60 s when the velocity 
of all banks of control rods is about 3 cm/s. As explained before, the rod motion model has important discrepancy on the 
cross-sections that should be interpolated in order to avoid errors and undesired oscillations on the solution. We give in 
Appendix A the cross-sections values of the LMW transient problem and discuss experiments involving parallelization across 
the time for the numerical simulation.
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Table 1
Change of the keff factor with respect to the time-reaction.

t ∈ [0,20] t ∈ ]20,80]
Group 1 z = 160 cm z = 180 cm
Group 2 z = 180 cm z = 60 cm

keff 10008.e−5 9998.e−5

5.1. The parameters of the cross-sections

The motion of control rods in the LMW benchmark application reads as follows: at time t = 0 s the first group of rods 
has an initial position at z = 100 cm, while the second group has a higher position at z = 180 cm. The velocity of the 
control rods motion is about 3 cm/s and is summarized as follows:

Group 1: (t = 0 | z = 100 cm) ↗ (t = 26,5 | z = 180 cm),

Group 2: (t = 7,5 | z = 180 cm) ↘ (t = 47,5 | z = 60 cm).

Cross-sections of the fuel (Group-A and Group-B), control rods (Group-A and Group-B) and reflectors are given in Table 4
of Appendix A. Scattering cross-section for the different media are given in Table 5 of Appendix A. Precursors data are given 
in Table 6 of Appendix A.

5.2. Numerical tests and discussions

This section discusses numerical tests of the LMW parallel in time transient problem. We outline our discussion into 
four steps: We first give simulation results related to the direct application of the parareal in time algorithm on the model 
described in Section 2. Next we present results related to the reduced model where we disregard delayed neutrons on the 
initial model. Then, we couple the two models. We finally discuss the speed-up achieved with the algorithm.

The numerical simulations were carried out on a parallel shared memories machine, equipped with a 2.0 GHz 64-core 
processor, and 256 Gb of shared memory and a communication network Numalink (15 Gb/s). The parallelization of the 
procedure is carried out using MPI library and the scientific computation software FreeFem++ [36].

Since the analytical solution of (1) is not available, we produce a reference approximated numerical solution using a 
refined time step. Concerning space approximation, we use first order polynomial approximation with nodal P1-Lagrange 
finite elements, where the domain is provided with a fine enough mesh with tetrahedra, since the main focus here is about 
temporal error.

As described above, the parareal in time algorithm involves two types of solvers that alternate during the time pro-
cess between coarse-sequential resolution and fine-parallel resolution of (1). In this paper the coarse solver is only based 
on a coarse time step, we refer to [22] for a consideration of a coarse time and space based solver with application to 
Navier–Stokes problem.

We have used a θ -scheme (see (11)) in order to approximate the time variation of the solution, where θ = 0 leads to the 
forward Euler scheme and θ = 1 leads to the backward Euler scheme of order 1. Numerical tests showed that the case θ = 1
is the most stable scheme that provides an accurate solution without oscillations on its power. We present in Fig. 3 the L2

trajectory of the flux density solution of the LMW produced with the parareal in time algorithm, where the fine and coarse 
propagators only differ from the choices of time steps. The series of plots given in Fig. 3 represent the first four iterations 
of the parareal algorithm. We remark that convergence of the trajectory occurs in few iterations using parallel simulation. 
These results show the evolution of the energy production with respect to the simulated time of the reaction (in seconds). 
The energy is initialized with a value of 1.25e+6 representing the equilibrium of the reactor. We recall that a bank of four 
control rods already inserted in the reactor core at time t = 0 are withdrawn simultaneously and after 7.5 s another group 
of control rods is inserted. The power of the reactor (presented here as L2 norm of the neutron flux density) achieves a 
peak before decreasing from the effect of the neutron absorption by the inserted rods.

The parallel simulation of the reduced model is presented in Fig. 4. We recall here that delayed neutrons don’t contribute 
in the solution. The fine and coarse propagators solve here Eq. (12) and only differ from the choices of time steps. We test 
and study the sensitivity of the model with respect to the reduction of the involved unknown and the sudden change of 
the keff factor. This change of keff allows to avoid interpolating cross-sections at each position change when dealing with 
rods motions. The global matrix is assembled only once where rods are fixed on their initial positions. Table 1 shows the 
corresponding change of the effective multiplicity factor with respect to the desired behavior of the reactor core.

We now show numerical convergence results. In Fig. 5 we present the convergence of the algorithm with a threshold ε
taken as the maximum among εk

n , where,

εk := max
n

εk
n, for εk

n = ‖Y k
n − Yn‖2

2

‖Y ‖2
,

n 2
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Fig. 3. Power of the nuclear reactor, the first four iterations of the parareal in time algorithm for the LMW transient model: τ = 1.e−1, �t = 4 and N = 10.

Table 2
Iterations 1, 2, 3 and 4 of the algorithm, complete model with dynamic rods scenario.

τ �t maxn≥0 ε1
n maxn≥0 ε2

n maxn≥0 ε3
n maxn≥0 ε4

n

0.01 2 1.42e−02 3.04e−05 1.73e−05 1.12e−06
0.01 4 2.93e−02 1.16e−03 1.22e−04 1.46e−05
0.01 8 6.09e−02 4.11e−03 7.85e−04 1.43e−04
0.1 0.5 2.92e−03 1.31e−05 1.41e−07 2.08e−09
0.1 1 6.53e−03 6.48e−05 1.67e−06 5.12e−08
0.1 2 1.35e−02 2.81e−04 1.51e−05 9.22e−07
0.1 4 2.88e−02 1.11e−03 1.13e−04 1.31e−05
0.1 8 6.04e−02 4.02e−03 7.53e−04 1.35e−04
0.5 2 1.13e−02 1.71e−04 7.02e−06 3.35e−07
0.5 4 2.68e−02 0.80e−04 7.80e−05 7.92e−06
0.5 8 5.83e−02 3.55e−03 6.17e−04 1.02e−04
1 2 7.58e−03 7.42e−05 1.94e−06 6.09e−08
1 4 2.29e−02 6.30e−04 4.64e−05 3.91e−06
1 8 5.43e−02 3.01e−03 4.77e−04 7.12e−05

where Yn is assumed to be the reference numerical solution, and Y k
n represents the numerical parallel solution produced 

with the parareal in time algorithm. We consider the convergence of the parareal in time algorithm to an error ε∞ of order 
10−3 which is consistent with the fact that the reference backward Euler time-discretization scheme is first order and has 
been implemented with a time step 10−2.

Tables 2 and 3 illustrate the robustness of the methods with different choices of time-steps discretization.
The final illustration deals with the main contribution of this paper for the parareal in time algorithm where the two 

models are used: the fine propagator solves Eq. (7) with a fine time step and the coarse propagator solves Eq. (12) with 
a coarse time step. The convergence results related to this combination of the initial model and the reduced model are 
given in Fig. 6. This procedure accelerates the computational time. Indeed, only one multiplication of the matrix (already in 
memory) by an adequate real coefficient is sufficient to reproduce the new matrix related to the operator A(τ ) at a desired 
time τ .
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Fig. 4. Power of the nuclear reactor, the first four iterations of the parareal in time algorithm of the reduced neutron model. τ = 1, �t = 4 and N = 10.

Fig. 5. Convergence of the algorithm (iterations 1 → 10) that couple the LWM transient model with the reduced model: (left) τ = 1.e−1, �t = 2 and 
N = 10 (right) τ = 1.e−1, �t = 4 and N = 10. Note that the error lines start at time (k + 1)T /N with vertical line. This occurs because the errors before 
that time is vanishing, indeed the parallel solution is exactly equal to the serial solution at time t < (k + 1)T /N .

The parallel implementation of the parareal in time algorithm we have presented in this paper speeds up the resolution 
with a good efficiency using 16 processor unit (see Fig. 7). We refer to [37] for alternative parallel implementations. It is 
worth noticing that, even though the parareal in time algorithm shares some similarities with the parallel domain decom-
position method, the scaling cannot be as good since the work per subdomain (in time) is proportional to the size of the 
subdomain, in opposition to what happens with spacial domain decomposition where the work is super linear, hence the 
gain by dividing is larger than the number of subdomains. That is the reason why, in order to get a full speed up, the 
parareal algorithm should be coupled with other iterative techniques (see [38]).
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Fig. 6. Power of the nuclear reactor, the first four iterations of the parareal in time algorithm for the LMW transient model with the reduced neutron model. 
Coarse time step is also used for the reduced model: τ = 1.e−1, �t = 2 and N = 10.

Table 3
Iterations 1, 2, 3 and 4 of the algorithm, reduced model with dynamic rods scenario.

τ �t maxn≥0 ε1
n maxn≥0 ε2

n maxn≥0 ε3
n maxn≥0 ε4

n

0.1 2 1.39e−02 5.19e−05 1.91e−07 5.71e−09
0.1 4 2.78e−02 1.88e−04 1.74e−06 1.52e−07
0.1 8 5.34e−02 5.64e−04 1.63e−05 2.53e−06
0.5 2 1.09e−02 3.17e−05 1.01e−07 2.69e−09
0.5 4 2.48e−02 1.47e−04 1.30e−06 7.39e−08
0.5 8 5.03e−02 4.91e−04 1.21e−05 2.17e−06
1 2 7.22e−02 1.33e−05 3.18e−08 6.96e−10
1 4 2.10e−02 1.03e−04 8.35e−07 5.50e−08
1 8 4.65e−02 4.06e−04 9.42e−06 1.86e−06

6. Conclusion

We have presented in this paper an application of the parareal algorithm to the parallelization across the time of the 
simulation of the neutron diffusion multi-group kinetics equations. In order to improve computational time, the model is 
reduced by the use of an adequate coarse solver based on several properties of the steady solution. Numerical results show 
that the algorithm speeds up the simulation and converges quite fast, when the stopping criterion is in most cases reached 
in two or three iterations of the parareal algorithm.
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Appendix A

For the sake of convenience, we recall here the various physical constants used in the numerical simulation of the 
Langenbuch–Maurer–Werner (LMW) benchmark [34].

Table 4
Total and fission cross-sections of the LMW 3d benchmark.

Physical data Medium

Cross-sections Fuel A Fuel B

Group-1 Group-2 Group-1 Group-2

Σt 0.23409670 0.93552546 0.23381787 0.95082160
Σ f 0.006477691 0.1127328 0.007503284 0.1378004

Celerity V g 1.25e+7 2.5e+5 1.25e+7 2.5e+5

Rods Reflector

Group-1 Group-2 Group-1 Group-2

Σt 0.23409670 0.93552546 0.20397003 1.26261670
Σ f 0.006477691 0.1127328 0.0 0.0

Celerity V g 1.25e+7 2.5e+5 1.25e+7 2.5e+5

Table 5
“Scattering” cross-sections data.

Fuel A

Σ
g′⇀g
s Group-1 Group-2

Group-1 0.20613914 0.01755550
Group-2 0.0 0.84786329

Fuel B

Σ
g′⇀g
s Group-1 Group-2

Group-1 0.20564756 0.01717768
Group-2 0.85156526 0.0

Rods of control

Σ
g′⇀g
s Group-1 Group-2

Group-1 0.20558914 0.01755550
Group-2 0.84406329 0.0

Reflector

Σ
g′⇀g
s Group-1 Group-2

Group-1 0.17371253 0.02759693
Group-2 1.21325319 0.0
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Table 6
Precursors data.

Precursor Group-1 Group-2 Group-3 Group-4 Group-5 Group-6

λ(s−1) 0.0127 0.0317 0.115 0.311 1.4 3.87
β 0.000247 0.0013845 0.001222 0.0026455 0.000832 0.000169
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