
INSTITUTES for MATHEMATICS
(Graz University of Technology)

&
INSTITUTE for MATHEMATICS

and

SCIENTIFIC COMPUTING
(University of Graz)

A. Borzi, J. Salomon and S. Volkwein

Cascadic non-linear conjugate gradient

solution to finite-level quantum optimal

control problems

Report No. 13/2006 April, 2006

Institute for Mathematics,

Graz University of Technology

Steyrergasse 30

A-8010 Graz, Austria

Institute for Mathematics and

Scientific Computing,

University of Graz

Heinrichstrasse 36

A-8010 Graz, Austria



Cascadic non-linear conjugate gradient

solution to finite-level quantum optimal

control problems∗
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Abstract

Optimal control of finite-level quantum systems is studied and iterative solution
scheme for the optimization of a control representing laser pulses are developed.
The purpose of this external field is to channel the system’s wavefunction between
given states in its most efficient way. Physically motivated constraints, such as
limited laser resources or population suppression of certain states, are accounted
for through an appropriately chosen cost functional. First-order necessary opti-
mality conditions and second-order sufficient optimality conditions are investigated.
For solving the optimal control problems, a cascadic non-linear conjugate gradient
scheme and a monotonic scheme are discussed. Results of numerical experiments
with a representative finite-level quantum system demonstrate the effectiveness of
the optimal control formulation and efficiency and robustness of the proposed ap-
proaches.
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1 Introduction

Nowadays we witness a large growing interest in controlling quantum phenomena
in a variety of application systems [10, 17, 30, 31, 32, 33]. Present and perspective
applications range from quantum optics and quantum chemistry to semiconductor
nanostructures. In the last few years these research areas have received further impe-
tus from the emerging fields of quantum computation and quantum communication
[8], aiming at quantum devices where there is the need to manipulate wavefunctions
with highest possible precision.
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This high-fidelity quantum-state engineering can only be achieved putting to-
gether the most sophisticated experimental and theoretical techniques for control
of quantum systems. However, within each field of application one has come up
with its own strategies and it is only recently that a common consensus has arisen
towards the use of optimal control theory [11, 14, 22].

In the optimal control framework, one starts by defining the optimality crite-
ria in the form of a cost functional. For a desired quantum-state transition, this
functional will depend on the final state, the need to suppress population of certain
states during the control process, as well as other physically motivated constraints,
e.g., limited laser resources. The strategy is then to minimize this cost functional
while satisfying the constraints of the underlying dynamic equations governing the
evolution of quantum states; e.g., the Schrödinger equation. The calculation of the
necessary optimality conditions for this optimization problem results in a system of
coupled equations to be solved.

While we focus on quantum optimal control problems we argue that many of
the results of this paper can be extended to general time-dependent bilinear control
problems. Bilinear systems [13, 26] were introduced in the theory of automatic
control in the 1960’s for electrical engineering applications. They represent a class
of non-linear control strategies with the aim to obtain better system response than
possible with linear control. In general, the solution of most bilinear systems poses
challenging theoretical and computational problems which are open or have been
only partially addressed. This is in particular true for the control of the quantum
mechanical systems discussed in this paper.

The purpose of this paper is to present a detailed formulation of a class of optimal
control problems for finite-level quantum systems and to address their solution by
iterative methods. We prove existence of solutions to the optimal control problems
and investigate first-order necessary optimality conditions and second-order suffi-
cient optimality conditions. We review state-of-the-art monotonic iterative schemes
and their convergence properties and use these schemes as benchmark for an al-
ternative solution procedure that we propose in this paper. This procedure results
from combining an appropriate extension of a newly proposed non-linear conjugate
gradient method with a cascadic acceleration scheme. Convergence of the proposed
non-linear conjugate gradient method is proved and its competitiveness in efficiency
and robustness is demonstrated by results of numerical experiments.

In the following section we introduce the class of finite-level quantum optimal
control problems considered in this paper. Within an appropriate functional an-
alytical setting, existence of optimal solution is proved. We discuss existence of
Lagrange multiplier and first-order necessary conditions for a minimum. Second-
order sufficient optimality conditions are also discussed that allow to characterize
local minima.

In Section 3, the proposed non-linear conjugate-gradient scheme is formulated.
Under appropriate less restrictive assumptions, we prove convergence of this scheme
to a local minimizer. This scheme is embedded in a cascadic iteration to obtain
almost optimal computational complexity.

To validate the computational performance of our cascadic non-linear conjugate-
gradient scheme comparison with efficient monotonic schemes is presented showing
that the former may outperform the latter. For completeness and for comparison
of theoretical aspects, in Section 4 a detailed review of newly proposed monotonic
schemes is given.

In Section 5, results of an extended set of numerical experiments are given. We
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show that the optimal solution is quite sensitive to the required tolerance of the
norm of the gradient. We therefore discuss additional convergence criteria involv-
ing the order of accuracy of solutions. Further numerical experiments demonstrate
efficiency of the cascadic non-linear conjugate-gradient approach and its robustness
with respect to change of values of the optimization parameters.

A section of conclusion completes the exposition of our work.

2 Quantum optimal control problems

This section is devoted to the formulation of a class of finite-level quantum optimal
control problems, which are the subject of our investigations. Existence of solutions
to the optimal control problems is proved. We investigate first-order necessary
optimality conditions addressing existence and regularity issues of the Lagrange
multipliers and, correspondingly, of the control functions. To verify that the solution
to the first-order optimality conditions corresponds to a local minimum, second-order
sufficient optimality conditions are discussed.

2.1 The minimization problem

We consider localized finite-level quantum systems modeled by a Schrödinger equa-
tion for an n-component wave function ψ : [0, T ] → C

n as follows

i ψ̇(t) = H(ǫ(t))ψ(t) for t ∈ (0, T ] and ψ(0) = ψ0, (1)

where T > 0 is a given terminal time, H : C → C
n×n denotes the Hamiltonian matrix

depending on the external control field ǫ : [0, T ] → C and ψ0 ∈ C
n is a fixed initial

condition. The Hamiltonian H = H0 + H1 has two constitutive components: The
constant free Hamiltonian H0 ∈ C

n×n describing the unperturbed (uncontrolled)
system; and H1 : C → C

n×n modeling the coupling of the quantum state to an
external control field ǫ.

The choice of T is a modeling issue motivated by physical considerations. Based
on the quantum indeterminacy principle ∆E∆t ≥ ~ (where ~ is the Planck constant
that we set equal to one) we can state the following: For too small T a highly
energetic optimal control results (∆E ≫ 1) thus involving many energy levels. On
the other hand, for too large T additional decoherence channels become important,
which should be avoided; see, e.g., [17]. As a guideline, the choice of T should be
related to the transition frequency.

Strictly speaking, the wavefunction description given in (1) is appropriate for an
isolated quantum system and in that case the governing Hamiltonian H is hermitian.
For a non-isolated system with environment couplings and subject to control, the
more general density-matrix description would be required [36]. Alternatively, we
may follow the procedure outlined in [6] to construct a non-hermitian Hamiltonian
H0 accounting for environment losses.

We focus on localized quantum systems where H1 : C → C
n×n is hermitian and

possesses the following structure

H1(z) = zℜeH1ℜe + zℑmH1ℑm for z = zℜe + izℑm ∈ C, (2)

where H1ℜe, H1ℑm ∈ C
n×n are constant and zℜe, zℑm ∈ R. Consequently,

̺(H1(z)) ≤ K0 |z| for all z ∈ C, (3)
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where ̺(·) denotes the spectral norm of complex-valued n× n matrices, | · | stands
for the absolut value of complex numbers and K0 = 2 max{̺(H1ℜe), ̺(H1ℑm)} ≥ 0.
Moreover, by (3),

̺(H(z)) ≤ ̺(H0) +K0 |z| for all z ∈ C.

We call ψ : [0, T ] → C
n a solution to (1) if ψ belongs to H1(0, T ; Cn), ψ(0) = ψ0

holds and ψ satisfies i ψ̇ = H(ǫ(·))ψ in [0, T ] almost everywhere (a.e.). For the
notion of Sobolev spaces we refer the reader to [1], for instance. Notice that (1) is
a linear system of ordinary differential equations, which therefore admits a unique
solution ψ ∈ H1(0, T ; Cn) for every ǫ ∈ L2(0, T ; C). The Hilbert space L2(0, T ; Cn)
is endowed with the canonical inner product

〈φ,ψ〉L2(0,T ;Cn) =

∫ T

0
φ · ψ∗ dt for φ, ψ ∈ L2(0, T ; Cn),

where ‘*’ means complex conjugate and the dot ‘·’ denotes the usual vector-scalar
product in C

n. We also have ‖·‖L2(0,T ;Cn) = 〈· , ·〉1/2. Analogously, the inner product
and the corresponding induced norm are defined on H1(0, T ; Cn).

To write (1) in a compact form we define the Hilbert space

Y = L2(0, T ; Cn) × C
n

endowed with the common product topology and introduce the non-linear operator
e = (e1, e2) by

e : H1(0, T ; Cn) × L2(0, T ; C) → Y, (ψ, ǫ) 7→
(

i ψ̇ −H(ǫ(·))ψ
ψ(0) − ψ0

)
.

Recall H1(0, T ; Cn) is continuously (even compactly) embedded in C([0, T ]; Cn),
where C([0, T ]; Cn) denotes the Banach space of all continuous functions ϕ : [0, T ] →
C
n that is endowed with the common norm; see [1]. Therefore, there exists an

embedding constant K1 > 0 satisfying

‖ψ‖C([0,T ];Cn) ≤ K1 ‖ψ‖H1(0,T ;Cn) for all ψ ∈ H1(0, T ; Cn). (4)

Let (ψ, ǫ) ∈ H1(0, T ; Cn) × L2(0, T ; C). Then we infer from (3) that

|H(ǫ(t))ψ(t)|2
Cn ≤ ̺

(
H(ǫ(t))

)2|ψ(t)|2
Cn ≤

(
2̺(H0)2 + 2K2

0 |ǫ(t)|2
)
‖ψ‖2

C([0,T ];Cn)

for almost all t ∈ [0, T ]. Thus, H(ǫ(·))ψ belongs to L2(0, T ; Cn) and, therefore, e1 is
well-defined.

In the following we shall consider the problem of determining a control field
ǫ ∈ L2(0, T ; C), such that (1) is fulfilled and a number of optimality criteria are
met. We assert that the control sequence drives the system at time T to the de-
sired target state ψd ∈ C

n. We account for limited laser resources and increased
smoothness through a minimization of the control field strengths and we require to
suppress population of intermediate states which suffer strong environment losses,
thus also enforcing our modelling choice of a non-hermitian free Hamiltonian. All
these requirements are realized in the cost functional

J(ψ, ǫ) =
1

2
|ψ(T ) − ψd|2Cn +

γ

2
‖ǫ‖2

L2(0,T ;C) +
µ

2
‖ǫ̇‖2

L2(0,T ;C)

+
1

2

∑

j∈I

αj ‖ψj‖2
L2(0,T,C),

(5)
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where the constants γ, µ ≥ 0 are regularization parameters, which allow to vary the
relative importance of the objectives represented by the various terms. We suppose
that γ + µ > 0. In the last term of (5), which penalizes the occupation of certain
states ψj , the set I ⊂ {1, . . . , n} denotes a subset of possible state indices and αj > 0,
j ∈ I, are weighting factors. Depending on the parameter µ, we define the Hilbert
space X by

X =

{
H1(0, T ; Cn) × L2(0, T ; C) if µ = 0,

H1(0, T ; Cn) ×H1
0 (0, T ; C) if µ > 0

and supply X with the natural product topology. Then, the optimal control problem
can be written as the following abstract minimization problem

minJ(x) subject to x = (ψ, ǫ) ∈ X and e(x) = 0 in Y. (P)

Remark 1 1) Because of H1 regularization (µ > 0) we have a natural setting to
impose zero (boundary) conditions on the control field outside of the control
window [0, T ]. This requirement is in agreement with the need of designing
control pulses with compact support.

2) Recall the Poincaré inequality

‖ǫ‖L2(0,T ;C) ≤ K2 ‖ǫ̇‖L2(0,T ;C) for all ǫ ∈ H1
0 (0, T ; C). (6)

Therefore, if µ > 0 the L2-norm of ǫ can be bounded by the L2-norm of its
derivative. This implies that we can choose γ = 0 provided µ > 0 holds.

The next theorem ensures that (P) has at least one global solution.

Theorem 2 The optimal control problem (P) admits a solution (ψ, ǫ) ∈ X.

Proof. We prove the claim by two steps.
Step 1: We need an a-priori estimate for the solution of (1). For given ǫ ∈ L2(0, T ; C),
equation (1) is a linear system of ordinary differential equations, which therefore has
a unique solution ψ ∈ H1(0, T ; Cn). We now write (1) in integral form

iψ(t) = iψ0 +

∫ t

0

(
H0 +H1(ǫ(s))

)
ψ(s) ds for 0 ≤ t ≤ T. (7)

Taking the Euclidean norm in C
n on both sides of (7) and using the triangle in-

equality on the right-hand side results in

|ψ(t)|
Cn ≤ |ψ0|Cn +

∫ t

0

(
̺(H0) + ̺

(
H1(ǫ(s))

))
|ψ(s)|

Cn ds.

Now apply Gronwall’s inequality [14] to obtain

|ψ(t)|
Cn ≤ |ψ0|Cn exp

(∫ t

0

(
̺(H0) + ̺

(
H1(ǫ(s))

))
ds

)
for 0 ≤ t ≤ T.

Using (3), squaring and integrating the above inequality over [0, T ] results in

‖ψ‖L2(0,T ;Cn) ≤
√
T |ψ0|Cn exp

(
c1 + c2 ‖ǫ‖L2(0,T ;C)

)
for 0 ≤ t ≤ T (8)
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with c1 = T̺(H0) and c2 =
√
TK0. Furthermore, using the state equation (1)

yields that for every ǫ ∈ L2(0, T ; C) with ‖ǫ‖L2(0,T ;C) ≤ c3 the corresponding states
ψ = ψ(ǫ) are bounded in H1(0, T ; Cn), i.e.,

‖ψ‖H1(0,T ;Cn) ≤ c4 for some c4 > 0.

Step 2: Let {ǫk}k≥1 be a minimizing sequence for J , i.e.,

lim
k→∞

J(ψk, ǫk) = inf
{
J(x) |x = (ψ, ǫ) ∈ X and e(x) = 0 in Y

}
,

where we denote by ψk = ψ(ǫk) the unique solution to (1) for ǫ = ǫk. Let γ > 0 and
µ = 0 hold. Hence,

J(ψ(ǫ), ǫ) → ∞ as ‖ǫ‖L2(0,T ;C) → ∞,

so that the sequence {ǫk}k≥1 is bounded in L2(0, T ; C). Since the unit ball in a
Hilbert space is weakly compact, there exists a weakly to an ǫ ∈ L2(0, T ; C) conver-
gent subsequence, which we again denote by {ǫk}k≥1. Step 1 above ensures that the
corresponding sequence {ψk}k≥1 is bounded in H1(0, T ; Cn); thus, again by choosing
a proper subsequence

ψk ⇀ ψ in H1(0, T ; Cn),

it follows from the Sobolev embedding theorem [1] that

ψk → ψ in L2(0, T ; Cn) and in C([0, T ]; Cn).

We can now show that (ψ, ǫ) is a solution of the optimal control problem. Since ψk
solves (1) for ǫk we have

iψk(t) = iψ0 +

∫ t

0

(
H0 +H1(ǫk(s))

)
ψk(s) ds for 0 ≤ t ≤ T. (9)

Next, we consider the limit in k → ∞ of (9). The weak convergence of ǫk to ǫ in
L2(0, T ; C) implies weak convergence also for the complex conjugates, i.e., ǫ∗k ⇀ ǫ∗

in L2(0, T ; C). Strong convergence of ψk to ψ in L2(0, T ; Cn) allows to go to the
limit as k → ∞ on the right-hand side of (9). Thus we find

iψ(t) = iψ0 +

∫ t

0

(
H0 +H1(ǫ(s))

)
ψ(s) ds,

which shows that ψ = ψ(ǫ), or equivalently that e(ψ, ǫ) = 0 in Y . We finally obtain

J(ψ, ǫ) =
1

2
|ψ(T ) − ψd|2Cn +

γ

2
‖ǫ‖2

L2(0,T ;C) +
1

2

∑

j∈I

αj ‖ψj‖2
L2(0,T ;Cn)

≤ 1

2
lim
k→∞

|ψk(T ) − ψd|2Cn +
1

2
lim inf
k→∞

(
γ ‖ǫk‖2

L2(0,T ;C)

)

+
1

2

∑

j∈I

αj lim
k→∞

‖ψk,j‖2
L2(0,T ;Cn)

= inf
{
J(x) |x = (ψ, ǫ) ∈ X and e(x) = 0 in Y

}
,

where we used the lower-semicontinuity of the L2-norm. Thus we have proved that
(ψ, ǫ) is a solution to (P) for γ > 0 and µ = 0. If µ > 0 and γ = 0 hold the sequence
{ǫk}k≥1 is bounded in L2(0, T ; C) by the Poincaré inequality (6). Thus, the proof
follows by analogous arguments.
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2.2 First-order necessary optimality conditions

To solve the above optimal control problem, we use the method of Lagrange mul-
tipliers (see, e.g., [22]) to turn the constrained minimization problem (P) into an
unconstrained optimization problem, and we focus on the necessary optimality con-
ditions of first-order.

We define the Lagrangian function L : X × Y → R by

L(ψ, ǫ, p, q) = J(ψ, ǫ) + ℜe
(
〈e(ψ, ǫ), (p, p0)〉Y

)

= J(ψ, ǫ) + ℜe
(
〈i ψ̇ −H(ǫ(·))ψ, p〉L2(0,T ;Cn) + (ψ(0) − ψ0) · q∗

)
.

To derive first-order necessary optimality conditions we need the following constraint
qualification.

Proposition 3 The operator e : X → Y is Fréchet-differentiable and its lineariza-
tion ∇e(x◦) is surjective for every x◦ = (ψ◦, ǫ◦) ∈ X.

Proof. We first prove the claim for the case µ > 0. Let x◦ = (ψ◦, ǫ◦) ∈ X =
H1(0, T ; Cn)×H1(0, T ; C) be arbitrary. Recall that H1

0 (0, T ; C) is continuously em-
bedded into C([0, T ]; C) so that there exists an embedding constant c1 > 0 satisfying

‖ǫ‖C([0,T ];C) ≤ c1 ‖ǫ‖H1(0,T ;C) for all ǫ ∈ H1
0 (0, T ; C). (10)

Recall that the Hamiltonian matrix H is of the form (2). We compute the directional
derivative of the operator e. For any direction x = (ψ, ǫ) ∈ X, ǫ = ǫℜe + iǫℑm with
ǫℜe, ǫℑm ∈ H1

0 (0, T ; R), we infer from (2) that

∇e(x◦)x = lim
hց0

e(x◦ + hx) − e(x◦)

h
=

(
i ψ̇ −H(ǫ◦(·))ψ −H1(ǫ(·))ψ◦

ψ(0)

)
.

Next we prove that the directional derivative is already the Fréchet-derivative. Note
that

e(x◦ + x) − e(x◦) −∇e(x◦)x =

(
H1(ǫ(·))ψ

0

)
.

Thus, we derive from (10), |ǫℜe(t)| ≤ |ǫ(t)| and |ǫℑm(t)| ≤ |ǫ(t)|
∥∥e(x◦ + x) − e(x◦) −∇e(x◦)x

∥∥2

Y

≤ K2
0

∫ T

0
|ǫ(t)|2 |ψ(t)|2

Cn dt ≤ K2
0 ‖ǫ‖2

C([0,T ];C)‖ψ‖2
L2(0,T ;Cn)

≤ c2
(
‖ψ‖2

H1(0,T ;Cn) + ‖ǫ‖2
H1(0,T ;C)

)2
= c2 ‖x‖4

X ,

where c2 = K2
0/2. Consequently,

0 ≤ lim
‖x‖Xց0

‖e(x◦ + x) − e(x◦) −∇e(x◦)x‖Y
‖x‖X

≤ c2 lim
‖x‖Xց0

‖x‖X = 0

so that the directional derivative ∇e(x◦) is already the Fréchet-derivative.
Next we prove that the linear operator e′(x◦) is surjective for every x◦ = (ψ◦, ǫ◦) ∈ X.
Recall that ψ◦ ∈ C([0, T ]; Cn). Let (f, f0) ∈ Y be arbitrary. Then ∇e(x◦)(ψ, ǫ) =
(f, f0) is equivalent with

i ψ̇ = H(ǫ◦(·))ψ +H1(ǫ(·))ψ◦ + f in (0, T ] and ψ(0) = f0. (11)



Optimal control of finite-level quantum systems 8

Applying (3) and (4), the right-hand side g = H1(ǫ(·))ψ◦ +f belongs to L2(0, T ; Cn)
for every ǫ ∈ L2(0, T ; C). Thus, (11) is a linear system of ordinary differential
equations that admits a unique solution ψ ∈ H1(0, T ; Cn) for every ǫ ∈ L2(0, T ; C).
In particular, the operator ∇e(x◦) is surjective.

Remark 4 It follows from the proof of Proposition 3 that the linear operator
eψ(x◦) : H1(0, T ; Cn) → Y is bijective, where eψ(x◦) denotes the partial Fréchet-
derivative at x◦ with respect to ψ ∈ H1(0, T ; Cn).

Notice that the quadratic cost functional J : X → [0,∞) is twice continuously
Fréchet-differentiable. Using Proposition 3 first-order necessary conditions for a
minimum are obtained by equating to zero the Fréchet derivatives of L with respect
to (ψ, ǫ, p, q).

Theorem 5 Suppose that x◦ = (ψ◦, ǫ◦) ∈ X is a local solution to (P). Then there
exist (unique) Lagrange multipliers p◦ ∈ H1(0, T ; Cn) and q◦ ∈ C

n satisfying

i ψ̇◦ = H(ǫ◦(·))ψ◦ in (0, T ], (12a)

ψ◦(0) = ψ0, (12b)

i(ṗ◦)j =
(
H(ǫ◦(·))∗p◦

)
j
− αj(ψ◦)j in (0, T ], j ∈ I, (12c)

i(ṗ◦)j =
(
H(ǫ◦(·))∗p◦

)
j

in (0, T ], j 6∈ I, (12d)

ip(T ) = ψ(T ) − ψd, (12e)

q◦ = ip◦(0), (12f)

−µǫ̈◦ + γǫ◦ = ℜe (H1ℜeψ◦ · p∗◦) + iℜe (H1ℑmψ◦ · p∗◦) in (0, T ], (12g)

ǫ◦(T ) = ǫ◦(0) = 0. (12h)

in case of µ > 0. Moreover, ǫ◦ ∈ C2([0, T ]; C) ∩ C([0, T ]; C), i.e., ǫ◦ is a classical
solution. If µ = 0 holds, (12g) and (12h) have to be replaced by

γǫ◦ = ℜe (H1ℜeψ◦ · p∗◦) + iℜe (H1ℑmψ◦ · p∗◦) in (0, T ). (12g’)

Proof. It follows from Proposition 3 that there exist (unique) Lagrange multi-
pliers (p◦, q◦) ∈ Y satisfying

∇L(x◦, p◦, q◦) = 0 in X × Y. (13)

The condition Lp(x◦, p◦, q◦) = 0 in L2(0, T ; Cn) implies (12a), whereas the equation
Lq(x◦, p◦, q◦) = 0 in C

n yields (12b). Next we turn to the partial derivative of the
Lagrangian with respect to ψ. Let φ ∈ H1(0, T ; Cn) be arbitrary. Then we find

Lψ(x◦, p◦, q◦)φ = ℜe
(

(ψ◦(T ) − ψd) · φ(T )∗ +
∑

j∈I

αj 〈(ψ◦)j , φj〉L2(0,T ;Cn)

)

+ℜe
(
〈i φ̇−H(ǫ(·))φ, p◦〉L2(0,T ;Cn) + φ(0) · q∗◦

)
!
= 0.

(14)

Using integration by parts we obtain

ℜe
(
〈i φ̇−H(ǫ(·))φ, p◦〉L2(0,T ;Cn)

)
= ℜe

(
〈i ṗ −H(ǫ(·))∗p◦, φ〉H1(0,T ;Cn)′,H1(0,T ;Cn)

)

+ ℜe (ip◦(T ) · φ(T )∗ − ip◦(0) · φ(0)∗) ,
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where 〈· , ·〉H1(0,T ;Cn)′,H1(0,T ;Cn) stands for the dual pairing of H1(0, T ; Cn) and its
dual space H1(0, T ; Cn)′. We infer from (14) that (12c)–(12d) are satisfied in
H1(0, T ; Cn)′. From (3) and the fact that ψ◦, p◦ ∈ L2(0, T ; Cn), it follows that the
right-hand sides in (12c)–(12d) even belong to L2(0, T ; Cn). Hence, p◦ ∈ H1(0, T ; Cn)
and (12c)–(12d) hold in L2(0, T ; Cn). Inserting (12c)–(12d) in (14) implies (12e)–
(12f). In case of µ > 0, we conclude from Lǫℜe

(x◦, p◦, q◦)ǫℜe = 0 for all ǫ =
ǫℜe + iǫℑm ∈ H1(0, T ; C) that

γ 〈ǫ◦ℜe, ǫ◦ℜe〉L2(0,T ;R) + µ 〈ǫ̇◦ℜe, ǫ̇◦ℜe〉L2(0,T ;R) + ℜe
(∫ T

0
ǫℜeH1ℜeψ◦ · p∗◦

)
= 0

with ǫ◦ = ǫ◦ℜe + iǫ◦ℑm ∈ H1
0 (0, T ; C) and ǫ◦ℜe, ǫ◦ℑm ∈ H1

0 (0, T ; R). Applying
integration by parts we derive

〈ǫ̇◦ℜe, ǫ̇ℜe〉L2(0,T ;R) = −〈ǫ̈◦ℜe, ǫℜe〉H1(0,T ;R)′,H1(0,T ;R).

Hence,
γ ǫ◦ℜe − µ ǫ̈◦ℜe + ℜe

(
H1ℜeψ◦ · p∗◦

)
= 0. (15)

Analogously, Lǫℑm
(x◦, p◦, q◦)ǫℑm = 0 for all ǫ = ǫℜe + iǫℑm ∈ H1(0, T ; C) implies

that
γ ǫ◦ℑm − µ ǫ̈◦ℑm + ℜe

(
H1ℑmψ◦ · p∗◦

)
= 0. (16)

Multiplying (16) by the complex unit i and adding (15) we obtain (12g), whereas
(12h) follows directly from ǫ◦ ∈ H1

0 (0, T ; C). Since ψ◦, p◦ ∈ C([0, T ]; Cn), the right-
hand side in (12g) belongs to C([0, T ]; C). Thus, ǫ◦ is a classical solution. In case
of µ = 0 we have to replace (15)-(16) by

γ ǫ◦ℜe + ℜe
(
H1ℜeψ◦ · p∗◦

)
= 0 and γ ǫ◦ℑm + ℜe

(
H1ℑmψ◦ · p∗◦

)
= 0,

respectively, so that we derive (12g’).
Having computed a solution to the first-order conditions (12) it remains to verify

that this solution corresponds to a local minimum. For this reason, second-order
optimality conditions are considered in the next section.

2.3 Second-order sufficient optimality conditions

Suppose that x◦ = (ψ◦, ǫ◦) ∈ X is an optimal solution to (P) and that (p◦, q◦) ∈ Y
are the associated Lagrange multiplier satisfying (12c)-(12f). The second Fréchet
derivative of the Lagrangian at (x◦, p◦, q◦) with respect to x is given by

Lxx(x◦, p◦, q◦)(x, x)

= |ψ(T )|2Cn + γ ‖ǫ‖2
L2(0,T ;C) + µ ‖ǫ̇‖2

L2(0,T ;C) +
∑

j∈I

αj ‖ψj‖2
L2(0,T ;Cn)

− 2ℜe
(∫ T

0

(
H1(ǫ(t))ψ(t)

)
· p◦(t)∗ dt

)

for every direction x = (ψ, ǫ) ∈ X.
In case of µ > 0 the second-order sufficient optimality conditions for (P) are as

follows (see, e.g., [25]): There exists a constant κ > 0 such that

Lxx(x◦, p◦, q◦)
(
(ψ, ǫ), (ψ, ǫ)

)
≥ κ

(
‖ψ‖2

H1(0,T ;Cn) + ‖ǫ‖2
H1(0,T ;C)

)
(17)
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for all (ψ, ǫ) ∈ X satisfying the linearized state equation

i ψ̇ = H(ǫ◦(·))ψ +H1(ǫ(·))ψ◦ in (0, T ] and ψ(0) = 0. (18)

It follows from Proposition 3 and Remark 4 that for every ǫ ∈ L2(0, T ; C) the
problem (18) possesses a unique solution.

In case of µ = 0 we have to replace (17) by

Lxx(x◦, p◦, q◦)
(
(ψ, ǫ), (ψ, ǫ)

)
≥ κ

(
‖ψ‖2

H1(0,T ;Cn) + ‖ǫ‖2
L2(0,T ;C)

)
. (19)

To prove the second-order sufficient optimality condition we need the following two
lemmas.

Lemma 6 Let (ψ̃◦, ǫ̃◦) ∈ L2(0, T ; Cn)×L2(0, T ; C) represent the linearization point
and let (ψ, ǫ) ∈ H1(0, T ; Cn)×L2(0, T ; C) satisfy (18). Then there exists a constant
C > 0 depending on ψ̃◦ and ǫ̃◦ so that

‖ψ‖L∞(0,T ;Cn) + ‖ψ‖L2(0,T ;Cn) ≤ C ‖ǫ‖L2(0,T ;C) for almost all t ∈ (0, T ]. (20)

Proof. To prove the assertion we apply Gronwall’s lemma. From (18) we have

iψ(t) = iψ(0) +

∫ t

0
i ψ̇(s) ds =

∫ t

0

(
H0 +H1(ǫ̃◦(s))

)
ψ(s) +H1(ǫ(s))ψ̃◦(s) ds

for almost all t ∈ (0, T ]. Using (3) we find

|ψ(t)|
Cn ≤

∫ t

0

(
̺(H0) +K0 |ǫ̃◦(s)|

)
|ψ(s)|

Cn +K0 |ǫ(s)| |ψ̃◦(s)|
Cn ds

≤ C1

(
1 + ‖ǫ̃◦‖2

L2(0,T ;C)

)1/2
(∫ t

0
|ψ(s)|2

Cn ds

)1/2

+C2 ‖ǫ‖L2(0,T ;C),

where C1 = max{2T ̺(H0)2, 2K2
0} and C2 = K0 ‖ψ̃◦‖L2(0,T ;Cn). Consequently,

|ψ(t)|2
Cn ≤ C3

((
1 + ‖ǫ̃◦‖2

L2(0,T ;C)

) ∫ t

0
|ψ(s)|2

Cn ds+ ‖ǫ‖2
L2(0,T ;C)

)

with C3 = max{2C2
1 , 2C

2
2}. Applying Gronwall’s lemma and using ψ(0) = 0 we

obtain

|ψ(t)|2
Cn ≤ C3 ‖ψ̃◦‖

2

L2(0,T ;Cn) e
C3t
(
1+‖ǫ̃◦‖

2
L2(0,T ;C)

)
‖ǫ‖2

L2(0,T ;C) (21)

for almost all t ∈ (0, T ] and

‖ψ‖2
L2(0,T ;Cn) ≤ TC3 ‖ψ̃◦‖

2

L2(0,T ;Cn) e
C3T
(
1+‖ǫ̃◦‖

2
L2(0,T ;C)

)
‖ǫ‖2

L2(0,T ;C). (22)

From (21) and (22) we infer (20).

Remark 7 If in addition to the hypotheses of Lemma 6, we have ψ̃◦ ∈ L∞(0, T ; Cn)
then we can give an estimate for ψ in the H1(0, T ; Cn)-norm. Applying (3), it follows
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that

‖ψ̇‖2

L2(0,T ;Cn) =

∫ T

0

∣∣∣
(
H0 +H1(ǫ̃◦(t)

)
ψ(t) +H1(ǫ(s))ψ̃◦(t)

∣∣∣
2

dt

≤
∫ T

0

∣∣∣
(
̺(H0) +K0 |ǫ̃◦(t)|

)
|ψ(t)|

Cn +K0 |ǫ(t)| |ψ̃◦(t)|
Cn

∣∣∣
2

dt

≤
∫ T

0
2
(
̺(H0) +K0 |ǫ̃◦(t)|

)2 |ψ(t)|2
Cn + 2K2

0 |ǫ(t)|2 |ψ̃◦(t)|2
Cn dt

≤ 4 ̺(H0)2 ‖ψ‖2
L2(0,T ;Cn) + 4K2

0 ‖ψ‖2
L∞(0,T ;Cn) ‖ǫ̃◦‖2

L2(0,T ;C)

+ 2K2
0 ‖ψ̃◦‖

2

L∞(0,T ;Cn)‖ǫ‖2
L2(0,T ;C)

≤ C4

(
‖ψ‖2

L∞(0,T ;Cn) + ‖ψ‖2
L2(0,T ;Cn) + ‖ǫ‖2

L2(0,T ;C)

)

with
C4 = max

{
4̺(H0)2, 4K2

0 ‖ǫ̃◦‖2
L2(0,T ;C), 2K2

0 ‖ψ̃◦‖
2

L∞(0,T ;Cn)

}
.

Thus, it follows from Lemma 6 that

‖ψ‖H1(0,T ;Cn) ≤ C5 ‖ǫ‖L2(0,T ;C) (23)

for a constant C5 > 0 depending on ‖ψ◦‖L∞(0,T ;Cn) and ‖ǫ◦‖L2(0,T ;C).

Lemma 8 Suppose that (ψ◦, ǫ◦) is a local solution to (P). Let α = (αi) ∈ R
n be

given by αi > 0 for i ∈ I and αi = 0 otherwise. Then the solution p◦ ∈ H1(0, T ; Cn)
to (12c)–(12e) satisfies

|p◦(t)|
Cn ≤ C

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)
for almost all t ∈ [0, T ],

where the constant C > 0 depends on ǫ◦ and Dα denotes a diagonal matrix satisfying
Dα = diag (α1, . . . , αn) ∈ R

n×n.

Proof. From (12c)–(12d) we infer

(
ip◦(T ) − ip◦(t)

)
j

=

(∫ T

t

(
H∗

0 +H1(ǫ(s))∗
)
p◦(s) − αj(ψ◦(s))j ds

)

j

for almost all t ∈ [0, T ) and 1 ≤ j ≤ n. Using (3) and i p◦(T ) = ψ◦(T )−ψd it follows
that

|p◦(t)|Cn ≤ |ψ◦(T ) − ψd|Cn +

∫ T

t

(
̺(H0) +K0 |ǫ(s)|

)
|p◦(s)|Cn + |Dαψ◦(s)|Cn ds

≤ |ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

+ C̃1

(
1 + ‖ǫ◦‖2

L2(0,T ;C)

)1/2
(∫ T

t
|p◦(s)|2Cn ds

)1/2

,

where C̃1 = max{2T ̺(H0)2, 2K2
0}. Setting C̃2 = 4 max{1, 2C2

1} we get

|p◦(t)|2
Cn ≤

C̃2

(
|ψ◦(T ) − ψd|2Cn + ‖Dαψ◦‖2

L1(0,T ;Cn) +
(
1 + ‖ǫ◦‖2

L2(0,T ;C)

) ∫ T

t
|p◦(s)|2

Cn ds

)
.
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Applying Gronwall’s lemma it follows that

|p◦(t)|2Cn ≤ C̃2e
C̃2(T−t)

(
1+‖ǫ◦‖

2
L2(0,T ;C)

)(
|ψ◦(T ) − ψd|2Cn + ‖Dαψ◦‖2

L1(0,T ;Cn)

)

for almost all t ∈ [0, T ), which gives the assertion.
Now we turn to the second-order sufficient optimality conditions. Let x◦ =

(ψ◦, ǫ◦) ∈ X be a local solution to (P) and (p◦, q◦) ∈ X the associated pair of
Lagrange multipliers. Suppose that µ > 0 and x = (ψ, ǫ) ∈ X satisfy (18). Due to
Remark 7 and (6) there exists a constant C̃ > 0 such that

‖ǫ̇‖2
L2(0,T ;C) ≥

1

C̃
‖ψ‖2

H1(0,T ;Cn). (24)

By Lemma 8 there exists a constant Ĉ > 0 depending on ǫ◦ such that

|p◦(t)|Cn ≤ Ĉ

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)
for all t ∈ [0, T ]. (25)

From (3), (6), (24), and (25) we derive

Lxx(x◦, p◦, q◦)(x, x)

≥ γ ‖ǫ‖2
L2(0,T ;C) +

µ

2
‖ǫ̇‖2

L2(0,T ;C) +
µ

2C̃
‖ψ‖2

H1(0,T ;Cn)

− 2K0

∫ T

0
|ǫ(t)| |ψ(t)|

Cn |p◦(t)|Cn dt

≥
(
γ +

µ

4K2

)
‖ǫ‖2

L2(0,T ;C) +
µ

4
‖ǫ̇‖2

L2(0,T ;C) +
µ

2C̃
‖ψ‖2

H1(0,T ;Cn)

− ĈK0

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)(
‖ǫ‖2

L2(0,T ;C) + ‖ψ‖2
H1(0,T ;Cn)

)

≥ min

{
γ +

µ

4K2
− ĈK0

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)
,
µ

4

}
‖ǫ‖2

H1(0,T ;C)

+

(
µ

2C̃
− ĈK0

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

))
‖ψ‖2

H1(0,T ;Cn).

If

|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn) < min

{
4γK2 + µ

4ĈK0K2

,
µ

2C̃ĈK0

}
(26)

then

κ = min

{
γ +

µ

4K2
− ĈK0

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)
,
µ

4
,

µ

2C̃
− ĈK0

(
|ψ◦(T ) − ψd|Cn + ‖Dαψ◦‖L1(0,T ;Cn)

)}

is positive and (17) holds. In case of µ = 0 we replace (24) by (23). Then, the
second-order sufficient condition can be shown analogously to the case µ > 0. We
summarize the results in the following theorem.

Theorem 9 Suppose that x◦ = (ψ◦, ǫ◦) ∈ X is an optimal solution to (P) and that
(p◦, q◦) ∈ Y are the associated (unique) Lagrange multipliers satisfying (12c)-(12f).
If (26) holds, then the second-order sufficient condition (17) is satisfied.
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Remark 10 The second-order sufficient optimality condition holds provided the
terminal residuum |ψ◦(T ) − ψd|Cn as well as the term

‖Dαψ◦‖L1(0,T ;Cn) =

∫ T

0

∑

j∈I

αj
∣∣(ψ◦(t))j

∣∣dt

are sufficiently small.

3 Non-linear conjugate gradient approach

By reviewing past and present approaches to quantum control computation, we can
identify two classes of solution procedures. On the one hand we have monotonic
schemes, based on the Krotov method, first considered in [39]; see Section 4. On the
other hand we have gradient-type methods. The latter were the first to be used in the
early day of quantum control computation [30]. Gradient-based techniques appeared
to be less competitive than monotonic schemes. However, some encouraging results
were presented in [40] where a non-linear conjugate gradient (NCG) scheme was
used. The approach in [40] was a crude generalization of the NCG method with a
special rule concerning the value of steplength (formula (2.32) in [40]). The resulting
algorithm is not always robust and convergence slow-down can be observed.

Our purpose is to show that an appropriate formulation of the NCG method with
a robust line search strategy results in a competitive scheme for quantum optimal
control problems. Two features determine the success of the scheme proposed in this
paper. The use of line search based on the Wolfe-Powell strategy and an extension
of a newly proposed formula [12] for determining conjugate search directions in the
NCG method. In this section we illustrate our NCG approach and investigate its
convergence properties.

3.1 The non-linear conjugate gradient method

We start discussing the minimization by NCG methods of a differentiable function
f : R

m → R. We denote g(x) = ∇f(x), x ∈ R
m.

NCG schemes represent extensions of linear conjugate gradient (CG) to non-
quadratic problems; see, e.g., [15, 38]. In the common variants, the basic idea is to
avoid matrix operations and express the search directions recursively as

dk+1 = −gk+1 + βk dk, (27)

for k = 1, 2, . . ., with d1 = −g1. The iterates for a minimum point are given by

xk+1 = xk + τk dk, (28)

where τk > 0 is a steplength. The parameter βk is chosen so that (27)–(28) reduces
to the linear CG scheme if f is a strictly convex quadratic function and τk is the exact
one-dimensional minimizer of f along dk. In this case the NCG scheme terminates
in at most n steps in exact arithmetic.

We focus on the NCG scheme of Dai and Yuan [12] based on the formula

βk = βDYk :=
〈gk+1, gk+1〉Rm

〈dk, yk〉Rm

,
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where yk = gk+1−gk. In [12], convergence of the proposed NCG scheme is established
requiring that the steplength τk satisfies the standard Wolfe conditions given by

f(ǫk) − f(ǫk + τkdk) ≥ −δτk 〈gk, dk〉Rm

and
〈g(ǫk + τkdk), dk〉Rm > σ 〈gk, dk〉Rm ,

with 0 < δ < σ < 1. Replacing the second of these two conditions above with the
following, results in the strong Wolfe conditions

∣∣〈g(ǫk + τkdk), dk〉Rm

∣∣ ≤ −σ 〈gk, dk〉Rm ,

with 0 < δ < σ < 1/2; see [15].
Next, we discuss the minimization of a real-valued differentiable function denoted

by Ĵ(ǫ), representing the reduced cost functional J(ψ(ǫ), ǫ), where ψ(ǫ) denotes
the solution to the state equation (1). Denote with g(ǫ) = ∇Ĵ(ǫ). Note that
g(ǫ) ∈ H1

0 (0, T ; C) for µ > 0 and g(ǫ) ∈ L2(0, T ; C) for µ = 0. Thus, we define

E = H1
0 (0, T ; C) if µ > 0 or E = L2(0, T ; C) if µ = 0.

We define

βk =
‖gk+1‖2

E

ℜe 〈dk, yk〉E
. (29)

We require that the steplength τk satisfies

Ĵ(ǫk) − Ĵ(ǫk + τkdk) ≥ −δτkℜe 〈gk, dk〉E (30)

〈g(ǫk + τkdk), dk〉E > σℜe 〈gk, dk〉E (31)

where the parameters are still chosen such that: 0 < δ < σ < 1/2. The quality
of line search in non-linear CG algorithms is crucial to preserve mutual conjugacy
property of search directions and to ensure that each generated direction is one of
descent. We use the Wolfe-Powell strategy to determine τk; see [27].

In the present framework, a sufficient descent condition is given by

ℜe 〈gk, dk〉E ≤ −c ‖gk‖2
E

for some c > 0 and for all k ≥ 1, is guaranteed only replacing (31) with the stronger
condition ∣∣〈g(ǫk + τkdk), dk〉E

∣∣ ≤ −σℜe 〈gk, dk〉E
(and c = 1/(1 + σ) results).

We consider the following NCG scheme

Algorithm 11 (NCG method)
Step 1. Given k = 1, ǫ1, d1 = −g1, if ‖g1‖E < tol then stop.
Step 2. Compute τk > 0 satisfying (30)–(31).
Step 3. Let ǫk+1 = ǫk + τk dk.
Step 4. Compute gk+1 = ∇Ĵ(ǫk+1).

If ‖gk+1‖E < tolabs or ‖gk+1‖E < tolrel ‖g1‖E or k = kmax then stop.
Step 5. Compute βk by (29).
Step 6. Let dk+1 = −gk+1 + βk dk.
Step 7. Set k = k + 1, goto Step 2.
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In the remaining of this section we discuss convergence of the NCG scheme
defined above. We need the following assumption.

Assumption 12 (1) Ĵ is bounded from below and is continuously real differen-
tiable in a neighborhood N of the level set L = {ǫ ∈ E : Ĵ(ǫ) ≤ Ĵ(ǫ1)}.

(2) ∇Ĵ is Lipschitz continuous in N , i.e. there exists a constant L > 0 such that

‖∇Ĵ(ǫ1) −∇Ĵ(ǫ2)‖E ≤ L ‖ǫ1 − ǫ2‖E for all ǫ1, ǫ2 ∈ N .

Notice that in our setting Assumption 12-(1) is satisfied. Moreover, ǫ 7→ Ĵ(ǫ)
is twice continuously Fréchet-differentiable so that Assumption 12-(2) holds at least
locally.

We have

ℜe 〈gk+1, dk+1〉E = ℜe 〈gk+1,−gk+1 + βkdk〉E = −‖gk+1‖2
E + βk ℜe 〈gk+1, dk〉E

= −‖gk+1‖2
E +

‖gk+1‖2
E

ℜe 〈dk, yk〉E
ℜe 〈gk+1, dk〉E

=
‖gk+1‖2

E

ℜe 〈dk, yk〉E
(−ℜe 〈dk, yk〉E + ℜe 〈gk+1, dk〉E) = βk ℜe 〈gk, dk〉E .

Therefore we have

βk =
ℜe 〈gk+1, dk+1〉E
ℜe 〈gk, dk〉E

. (32)

Now we need the following lemma which is an extension of Lemma 3.2 in [12].

Lemma 13 Suppose that ǫ1 is a starting point for which Assumption 12 is satisfied
and consider any method of the form ǫk+1 = ǫk+τk dk where dk is a descent direction
and τk satisfies (30)–(31). Then the following Zoutendijk condition holds

∑

k≥1

ℜe 〈gk, dk〉2E
‖dk‖2

E

<∞

Proof. From (31) it follows that

ℜe 〈yk, dk〉E = ℜe 〈gk+1 − gk, dk〉E ≥ (σ − 1)ℜe 〈gk, dk〉E .

The Lipschitz condition implies that

ℜe 〈yk, dk〉E = ℜe 〈gk+1 − gk, dk〉E ≤ τkL ‖dk‖2
E .

Combining the two inequalities one obtains

τk ≥
σ − 1

L

ℜe 〈gk, dk〉E
‖dk‖2

E

.

This result combined with (30) gives

Ĵ(ǫk) − Ĵ(ǫk + τkdk) ≥ −δτkℜe 〈gk, dk〉E ≥ c
ℜe 〈gk, dk〉2E

‖dk‖2
E

where c = δ(1 − σ)/L is a positive constant. Summing up for k ≥ 1 and recalling
that Ĵ is bounded below concludes the proof.

We can now prove the following theorem representing an extension of Theorem
3.3 in [12].
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Theorem 14 Suppose that ǫ1 is a starting point for which Assumption 12 holds. Let
the sequence {ǫk}k≥1 be generated by the NCG Algorithm 11. Then this algorithm
either terminates at the stationary point or converges in the sense that

lim inf
k→∞

‖gk‖E = 0.

If, in addition, the sequence {‖dk‖E/‖gk‖E} is bounded then limk→∞ ‖gk‖E = 0.

Proof. First notice that if the NCG algorithm does not terminate after finite
many iterations, we have

‖gk‖E > 0 for all k.

Next we show that the search directions are descent, in the sense that

ℜe 〈gk, dk〉E < 0. (33)

This is obvious for k = 1. Now assume that it holds for k and recall the following
two results

ℜe 〈yk, dk〉E ≥ (σ − 1)ℜe 〈gk , dk〉E (34)

and
ℜe 〈gk+1, dk+1〉E = βk ℜe 〈gk, dk〉E . (35)

Therefore, we obtain

ℜe 〈gk+1, dk+1〉E = βk ℜe 〈gk, dk〉E =
‖gk+1‖2

E

ℜe 〈dk, yk〉E
ℜe 〈gk, dk〉E ≤ ‖gk+1‖2

E

(σ − 1)
< 0.

That is (33) holds for all k (and hence βk > 0 for all k).
Now, consider the scalar product of both sides of dk+1 + gk+1 = βk dk with

themselves. We have ‖dk+1‖2
E = β2

k‖dk‖2
E − 2ℜe 〈gk+1, dk+1〉E − ‖gk+1‖2

E . Dividing
with ℜe〈gk+1, dk+1〉2 and using (32), we obtain

‖dk+1‖2
E

ℜe 〈gk+1, dk+1〉2E
=

‖dk‖2
E

ℜe 〈gk, dk〉2E
−
(

1

‖gk+1‖E
+

‖gk+1‖E
ℜe 〈gk+1, dk+1〉E

)2

+
1

‖gk+1‖2
E

≤ ‖dk‖2
E

ℜe 〈gk, dk〉2E
+

1

‖gk+1‖2
E

,

and for k = 1 we have ‖d1‖2
E/ℜe〈g1, d1〉2E = 1/‖g1‖2

E . Therefore we have

‖dk‖2
E

ℜe 〈gk, dk〉2E
≤

k∑

i=1

1

‖gi‖2
E

for all k ≥ 1. (36)

The proof of the theorem is concluded with a contradiction argument. If the theorem
is not true, then there exists a constant c > 0 such that ‖gk‖E ≥ c for all k ≥ 1 and
from (36) it follows that

‖dk‖2
E

ℜe 〈gk, dk〉2E
≤ k

c2

which implies that
∑

k≥1

ℜe 〈gk, dk〉2E
‖dk‖2

E

≥ c2
∑

k≥1

1

k
= ∞

thus contradicting Lemma 13.
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3.2 Cascadic acceleration

The cascadic approach results from combining nested iteration techniques with (one-
grid) iterative schemes. The idea is to spend more iteration on coarser grids to
obtain a solution that, when interpolated to a finer grid, provides a good starting
approximation for the iteration process on this grid. A schematic description of
this method is given by the following. Let lev = lev0, . . . , levf be the index of
a hierarchy of nested grids, from coarsest to finest. Let xlev0 represents a given
starting approximation on the coarsest grid of the cascadic solution process and
denote with I levlev−1 an interpolation operator from grid lev − 1 to grid lev. Denote
with Slev(xlev) the basic iteration. With ∗ we denote the obtained solution.

We have

x∗lev0 = xlev0

x∗lev = I levlev−1x
∗
lev−1; x∗lev = Smlev

lev (x∗lev), lev = lev0 + 1, . . . , levf ,

where mlev is the number of iterations at level lev.
For the formulation of the so-called cascadic multigrid method and its analysis

see [5]. In particular in [5, 37], a cascadic conjugate gradient method is discussed
and optimal computational complexity for elliptic problems is proved.

While we are not able to extend the convergence theory in [5, 37] to the case
of nonconvex optimization problems using the NCG scheme, we obtain consider-
able improvement with respect to one-grid NCG with the cascadic version of our
NCG scheme. We denote the resulting scheme by C-NCG. For results of numerical
experiments, see Section 5.

4 Monotonic schemes for quantum control

Monotonic schemes have been initially introduced in a general framework by Krotov
[18, 19, 20]. Following this approach, Tannor et al [39] and then Zhu & Rabitz
[42] have proposed two procedures for quantum control. These algorithms have a
common basis, as it appears in [24], where a unified form is presented. Other ex-
tensions have then been designed to obtain bounded and bang-bang controls [41],
stochastic monotonic schemes [35] or to optimize more general cost functionals [28]
and systems involving dissipative states [29]. Recently, a relationship between these
algorithms and local trajectory tracking procedures has been established, providing
an interpretation of these schemes [35]. At the theoretical level, some proofs of the
convergence of the monotonic schemes have been presented using either compactness
and semi-group theory [21] or the  Lojasiewicz inequality and its extensions [2]. On
the other hand, usual time discretization of the monotonic schemes often leads to
instabilities that prevent to reach numerical convergence. This problem is studied
in [23, 34], where an appropriate time discretization is proposed which avoids in-
stability. In order to tackle the control problem of the finite-level system presented
in the section of numerical experiments, we present here a time discretized mono-
tonic scheme based on a Crank-Nicholson propagator. The resulting algorithm is
unconditionally stable and allows us to work with a large range of time steps.

For simplicity, throughout this section we will consider that µ = 0 and require
the following assumption that characterizes dissipation in the system.
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Assumption 15 We assume that
〈
H0 −H∗

0

i
ψ,ψ

〉

L2(0,T ;Cn)

≤ 0 for all ψ ∈ H1(0, T ; Cn).

For reason of simplicity, we introduce an auxiliary cost functional

J̃(ǫ) := ℜe(ψ∗
d · ψ(T )) − γ

2
‖ǫ‖2

L2(0,T ;C) +
1

2
〈ψ,Λψ〉L2(0,T ;Cn),

where ψ and ǫ are linked by (1) and Λ is defined by

Λψ = −
∑

j∈I

αjψj −
H0 −H∗

0

i
ψ.

We consider the optimal control problem corresponding to the maximization of J̃(ǫ)
under the constraint (1). Notice that this problem is equivalent to the optimal
control problem (P) since

Ĵ(ǫ) = |ψ0|2Cn −ℜe(ψ∗
d · ψ(T )) − 1

2
〈ψ,Λψ〉L2(0,T ;Cn) +

γ

2
‖ǫ‖2

L2(0,T ;C)

= |ψ0|2Cn − J̃(ǫ).

We assume that the following holds.

Assumption 16 The parameters αj fulfill the condition:

−
∑

j∈I

αj |ψj |2 −
〈
H0 −H∗

0

i
ψ,ψ

〉

L2(0,T ;Cn)

≥ 0 for all ψ ∈ Cn.

With this assumption, the operator Λ is positive. This condition is necessary to
guarantee the monotonicity of our algorithm.

Before presenting a monotonic scheme corresponding to the maximization of
J̃(ǫ) = J̃(ψ(ǫ), ǫ), we need to compute the increase of this cost functional between
two control fields. Let us first define the Lagrange multiplier q by

i q̇ = (H∗
0 +H∗

1 (ǫ(·))) q + Λψ (37)

iq(T ) = −ψd.
Consider two fields ǫ and ǫ′, and the corresponding wavefunctions ψ and ψ′, and
Lagrange multipliers q and q′, respectively. We have

J̃(ǫ′) − J̃(ǫ) = ℜe(ψ∗
d · (ψ′(T ) − ψ(T ))) + ℜe〈Λψ,ψ′ − ψ〉L2(0,T ;Cn)

+
1

2
〈ψ′ − ψ,Λ(ψ′ − ψ)〉L2(0,T ;Cn)

−γ
2

(
‖ǫ′‖2

L2(0,T ;C) − ‖ǫ‖2
L2(0,T ;C)

)
.

(38)

Focusing on the first two terms of this sum, we obtain

ℜe(ψ∗
d · (ψ′(T ) − ψ(T ))) + ℜe 〈Λψ,ψ′ − ψ〉L2(0,T ;Cn)

= ℜe(iq(T )∗ · (ψ′(T ) − ψ(T ))) + ℜe 〈Λψ,ψ′ − ψ〉L2(0,T ;Cn)

= ℜe
〈
− iq,

H0 +H1(ǫ′(·))
i

ψ′ − H0 +H1(ǫ(·))
i

ψ

〉

L2(0,T ;Cn)

+ ℜe 〈−i q̇, ψ′ − ψ〉L2(0,T ;Cn) + ℜe 〈Λψ,ψ′ − ψ〉L2(0,T ;Cn)

= ℜe 〈q, (H1(ǫ′(·)) −H1(ǫ(·)))ψ′〉L2(0,T ;Cn).
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Thus, the increase of J̃ reads as follows

J̃(ǫ′) − J̃(ǫ) =

∫ T

0
ℜe(q(s)∗ ·

(
H1(ǫ′(s)) −H1(ǫ(s))

)
ψ′(s)) − γ

2

(
|ǫ′(s)|2 − |ǫ(s)|2

)
ds

+
1

2
〈ψ′ − ψ,Λ(ψ′ − ψ)〉L2(0,T ;Cn). (39)

This formula is the starting point for the design of the monotonic algorithm. For
example, we have the following result.

Lemma 17 Given ǫ ∈ L2(0, T ; C), suppose there exists ǫ′ such that

ǫ′ℜe(t) = ǫℜe(t) +
1

γ
ℜe(q(t)∗ ·H1ℜeψ

′(t)),

ǫ′ℑm(t) = ǫℑm(t) +
1

γ
ℜe(q(t)∗ ·H1ℑmψ

′(t)).

Then J̃(ǫ′) ≥ J̃(ǫ).

4.1 Time discretized algorithm

Due to their sequential feature, monotonic schemes require a particular time dis-
cretization in order to keep their monotonicity at the discrete level. This discretiza-
tion is discuseed in detail in this section.

For any given integer N , let us introduce the discretization parameter δt defined
by N δt = T and ǫℓ = ǫℜe,ℓ+iǫℑm,ℓ, ψℓ, qℓ that stand respectively for approximations
of ǫ(ℓδt), ψ(ℓδt), q(ℓδt). Moreover, we denote by Hℓ the approximation of the
Hamiltonian H0 +H1(ǫ(ℓδt)).

Given an initial state ψ0, we solve numerically (1) and (37) by a Crank-Nicholson
scheme. This discretization gives rise to the following iteration

ψℓ+1 =
(
Id −

δtHℓ

2i

)−1(
Id +

δtHℓ

2i

)
ψℓ (40)

and

qℓ =
(
Id +

δtH∗
ℓ

2i

)(
Id −

δtH∗
ℓ

2i

)−1
qℓ+1 − iδtΛψℓ+1 (41)

iqN = −ψd,
where Id is the identity matrix. Since H1(ǫ) is hermitian and because of Assumption
15, the following uniform bounds can be obtained

|ψℓ|Cn ≤ |ψ0|Cn , |qℓ|Cn ≤ T ρ(Λ) |ψ0|Cn + |ψd|Cn for all ℓ = 0, . . . ,N − 1. (42)

We also introduce the time discretized cost functional

J̃δt(ǫ) = ℜe(ψ∗
d · ψN ) − γδt

2

N−1∑

ℓ=0

|ǫℓ|2 +
δt

2

N−1∑

ℓ=0

(Λψ∗
ℓ+1 · ψℓ+1).

Consider two control fields ǫ and ǫ′. Repeating the computations of the previous
section at the discrete level, we obtain the following equivalent of (39)

J̃δt(ǫ
′) − J̃δt(ǫ) =

N−1∑

ℓ=0

ℜe(q∗ℓ · DHℓψ
′
ℓ) −

γδt

2

(
|ǫ′ℓ|2 − |ǫℓ|2

)

+
δt

2

N−1∑

ℓ=0

(
(ψ′

ℓ − ψℓ)
∗ · Λ(ψ′

ℓ − ψℓ)
)
, (43)
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where

DHℓ = i

((
Id +

δtHℓ

2i

)−1(
Id −

δtHℓ

2i

)(
Id −

δtH ′
ℓ

2i

)−1(
Id +

δtH ′
ℓ

2i

)
− Id

)
.

We now present a monotonic scheme to optimize J̃δt. First, notice that given
ǫ = (ǫℓ)0≤ℓ≤N−1 and ψ′

ℓ, the term ℜe[qℓ · ∆Hℓψ
′
ℓ] − δtγ2 (|ǫ′ℓ|2 − |ǫℓ|2) in (43) only

depends on ǫ′ℓ. Starting from this remark, the algorithm we propose consists in
optimizing recursively each term of the first sum in (43) with respect to ǫ′ℓ via one
iteration of a Newton method.

Let us compute a Taylor expansion with respect to δǫℓ = ǫ′ℓ−ǫℓ = δǫℜe,ℓ+iδǫℑm,ℓ.
Defining ∆Hℓ = H1(ǫ′) −H1(ǫ), we have

(q∗ℓ · DHℓψ
′
ℓ) =

δt

2
(q̃∗ℓ · ∆Hℓψ̌

′
ℓ) + i

δt2

4

[
q̃∗ℓ · ∆Hℓ

(
Id −

δtHℓ

2i

)−1
∆Hℓψ̌

′
ℓ

]

+ o
(
(∆Hℓ)

2
)
,

where

q̃ℓ =

(
Id +

(
Id +

δtH∗
ℓ

2i

)(
Id −

δtH∗
ℓ

2i

)−1
)
qℓ = qℓ + qℓ+1 + iδtΛψℓ+1,

ψ̌′
ℓ =
(
Id −

δtHℓ

2i

)−1
ψ′
ℓ.

This increase can then be expressed in terms of the quantity δǫℓ

(q∗ℓ .DHℓψ
′
ℓ) =

δt

2
ATℓ

(
δǫℜe,ℓ
δǫℑm,ℓ

)
+
δt

4

(
δǫℜe,ℓ
δǫℑm,ℓ

)T
(iδtBℓ)

(
δǫℜe,ℓ
δǫℑm,ℓ

)

+ o
(
(δǫℓ)

2
)
,

where T stands for transpose and the matrices Aℓ and Bℓ are given by

Aℓ =




(q̃∗ℓ ·H1ℜeψ̌
′
ℓ)

(q̃∗ℓ ·H1ℑmψ̌
′
ℓ)


 , Bℓ =

(
Bℓ,1,1 Bℓ,1,2
Bℓ,2,1 Bℓ,2,2

)
, (44)

with

Bℓ,1,1 = (q̃∗ℓ ·H1ℜe

(
Id −

δtHℓ

2i

)−1
H1ℜeψ̌

′
ℓ)

Bℓ,2,2 = (q̃∗ℓ ·H1ℑm

(
Id −

δtHℓ

2i

)−1
H1ℑmψ̌

′
ℓ)

Bℓ,1,2 = Bℓ,2,1

=
1

2

[
q̃∗ℓ ·

{
H1ℑm

(
Id −

δtHℓ

2i

)−1
H1ℜeψ̌

′
ℓ +H1ℜe

(
Id −

δtHℓ

2i

)−1
H1ℑmψ̌

′
ℓ

}]
.

On the other hand, one has

|ǫ′ℓ|2 − |ǫℓ|2 = 2

(
ǫℜe,ℓ
ǫℑm,ℓ

)T (
δǫℜe,ℓ
δǫℑm,ℓ

)
+

(
δǫℜe,ℓ
δǫℑm,ℓ

)T (
δǫℜe,ℓ
δǫℑm,ℓ

)
,
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and the increase of the cost functional reads

J̃δt(ǫ
′) − J̃δt(ǫ) = δt

N−1∑

ℓ=0

(
1

2
ℜeAℓ − γ

(
ǫℜe,ℓ
ǫℑm,ℓ

))T (
δǫℜe,ℓ
δǫℑm,ℓ

)

−
(

δǫℜe,ℓ
δǫℑm,ℓ

)T(
δt

4
ℑmBℓ +

γ

2
I2

)(
δǫℜe,ℓ
δǫℑm,ℓ

)
+ o
(
(δǫℓ)

2
)

+
δt

2

N−1∑

ℓ=0

((ψ′
ℓ − ψℓ)

∗ · Λ(ψ′
ℓ − ψℓ)),

where I2 denotes the identity matrix of R
2.

Algorithm 18 (Crank-Nicholson monotonic scheme (CNMS)) Given an ini-
tial control amplitude ǫ0 and its associated state ψ0 and Lagrange multiplier q0, sup-
pose that ψk, qk, ǫk, have already been computed. The derivation of ψk+1, qk+1,
ǫk+1, is done as follows.

Forward propagation: Given ψk+1
0 = ψ0, compute recursively ψk+1

ℓ+1 from ψk+1
ℓ by

Step 1. (Newton iteration) Compute ǫk+1
ℓ by

(
ǫk+1
ℜe,ℓ

ǫk+1
ℑm,ℓ

)
=

(
ǫkℜe,ℓ
ǫkℑm,ℓ

)
+

1

2

(δt
4
ℑmBk

ℓ +
γ

2
I2

)−1
(

1

2
ℜeAkℓ − γ

(
ǫkℜe,ℓ
ǫkℑm,ℓ

))
. (45)

Step 2. Compute ψk+1
ℓ+1 by (40).

Backward propagation: Given qk+1
N = iψd, compute recursively qk+1

ℓ from qk+1
ℓ+1

by (41).

4.2 Convergence of the algorithm

We present some results concerning the convergence of the CNMS. An important
property of this scheme is that the sequence (ǫk)k∈N is bounded, as claimed in the
next lemma.

Lemma 19 For small enough δt, there exist M , such that

∀k ∈ N, ∀ℓ = 0...N − 1, |ǫkℜe,ℓ| ≤M, |ǫkℑm,ℓ| ≤M.

Proof. Consider an initial control field ǫ0 and define m and M by

m = 2K0 |ψ0|Cn

(
|ψd|Cn + ρ(Λ) (T + δt|ψ0|Cn)

)

M =
2m

γ
+ max
ℓ=0...N−1

|ǫ0ℓ |.

Let us denote by Aℜe,ℓ and Aℑm,ℓ the components of Aℓ. Given ǫ, the estimates (42)
and the definition (44) give

max(|Aℜe,ℓ|, |Aℑm,ℓ|) ≤
m

1 − δtρ(H0)+K0|ǫℓ|
2

.

A similar estimate can be obtained for the coefficients of Bℓ. Let us denote by b the
bound obtained for ǫℓ ≤M .
Given k, ℓ ∈ N, suppose that max(|ǫkℜe,ℓ|, |ǫkℑm,ℓ|) ≤M and that δt is such that:

m

1 − δtρ(H0)+K0M
2

≤Mγ.
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The iteration (45) reads

ǫk+1
ℓ = (I2 − δkℓ )ǫkℓ +

δkℓ
2γ

ℜeAkℓ ,

where:

δkℓ = (
δt

2γ
ℑmBk

ℓ + I2)−1.

Since the coefficients of Bk
ℓ are bounded by b, it can be supposed that the diagonal

coefficients of δkℓ belong to [1/2, 3/2] and the others to [−1/8, 1/8]. Then

|ǫk+1
ℜe,ℓ| ≤ |1 − δkℓ,1,1||ǫkℜe,ℓ| + |δkℓ,1,2||ǫkℑm,ℓ| +

|δkℓ,1,1|
2γ

|ℜeAr,ℓ| +
|δkℓ,1,2|

2γ
|ℜeAi ,ℓ|

≤ (|1 − δkℓ,1,1| + |δkℓ,1,1|)M ≤M,

where δkℓ,i,j denotes the components of δkℓ . The same result holds for |ǫk+1
ℑm,ℓ|. The

lemma follows.
The next lemma gives a result about the monotonicity of CNMS.

Lemma 20 For small enough δt, the CNMS converges monotonically, in the sense
that

∃ η > 0, J̃δt(ǫ
k+1) − J̃δt(ǫ

k) ≥ η‖ǫk+1 − ǫk‖2
CN−1 .

Proof. The increase of J̃δt between two iterations reads

J̃δt(ǫ
k+1) − J̃δT (ǫk) =

δtγ

2

N−1∑

ℓ=0

|δǫkℓ |2 +
δt

2

N−1∑

ℓ=0

((ψ′
ℓ − ψℓ)

∗ · Λ(ψ′
ℓ − ψℓ))

+

N−1∑

ℓ=0

ℜeRkℓ ,

where

Rkℓ = (qk ∗
ℓ ·DHℓψ

k+1
ℓ )− δt

2
(Akℓ )T

(
δǫkℜe,ℓ
δǫkℑm,ℓ

)
+δt2

(
δǫkℜe,ℓ
δǫkℑm,ℓ

)T
ℑmBk

ℓ

(
δǫkℜe,ℓ
δǫkℑm,ℓ

)
.

Using the Taylor-Lagrange formula and Lemma 19, we obtain

Rkℓ = |ǫkℓ |2 o(δt),

and the result follows.
Further analysis shows that there exists υ > 0 such that

‖∇J̃δt(ǫk+1)‖CN−1 ≤ υ‖ǫk+1 − ǫk‖CN−1 ,

where ∇J̃δt denotes the gradient of J̃δt with respect to ǫ. This fact combined with
Lemma 20 enable us to claim the following convergence result.

Theorem 21 For all initial value ǫ0, the sequence (ǫk)k∈N converges towards a crit-
ical point of J̃δt. Denoting by ǫ∞ this limit, there exists c > 0 and χ > 0 such that:

‖ǫk − ǫ∞‖CN−1 ≤ ck−χ.

Note that, for large values of γ, it can be proved that the convergence rate is indeed
linear. We refer the Reader to [34] for the details of the proof.
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5 Numerical experiments

We present results of numerical experiments with a representative three-level quan-
tum system whose configuration is represented by ψ = (ψ1, ψ2, ψ3) ∈ H1(0, T ; C3)
which consists of two long-lived states ψ1 and ψ2, which are energetically separated
by some amount δ, and a state ψ3, which has a finite lifetime because of envi-
ronment coupling (wiggled line); see Figure 1. Such Λ-type configurations have a
long-standing history in quantum optics and have been demonstrated successful in
the explanation of many coherence-phenomena in atomic systems [3]; more recently,
similar configurations have received increasing attention also in semiconductor quan-
tum dots [16].

ψ1

ψ2

ψ3
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Figure 1: Prototypical Λ-type three-level scheme: ψ1 and ψ2 are long-lived states whereas
ψ3 is a short-lived state which is optically coupled to both ψ1 and ψ2; wiggled line indicates
relaxation and dephasing of state ψ3.

Time evolution of this finite-level quantum system is governed by the following
Hamiltonian [3, 16]

H0 =
1

2




−δ 0 0
0 δ 0
0 0 −iγ0


 , (46)

where the term −iγ0 accounts for environment losses (e.g., spontaneous photon
emissions). The coupling to the external field ǫ = ǫℜe + iǫℑm, reads

H1(ǫ) = −1

2




0 0 µ1ǫ
0 0 µ2ǫ

µ1ǫ
∗ µ2ǫ

∗ 0


 , (47)

where µ1 and µ2 describe the coupling strengths of states ψ1 and ψ2 to the inter-
connecting state ψ3 (e.g., optical dipole matrix elements).

Typical initial and final states are given by

ψ0 =




1
0
0


 and ψd =




0
e−iδt

0


 ,

respectively.
Concerning the optimality condition (12g) we have

H1ℜe = −1

2




0 0 µ1

0 0 µ2

µ1 µ2 0


 and H1ℑm = −1

2




0 0 iµ1

0 0 iµ2

−iµ1 −iµ2 0


 .
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Assuming that the system is initially prepared in state ψ1, that is ψ = ψ0, we
use the optimal control approach to determine the most efficient way to bring the
system from ψ1 to ψ2. The form of H1(ǫ) is such that direct optical transition
between ψ1 and ψ2 is forbidden. The presence of the third auxiliary state ψ3 allows
this transition through intermediate population transfer while introducing losses
because of environment coupling. Therefore we require to find a sequence of laser
pulses that minimizes the population of level ψ3 along evolution.

In this section, we report results of experiments to show the importance of a
sufficiently small tolerance which needs be defined in an appropriate way. We give
evidence that using the second-order Crank-Nicholson scheme for evolution, second-
order accurate solutions of the optimization problems are obtained. We compare
the non-linear CG scheme with the monotonic method showing that the former
may result more efficient and robust. We then provide results that demonstrate
improved convergence properties of NCG with cascadic acceleration. We complete
this section discussing the different solution behavior for different choices of values
of the optimization parameters.

Some of problems’ parameters are held fixed. We choose δ = 20, γ0 = 0.01,
µ1 = 1, µ2 = 1, α1 = 0, α2 = 0, and T = 5.

To determine the evolution of state and adjoint variables we consider an implicit
second-order Crank-Nicholson scheme. Given the solution at time step ℓ, the value
of the wave function at the next time step ℓ+ 1 is given by

i
ψℓ+1 − ψℓ

δt
=

1

2
Hℓ+1ψℓ+1 +

1

2
Hℓψℓ.

Thus ψℓ+1 is given by

ψℓ+1 = (Id −
δt

2i
Hℓ+1)−1 (Id +

δt

2i
Hℓ)ψℓ, ℓ = 0, . . . ,N − 1.

In case of finite-level quantum systems, the operator (Id+i δt2 Hℓ+1) is a n×n complex
matrix which is easily invertible. The formula above holds for the adjoint equation
marching backwards by inverting the time direction. Notice that this scheme is
slightly different from the one presented in Section 4.1, this latter being relevant to
the sequential feature of the CNMS scheme.

First we focus on the problem of assessing convergence of iterative solvers to
quantum optimal control solutions. We give evidence that optimal solutions are
quite sensitive to the order of tolerance required in computations. For this purpose
consider the results reported in Table 5. These results have been obtained using the
convergence criteria

Jk+1 − Jk

Jk
≤ tol

where Jk is the value of the reduced cost functional after k iterations. This criteria
is commonly used in the scientific computing community and typical values for the
tolerance are tol ∈ (10−6, 10−4). One should notice that in case of minimization
problems with flat minima basins, such convergence criteria may be misleading.
This fact can be partly seen in Table 5 considering the values of |ψ(T ) − ψd|C3 and
of J . In Figure 2, a more dramatic picture is given of how sensitive the optimal
solution is with respect to the chosen tolerance.

On the other hand, resulting values of the discrete L2(0, T ; C)-norm (denoted by
‖ · ‖) of the residual of the optimality conditions (12g), ‖resǫ‖, suggest to use this
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tol ‖resǫ‖ |ψ(T ) − ψd|C3 J CPU

10−4 2.93 · 10−3 5.46 · 10−3 7.69 · 10−2 1.09
10−6 1.49 · 10−3 2.99 · 10−3 6.77 · 10−3 3.04
10−8 2.39 · 10−5 3.13 · 10−3 6.77 · 10−3 5.43
10−10 5.23 · 10−6 3.15 · 10−3 6.77 · 10−3 8.18
10−12 8.84 · 10−7 3.15 · 10−3 6.77 · 10−3 28.29

Table 1: Optimization results for different values of tolerance.
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Figure 2: Control fields computed with different choices of tolerance tol =
{10−4, 10−8} (from left to right).

value in order to have a robust convergence criteria. In fact, we use the criteria as
given in NCG Algorithm 11, that is,

‖gk+1‖ < tolabs and ‖gk+1‖ < tolrel ‖g1‖,

where we take tolrel = 10 tolabs.
An open issue in the numerical analysis of quantum optimal control problems

is the order of accuracy of optimal solutions with respect to (temporal) mesh size.
While not obvious, we should expect second-order convergence when using second-
order marching schemes for the state and adjoint equations. To show this fact, and
since it is difficult to define an exact solution for this class of problems, we adopt
the following strategy [9].

Consider a hierarchy of nested meshes with N = 2lev where lev is the level index.
We take the solution on a fine mesh lev as the reference solution for computing the
error on the next coarser mesh lev − 1 as follows eψk ,lev−1 = ψk,lev−1 − I lev−1

lev ψk,lev,

k = 1, 2, 3, and eǫ,lev−1 = ǫlev−1 − I lev−1
lev ǫlev where I lev−1

lev is injection. In Table 5
we report results for different meshes and different values of tolerance obtained with
the NCG scheme. We see that for sufficiently small tolabs second-order accuracy is
attained. This result suggests a way to assess convergence of optimal solutions. In
Table 5 we report values of norm of residuals. Because at each time step the exact
solution of the implicit Crank-Nicholson scheme is performed, residuals of state
and adjoint equations are computer zero. On the other hand we see that ‖resǫ‖ is
representative of the attained accuracy of the solution.

In Table 5 results are reported to compare the computational performance of the
NCG scheme (no cascadic acceleration) and the CNMS scheme for different choices
of tolerance and mesh sizes. We see that the NCG scheme provides increasing better
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tolabs = 10−7 N ‖eψ1,lev−1‖ ‖eψ2,lev−1‖ ‖eψ3,lev−1‖ ‖eǫ,lev−1‖
512 1.4 · 10−2 5.4 · 10−3 4.2 · 10−3 6.1 · 10−13

1024 3.5 · 10−3 1.3 · 10−3 1.0 · 10−3 6.8 · 10−3

2048 8.9 · 10−4 3.3 · 10−4 2.6 · 10−4 1.7 · 10−3

4096 2.2 · 10−4 8.7 · 10−5 7.0 · 10−5 3.6 · 10−4

tolabs = 10−5 N ‖eψ1,lev−1‖ ‖eψ2,lev−1‖ ‖eψ3,lev−1‖ ‖eǫ,lev−1‖
512 1.4 · 10−2 5.2 · 10−3 4.2 · 10−3 6.3 · 10−13

1024 3.5 · 10−3 1.4 · 10−3 1.1 · 10−3 6.0 · 10−3

2048 8.6 · 10−4 3.7 · 10−4 3.2 · 10−4 1.3 · 10−3

4096 2.2 · 10−4 8.1 · 10−5 7.2 · 10−5 3.7 · 10−4

tolabs = 10−3 N ‖eψ1,lev−1‖ ‖eψ2,lev−1‖ ‖eψ3,lev−1‖ ‖eǫ,lev−1‖
512 1.4 · 10−2 7.2 · 10−3 5.5 · 10−3 6.5 · 10−13

1024 3.5 · 10−3 1.3 · 10−3 1.9 · 10−3 4.4 · 10−3

2048 9.2 · 10−4 5.7 · 10−4 5.2 · 10−4 8.2 · 10−4

4096 2.3 · 10−4 9.8 · 10−5 1.2 · 10−4 3.6 · 10−4

Table 2: Approximation results for different meshes; N = 2lev.

tol ‖resǫ‖ ‖resψ‖ ‖resp‖
10−4 2.9 · 10−3 6.5 · 10−13 5.9 · 10−15

10−6 1.5 · 10−3 6.3 · 10−13 4.2 · 10−15

10−8 2.4 · 10−5 6.3 · 10−13 4.2 · 10−15

10−10 5.2 · 10−6 6.2 · 10−13 4.1 · 10−15

10−12 8.8 · 10−7 6.1 · 10−13 4.0 · 10−15

Table 3: Residuals on mesh N = 8192 for different values of tolerance.

performance as tolabs is taken smaller and N is taken larger. Further experiments
show lack of robustness of the CNMS scheme when γ is sufficiently small.

In Table 5, the performance of the NCG scheme and its accelerated version,
C-NCG, are compared. We see a dramatic improvement with the C-NCG version
especially for moderate values of γ. Taking smaller γ the optimal control problem
becomes more ill-conditioned (stiff) and more computational effort is required for
convergence.

We now discuss the effect of different choices of values of the optimization pa-
rameters using the results reported in Table 5. As required we see that smaller
values of |ψ(T ) − ψd|C3 are attained for smaller γ. We remark that γ = 10−7 is
quite small and that makes the problem ill-conditioned. The NCG algorithm ap-
pears to be robust with respect to changes of γ. We also can see the effect of the

N = 2048 N = 4096

tolabs CPU(NCG) CPU(CNMS) CPU(NCG) CPU(CNMS)

10−4 1.17 1.28 2.32 1.39
10−5 4.32 12.63 9.26 15.92
10−6 5.01 48.00 17.21 no conv

Table 4: Computational efforts of the NCG scheme and the CNMS scheme for
different choices of tolerance.
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γ = 10−4 γ = 10−6

N CPU(NCG) CPU(C-NCG) CPU(NCG) CPU(C-NCG)

4096 40.54 6.26 254.70 58.10
8192 112.57 12.71 319.46 134.00
16384 312.17 27.42 626.84 279.46

Table 5: Computational effort to solve for tolabs = 10−6; γ0 = 0.01, α3 = 0.05; in
C-NCG coarsest level N = 1024.

γ µ α |ψ(T ) − ψd|C3 J CPU

10−7 10−7 0.05 8.6 · 10−4 2.37 · 10−3 19.6
10−7 10−9 0.05 3.7 · 10−4 5.46 · 10−4 55.6
10−7 0 0.05 6.9 · 10−5 1.41 · 10−4 424.8
10−7 0 0 1.2 · 10−3 2.33 · 10−6 763.1

10−4 10−4 0.05 3.3 · 10−2 6.52 · 10−2 47.3
10−4 10−6 0.05 4.4 · 10−3 9.03 · 10−3 42.3
10−4 0 0.05 2.7 · 10−3 5.68 · 10−3 17.2
10−4 0 0 8.3 · 10−3 3.34 · 10−4 5.5

Table 6: Optimization results depending on optimization parameters, tolabs = 10−7.

regularization parameter µ. As µ increases, |ψ(T ) − ψd|C3 increases, demonstrating
that the additional smoothness of the control function (slightly) reduces the capabil-
ity of tracking. Apparently, larger µ makes the problem behaving better, resulting
in a smaller number of iterations. Concerning the parameter α = α3 we obtain
better tracking for nonzero α. This is expected since we have |ψd|C3 = 1 whereas
|ψ(T )|C3 < 1 whenever γ0 > 0, because of dissipation. By taking α > 0 dissipation
is reduced and therefore better |ψ(T ) − ψd|C3 is possibly achieved.

6 Conclusions and outlook

A representative optimal control problem for finite-level quantum systems was for-
mulated and investigated. First-order necessary optimality conditions and second-
order sufficient optimality conditions were discussed.

To solve this problem a new cascadic non-linear conjugate gradient (C-NCG)
scheme was proposed and compared with state-of-the-art monotonic schemes. Con-
vergence of the NCG scheme was discussed. Results of numerical experiments were
reported to demonstrate the efficiency and robustness of the proposed approach.

The formulation of the C-NCG scheme appears independent of the dimensional-
ity of the problem. It is the purpose of a forthcoming work to extend this method
to infinite-dimensional quantum optimal control problems.
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