
A greedy algorithm for the

identification of quantum systems.

Yvon Maday∗and Julien Salomon†

March 10, 2009

Abstract

The control of quantum phenomena is a topic that has carried out

many challenging problems. Among others, the Hamiltonian identifica-

tion, i.e, the inverse problem associated with the unknown features of a

quantum system is still an open issue. In this work, we present an algo-

rithm that enables to design a set of selective laser fields that can be used,

in a second stage, to identify unknown parameters of quantum systems.

1 Introduction

The possibility to use coherent light to manipulate molecular systems at the
nanoscale has been demonstrated both theoretically [1] and experimentally [15].
Different types of methods have proven their relevancy for various settings, rang-
ing from electron to large polyatomic molecules [2, 6, 8, 9, 13].
At the same time, the ability to generate a large amount of quantum dynamics
data in a small time frame can also be used to extract from experiments the
values of unknown parameters of quantum systems. The corresponding inverse
problem, usually called Hamiltonian identification has recently been subject to
significant developments through encouraging experimental results [4].
Various formulations in an optimization settings have been studied. Because of
the nature of the available data, zero order methods were first tested, see e.g.
the technique of map inversion [16]. The use of optimal control techniques was
then introduced [3, 5].
Contrary to this last class of methods, we present in this work a methodology
that enables to handle situations where the experimental measurements are pro-
vided only at a given time. Our approach is based on a precomputation that
provides a family of selective laser fields. Roughly speaking, these laser fields are
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designed iteratively to highlight variations in the parameters that are subject to
the identification. In a second stage, these fields and the experimental measure-
ments are used to assemble a nonlinear system satisfied by the to-be-identified
parameters.
The paper is organized as follows: the optimization framework and the assump-
tions we use are presented in Sec. 2. In Sec. 3, the structure of our algorithm
is given. The procedures used in the two parts of this algorithm are described
in Sec. 4 and Sec. 5. The identification step is explained in Sec. 6. Details
about practical implementation and some numerical results are given Sec. 7.
We conclude with some remarks in Sec. 8.
Throughout this paper, Ω is a spacial domain in Rd, d = 1, 2, 3, L2 denotes the
space of complex valued square integrable functions over Ω, and 〈., .〉 the usual
Hermitian product associated to L2. The following standard convention is used:

〈a|O|b〉 := 〈a,O(b)〉, a ∈ L2, b ∈ L2, O ∈ L(L2;L2)

the set of all linear operator from L2 into L2. Finally, we use ℜ(z),ℑ(z) to
denote respectively the real and the imaginary part of a complex number z.

2 The identification problem

We first introduce the model and the framework used in this paper.

2.1 Control of the Schrödinger Equation

Consider a quantum system ψ ∈ H1, with norm ‖ψ‖L2 = 1, evolving according
to the Schrödinger equation

{
iψ̇ = [H0 + V + ε(t)µ]ψ
ψ(0) = ψ0,

(1)

where H0 is the kinetic energy operator, V ∈ L(L2;L2) the potential operator
and µ ∈ L(L2;L2) the dipole moment operator coupling the system to a time-
dependent external laser field ε(t). In this context, ε reads as a control since it
can be chosen by the experimenter.

In the settings we consider here, we assume that the internal Hamiltonian
H = H0 +V is known so that the goal is to identify the dipole moment operator
µ. The generalization to the identification of V should not give rise to any
particular problem and is left to a future contribution.

The basic hypothesis made on µ is that it belongs to (or actually can be
conveniently approximated by) a finite dimensional space spanned by some basis
set Bµ = (µℓ)ℓ=1,...,L.
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2.2 Experimental measurements and controllability

In order to perform the identification, we assume that given a time T and a laser
field ε ∈ L2(0, T ), the experimenter can measure, for some fixed state ψ1 ∈ L

2,
with norm ‖ψ1‖L2 = 1, the value ϕ(µ, ε) := 〈ψ1, ψ(T )〉.
Note that all what follows still holds when considering several measurements a
time T , i.e., in the case where a set of measurement (〈ψℓ, ψ(T )〉)ℓ=1...,p, with
p > 1, is known.
Finally, we assume that the system under consideration is wavefunction control-
lable, i.e., that ε ∈ L2(0, T ) 7→ ψ(T ) is surjective.

2.3 Formulation of problem

Our identification method is based on a particular formulation of the identifi-
cation problem that we now briefly introduce.
Denote by µ⋆ the actual dipole moment operator of a given system. The solution
µ = µ⋆ of our problem also solves the minimization problem:

inf
µ∈L(L2;L2)

sup
ε∈L2(0,T )

|ϕ(µ, ε)− ϕ(µ⋆, ε)|2. (2)

This settings highlights the fact that as long as µ 6= µ⋆, a selective laser field
should be designed so that the difference between µ and µ⋆ is discerned through
the measurement ϕ(µ, ε).

3 Structure of the algorithm

Our algorithm consists in designing, through a finite iterative procedure, a set
of selective laser fields. We start with the general structure of our algorithm.
Details about its steps are given in the next sections.

3.1 The selective laser fields computation greedy algo-

rithm

Starting from the basis set Bµ = (µℓ)ℓ=1,...,L, the algorithm builds up iteratively
a set of L selective laser fields as follows.

Algorithm 1 (Selective laser fields computation greedy algorithm) Let us define
ε1 a laser field that solves the problem:

sup
ε∈L2(0,T )

|ϕ(µ1, ε)|
2.

Suppose now that at the step k, with 1 < k ≤ L, a laser field εk−1 is given. The
computation of εk is performed according to the two following sub-steps:
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1. Fitting step : Find (αkj )j=1,...,k−1 that solves the problem:





ϕ(
∑k−1

j=1 α
k
jµ

j , ε1) = ϕ(µk, ε1)
...

ϕ(
∑k−1

j=1 α
k
jµ

j , εm) = ϕ(µk, εm)
...

ϕ(
∑k−1

j=1 α
k
jµ

j , εk−1) = ϕ(µk, εk−1),

(3)

in the minimum mean square error sense.

2. Discriminatory step : Find εk that solves the problem:

εk = argmaxε∈L2(0,T )|ϕ(µk, ε)− ϕ(
k−1∑

j=1

αkjµ
j , ε)|2.

The initialization of the algorithm is somehow arbitrary, the only require-
ment is that ε1 has a link with the type of measurement. In our case, we decide
to maximize it.

Remark 1 Note that, in opposition to usual approaches (see e.g. [5, 3]), our
method plays the role of a precomputation step since the actual measurements
ϕ(µ⋆, ε) are not required at this stage.

3.2 Intuitive interpretation of the algorithm

In the first sub-step of an iteration of Algorithm 1, one looks for a defect of
selectivity of the current laser fields ε1, . . . , εk−1: in the case the minimum
reaches zero, two distinct dipole moment operators give rise to two identical
measurements when exited with the laser fields ε1, . . . , εk−1. On the contrary,
the second sub-step aims at computing a laser field that compensates this defect.
These two sub-steps corresponds respectively to the minimization part and to
the maximization part of the formulation (2).

Remark 2 Even if no hierarchy is assumed in the basis Bµ, this algorithm
should be viewed as a first step towards future works that handle infinite dimen-
sional systems. In such a framework, the sum

∑k−1
j=1 α

k
jµ

j would read as an
asymptotic expansion of the dipole moment operator.

This algorithm belongs to the class of greedy algorithms, since it follows the
problem-solving’s heuristic of making the locally optimal choice (in the second
sub-step) at each stage with the hope of finding the global optimum that solves
(2).
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4 Fitting step

Let us first focus on the first sub-step of the algorithm. Consider an integer k
such that 1 < k ≤ L and denote by Kk the functional (defined on R

k−1):

Kk(α) =

k−1∑

m=1

|ϕ(µk, εm)− ϕ(

k−1∑

j=1

αjµ
j , εm)|2.

During this sub-step, one has to find the minimum of the cost functional Kk.
To do this, a standard global minimization algorithm applied to this minimum
mean square error associated problem.
Note that, for small values of L, the gradient of the functional Kk can be com-
puted thanks to the formula:

∇Kk(α).δα =

k−1∑

m=1

2ℜ
(
〈ψαεm(T )− ψkεm(T ), ψ1〉〈δψ

α
εm(T ), ψ1〉

)
,

where ψαεm and ψkεm are the solutions of Eq. (1) with ε = εm as laser field,

and µ =
∑k−1

j=1 αjµ
j and µ = µk respectively as dipole moment operator. The

variation δψα is computed thanks to:





iδψ̇αεm = εk−1
(∑k−1

j=1 αjµ
j
)
δψαεm

+[H0 + V + εk−1(t)
(∑k−1

j=1 δαjµ
j
)
]ψαεm

δψαεm(0) = 0.

In this way the computation of the components of ∇Kk(α) can be parallelized
to make the use of gradient methods feasible.

5 Discriminatory step

To achieve the second sub-step of Algorithm 1, we adapt an efficient strategy
usually used in in quantum control. This strategy has given rise to a large class
of algorithms often called ”monotonic schemes”. For a general presentation of
these algorithms, we refer to [11].

5.1 Improvement of the selectivity of a given laser field

Let us present in more details how this strategy applies in our case. Note first
that, given a laser field ε ∈ L2(0, T ), and two dipole moment operators µ̃ and
µ̂, one has:

|ϕ(µ̃, ε)− ϕ(µ̂, ε)|2 = 〈ψ̃(T )− ψ̂(T )|Oψ1
|ψ̃(T )− ψ̂(T )〉,
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where Oψ1
= ψ1.ψ

T
1 , ψ̃ and ψ̂ are the solutions of Eq. (1) with respectively

µ = µ̃ and µ = µ̂ as dipole moment operator.
In order to compare the selectivity of ε and ε′, we introduce the functional:

J(ε) = 〈ψ̃(T )− ψ̂(T )|Oψ1
|ψ̃(T )− ψ̂(T )〉 − β

∫ T

0

ε2(t)dt,

which has to be maximized. For sake of simplicity, we omit the dependence of
J with µ̃ and µ̂ in the notations.

The additional term β
∫ T
0 ε2(t)dt, is introduced for two complementary reasons:

first, as it penalizes the L2-norm of the laser field, it enables to obtain feasible
laser fields and secondly, it improves the convergence of Algorithm 2 below.
Consider now another laser field ε′ ∈ L2(0, T ), and denote by ψ̃′ and ψ̂′ the
corresponding solutions of Eq. (1) with µ = µ̃ and µ = µ̂ respectively. We
introduce the two adjoints states defined by:

{
i ˙̃χ = [H0 + V + ε(t)µ̃]χ̃

χ̃(T ) = Oψ1

(
ψ̃(T )− ψ̂(T )

)
,

(4)

and {
i ˙̂χ = [H0 + V + ε(t)µ̂]χ̂

χ̂(T ) = Oψ1

(
ψ̃(T )− ψ̂(T )

)
.

(5)

One has:

J(ε′)− J(ε) = 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+2ℜ〈δψ′(T )− δψ(T ), χ̃(T )− χ̂(T )〉

−β

∫ T

0

ε′2(t)− ε2(t)dt

= 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+

∫ T

0

(ε′(t)− ε(t))

(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉−2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉−β (ε′(t)+ε(t))

)
dt,

(6)

where we denote δψ′(T ) = ψ̃′(T )−ψ̂′(T ) and δψ(T ) = ψ̃(T )−ψ̂(T ). Identity (6)
gives a criterion to guarantee that ε′ is more selective than ε. Indeed, suppose
that ε′ satisfies for all t ∈ [0, T ] the condition:

(ε′(t)− ε(t))
(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉 − 2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉

− β(ε′(t) + ε(t))
)
≥ 0, (7)
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then J(ε′) ≥ J(ε).
Various ways to ensure that (7) holds. For example [14], one can define ε′ at
each time t as the solution of the equation:

ε′(t)− ε(t) =
θ

β

(
2ℑ〈χ̃(t)|µ̃|ψ̃′(t)〉 − 2ℑ〈χ̂(t)|µ̂|ψ̂′(t)〉

− β (ε′(t) + ε(t))
)
,

(8)

where θ is a given strictly positive number. In this case, one has:

J(ε′)− J(ε) = 〈δψ′(T )− δψ(T )|Oψ1
|δψ′(T )− δψ(T )〉

+
β

θ

∫ T

0

(ε′(t)− ε(t))
2
dt ≥ 0,

which is the desired conclusion. In Sec. 7.1, we present an alternative that can
be obtained in a time discretized settings.

5.2 Discriminatory sub-algorithm

We derive form the previous considerations the following iterative procedure to
define a laser field εk that maximizes J(ε):

Algorithm 2 (Discriminatory sub-algorithm) Let Tol be a positive number.
Consider an initial guess εk0 and compute the corresponding solutions of Eq. (1)

with µ̃ and µ̂, say ψ̃0 and ψ̂0. Set err = 2.T ol.
While err > Tol, do:

1. Use Eqs. (4–5) with ε = εkℓ , ψ̃ = ψ̃ℓ and ψ̂ = ψ̂ℓ, to compute χ̃ℓ and χ̂ℓ,
respectively.

2. Compute simultaneously the laser field εkℓ+1 and the states ψ̃ℓ+1 and ψ̂ℓ+1

the solutions of coupled system composed of Eq. (8) with χ̃ = χ̃ℓ, χ̂ = χ̂ℓ
and Eq. (1) with µ = µ̃ and µ = µ̂ respectively.

3. ℓ← ℓ+ 1, err = |εkℓ+1 − ε
k
ℓ |.

In [7], one shows that Eq. (8) has a solution and presents some efficient
numerical nonlinear solvers to compute it.

6 Identification procedure

Once the L selective fields ε1, ..., εL have been computed, one can use them ex-
perimentally to obtain the corresponding measurements ϕ(µ⋆, ε1), ..., ϕ(µ⋆, εL).
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The identification procedure consists then in finding the linear combination
(α1, ..., αL) that solves the following nonlinear system:






ϕ(
∑L

j=1 αjµ
j , ε1) = ϕ(µ⋆, ε1)

...

ϕ(
∑L

j=1 αjµ
j , εk) = ϕ(µ⋆, εk)

...

ϕ(
∑L

j=1 αjµ
j , εL) = ϕ(µ⋆, εL).

(9)

in the mean square sense. In this view, the standard global optimization pro-
cedure used for the first sub-step of algorithm can be applied to the associated
problem.
Note that, in a finite-dimensional settings, the existence of a solution is guar-
anteed.

7 Numerical implementation and results

We give here details about the practical implementation of Algorithm 1, and
show its efficiency on an example.

7.1 Numerical solvers

In order to solve numerically Eq. (1), we use the second order Strang operator
splitting [12]. Given M > 0, a time step ∆t such that M.∆t = T and an
approximation ψj of ψ(j.∆t) with j < M , this method leads in our case to the
following iteration:

ψj+1 = eiH
∆t
2 eiεjµ∆teiH

∆t
2 ψj . (10)

In the second sub-step of Algorithm 1, Discriminatory sub-algorithm 2 is adapted
to this discrete settings. In this way, we consider the time-discretized version of
the cost functional J :

J∆t(ε) = 〈ψ̃M − ψ̂M |Oψ1
|ψ̃M − ψ̂M 〉 − β∆t

M−1∑

j=0

ε2j ,

where ε ∈ RM−1. Fix now two discrete laser fields ε and ε′, one can then repeat
the computation done in Sec. 5.1 to obtain:

J∆t(ε
′)− J∆t(ε) = 〈δψ′

M − δψM |Oψ1
|δψ′

M − δψM 〉

+∆t

M−1∑

j=0

(
ε′j − εj

)

(
2ℑ〈χ̃j |µ̃∆t(ε

′
j , εj)|ψ̃

′
j〉 − 2ℑ〈χ̂j |µ̂∆t(ε

′
j , εj)|ψ̂

′
j〉

− β
(
ε′j + εj

))
, (11)
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where the vectors χ̃, χ̂, ψ̃′ and ψ̂′ are computed using the iteration (10) with
µ = µ̃∆t(ε

′
j , εj) and µ = µ̂∆t(ε

′
j , εj). These matrices are the approximations of

µ̃ and µ̂ respectively defined by:

µ̃∆t(ε
′
j , εj) = e−iH

∆t
2

eiε
′

j eµ∆t − eiεj eµ∆t

i∆t(ε′j − εj)
eiH

∆t
2

µ̂∆t(ε
′
j , εj) = e−iH

∆t
2

eiε
′

j bµ∆t − eiεj bµ∆t

i∆t(ε′j − εj)
eiH

∆t
2 .

For the sake of simplicity, instead of solving the discrete version of Eq. (8),
we compute ε′j using one step of a Newton optimization method applied to
its corresponding term in the sum of Eq. (11). This strategy, and the one
corresponding to Eq. (8) are presented in more details in [7]. Their convergence
are proven in [10].

7.2 Numerical test

7.2.1 Settings

To illustrate the ability of our approach, we consider a simple finite dimensional
settings where H0, V and µ are 3× 3 Hermitian matrices with entries in C and
ψ(t) ∈ C

3. The internal Hamiltonian we consider is:

H = 10−2




1 0 0
0 2 0
0 0 4


 .

Since Eq. (1) with such an internal Hamiltonian is generically controllable, we
choose to define the basis Bµ randomly so that the systems handled by our
algorithm are almost surely controllable.
In order to work in a general framework, we chose µ⋆ also randomly. In our
example, we consider:

µ⋆ =




2.4154 1.9335 1.5822
1.9335 1.4366 1.5991
1.5822 1.5991 1.9843


 .

The states ψ0 and ψ1 are

ψ0 =




1
0
0


 , ψ1 =




0
0
1


 .

We choose T = 4000π, which corresponds to 20 periods of the transition asso-
ciated to the smallest frequency of the system.
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7.2.2 Algorithm parameters

The minimum mean square error problems (3)-(9) are solved by standard pseudo-
Newton solvers. In order to make a global search, we repeat the minimization
10 times with random initialization. The parameter β is adapted to make Al-
gorithm 2 converge. In our case β = 10−2.

7.2.3 Numerical results

The precomputation is achieved by our algorithm in approximately 80 min CPU.
The dipole moment operator is regained with a relative error

‖µ⋆ − µ‖2
‖µ⋆‖2

≈ 9.8960e− 04,

in approximately 10 min CPU. The selective fields that have been obtained are
depicted in Fig. 1.

0 2000 4000 6000 8000 10000 12000 14000
−3

−2

−1

0

1

2

3
x 10

−3

Figure 1: Selective laser fields obtained by Algorithm 2.

8 Concluding remarks

The Selective laser fields computation greedy algorithm presented in this paper
shows a good efficiency in a general settings. However, there is some room
for improvement of our strategy. First, the choice of the basis Bµ could be
improved, e.g. through an iterative procedure. Secondly, the experimental
measurements could be used during the computation of the selective fields in
order to design an online procedure. Lastly, some work has to be done to
design a more specific approach to treat the first sub-step of the algorithm. The
identification procedure presented in Sec. 6 would also certainly take advantage
of such a study.
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