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Abstract

In this note, we introduce a class of indicators that enable to compute efficiently optimal transport plans associated

to arbitrary distributions of N demands and N supplies in R in the case where the cost function is concave. The

cost of these indicators is small and independent of N . Using them recursively according to a particular algorithm

allows to find an optimal transport plan in less than N
2 evaluations of the cost function. To cite this article: A.

Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Résumé

Dans cette note, nous introduisons une classe d’indicateurs permettant de calculer efficacement des plans de

transport optimaux associés à des distributions arbitraires de N sources et de N puits sur la droite réelle dans le

cas d’une fonction de coût concave. Ces indicateurs ont un coût de calcul faible et indépendant de N . Leur usage

récursif permet, selon un certain algorithme, le calcul d’un plan de transport optimal en au plus N
2 opérations.

Pour citer cet article : A. Name1, A. Name2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Version française abrégée

Cette note traite de la résolution numérique d’un problème de transport optimal associé à un coût de
transport concave défini en 2.1. Le cadre adopté est celui de deux distributions de N sources et N puits
unitaires arbitrairement répartis sur la droite R (Les cas non-unitaires seront abordés dans [3]). Après
avoir rappelé la règle de non-croisement découlant directement de la concavité du coût –voir section 3–,
nous indiquons brièvement en suivant [1] en quoi elle permet de se ramener au cas où les sources et les
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puits forment une distribution alternée –voir (2)– appelée châıne.
Pour ce type de distribution, nous introduisons à la section 4 une classe d’indicateurs d’appariement
locaux, voir la définition 4.1. Outre le fait qu’ils ont un coût de calcul très faible et indépendant de
N , l’intérêt de ces indicateurs réside dans le théorème 4.2 qui indique que sous certaines hypothèses, la
négativité d’un indicateur d’ordre k implique que k paires consécutives sont appariées dans un plan de
transport optimal associé aux distributions considérées.
L’usage récursif de ces indicateurs débouche sur un algorithme efficace de calcul de plans de transport
optimaux présenté à la section 5. La complexité de cet algorithme est N2 dans le pire des cas et apparâıt
comme linéaire dans nos premiers tests numériques.

1. Introduction

It is well known that transport problems on the line involving convex cost functions have explicit
solutions, consisting in a monotone rearrangement. Recently, an efficient method has been introduced
to tackle this issue on the circle [4]. In this note we introduce an algorithm that enables to tackle
optimal transport problems on the line (but actually also on the circle) with concave costs. Our algorithm
complements the method suggested by McCann [2]. McCann considers general real values of supply and
demand and shows how the problem can be reduced to convex optimization somewhat similar to the
simplex method in linear programming. Our approach as presented here is developed for the case of unit
masses and is closer to the purely combinatorial approach of [1], but extends it to a general concave cost
function. The extension to integer masses will be presented in [3].
The method we propose is based on a class of local indicators, that allow to detect consecutive points
that are matched in an optimal transport plan. Thanks to the low number of evaluations of the cost
function required to apply the indicators, we derive an algorithm that finds an optimal transport plan
in n2 operations in the worst case. In practice, the computational cost of this method appears to behave
linearly with respect to n.
Since the indicators apply locally, the algorithm can be massively parallelized and also allows to treat
optimal transport problems on the circle. In this way, it extends the work of Aggarwal et al. [1] in which
cost functions have a linear dependence in the distance.

2. Setting of the problem

For N0 ∈ N∗, consider P = (pi)i=1,...,N0
and Q = (qi)i=1,...,N0

two sets of points in R that represent
respectively demand and supply locations. The problem we consider in this note consists in minimizing
the transport cost

C(σ) =
∑

i,j

c(pi, qσ(i)), (1)

where σ is a permutation of {1, ..., N0}. This permutation forms a transport plan.
We focus on the case where the function c involves a concave function as stated in the next definition.
Definition 2.1 The cost function in (1) is defined on R by c(p, q) = g(|p−q|) with p, q ∈ R, where g(·) is
a concave non-decreasing real-valued function of a real positive variable such that g(0) := limx→0 g(x) ≥
−∞.
Some examples of such costs are given by g(x) = log(x) with g(0) = −∞, and g(x) =

√
x or g(x) = |x|

is with g(0) = 0.
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Finally, we denote by σ⋆ the permutation associated to a given optimal transport plan between P and
Q: for all permutation σ of {1, ..., N0}, C(σ⋆) ≤ C(σ).

3. Chains

In this section, we present a way to build a particular partition of the set P ∪ Q.
Consider two pairs of matched points (pi, qσ⋆(i)) and (pi′ , qσ⋆(i′)), say e.g. pi ≤ qσ⋆(i), pi′ ≤ qσ⋆(i′). It is
easy to prove that the following alternative holds:

(i) [pi, qσ⋆(i)] ∩ [pi′ , qσ⋆(i′))] = ∅,
(ii) [pi, qσ⋆(i)] ⊂ [pi′ , qσ⋆(i′))] or [pi′ , qσ⋆(i′))] ⊂ [pi, qσ⋆(i)].

This remark is a direct consequence of the concavity of the cost function and is often denominated as
”the non-crossing rule” [1,2]. In the next section, we show how it allows decompose the initial situation
in sub-problems where supply and demand points are alternated.
Because of the non-crossing rule in an optimal plan there are as many supply points as demand points
between any pair of matched points pi and qσ(i). For a given demand point pi, define its left neighbor
q′i as the nearest supply point on the left of pi such that the numbers of supply and demand points
between q′i and pi are equal; define the right neighbor q′′i of pi in a similar way. Then define a chain as a
maximal alternating sequence of supply and demand points (pi1 , qj1 , pi1 , ..., qjk

) or (qj1 , pi2 , ..., pik+1
) such

that each qil
is the right neighbor of pil

and the left neighbor of pil+1
. An extension of the proof of Lemma

3 of [1] shows that the collection of chains forms a partition of the set P ∪ Q. Note that construction of
this collection only depends on relative positions of supply and demand points and does not involve any
evaluation of the cost function. It can be done in O(N0) operations.
The non-crossing rule implies that all matched pairs of points in an optimal transport plan must belong
to the same chain. We therefore restrict ourselves in the sequel, without loss of generality, to the case of
a single chain

p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN , (2)

for N ∈ N∗ and keep these last notations throughout the rest of this paper.

4. Local matching indicators

Thanks to the non-crossing rule, one knows that there exists at least two consecutive points (pi, qi) or
(qi, pi+1) that are matched in any optimal transport plan. Starting from this remark, we take advantage
of the structure of a chain to introduce a class of indicators that enable to detect a priori such pairs of
points.
Definition 4.1 (Local Matching Indicators of order k) We define

I
p
k (i) = c(pi, qi+k) +

k−1
∑

ℓ=0

c(pi+ℓ+1, qi+ℓ) −
k

∑

ℓ=0

c(pi+ℓ, qi+ℓ),

where k, i are such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

I
q
k(i) = c(pi+k+1, qi) +

k
∑

ℓ=1

c(pi+ℓ, qi+ℓ) −
k

∑

ℓ=0

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k − 1.
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The interest of these functions lies in the next result.
Theorem 4.2 (Negative Local Matching Indicators of order k) Let k0 ∈ N with 1 ≤ k0 ≤ N − 1
and i0 ∈ N (resp. i′0 ∈ N), such that 1 ≤ i0 ≤ N − k0 (resp. 1 ≤ i′0 ≤ N − k0 − 1).
Assume that

(i) I
p
k (i) ≥ 0 for k = 1, ..., k0 − 1, 1 ≤ i ≤ N − k,

(ii) I
q
k(i′) ≥ 0 for k = 1, ..., k0 − 1, 1 ≤ i′ ≤ N − k − 1,

(iii) I
p
k0

(i0) < 0 (resp. I
q
k0

(i′0) < 0).
Then any permutation σ⋆ associated to an optimal transport plan satisfies σ⋆(i) = i − 1 for i = i0 +
1, ..., i0 + k0 (resp. σ⋆(i) = i for i = i0 + 1, ..., i0 + k0).
In practice, these indicators allow to find pairs of neighbors that are matched in an optimal transport
plan.
Before giving the proof, we state a basic result.
Lemma 4.3 We keep the previous notations. Define

ϕ
p
k,i(x, y) = g(x + y + pi+k − qi) +

k−1
∑

ℓ=0

c(pi+ℓ+1, qi+ℓ) − g(x) − g(y) −
k−1
∑

ℓ=1

c(pi+ℓ, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k, and

ϕ
q
k,i(x, y) = g(x + y + pi+k+1 − qi) +

k
∑

ℓ=1

c(pi+ℓ, qi+ℓ) − g(x) − g(y) −
k−1
∑

ℓ=1

c(pi+ℓ+1, qi+ℓ),

for k, i ∈ N, such that 1 ≤ k ≤ N − 2 and 1 ≤ i ≤ N − k − 1. Both functions ϕ
p
k,i(x, y) and ϕ

q
k,i(x, y) are

decreasing with respect to each of their two variables.
This lemma is a direct consequence of the concavity of the function g. We are now in the position to give
the sketch of the proof of Theorem 4.2.
Sketch of the proof: We consider the case where I

p
k0

(i0) < 0. The case I
q
k0

(i′0) < 0 can be treated the
same way.
The proof consists in proving that Assumptions (i–iii) imply that neither demand nor supply points
located between pi0 and pi0+k0+1 can be matched with points located outside this interval, i.e. that the
set Si0 = {pi, i0 + 1 ≤ i ≤ i0 + k0} ∪ {qi, i0 ≤ i ≤ i0 + k0 − 1} is stable by an optimal transport plan. In
this case, the result follows from Assumption (i–ii).
Suppose that Si0 is not preserved by an optimal transport plan σ⋆. Three cases can occur:
a) There exists i1 ∈ N, such that 1 ≤ i1 ≤ i0 and i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and there exists i′1 ∈ N, such

that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0 and i0 + k0 ≤ σ⋆(i′1) ≤ N .
b) There exists i2 ∈ N, with i0 + 1 ≤ i2 ≤ i0 + k0 such that 1 ≤ σ⋆(i2) ≤ i0 − 1.
c) There exists i2 ∈ N, with i0 + k0 < i2 ≤ N such that i0 ≤ σ⋆(i2) < i0 + k0.
We only prove that Case a) cannot occur. The fact that Cases b) and c) contradict the assumptions are
actually not a consequence of the concavity of the cost, but of its non-decreasing property. Details will
be given in [3].
In Case a), one can assume without loss of generality that σ⋆(i1) is the largest index such that 1 ≤ i1 ≤
i0, i0 ≤ σ⋆(i1) ≤ i0 + k0 − 1 and that i′1 is the smallest index such that σ⋆(i1) + 1 ≤ i′1 ≤ i0 + k0,
i0 + k0 ≤ σ⋆(i′1) ≤ N . With such assumptions, the (possibly empty) subset {pi, σ

⋆(i1) + 1 ≤ i ≤
i′1 − 1}∪ {qi, σ

⋆(i1) + 1 ≤ i ≤ i′1 − 1} is stable by σ⋆. Because of Assumptions (i–ii), no nesting can occur
in this subset, and σ⋆(i) = i for i = σ⋆(i1) + 1, ..., i′1 − 1.
On the other hand, since σ⋆ is supposed to be optimal, one has:

c(pi1 , qσ⋆(i1)) + c(pi′
1
, qσ⋆(i′

1
)) +

i′1−1
∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi1 , qσ⋆(i′
1
)) +

i′1−1
∑

i=σ⋆(i1)

c(pi+1, qi).
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Thanks to Lemma 4.3, one deduces from this last inequality that:

c(pi0 , qσ⋆(i1)) + c(pi′
1
, qi0+k0

) +

i′1−1
∑

i=σ⋆(i1)+1

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i′1−1
∑

i=σ⋆(i1)

c(pi+1, qi),

and then:

c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1
∑

i=i0

c(pi+1, qi) + c(pi′
1
, qi0+k0

) +

i0+k0−1
∑

i=i′
1

c(pi+1, qi) +

i′1−1
∑

i=σ⋆(i1)+1

c(pi, qi)

≤ c(pi0 , qi0+k0
) +

i0+k0−1
∑

i=i0

c(pi+1, qi). (3)

According to Assumption (i), I
p

σ⋆(i1)−i0
(i0) ≥ 0 and I

p

i0+k0−i′
1

(i′1) ≥ 0, so that:

σ⋆(i1)
∑

i=i0

c(pi, qi) ≤ c(pi0 , qσ⋆(i1)) +

σ⋆(i1)−1
∑

i=i0

c(pi+1, qi)

i0+k0
∑

i=i′
1

c(pi, qi) ≤ c(pi′
1
, qi0+k0

) +

i0+k0−1
∑

i=i′
1

c(pi+1, qi).

Combining these last inequalities with (3) one finds that:

i0+k0
∑

i=i0

c(pi, qi) ≤ c(pi0 , qi0+k0
) +

i0+k0−1
∑

i=i0

c(pi+1, qi),

which contradicts Assumption (iii). �

5. An algorithm for balanced chains

The recursive use of our indicators is on the basis of the next algorithm.
Algorithm: Set P = {p1, ..., pN , q1, ..., qN}, ℓp = (1, ..., N), ℓq = (1, ..., N), and k = 1.
While P 6= ∅ and k ≤ N − 1 do

(i) Compute I
p
k (i) and I

q
k(i′) for i = 1, ..., N − k and i′ = 1, ..., N − k − 1.

(ii) Define
Ip

k = {i0, 1 ≤ i0 ≤ N − k, I
p
k (i0) < 0},

Iq
k = {i0, 1 ≤ i0 ≤ N − k − 1, I

q
k(i0) < 0},

and do
(a) If Ip

k = ∅ and Iq
k = ∅, set k = k + 1.

(b) Else do
– for all i0 in Ip

k and for i = i0 + 1, ..., i0 + k, do
· define σ⋆(ℓp

i ) = ℓ
q
i−1,

· remove {pℓ
p

i
, qℓ

q

i−1
} from P ,

· remove ℓ
p
i and ℓ

q
i from ℓp and ℓq respectively.

– for all i′0 in Iq
k and for i = i′0 + 1, ..., i′0 + k, do

· define σ⋆(ℓp
i ) = ℓ

q
i ,
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· remove {pi, qi} from P ,
· remove ℓ

p
i and ℓ

q
i from ℓp and ℓq respectively.

– set N = 1
2Card(P), and rename the points in P such that P = {p1, ..., pN , q1, ..., qN},

p1 < q1 < ... < pi < qi < pi+1 < qi+1 < ... < pN < qN .

– reindex the integers of ℓp and ℓq in accordance to the previous step,
– set k = 1.

If k = N − 1, for i = 1, ..., N set σ⋆(ℓp
i ) = ℓ

q
i .

To test the efficiency of our algorithm, we have applied it to an increasing number N of pairs of points.
For a fixed value of N , 100 samples of points have been chosen randomly in [0, 1], and the mean of the
number of evaluations of g has been computed. The results are shown in Fig.1.
The best case consists in finding a negative indicator at each step, and the worst corresponds to the case
where all the indicators are positive. These two cases require respectively N − 1 and (N − 1)2 evaluations
of g.
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Figure 1. Number of in-line evaluations with respect to the number of pairs, for various cost functions. The number α is the
slope of the log-log graphs.
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