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LOCAL MATCHING INDICATORS FOR TRANSPORT PROBLEMS
WITH CONCAVE COSTS*

JULIE DELONT, JULIEN SALOMON?, AND ANDREI SOBOLEVSKI¢

Abstract. In this paper, we introduce a class of local indicators that enable us to compute
efficiently optimal transport plans associated with arbitrary weighted distributions of N demands
and M supplies in R in the case where the cost function is concave. Indeed, whereas this problem can
be solved linearly when the cost is a convex function of the distance on the line (or more generally
when the cost matrix between points is a Monge matrix), to the best of our knowledge no simple
solution has been proposed for concave costs, which are more realistic in many applications, especially
in economic situations. The problem we consider may be unbalanced, in the sense that the weight
of all the supplies might be larger than the weight of all the demands. We show how to use the local
indicators hierarchically to solve the transportation problem for concave costs on the line.
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1. Introduction. The origins of optimal transportation go back to the late eigh-
teenth century, when Monge [16] published his Mémoire sur la théorie des déblais et
des remblais (1781). The problem, which was rediscovered and further studied by
Kantorovich in the 1940s, can be described in the following way. Given two probabil-
ity distributions p and v on X and given ¢ a measurable cost function on X x X, find
a joint probability measure m on X x X with marginals ;4 and v and which minimizes
the transportation cost

(1.1) /Axxc(x,y)dw(x,y).

Probability measures m with marginals ¢ and v are called transport plans. A transport
plan that minimizes the cost (1.1) is said to be optimal.

When the measures p and v are discrete (linear combinations of Dirac masses),
the problem can be recast as finite linear programming. For N > 1, consider two
discrete distributions of mass, or histograms, given on RY: {(p;, s;)}, which represents
“supplies” at locations p; with weights s;, and {(g;,d;)}, which represents “demands”
at locations ¢; with weights d; (notation from [1]). Further, assume that all values of
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s; and d; are positive reals with S := ). s; and D := Zj d;. The problem consists
of minimizing the transport cost

(1.2) > elpir a)vis

4,9

where +;; is the amount of mass going from p; to g;, subject to the conditions
(1.3) Yij > 0, Z%‘j <'s;, Z%‘j < dj, Z%‘j = min(S, D).
J i 0,J

The matrix of values v = {v;;} is still called a transport plan. When S = D, the
problem is said to be balanced and is only a reformulation of (1.1) for discrete mea-
sures. When S # D, the problem is said to be unbalanced. The cases S < D and
S > D can be treated in the same way. This paper deals with balanced problems and
unbalanced problems of the form S > D.

In the unitary case, i.e., when all the masses s; and d; are equal to a single value
v, it turns out that if v is optimal, for all 4, j, v;; € {0,v}, and for all j there exists
only one ¢ such that v;; = v (each demand receives all the mass from one supply). In
the balanced case, the matrix « is thus a permutation matrix up to the factor v. In
the unbalanced case, the permutation matrix is padded with some zero rows. As a
consequence, the balanced case boils down to an assignment problem, known as the
linear sum assignment problem. Such problems have been thoroughly studied by the
combinatorial optimization community [5].

Optimal transportation problems appear in many fields, such as economics or
physics; see, e.g., [4, 8, 13]. In economic examples optimal transport is often related
to the field of logistics, where supplies are furnished by producers at specific places
p; and in specific quantities d;, while demand corresponds to consumers locations
and needs. Depending on the application, various cost functions ¢ can be used. For
instance, concave functions of the distance appear as more realistic cost functions
in many economic situations. Indeed, as underlined by McCann [15], a concave cost
“translates into an economy of scale for longer trips and may encourage cross-hauling.”

During recent decades, many authors have taken an interest in the study of exis-
tence, uniqueness, and properties of optimal plans [2, 11, 14], with a specific interest
in convex costs, i.e., costs ¢ that can be written as convex functions of the distance
on the line. Detailed descriptions of these results can be found in the books [25, 26].
One case of particular interest is the one-dimensional case, which, when ¢ is a convex
function of the distance on the line, has been completely understood [22] both for
continuous and discrete settings. Indeed, this problem has an explicit solution that
does not depend on ¢ (provided that it is convex) and consists of a monotone rear-
rangement (see Chapter 2.2 of [25]). In the unitary case, this property can also be
seen as a consequence of another interesting result, true for any dimension /N, which
says that the linear sum assignment problem is solved by the identical permutation,
provided that the cost matrix (c(pi, ¢j)):,; is a Monge matrix [5].! Several approaches
have been proposed to generalize the convex one-dimensional result to the case of
the circle, where the starting point for the monotone rearrangement is not known,
and its choice and hence the optimal plan itself, unlike in the case of an interval, do
depend on the cost function ¢. Most of these approaches concern either the unitary
case [12, 28, 27, 6, 7, 23] or the more general discrete case 1.2 [17, 19, 20, 18, 21].

LA matrix C is said to be a Monge matrix if it satisfies cij+cgl < cy+ep; wheni < kand j <l
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Fic. 1.1. On the left: optimal plan associated with a concave cost. On the right: optimal plan
associated with a convex cost. Supplies are represented by circles and demands by crosses.

A~ N

FiG. 1.2. On the left: solutions associated with the concave cost c(z,y) = |z — y|%°. On the
right: those associated with the cost c(x,y) = |z — y|®5. Supplies are represented by circles and
demands by crosses.

Recently an efficient method has been introduced to tackle this issue in a continuous
setting [9]. Unfortunately, these results on the line and the circle do not extend to
nonconvex costs, especially to concave costs (see Figure 1.1 for an example). Also
this last case is of broad interest for many applications, but few works deal with it
(see, however, the important paper [15]), and computing solutions is far from obvious
in general. Indeed, contrary to the convex case on the line, optimal plans strongly
depend on the choice of the function c¢. Consider the case of two unitary supplies
at positions p; = 0 and ps = 1.2 and two unitary demands at positions ¢; = 1 and
g2 = 2.2 on the line, as drawn in Figure 1.2. If the cost function is c(z,y) = |z —y|*?,
the left solution will be optimal, whereas the one on the right will be chosen for
c(z,y) = |z — y|°5. For a convex cost, the left solution would always be chosen.

In practice, when no analytic solution is given (i.e., most of the time), finding
optimal plans can be a tedious task. As underlined before, in a discrete setting, the
problem can be written as a linear programming problem, and optimal plans can
be constructed numerically by using, for instance, the simplex method or specialized
methods such as the auction algorithms [3] and various algorithms for the assignment
problem (see [5] for details). However, these methods do not take into account essential
geometric features of the problem, such as the fact that it is one-dimensional or that
the cost function is concave.

The goal of this paper is to introduce a class of functions that reveals the local
structure of optimal transport plans in the one-dimensional case, when the cost ¢
is a concave function of the distance. As a by-product, we build an algorithm that
permits us to obtain optimal transport plans in the unitary case in less than O(N?)
operations in both balanced and unbalanced cases, where N is the number of points
under consideration. Once generalized to the nonunitary case, the complexity of this
algorithm becomes O(N?) in the worst case but turns out to be smaller for “typical”
problem instances. However, let us clarify that our aim is not to compete with recent
linear assignment algorithms, which may be more interesting in practice, at least
for balanced problems, but rather to achieve a more complete understanding of the
internal structure of the assignment problem for concave costs on the line.

Observe that our algorithm complements the method suggested by McCann [15],
although the approach we follow here is closer to the purely combinatorial approach
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of [1]. The results of this last work, in which the cost ¢(z,y) = |z — y| was considered,
are extended here to the general framework of strictly concave cost functions. (Note
that the very special case considered in [1] may be also regarded as convex, which
allows us to apply the sorting algorithm on the line or results of [9] on the circle.)

The paper is organized as follows. Section 2 is devoted to the presentation of the
optimal transport problem. In section 3, we focus on transport problems on “chains,”
which are particular cases where demands and supplies are alternated. In this frame-
work, we present the main result of the paper, which states that consecutive matching
points in the optimal plan can be found thanks to local indicators, independently of
other points on the line. Thanks to the low number of evaluations of the cost function
required to apply the indicators, we derive from this result a rather efficient algorithm
for computing optimal transport plans. We then consider more general frameworks,
namely general unitary cases in section 4, and real-valued mass situations in section 5.
In section 6, we conclude with remarks on the implementation of our algorithm and
show that its complexity scales as O(N?) in the worst case. Some technical proofs
about this last result are given in an appendix.

2. The optimal transport problem. This paper deals with the problem of
finding an optimal transport plan in the case where the problem contains possibly
more supplies than demands and the transport cost is strictly concave: the larger the
distance to cover, the less the transport costs per unit distance, while the marginal
cost (the derivative of the cost function) decreases monotonically.

Consider two integers M, N and two sets of points P = {p;: i = 1,..., M} and
Q ={¢:1=1,...,N} in R that represent respectively the supply and demand
locations. Let s; > 0 be the capacity of the ith supply and d; > 0 the capacity of the
jth demand. We suppose that S := 37, s; > D =}, dj, i.e., that the problem may
be unbalanced.

We deal with minimizing the cost

(2.1) Clv) = ZC(Pi, ) %ij
,J
where ¢(p;,qj) € RT is the cost resulting from transport of a unit mass between p;

and ¢;. The quantity -;; is the amount of mass going from p; to g;, subject for all
i, 7 to the conditions

(2.2) vij > 0, Z’m < si, Z%j = d;.

J 3

(Observe that since D < S, these conditions are equivalent to (1.3).) We call the case
S = D balanced, and the case S > D unbalanced. Observe that in the latter case the
total supply is larger that the total demand, and therefore some of the supplies may
remain underused (3_;vij < si).

As mentioned in the introduction, an optimal transport problem associated with
equal masses, i.e., for all (i,j) € PxQ, s; = d; = v, reduces actually to an assignment
problem, where masses cannot be cut. Indeed, it is well known (see section 2.2 of [5]
for a proof) that if v minimizes the cost (2.1) under conditions (2.2), then without
loss of generality one can assume that v;; € {0,v} for all 4, j, so that the problem can
be reformulated as finding the minimum of the quantity

(2.3) Clo)= > cPo1(j): 1)

1<j<N
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over all partial maps o: {1,...,M} — {1,..., N} whose inverse o~ is injective and
defined for all 1 < j < N; namely, j = (i) and i = 0~ *(j) iff v;; = 1. This setting is
the one of sections 3 and 4.

We focus on the case where the function ¢ involves a strictly concave function, as
stated in the next definition.

DEFINITION 2.1. The cost function ¢ in (2.3) is said to be concave if it is defined
by c(p,q) = g(lp — q|) with p,q € R, where g: R*Y — R U {—o0} is a strictly concave
nondecreasing function such that g(0) := lim,_,o g(z) > —oo.

Note that strict concavity of g implies its strict monotonicity. Some examples of
such costs are given by g(z) = logz with ¢g(0) = —o0, and g(z) = /x with ¢g(0) = 0.
If g(0) > —o0, we assume without loss of generality that g(0) = 0. (This changes the
value of (2.1) by an amount D ¢(0) independent of the transport plan.)

In what follows, we denote by +* a given optimal transport plan between P and
Q: C(y*) < C(v) for all v satisfying (2.2). Observe that if two points p; and ¢; have
the same position, then there exists an optimal transport plan v* between P and
@ such that 47, = min{s;, d;}, i.e., such that all mass shared by the two marginal
measures stays in place [25]. Indeed, suppose that a supply p and a demand ¢ located
at the same point are not matched to one another but to some other demand and
supply p’ and ¢’ located at distances x and vy, respectively. Irrespective of whether
g(0) =0 or g(0) = —o0, as soon as ¢ is strictly concave, one has

9(0) + g(z +y) < g(x) + g(y)

for all x, y, which implies that matching p and ¢ is cheaper. Therefore a common point
of P and () with unequal values s; and d; may be replaced with a single supply of
capacity s; —dj, if this quantity is positive, or with a single demand of capacity d; —s;.
In the following, we will therefore assume that common points do not exist, i.e., that
the sets P and @ are disjoint.

Another significant feature of concave costs is that trajectories of mass elements
under an optimal transport plan do not cross each other, as described by the following
lemma.

LEMMA 2.2 (noncrossing rule). Consider two pairs of points (p,q) and (p',q")
such that

(2.4) cp,q) + ' q) <clp',q) + clp, q).

Then, the open intervals

I = (min(p, ¢),max(p,q)), I' = (min(p’,q), max(p',q"))

are nested, in the sense that the following alternative holds:
1. either INT' is empty,
2. or one of these intervals is a subset of the other.

This result directly follows from the concavity of the cost function and is often
referred to as the “noncrossing rule” [1, 15]. The proof is based on the same ideas
used in [15]. Essentially, the case p < ¢’ < ¢ < p’ and the similar case with p’s and ¢’s
interchanged are ruled out in view of (2.4) by monotonicity of g, whereas the case
p <p' < q< ¢ and the symmetrical one are ruled out by the strict concavity of g.

In the unbalanced case, some supplies may lie outside all nested segments.

DEFINITION 2.3. A point r € PUQ is said to be exposed in the transport plan -y

if r ¢ (min(p;, g;), max(p;, gj)) whenever v;; > 0.
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A sufficient condition for a supply to be exposed is given in the next statement.

LEMMA 2.4. In the unbalanced case all underused supplies are exposed in an
optimal transport plan.

Indeed, should an underused supply p; belong to the interval between p;, and g;,
such that 7;,j, > 0, the amount of mass equal to min{v;;,,s; — >_;7i;} could be
remapped to go to g;, from p; rather than p;,, thus reducing the total cost of transport
because of the strict monotonicity of the function g.

3. Transport plans on chains. In this section, we focus on the particular case
of chains, which are situations where all the masses are equal and alternated on the
line, i.e., where P and @ satisfy M = N (balanced case) and

(3.1) Pr<q < <pi <@g <piy1 < git1 < <py <qn,
or M = N + 1 (unbalanced case) and
(3.2) P <q <o <pi<q<pit1 <gi+1 < <pN < gN < PN1-

In these cases the set PUQ is called balanced chain or unbalanced chain, respectively.
Sections coming after this one will extend our results to more general cases.

Recall that, in such a framework, optimal transport problems are actually as-
signment problems, where masses cannot be cut: Optimal transport plans are then
described by permutations.

3.1. Main result. Thanks to the noncrossing rule, one knows that in any op-
timal transport plan there exist at least two consecutive points (p;,q;) or (¢, Pit1)
that are matched. Starting from this remark, we take advantage of the structure of a
chain to introduce a class of indicators that enable us to detect such pairs of points a
priori.

DEFINITION 3.1 (local matching indicators of order k). Given 0 < k < N — 1,
consider 2k + 2 consecutive points in a chain. If the first point is a supply p;, define

k—1 k
17 (i) = c(pis Gir) + Z c(Pitj+1,Qiti) — Z c(Pitjs diti);
§=0 j=0

else denote the first point q; and define

L) = e(piyrr1, @) +

k
Jj=

k
c(Pitjs Gi+s) — Z c(Pitj+1, Qits)-
1 3=0

This definition is schematically depicted in Figure 3.1 in the case k = 2.

FAA N

Fic. 3.1. Schematic representation of an indicator of order 2.

Note that in the first alternative of this definition, we have necessarily 1 < k <
N —1,1<1¢< N — k. In the second alternative, we have necessarily 1 < k < N — 2



LOCAL MATCHING INDICATORS 807
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Fic. 3.2. Schematic representation of the result of Theorem 3.2 in the case ko = 1.

and 1 <7< N —k —1 in the balanced case,and 1 < k< N-—-1land1<i< N -k
in the unbalanced case. The interest of these functions lies in the next result.

THEOREM 3.2 (negative local matching indicators of order k). Let kg € N with
1 < ko <N-—-1andiyg €N such that 1 < i9g < N — kg. In the unbalanced case,
suppose in addition that g is strictly monotone.

Assume the following:

L IP(i) >0 fork=1,...,kg— 1, ig <i < ig+ko—k;
2. L") >0 fork=1,... kg — 1, 49 < i’ <ig+ko—k—1 (resp., igp <4 <
i0 + ko — k in the unbalanced case);
3. Illc)o (lo) < 0.
Then any permutation o associated with an optimal transport plan satisfies o(i) = i—1
fori=ig+1,... 00+ ko.

If the third condition is replaced by I} (i) < 0 (with the same bounds on ko and
ig in the unbalanced case, and with 1 < kg < N —2 and 1 < ig < N —kg—1 in
the balanced case), then any permutation o associated with an optimal transport plan
satisfies o(i) =1 for i =ig+1,... 40 + ko.

This result is represented in broad outlines in Figure 3.2. For practical purposes,
these indicators allow us to find pairs of neighbors that are matched in an optimal
transport plan. Theorem 3.2 also shows that the usual c-cyclical monotonicity con-
dition of optimality (see [24] and [10]) can be improved in the concave case: only
specific subsets have to be tested to check the optimality of a transport plan.

3.2. Algorithm. We now derive from the previous theorem a simple algorithm
for computing an optimal transport plan in the case of chains. For the sake of sim-
plicity, we consider only the balanced case. The unbalanced case can be treated in
the same way.

The local matching indicators defined in Definition 3.1 can be used recursively
to compute optimal transport plans for chains. The elementary step of this approach
consists of finding a negative indicator satisfying the hypothesis of Theorem 3.2 in the
list of supplies and demands. Once this step is achieved, the inner points involved in
this indicator are matched as prescribed in Theorem 3.2 and removed from the list.

As for the research, it is performed by means of a loop that iteratively updates
the pair (ko, i), following the lexicographic sorting (over admissible pairs), as long as
positive indicators are found. In this way, the hypotheses of Theorem 3.2 are satisfied
when a negative indicator is found. At the beginning of the algorithm or when a
negative indicator is found, the set of admissible pairs is updated, and the current
pair is set to (1,1).
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We denote by ¢* the map for which this minimum is attained.
ALGORITHM 1.
o Set P = {p1,...,DN,q1,---5an}, P = {1,...,N}, ¢2 = {1,...,N}, and
k=1;
o while P# 0 and k < N
1. compute I7. (i) and I}(i') fori=1,...,N—k and? =1,...,.N—k—1;
2. define

T, = {io, 1 <ig < N —k, I} (io) < 0},
T} = {io,1 <io < N —k —1,I}(i0) < 0};

3. if IV =0 and I} = 0, then set k =k +1;
4. else do
— for allig in I}, and for i =1io+1,...,i0+k, do
x define o*(07) = 01_,
* remove {per,qpa_ } from P,
x remove (¥ and £} from € and (9, respectively;
— for all it in I}! and fori =1+ 1,...,iy+ k, do
* define o*(07) = 01,
* Temove {pgf, qg;z} from P,
« remove (¢ and (] from (P and (9, respectively;
— set N = +Card(P), and rename the points in P such that

P:{pla"'apN7qla"'7qN}7
p1<q1 < <pi <G <Pit1 < Git+1 < < PN < (N;

— setk=1;
e ifk=N-—1, fori=1,...,N set o*({7) = (1.

A first alternative algorithm tests the sign of each I} (i) and I}}(i') as soon as
they have been computed and removes the corresponding pairs of points whenever a
negative value is found. A second alternative involves finding pairs (g, ko) that satisfy
the hypothesis of Theorem 3.2 following the lexicographic order associated with the
counter (i + 2ko, ko).

3.3. Proof of Theorem 3.2.

3.3.1. Technical results. This section introduces technical results that are re-
quired to prove Theorem 3.2. We keep the notation introduced therein. We start
with a basic result that plays a significant role in the proof of Theorem 3.2. As was
the case for the noncrossing rule (Lemma 2.2), the concavity of the cost function is
an essential assumption of this lemma.

LEMMA 3.3. We keep the previous notation. For x,y € RT, define

k-1 k—1
i@ y) = g(@+y+ iy —pi) + Z c(Pitj+1,Gits) — Z (Pitj» Gi+i),
=0 i=1

for ki€ N suchthat 1l <k<N—-1andl1<i< N —k, and

E

—1

k
ol (@ y) = 9@+ y+pickin—a)+ Y cpirg, Girs) —9@) —9(¥) = Y c(Ditji1: Givy);
j=1 =1
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for ki € N such that 1 < k< N—-2and1<i< N —Fk—1 in the balanced case and
1<k<N-1and1<i< N —k in the unbalanced case. Both functions <p£7i(x,y)
and @} (z,y) are decreasing with respect to each of their two variables.

This lemma is a direct consequence of the concavity of the function g.

To deal with unbalanced chains, we need two additional lemmas, one of them
requiring that ¢ is strictly monotone. The first result that we need is usually called
“the rule of three” in the literature [15].

LEMMA 3.4 (rule of three). Suppose that g is strictly monotone. Given p < q <
p' < ¢ € R, suppose that

(3.3) c(pq') + e q) <clp,q) +c(p',q).
Then |p’ — q| < min(|p — g, [p" = ¢[)-

Proof. Since g is increasing and since |p—¢’'| > max(|p—q|, [p’—¢’|), inequality (3.3)
implies that ¢(p’,q) < min(e(p,q),c(p’,q')). The result follows the fact that g is
strictly increasing. a0

We shall also make use of the following generalization.

LEMMA 3.5. Suppose that g is strictly monotone. Under hypotheses 1 and 3 of
Theorem 3.2, the following inequalities are satisfied:

¢ — pi+1] <min(|pi, — Gl [Pi+1 — Gio+ko|) Vi € {io, ... i0 + ko — 1}
If hypothesis 3 is replaced by I,gg (ip) < 0 and hypothesis 2 holds, one finds
lpi — @il <min(|giy — pil, @ — piyrrora) Vi€ {ig+1,...,05 + Ko}

Proof. Let i € {ig,...,i0 + ko — 1}. Hypothesis 3 of Theorem 3.2 implies that

io+ko io+ko—1
c(pi+1,6i) + c(Pios Gig+ho) < Z c(pj,aj) — Z c(pj+1,95) + c(Pit1, 4i)-
J=to J=to
Now, because of hypothesis 1, we have I ; (i) > 0 and I} ., (i+1) >0, which
means that
i i—1
> elps ;) < elpio, @) + Y c(pii1,4))
Jj=to J=to
and
io+ko io+ko—1
> elpi i) < cPivt Giorke) + D, (it1, )
j=it1 j=it1
Thus,

c(Pit1, @) + c(Pigs Gio+ko) < (Digs @) + c(Pit1, Giotko )-

We conclude with the rule of three. The result in the case I ,ZO (ig) < 0 can be deduced
by symmetry. d

Note that in the two previous proofs the only necessary hypothesis is that the cost
be a strictly increasing function of the distance. In particular the result also holds in
the case where the cost function is increasing and convex.
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LEMMA 3.6 (partial sums). Under hypotheses 1 and 3 of Theorem 3.2, for any
tin{io+1,...,00+ko} and i’ in {io,...,i0 + ko — 1}, the following inequalities are
satisfied:

i—1 i—1
(3.4) Y clpiai) > ) elpiv,a5)
J=io j=io
and
io+ko io+ho—1
(3.5) Z c(pj, q5) > Z c(pj+1:45)-
j=i'+1 J=v

If hypothesis 3 is replaced by I} (ip) < 0 and hypothesis 2 holds, one finds

i—1 i
(3.6) > elpirna) > Y dpi )
j=io j=io+1
and
i0+ko i0+ko
(3.7) Yo elpirg) > Y epia).
j=i'+1 j=i'+1
Proof. In order to prove inequality (3.4), note that since I (ko) < 0,
1—1 i0+ko i0+ko
> elpia) =Y clpig) = > clpirq;)
Jj=to J=to Jj=t
io+ko—1 io+ko
> cpig Giotke) + Y i1, a5) = Y elpyy4))
Jj=to J=i
for 7 such that ig + 1 < i <ig + k9. Moreover, since If;+k0_i(i) > 0, one has
1—1 10+ko—1 10+ko—1
D eps @) > Pios Giorke) ¥ D, Pi41:85) — i Gio ko) — Y, cpjr1, )
Jj=to J=to Jj=t

Since g is increasing, this leads to the inequality (3.4). The proof of (3.5)—(3.7) follows
the same path. a

We are now in the position to prove our main result. In a first part we focus on
the balanced case, and then go to the unbalanced case, which requires more effort.

3.3.2. The balanced case. Consider the balanced case, i.e., the situation cor-
responding to (3.1). We focus on the case where I} (ig) < 0. The case I} (ip) < 0
can be treated the same way.

The proof consists of proving that hypotheses 1-3 of Theorem 3.2 imply that
neither demand nor supply points located between p;, and ¢;,+x, can be matched
with points located outside this interval, i.e. that the set Sikg0 = {pjio+1<j<
0 + ko} U{qj,i0 < j <ig+ ko — 1} is invariant under an optimal transport plan. In
this case, the result follows from hypothesis 1-2.

Suppose that Siko © is not preserved by an optimal transport plan ¢*. According
to the noncrossing rule, three cases can occur:
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(a) There exists i1 € N such that 1 < i; < ig and ig < 0*(i1) < ip + ko — 1, and
there exists ] € N such that o*(i1)+1 < i} <ig+ko and ig+ko < o*(#}) < N.
(b) There exists i3 € N, with ig + 1 < is < ig + ko such that 1 < o*(ig) < ig — 1.
(¢) There exists ia € N, with ig + ko < i2 < N such that ig < o0*(i2) < io + ko.
We first prove that case (a) cannot occur.

In case (a), one can assume without loss of generality that o*(i1) is the largest
index such that 1 <y <ig, iop < 0*(i1) < ig+ ko — 1 and that i} is the smallest index
such that o*(i1)+1 < ¢} <ip+ko, io+ko < o*(i]) < N . Assume also that we are not
in cases (b) or (c¢). With such assumptions and because of the noncrossing rule, the
(possibly empty) subset {p;,0*(i1) +1 <i <} —1}U{qi, 0% (i) +1<i <if —1}is
stable by o*. Because of hypotheses 1-2, no nesting (i.e., no pair of nested matchings)
can occur in this subset, and ¢* (i) =i for ¢ = 0™ (i) + 1,...,4; — 1.

On the other hand, since ¢* is optimal, one has

ih—1 ih—1
c(Piys do+ (ir)) T (it s 4o (i7)) + Z c(pj»q5) < e(Piys Qo (i) + Z c(pjs1,45)-
Jj=o*(i1)+1 j=o*(i1)

Thanks to Lemma 3.3, one deduces from this last inequality that

if—1 i —1
(Pio: Qo (ir)) + (P> Tio+ko) + Z (s a5) < c(Pigs Gio+ko) + Z c(Pj+1:45),
J=o*(i1)+1 j=o*(i1)
and then
o’ (i1)-1 io+ko—1
(Pig:Gor i)+ D epjr1, @) + ePig s Giorro) + Y c(pir1.a5)
Jj=io J=i
ih—1 io+ko—1
(3.8) + Z c(pj a5) < c(Pigs Gio+ko) + Z c(Pj+1, G5)-
j=o (i) +1 j=to
According to hypotheses 1, Ig*(h%m (i) > 0and I} . (i) >0, so that
1
O'*(il) G'*(il)*l
Z C(pjaqj) S C(p’ioaqo*(h))_'_ Z C(pj-i-laqj)v
J=to J=to
i0+ko io+ko—1
Z (s, a5) < c(pigs dio+ke) + Z c(Pj+1,45)-
J=i j=i}

Combining these last inequalities with (3.8), one finds that

io+ko io+ko—1
D elpsi @) < cPios Giotko) + D, b ay),
Jj=to Jj=to

which contradicts hypothesis 3.

Let us now prove that cases (b) and (c¢) contradict the assumptions. As cases (b)
and (c) can be treated in the same way, we consider only case (b). Without loss of
generality, one can assume that is is the smallest index such that 19+ 1 < 79 < ig+ ko
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and o*(iz) < ig — 1. Because of the noncrossing rule and the fact that there are
necessarily as many demands as supplies between ¢;, and p;,, there exists one and
only one index i} such that iy < 0*(i4) < is — 1 and 1 < i} < ig. Consequently, the
noncrossing rule implies that the (possibly empty) subsets {p;,i0+1 < i < o*(i5)} U
{Qia 10 <1< U*(ié) — ].} and {pi, 0'*(il2) +1<1< 49— 1} @] {Qia U*(i/g) +1<1< 49— 1}
are stable by an optimal transport plan. Because of hypotheses 1-2, no nesting can
occur in these subsets, and 0*(i) =i — 1 for i =i + 1,...,0*(i5) and o*(i) = ¢ for
i=o0* (i) +1,.. .0 — 1.
On the other hand, since ¢* is optimal, one has

o* (i3) i—1
(Di: Qo (i) + Py Qo (i) + Y cpjrg—1)+ Y (v q))
j=io+1 j=or (i) +1

i2
< c(piy, Qo+ (i) T Z c(pj, aj-1)-
Jj=io+1

Thanks to Lemma 3.3, one deduces from this last inequality that

o* (i) ig—1
c(Pizs Qo+ (in)) T (Pig» Qo+ (i) + Z c(pj,qj—1) + Z c(pj, q;)
j=io+1 j=o*(i5)+1
i2
(39) < c(pioaqd*(’i2)) + Z c(pj’qul)'
j=io+1

Because the cost is supposed to be increasing with respect to the distance, one finds
that c(pig, 4o+ (is)) < ¢(Piss do(iz)), S0 that (3.9) implies

o (i) iz—1 in
c(Pio+ 4o (i) + Z c(pj, 4j-1) + Z c(pj, qj) < Z c(pj 4j-1),
Jj=io+1 j=o*(ih)+1 Jj=io+1
and then
o™ (i5) io—1 i0+ko
(Pios 4o (i) + Z c(pj, 4j-1) + Z c(pj, q;) + Z c(pj, aj-1)
j=io+1 =0 (ih)+1 j=izt1
i0+ko
(3.10) < Z c(pj; gj—1)-
Jj=io+1
According to hypothesis 1, I‘f*(ié)_ig (ip) > 0, so that
o (i3) o* (ig)—1
> e @) < cPiordorip) + D clpis4))-
Jj=to Jj=to

Combining these last inequalities with (3.10), one finds that

io+ko io+ko—1

> elpsi @) < cPios Giotko) + D, clpivay),

Jj=to Jj=to
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which contradicts hypothesis 3.

We have then shown that neither demand nor supply points located between p;,
and g;,+k,+1 can be matched with points located outside this interval. The set Sik0 o
is then stable by an optimal transport plan. According to hypotheses 1-2, no nesting
can occur in Sik0 . The result follows. O

3.3.3. The unbalanced case. We then show that Theorem 3.2 still holds in
the unbalanced case. We start with the case Iy, (ig) < 0.

Observe first that none of the points p;, io +1 < j < i + ko, can remain
unmatched in an optimal transport plan. Indeed, assume on the contrary that there
exists £ in {ig+1,...,40+ ko } such that p, is unmatched in an optimal transport plan
o*. Note first that no nesting can occur in SZ-]ZO, so that the points in this set can be
matched only either with their neighbors or with points outside this set. According
to Lemma 3.6,

-1 -1
c(pj q;) > > elpjs1, a)-
J=to J=to
Therefore we cannot have o*(i) = ¢ for i = iy, ...,¢—1; otherwise it would be possible

to rematch all the points g; in this interval to their right neighbors and reduce the
cost. Hence, as the point py is unmatched and, because of Lemma 2.4, exposed, there
exists m in {ig,...,¢ — 1} such that (¢*)~(m) < ig. Choose m to be the greatest
value of the index satisfying this property. Since no nesting can occur in SZO, we have
0*(i) =i for all ¢ in the (possibly empty) interval m +1 < i < £ — 1. Now, since g is
an increasing function,

—1 l—1 m
(Poy-1(my @)+ Y, €032 0) > Pigs tm) + Y 0y 5) = D (P, @))-
j=m+1 j=io j=io

Using again (3.4) of Lemma 3.6, one deduces from this last inequality that

-1 -1 m
(D)1 (myr m) + Y Dy @) > Pigr Gm) + D D11, 45) — Y e q5)-
j=m+1 Jj=to J=t0

It follows from this and from I}, _; (i9) > 0 that

-1 m—1
C(p(o'*)*l(m)a qm) + Z C(pja q]) > C(pioan) =+ Z C(pj-i-la q])
j=m+1 Jj=to

-1 m
+Zcpj+17q] Zcpj7qj
j=m

J=to
—1
E c pj+1 ) QJ
J m

In other words, it is cheaper to match each ¢;, m < i < ¢ — 1, with its right neighbor
pi+1 and exclude p(;+)-1(,,) than to match each ¢; with its neighbor p; and exclude
pe. In all cases, the point p, cannot remain unmatched.

If the point p,, is matched in the transport plan ¢*, then we can conclude by the
already proved first part of Theorem 3.2 that o*(i) =i — 1 for i = ig+ 1,...,9 +
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ko. (According to Lemma 2.4, unmatched points are exposed; the existence of an
unmatched p; outside of [pi,, Gi,+k,] has no consequence on this result.)

Now, assume that p;, remains unmatched and that there exists m’ in {ig, ..., 70+
ko—1} such that (6*)~1(m’) # m/+1. Since p;, is exposed, and since all points of S;,
are matched and no nesting can occur in S;,, there exists m’ in {ig,...,40 + ko — 1}
such that (6*)~1(m’) > iy + ko. One can assume without loss of generality that m’ is
the largest index in {ig,...,io + ko — 1} satisfying (¢*)~1(m') > io + ko.

Actually, m’ < ig + ko — 1. Indeed, suppose that m’ = ig + kg — 1; on the one
hand, because of hypotheses 1-3, the rule of three (variant, Lemma 3.5) implies that
[Dio+ko — Gio+ko—1] < |Pig+ko — Gio+ko|- But, on the other hand, since the matchings
(P(or)=1(m’)s @m') and (Dig1kos Qo+ (io+ko)) Pelong to an optimal transport plan, the
rule of three (standard version, Lemma 3.4) implies |pig+ky — Gig+ko—1] > |Pio+ko —
o+ (io+ko)|- Because of the noncrossing rule, o*(ig + ko) > io + ko; hence [pi,4x, —
Qio+ko—1| > |Dio+ko — Qio+ko|- This provides a contradiction.

Two cases can now occur: either o*(¢) = ¢ for all ¢ in {m' +1,...,ip + ko}, or
there exists a unique supply pr in {m’+1,...,ig+ko} such that o (k) > 49+ kg. This
cannot happen for two different supplies in {m’ + 1,...,ip + ko}, as otherwise there

would be another demand ¢, between these supplies such that (¢*)~1(¢£) > ig + ko.
In the first case, thanks to (3.5),

i0+ko io+ko—1
(Gmr Poy-1mn) + Y i) > clqm Dory-1mn) + D (i1 a5)
j=m’+1 j=m/’
i0+ko—1
(Gigrkor Do) -1(mn) + D c(pjt1,a5),
j=m/

which contradicts the optimality of o*.
In the second case, since I} (ig) < 0,

k-1
c(Gm’, P(o+)~1(m")) + Z c(pj» @j) + c(Pks Gor (k) > (@mrs P(o )1 (m7)) + (Pks Qo (1))
j=mi+1
i0+ko—1 m’ i0+ko
tepig Giorko) T D, cpjr,q) — Y clpja) — Y (i qj).
i=io j=io =k
Now, since I}, ; (ig) > 0 and I} ., (k) > 0, this inequality yields
k-1
C(Qm/vp(o*)*l(m’)) + Z c(pj,qj) + C(pk,qa*(k)) > C(Qm/vp(o*)*l(m’))
j=m/+1
k—1
+ C(pk7 qd*(k)) - c(pk7 qi0+ko) + c(pioaqioJrko) - C(Pz‘oan’) + Z c(ijrl? qj)
j=m/

The two differences that appear on the right-hand side are positive, so that
k-1
c(Gm’, P(or)~1(m?)) + Z c(pj, 45) + c(Pks Gor (k) = o (k) P(o*)~1 (7))
j=m'+1
k-1

+ Z C(pj-i-lv(Ij)a

j=m
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Fic. 4.1. Example of a problem containing two chains. Top: chains represented as collections
of dashed arcs. Bottom: chains represented as dashed lines connecting elements of mass that are
left and right neighbors (cf. Figure 5.1).

which also contradicts the optimality of o*.
By symmetry, the theorem remains valid in the case where I ,ZO (ip) < 0 instead of
I ,fo (i9) < 0. |

4. General unitary case. We now focus on the general unitary case, i.e., sit-
uations where s; = d; = 1 for all 7, j and therefore S = M and D = N < M. As
a main result, we shall explain how this case can be recast in independent problems
involving chains. Recall that, as was the case for chains, in such a framework, optimal
transport plans are described by permutations.

A consequence of the noncrossing rule (Lemma 2.2) is usually called the local
balance of supplies and demands: in the unitary case, there are as many supplies as
demands between any two matched points p;, and g;,. We derive from this property
a definition of chains in the case of unit masses. Given a supply point p;, define its
left neighbor g, as the nearest demand point on the left of p; such that the numbers of
supplies and demands in the interval (¢}, p;) are equal; define the right neighbor ¢}’ of
p; in a similar way. Furthermore, define left and right neighbors of a demand point g;
to be the supply points that have g; as their right and left neighbors, respectively.
Iterating this procedure gives raise to a chain.

DEFINITION 4.1 (unitary case). A chain in P U Q is a mazimal alternating
sequence of supplies and demands of one of the following forms:

L. (piquu s 7pik7qjk)7

2. (qupiu s 7qjk7pik)7

3. (pi1 ydjyy -+ gy 7pik)7
with k > 1 and such that each pair of consecutive points in the sequence is made of a
point and its right neighbor.

Examples of chains are shown in Figure 4.1. Observe that because of case 3 of
Definition 4.1, some chains can be composed of only one (unmatched) supply and no
demand.

Because of the local balance property, matching in an optimal plan can occur
only between points that belong to the same chain. Indeed, an extension of the proof
of Lemma 3 of [1] shows that the family of chains forms a partition of PU Q. As a
consequence, each chain is preserved by an optimal transport plan. For example, if a
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chain is composed of a single supply, it cannot be matched in any optimal transport
plan and can thus be dismissed from the problem. In summary, the general unitary
problem can be decomposed into independent problems that deal only with chains,
and then we can apply the results of section 3.

Note finally that the construction of the set of chains depends only on the relative
positions of supplies and demands and does not involve any evaluation of the cost
function. The exact construction is not described here because it is subsumed by the
algorithm presented in subsection 5.2.

5. Nonunitary case.

5.1. Chains in real-valued histograms. In this case the notions of right and
left neighbors should be defined for infinitesimal elements of supply and demand.
The corresponding definition may be given in purely intrinsic terms, but the following
graphical representation makes it more evident.

Yo F(Qz) fffff
ylfF(ih)
pity T [T
yz—F(Q4)
fffffff AN
ys = Flp2) [

Ya = F(pa+0) R —
Ys = F(qg) oo S
yo =F(p) ——————— — ]
y7 = F(ps)
ySZF(p3)

Fic. 5.1. Ezample of construction of chains for a problem with general masses (color online).
Red points and blue crosses mark the values of the cumulative distribution function F' at supply
points p; and demand points q; according to the convention of left continuity. Small white circles
represent a pair of neighboring demand and supply elements. Chains connecting some neighboring
mass elements are shown with dashed lines. All chains have the same structure in each horizontal
stratum, delimited with dotted lines. Capacity my, := yr—1 —yg of stratum k measures the amount of
mass exchanged in that stratum. For example, the subsegment denoted u;{’% (resp., NE;?;); represents
the share of supply located at p1 (resp., of demand located at qa) that participates in the mass
exchange in stratum 2 (resp., 3). Detailed explanations are given in the text. Observe that the

problem is unbalanced, and chains in strata 5 and 6 have three supplies and two demands.

Consider the signed measure »_, s;p, — >, d;jdq, on the real line, where §, is a
unit Dirac mass at . Plot its cumulative distribution function F', whose graph has an
upward jump at each p; and a downward jump at each ¢;, and augment it with vertical
segments to make the graph into a continuous curve (Figure 5.1; cf. also Figure 4.1).
Thus, e.g., the segment corresponding to a supply point p; connects the points of
the graph with coordinates (p;, F(p;)) and (p;, F(p; +0) = F(p;) + s;) (assuming left
continuity of F'). Here and below in figures similar to Figure 5.1, vertical segments
corresponding to supply points are plotted in red, and those corresponding to demand
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points in blue (color online).

Infinitesimal elements of supply and demand are pairs of the form (p;,y’) with
F(p;) <y < F(p; +0) and (g;,y"”) with F(g; +0) < 3"’ < F(g;). Geometrically
a supply element (p;,y’) (demand element (g;,y")) corresponds to the point (p;,y’)
(resp., (g;,y")) in the vertical segment corresponding to the supply p; (demand g;)
in the graph of the cumulative distribution function F' (see Figure 5.1).

For an infinitesimal element of supply (p;,y) define

r(pi,y) =min{q; € Q: q; > pi, Fq; +0) <y < F(g;)},
U(pi,y) = max{q; € Q: ¢; < p;, F(q; +0) <y < F(qg;)}

(with the usual convention min@ = oo, max@ = —oo), and call the mass ele-
ments (r(p;,y),y) and (¢(p;,y), y) respectively the right neighbor and the left neighbor
of (pi,y) if r(pi,y) and £(p;,y) are finite. The definition of right and left neigh-
bors is then extended to elements of demand by defining r(g;,y) = p; whenever
g; = L(pi,y) > —oo, and {(g;,y) = p; whenever ¢; = r(p;,y) < oo. Inspection of
Figure 5.1 should make these definitions clear.

DEFINITION 5.1 (real-valued case). A chain is a sequence of elements of mass
that has one of the following forms:

L ((pi1 ) y)v (le ) y)v R (pik7y)’ (qjk ) y)) with é(ph ) y) = =00, T(ij ) y) = 005

2. ((qjo’y)v (pi1 ) y)v R (qjk—l ) y)a (pik7y)) with é(Qjoay) = =00, T(pik ) y) = 005

3. ((Pirs ) (@1, )5 - -+ (@15 ¥)s (Pir, y)) with €(piy, y) = —00, T(piy, y) = oo
Here k > 1 and g;,,_, = U(ps,,,y) > —00, ¢;,, = 7(Pi,,,y) < 0o for all m between 1
and k, where q;, = ¢(p;,,y) = —o0 and ¢;,, = r(pi,,,y) = 0.

Note that chains have similar structure inside strata defined in the above graphical
representation as bands separated by horizontal lines corresponding to ordinates from
the set {F(p1 £0),..., F(pym £0), F(q1 £0),..., F(gny £0)}: within each stratum all
left and right neighbors are the same, and only the y parameters differ.

5.2. Data structure and algorithm for computing chains. We now de-
scribe how to efficiently compute and store the structure of chains and strata for a
given histogram. This discussion applies for both the real and unitary cases. (The
latter is degenerate in that all elements of each supply and demand point belong to a
single stratum; cf. Figures 4.1 and 5.1.) Our construction is an adaptation of that of
Aggarwal et al. [1, section 3] with somewhat different terminology and notation.

The basic storage structure can be described as follows. Observe that for a supply
point p; the function r(p;, -) is piecewise constant and right continuous on the segment
[F'(pi), F'(pi + 0)]. For each p; build a list consisting of triples (pi, y; ., 7(Pi, Yi ) in
the increasing order of m > 0, where y; , = F(p;) and y;,, corresponds to the mth
jump of 7(p;,-) as the second argument increases. For a demand point (g;, d;) build
a similar list of triples (g;,y7,,,7(¢;, ¥} ), where y7q = F(g;) and y7,, decreases
with m. Finally build a list £ as a concatenation of these lists for all supply and
demand points in P U @ in the increasing order of the abscissa. In Figure 5.2, which
features the same histogram as in Figure 5.1, the elements of the combined list £ are
represented with thick solid arrows. Their order corresponds to traversing the p;’s
and g;’s left to right and, for each of these points, to listing the right neighbors in
increasing order of y for p; and in decreasing order of y for ¢;: in short, to traversing
the continuous broken line formed by the graph of F' together with the red and blue
vertical segments.

Note that all elements in £ that start with p; have one of the two following forms:

(pi, F(pi), q;) with g; = r(ps, F(p;)) or (pi, F(g; +0),¢q;) with p; = £(g;, F(g; + 0)).
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............... foo)
q2

q4

D2

P qs3

D4

b3
......................... o0

F1a. 5.2. Lists L (solid arrows) and Lo (dashed arrows) encoding the structure of the histogram
from Figure 5.1. See explanations in the text.

Similarly, elements starting with ¢; have either the form (g;, F(q;),p:) with p; =
r(q;, F(q;)) or (g5, F(p: + 0),p;) with ¢; = £(p;, F(p; + 0)). Therefore all elements
of L involve one of the values F(p; & 0) or F(g; £ 0), and hence £ has at most
2(M 4 N) elements. To see this, refer to Figure 5.2 and observe, e.g., that the
function r(p;,-) has a jump at y only when, during the upward scan of the vertical
segment corresponding to supply p;, one encounters on the right the bottom end of a
vertical segment corresponding to ¢; = r(p;,y) (i-e., the point with y = F(¢g; +0)). A
similar observation holds for a downward scan of segments corresponding to demand
elements.

The list £ can be regarded as a “dictionary” that allows us to look up the right
neighbor of any supply element (p,y) or demand element (q,y). To do this, e.g.,
for (p,y), locate in £ an element (p,y) immediately preceding (p,y), and return
the element (r(p,¥),y). Again, inspection of Figure 5.2 should convince the reader
that this procedure is correct. Note that the search operation in an ordered list of
length O(M + N) requires an O(log(M + N)) number of comparisons.

The list £ can be built in a linear number of operations O(M + N) using the
following algorithm. Here S,, S, are stacks storing pairs of the form (r, X), where
re PUQ@ and X € R.

ALGORITHM 2.

o SetS, 0,8, T, list L+, f+ S —D, p+maxP, g+ maxQ);
e loop A:
— if p= —00 and g = —oo, then break loop A;
— else if p> q, then
x set s + supply value of p, P+ P\ {p};
* loop B:
- if S = @, then prepend (p, f — s,00) to L and break loop B;
- pop the pair (¢', f') from stack Sy;
- 4f f' < f — s, then prepend (p,f — s,q') to L, push the pair
(d', f) on stack S if f' < f — s, and break loop B;
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- else prepend (p, f',q") to L;
* repeat loop B;
* push the pair (p, f) on stack Sp and set f < f —s, p ¢ max P;
— else if p < q, then
x set d < demand value of q, Q + Q\ {q};
* loop C:
- if S, = @, then prepend (g, f + d, 00) to L and break loop C;
- pop the pair (p', f') from stack Sp;
- 4f f' > f+d, then prepend (q, f + d,p’) to L, push (p', f') on
stack Sp if f' > f+d, and break loop C;
- else prepend (q, f',p’) to L;
* repeat loop C;
« push the pair (g, f) on stack Sy and set f < f+d, ¢ < maxQ);
— end if;
e repeat loop A;
e stop.
Observe that if f is initialized with S — D = F(o00), then at the exit of loop A it
will contain F'(—oo) = 0. However it is possible to initialize f with any other value,
e.g., 0, in which case its exit value will be smaller exactly by the amount S — D. It is
therefore not necessary to compute this quantity beforehand.

To find the leftmost mass elements of chains we also need a list £y of a similar
format that stores “right neighbors of —co.” To build this list, a variant of the above
procedure is used. While the list £ was built by “prepending” elements, i.e., adding
them in front of the list, the following algorithm uses both prepending and appending,
i.e., adding new elements at the end of the list. The stacks S,, S; and the variable
f are assumed to be in the same state as at the end of loop A; in particular, the
stacks contain exactly those p and g points whose corresponding vertical segments are
“visible from —o0.”

ALGORITHM 3.

o Set lists Lo« &, L +— &, L' +— &;
o repeal until Sq # B:
— pop the pair (¢', f') from stack Sy and append (—oo, f',¢") to L”;
o repeat until S, # &:
— pop the pair (p', f') from stack S, and prepend (—oo, f',p') to L';
o if L' =, then
— set (—o0,q, ') + the first element of L” and append (—oo, f,q') to Lo;
o else
— set (—oo,p’, ') < the last element of L';
— if L = @, then append (—oo, f,p’) to Lo;
— else
* set (—o00,q’, ') + the first element of L";
* append (—oo, f,min{p’,¢'}) to Lo;
— end if;
o end if;
e set Lo < concatenation of L', Lo and L.

Finally the list £ is scanned, and the values F'(p; = 0), F'(g; = 0), which appear
as second elements of its constituent triples and define locations of the dotted lines
separating strata, are sorted in decreasing order to give the sequence

Yo > Y1 > > YK,
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where K is the number of strata, the kth stratum by definition lies between yi_1
and yx, and 1 < K < M 4+ N (K = M + N = 8 in the example of Figures 5.1 and
5.2). This is the only stage in the process of building the data structure that requires
a superlinear number of operations, namely O((M + N)log(M + N)).

5.3. Chain decomposition of transport optimization. Observe that the
initial transport optimization problem can be replaced with a problem of transport-
ing the Lebesgue measure supported on “red” vertical segments (representing supply)
to the Lebesgue measure supported on their “blue” counterparts (representing de-
mand). The cost function ¢ in the new problem is defined for all points of these
vertical segments, i.e., mass elements, but depends only on their horizontal coordi-
nates: ¢(pi,y’, q;,y") = c(pi, g5)-

Define the capacity of the kth stratum as mr = yr—1 — yx, and the share of

supply p; (demand q;) in stratum k as :U“z(’f)k) =my if F(p;) <yr < yr—1 < F(p; +0)

(resp., ug-,q,z =myg if F(q;) > yr—1 > yr > F(¢; +0)) and 0 otherwise. For the vertical

segments representing supply and demand graphically, shares are equal to the lengths

of their pieces contained between the dotted lines (Figure 5.1); we will use the notation

,uz(-)pk) , uf,z for these subsegments as well. Note that >, :U“z(’f)k) = s; (resp., > ,uf,i =d;).

DEFINITION 5.1. For a given histogram with supplies (p;, s;) and demands (q;,d;)
define o stratified transport plan as the set of nonnegative values (7i;j¢), where
1<i<M,1<j<N,andl <k, { < K, such that the following conditions are
satisfied:

(5.1) Z%‘,k;j,e = u§?} v, ¢, > ik < uﬁf’,ﬁ Vi, k.
ik e

Note that the numbers

(5.2) Vig = Y Ykt
k4

form an admissible transport plan (i.e., all conditions (1.3) are satisfied). We will
call this plan the projection of the stratified plan in question. The cost of a stratified
transport plan is defined as Zi’k’jl c(pi, Gj) Vi, k;5,05 of course it coincides with the cost
of its projection.

Conversely, let v = (y55), 1 <i < M, 1 < j < N, be an admissible transport
plan; we call a stratified transport plan that satisfies (5.2) a stratification of v. Any
admissible transport plan admits a nonempty set of stratifications. Indeed, it is easy to
check that, e.g., for v; x50 = ’yijul(-f’k)ug-,qz/sidj, all conditions (5.1)—(5.2) are satisfied.

We now prove that any optimal transport plan in the initial problem can be
“lifted” to a bundle of disjoint transport plans operating in individual strata. There-
fore to solve the transport optimization problem for histograms with general real val-
ues of supply and demand, it suffices to split the problem into transportation problems
inside strata, where they reduce to the unitary case because the mass exchanged in
each stratum equals its capacity, and then solve these problems one by one.

LEMMA 5.2. An optimal transport plan 5 admits a stratification (i x;5.e) that
satisfies 7 k.50 = 0 whenever £ # k.

Proof. Indeed, let (i k.5,¢) be any stratification of 4, and suppose that vy ko:jo.00 >
0 with ¢y # ko. Without loss of generality we restrict the argument to the case
Dig < Qjo-



LOCAL MATCHING INDICATORS 821
Suppose first that £y > ko, i.e., that the demand subsegment ,u( )é occupies a
(»)

lower stratum than the supply subsegment uz

these subsegments, i.e., the sum of all ,uz(.o )k Wlth k < ko and ,ui)k with p;, < p;i < gjo,

is then smaller than the total demand between these subsegments, i.e., the sum of all
(q) with p;; < ¢; < gj, and all u(q)e with ¢ < ¢y. (From inspection of Figure 5.1
1t should be easy to see that their dlfference is equal to Zk0<s <p, Mss, although we

will not need this quantity here.) Since the first condition (5.1) must be fulfilled for

all j, ¢, it follows that some demand share ,u(,)é,, located between ,u(f )ko and ,ugg) 4

the just defined sense, must be satisfied with bupphes located outside. But this leads
to crossing of the corresponding trajectories (cf. Lemma 2.2), which implies that the
total cost of the plan (7; k;;,¢) can be at least preserved, or even reduced, by a suitable
rescheduling of mass elements.

. The total supply located between

Now suppose that ¢y < ko. This implies the existence of an extra supply qu(p )k/

between u(p )k and u(q) If this supply share is matched, it has to feed some demand
located out51de Wthh agaln leads to crossing and can be ruled out just as above.
If this supply share is not matched (which may happen in an unbalanced problem),
then a nonzero part of the demand share “;g?éo can be rematched to this supply share,
which is associated with the point p; located closer to g, than p;,, thus reducing the
total cost. In all cases we have a contradiction with the original assumption. 0

Note that strata are defined for piecewise constant cumulative distributions. A
simple way to apply these results to continuous distributions of supplies and demands
consists of approximating them by piecewise constant functions using, e.g., quantiza-
tion techniques.

6. Practical considerations. In this section, we present some ways to optimize
the use of the local matching indicators in Algorithm 1.

6.1. Exposed points. Before applying Algorithm 1, one can detect possible
unmatched points using the following result.

LEMMA 6.1 (isolation rule). Suppose that g is strictly monotone and that a point
p; of the unbalanced chain (3.2) is unmatched in an optimal transport plan. Then if
i>1,

c(pisqi—1) = c(Pi—1,qi—1),
and if i < N,

c(pi, ¢i) > c(Piy1, Gi)-

Proof. Suppose that ¢ is optimal, and assume, for instance, that ¢ > 1 and
c(pi, qi—1) < ¢(pi—1,4i—1). Thanks to Lemma 2.4, p; is not exposed, and consequently
o M(i—1) <i—1. Thus, ¢(pi,gi-1) < c(Pi-1,qi-1) < (Pg-1(i—1),¢i—1). It is then
cheaper to exclude ps-1(;—1) and match p; with ¢;_1, which contradicts the optimality
of 0. d

6.2. About the implementation and the complexity. The cost of the algo-
rithm can be estimated through the number of additions and evaluations of the cost
function that are required to terminate the algorithm. These operations are carried
out only in step 1 of Algorithm 1, when computing the indicators. This section aims
at giving details about efficient ways to implement this step and about the complexity
of the resulting procedure.
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6.2.1. Implementation through a table of indicators. In this section, we
define a table that collects the values of indicators, and then describe a way to update
it when a negative indicator has been found. The aim of this structure is to avoid
redundant computations. We present it in the balanced case (see (3.1)).

Consider a table of N — 1 lines, where the kth line corresponds to the values of
the indicators of order k: IF(1), I}(1),..., (N —k—1),I} (N — k). At the beginning
of the algorithm, the table is empty, and step 1 consists of filling the line k of the
table. Let us explain how to modify the table in case a negative indicator has been
found.

Following the assumptions of Theorem 3.2, consider the case where all the indi-
cators that have been computed currently are positive except the last one. Suppose
that this one is of the form I} (ig). According to step 4 of Algorithm 1, ko pairs of
supply and demand have to be matched and removed from the current list of points
P. Note that the indicators that deal only with points in {p1,q1,- -, Pig—1,Tig—1, Pio }
or I {Qigtko s Pio-+ko+1s Qio+ko+1s - - - s PN>qN | are not affected by this withdrawal, ex-
cept that they may be renamed. Consequently, at an order k < ko, max(0,2(ig — k —
1)) + max(0,2(N — ip — ko — k)) indicators’ values are already known, and in line k
of the new table, 2(N — k) + 1 — max(0;2(ip — k — 1)) — max(0; 2(N —ig — ko — k))
values remain to be computed. In the case when the first negative indicator is of the
form I} (io), a similar reasoning shows that in line k of the new table, 2(N — k) +
1 — max(0;2(ip — k + 1) — 1) — max(0; 2(N — ig — ko — k) — 1) values remain to be
computed.

6.2.2. Bounds for the complexity. In the vein of the previous section, we
have assumed thus far that all the numerical values computed during the algorithm
are saved. In this framework and as in any assignment problem, the number of
evaluations of the cost function cannot exceed w

The most favorable case consists of finding a negative indicator at each step of
the loop. In this case, all points are removed through indicators of order 1. This case
requires O(N) additions and evaluations of the cost function.

In contrast, the worst case corresponds to the case where all the indicators are
positive. In such a situation, no pairs are removed until the table is full. All possible
transport costs ¢(p;, ¢;) are computed. Consequently, this case requires NIVAD oyal-
uations of the cost function. The number of additions is also bounded by O(N?), as
stated in the next theorem.

THEOREM 6.2. Denote by CT(N) the number of additions required to compute
an optimal transport plan between N supplies and N demands with Algorithm 1. One
has

C*(N) <3N? —6N.

The proof of this result is given in the appendix.

In practice we observe that this upper bound is quite coarse, especially for small
values of a. In order to better understand this behavior, we estimated the empirical
complexity of our algorithm when N is increasing, for different values of «.. For a fixed
value of N, 100 samples of N points were chosen randomly in [0, 1], and the mean of
the number of additions and evaluations of g were computed. The results are shown
in Figures 6.1-6.2 as log-log graphs. Observe that the less concave the cost function
is, the more accurate the bound O(N?) is. Conversely, when « tends towards 0, the
complexity seems to get closer to a linear complexity.
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Fic. 6.2. Number of in-line evaluations of g with respect to the number of pairs for various
cost functions. The number « is the slope of the log-log graphs.

In order to explain this reduced complexity when « decreases, we can notice that
if the successive orders at which step 4 of Algorithm 1 is visited are all bounded by
K, then (proof in the appendix)

CT(N) < 3N(K?+2K +2).

Now, if we restrict ourselves to cost functions of the type c(z,y) = |z — y|*, with
a € (0,1], we also show (see the appendix) that local indicators of order 1 tend
to be more easily negative when a decreases. More precisely, we show that, for a
given configuration of four points, either the local indicator is positive for all « or
there exists ayg, which depends only on the configuration, such that the indicator is
negative on (0, ap] and positive on [ag, 1]. As a consequence, the probability that an
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indicator of four points will be negative increases when « decreases. We conjecture
that this last result remain true for all indicators (and we checked empirically that it
is). If this conjecture turns out to be true, the smaller « is, the more probable it is
that any indicator will be negative, and the more realistic it is that the bound K is
small in comparison to V. This would explain the previous empirical results.

6.3. Possible improvements. The use of Algorithms 1-3 enables us to tackle
transport problems involving real-valued histograms in O(N?) operations. Neverthe-
less, we emphasize that this complexity could be reduced since there is certainly room
for improvement in the above algorithmic strategy. As an example, identical indica-
tors may appear in different strata and should not be treated independently, to save
computational time. The investigation of the interplay between the strata remains
for future assessment.

7. Appendix.

Proof of Theorem 6.2. Before proving Theorem 6.2, let us state some interme-
diate results. In what follows, we denote by ¢; (N) the number of additions required
to achieve step 1 of Algorithm 1 for an arbitrary value of k.

LEMMA 7.1. Keeping the previous notation, we have

(7.1) H(N) < 32N —k)—1).

Proof. The proof of (7.1) in the case k = 1 is left as exercise for the reader.
Suppose that k& > 1. Consider, for example, I} (i), and recall that

k—1 k
(72) IP(i) = c(pis qivn) + O c(Dives1, Give) — 3 c(ives Gite).
=0 =0

The first term of this formula does not require any addition, and most of the other
terms have already been computed during the previous steps of the algorithm. Indeed,
the first sum has been computed to evaluate I}!_, (i), and the second has been com-
puted to evaluate I} (i). It remains for us to add ¢(pitk, ¢itk—1) to it to compute
the last sum of (7.2). Since at given order k at most 2(N — k) — 1 indicators have to
be computed, the result follows. O

We now consider the number of operations required between the beginning of
Algorithm 1 and the first occurrence of step 4.

LEMMA 7.2. The operations required by Algorithm 1 between its beginning and the
first occurrence of step 4 can be achieved with Z;:O (N) :=3ko(2N — ko — 2) additions,
where ko denotes the current value of k when step 4 occurs.

Proof. Between the beginning of Algorithm 1 and the first occurrence of step 4,
only positive indicators have been computed, except for the current value of k = k.
This means that step 1 has been carried out for k£ = 1,. ko s1nce the beginning.
The corresponding number of additions is bounded by Ek L (N).  Thanks to
Lemma 7.1, the result follows. O

Recall now that after step 4 has been achieved, the parameter k is set to 1. The
previous arguments consequently apply to evaluating the number of additions between
two occurrences of step 4, i.e., between two withdrawals. In this way, one finds that
this number is bounded by €+ (N"), where N’ and k| are the current values of N

and k at the last occurrence of step 4. Note that €+ (N’) is a coarse upper bound

because we are not considering the first occurrence of thls step and because a part of
the indicators has already been computed as explained in section 6.2.1.
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We are now in position to prove Theorem 6.2.

Proof of Theorem 6.2. Let kg, k1, ..., ks be the successive orders at which step 4
of Algorithm 1 is visited. Observe that some of these numbers can be equal. Assume
also that only one negative indicator was found at each of these orders, which is
the worst case for complexity. As a consequence, > . ,k; = N, and the number of
additions required for the whole algorithm is lower than

s i—1
Cr<> i IN=> k|,
i=0 =0

where Z'k" is defined in Lemma 7.2. Using Lemma 7.2, we compute

CT<> 3k [2(N=D k| —ki—2
i=0 j=0
s—1 i—1 s—1
=3 3k (2N =D k| —ki—2] +3k (2N =D k| —ke—2
i=0 j=0 j=0
s—1 i—1 s—1 s—1
=3 3k (2N k| —ki—2|+3[N=> k| [N=-D k-2
=0 j=0 j=0 j=0
s—1i—1 s—1 s—1 2
=3N*—6N -6 > kik;—3Y kI +3 (> k;
i=0 j=0 i=0 j=0

=3N?2—-6N. O

Alternative complexity upper bound. Suppose that the first occurrence of
step 4 is achieved at level ko, in 3ko(2N — ko — 2) additions. At this point, we remove
2ko points in the total chain. Observe that the number of indicators of order £ that
have changed after this removal of 2ky points is at most 2k 4+ 1. Let k1 be the next
order at which step 4 is visited. If the indicators computed during the first pass of
the algorithm have been kept in memory, this means that the number of additions
necessary in the second pass is smaller than 3 ZZI:l (2k+1) = 3(k?+2k1). This yields
an alternative upper bound of the whole algorithm complexity,

(7.3) CF < 3ko(2N — ko —2) + > 3(k7 + 2k).
i=1

If the successive orders at which step 4 of Algorithm 1 is visited are all bounded by
K, then CT <3N(K?+ K +2).

Sign of indicators for costs |z — y|®. Consider four consecutive points p;,
i, Pi+1, ¢i+1 In a chain. Assume without loss of generality that |¢;11 — p;| = 1. Let
a = 1|g; —pil, b = |pi+1 — ¢i|, and ¢ = |gi+1 — pi41], so that b =1—a — c¢. Assume that
b < min(a, ¢), and define

(7.4) fla)=b%+1—a"—c*.

It can be shown that if b=1— a — ¢ > ac, then f is positive and increasing on [0, 1]
(this result can be seen as a refined version of the rule of three). Indeed, the derivative
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of fis
f'(a) =1og(b)b™ —log(a)a™ — log(c)c®.
If b > ac, then log(b) > log(a) + log(c), which implies that
f'(@) = log(a)(b* — a®) + log(c) (b* — ¢*) = 0.

Since f(0) = 0, the result follows. As a consequence, for all costs of the form |z — y|?,
if b > ac, then the indicator I7 (i) will be positive.

Now, assume that b = 1 —a — ¢ < ac. In this case, the indicator I7(i) can be
negative if a is small enough. Indeed, f(0) =0 and f/(0) < 0, which implies that f is
negative in the right neighborhood of 0. Now, f(1) = 2 — 2a — 2¢ > 0, which means
that the indicator is positive for « close to 1.

Consequently, there exists ag such that f(ap) = 0. Moreover, we can assume that
f'(ap) > 0, which means that log(b)b* — log(a)a® — log(c)c® > 0. Now consider
a > ap. One has successively

(@) = log(b)b*b*~* —log(a)a® — log(c)c®
> (log(a)a™ + log(c)e™ )b —log(a)a® — log(c)c®
= (log(a)a® + log(c)c* )b~ — log(a)a™ — log(c)c®
= log(a)a® (b~ — a®~) 4 log(c)c* (b¥ ™0 — ¥~ *0)
> 0.

This implies that if an indicator of order 1 is negative for a given « in [0, 1], it will
remain negative for smaller powers.
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