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Abstract
We propose a Newton algorithm to characterize the Hamiltonian of a quantum
system interacting with a given laser field. The algorithm is based on the
assumption that the evolution operator of the system is perfectly known at a fixed
time. The computational scheme uses the Crank–Nicholson approximation
to explicitly determine the derivatives of the propagator with respect to the
Hamiltonians of the system. In order to globalize this algorithm, we use a
continuation method that improves its convergence properties. This technique
is applied to a two-level quantum system and to a molecular one with a double-
well potential. The numerical tests show that accurate estimates of the unknown
parameters are obtained in some cases. We discuss the numerical limits of the
algorithm in terms of the basin of convergence and the non-uniqueness of the
solution.
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1. Introduction

The control of quantum systems by means of intense laser pulses has been a topic of increasing
interest in the past decades [1–3]. It has now become a well-recognized field of research with
applications ranging from chemistry and physics to materials science and nanotechnology. In
this context, several advances have been achieved extending, on the theoretical side, from the
discovery of the elementary basic mechanisms of field-induced dynamics [1, 2] to optimal
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control algorithms [4–11]. The recent progress of numerical optimization techniques has
made possible the design of control fields able to manipulate quantum systems of growing
complexity. However, to be efficient, such open-loop control methods require the accurate
knowledge of the dynamics of the system [12–17]. In this framework, on the basis of different
measurements of the system from different quantum states, quantum process tomography
(QPT) is a set of techniques allowing us to identify a dynamical map that relates the initial
states to the final ones (see, e.g. [18–20] and references therein). Such data can then be used to
characterize the Hamiltonian or other parameters of the system [21–24, 25–29]. In this paper,
we assume that a full and ideal QPT is available of the system under concern. This leads
to a perfect knowledge of the evolution operator at a given fixed time. Starting from this
identification, the goal of our approach is thus to determine the Hamiltonians of the system,
i.e. the field-free Hamiltonian and the interaction operator. For that purpose, we also assume
that a known time-dependent external field is applied to the system during the identification
process. The framework of the method can be described more precisely as follows. We study
a quantum system whose dynamics is ruled by the time-dependent Schrödinger equation. The
control field is known at any time, only one control field being used. From the final evolution
operator of the system, we propose a Newton algorithm to compute the Hamiltonian of the
system and the operator describing the interaction with the field. Note that the computational
scheme uses the Crank–Nicholson approximation to explicitly determine the derivatives of the
propagator with respect to the Hamiltonians of the system. A continuation method is used on
the target state to improve the convergence properties of the algorithm. We also discuss the
singularities that can occur in our method.

The paper is organized as follows. In section 2, we present the theoretical framework and
we introduce the numerical procedures that will be used. Section 3 is devoted to the application
of this approach to two basic quantum systems: a two-level system and a molecular one with a
double-well potential. The conclusion and prospective views are given in section 4. Technical
computations about the singularities of the Newton algorithm are reported in the appendix.

2. Theoretical framework

We start with a presentation of the model system and we introduce the different numerical
algorithms.

2.1. Hamiltonian characterization problem

Let us consider a quantum system interacting with an electromagnetic field, whose dynamics
is governed by the time-dependent Schrödinger equation. We consider one (scalar) control
field E(t), but the method could be generalized to several fields. We assume that the field
enters linearly in the Hamiltonian through a dipole coupling, the nonlinear interaction being
neglected [30, 31]. In this framework, the evolution equation reads:⎧⎨

⎩i
∂

∂t
U (t) = [H0 + E(t)H1]U (t)

U (t = 0) = U0

, (1)

where U (t) is an unitary operator that describes the state of the system at time t, and H0

and H1 are the field-free and the coupling Hamiltonians respectively. Note that the formalism
presented here can be extended to pure or mixed quantum states. Without loss of generality,
we assume that the entries on the diagonal of H1 are zero, which is the case for a dipole
coupling. The matrix U0 is the initial condition of the dynamical system. Units such that � = 1
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are used throughout the paper. The Hamiltonian characterization is an inverse engineering
control problem where for given initial and target states, U0 and Utar respectively, and a known
electromagnetic field, E(t), the goal consists of identifying the pair (H0, H1) such that:

U (t f ) = Utar, (2)

where t f is the fixed final time of the control. We introduce the mapping

ϕ : SNd ,Nd × SNd ,Nd
0 → UNd ,Nd

(H0, H1) �→ U (t f ), (3)

where SNd ,Nd and SNd ,Nd
0 are the sets of Hermitian Hamiltonians and Hermitian Hamiltonians

with diagonal entries equal to zero, respectively. The set UNd ,Nd denotes the set of unitary
matrices of size Nd × Nd . From a mathematical point of view, the operator characterization
control problem is equivalent to the investigation of the surjectivity of ϕ. This means
determining the pre-image of U (t f ) by the mapping ϕ. Here, we focus on the case of real
Hamiltonians, which covers a wide range of applications.

The Newton method to solve the corresponding equations requires us to differentiate the
function under consideration. For the sake of completeness, we recall that in the case of the
mapping ϕ defined in equation (3), the differential is given by:

dϕ(H0, H1) : SNd ,Nd × SNd ,Nd → AH0,H1

(δH0, δH1) �→ δU (t f ), (4)

where, for a given pair (H0, H1), AH0,H1 is the tangent space of UNd ,Nd at U = U (t f ), the
final state associated with the trajectory corresponding to (H0, H1). The space AH0,H1 is of
dimension Nd × Nd and is defined by AH0,H1 = {M ∈ R

Nd ,Nd , M†U (t f ) + U†(t f )M = 0}. The
evolution equation of δU is obtained by differentiating equation (1),⎧⎨

⎩i
∂

∂t
δU (t) = [H0 + H1E(t)]δU (t) + [δH0 + δH1E(t)]U (t)

δU (t = 0) = 0
. (5)

2.2. Numerical algorithms

Before defining the Newton solver, we introduce a relevant time discretization of equation (1).

2.2.1. Crank–Nicholson scheme. The approach is based on a Crank–Nicholson time
discretization of equation (1). We give some details about this numerical scheme. We consider
an equidistant time discretization grid, and we denote by Nt f the number of sampling points of
the time interval [0, t f ], dt = t f /Nt f being the time step, and by Un ≈ U (tn), n = 0, . . . , Nt f ,
the approximation of U at a given time grid point tn. The Crank–Nicholson algorithm is based
on the following recursive relation:

i
Un+1 − Un

dt
= [H0 + EnH1]

Un+1 + Un

2
, (6)

with En = E(tn + dt
2 ). Equation (6) can be rewritten in a more compact form as follows:

[Id + Ln]Un+1 = [Id − Ln]Un, (7)

where Id is the identity operator and Ln = i dt
2 (H0 + H1En). This scheme provides a

second-order approximation with respect to time, which enables us to compute an accurate
approximation of the trajectory U (t). In addition, note that the Crank–Nicholson propagator
preserves the norm.
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Differentiating equation (7) with respect to (H0, H1), we obtain:

δLn[Un+1 + Un] = [Id − Ln]δUn − [Id + Ln]δUn+1, (8)

where δLn = i dt
2 (δH0 + δH1En). Combining equation (6) and (8) provides:

U†
n+1δUn+1 − U†

n δUn = −idt
(Un+1 + Un)

†

2
δLn

Un+1 + Un

2
. (9)

The initial unitary operator U0 being fixed, δU0 = 0, and we get from equation (9)

U†
Nt f

δUNt f
= −idt

Nt f −1∑
n=0

(Un+1 + Un)
†

2
δLn

Un+1 + Un

2
. (10)

Note that the properties of the Crank–Nicholson scheme are crucial in the latter computation,
since equation (10), which represents the central point of the algorithm used here, is based on
the Crank–Nicholson relation, i.e. Equation (6).

2.2.2. Newton method. In this section, we define the Newton method used to solve the
characterization problem. Denoting by ϕdt (H0, H1) := UNt f

the time discretized version of ϕ

(see equation (3)) and by ϕ̄dt (H0, H1) = ϕdt (H0, H1) − Utar, the Newton iteration applied to
the equation

ϕdt (H0, H1) = Utar (11)

reads:

dϕ̄dt
(
Hk

0 , Hk
1

) · (
δHk

0 , δHk
1

) = −ϕ̄dt
(
Hk

0 , Hk
1

)
(12)

where δHk
0 and δHk

1 are the correction terms added to Hk
0 and Hk

1 at step k, to define
Hk+1

p := Hk
p + δHk

p with p = 0, 1. Since Utar is fixed, we deduce that

dϕ̄dt (H0, H1) · (δH0, δH1) = dϕdt (H0, H1) · (δH0, δH1).

As in equation (4), the left-hand side of equation (12) corresponds to δUk
Nt f

and the latter
equation gives rise to:

δUk
Nt f

= −(
ϕdt

(
Hk

0 , Hk
1

) − Utar
) = Utar − Uk

Nt f
. (13)

Combining equation (10) and equation (13), we obtain

dt

Nt f −1∑
n=0

(
Uk

n+1 + Uk
n

)†

2

[
δHk

0 + δHk
1 En

]Uk
n+1 + Uk

n

2
= i

[(
Uk

Nt f

)†
Utar − Id

]
. (14)

Although the left-hand side of equation (14) is a Hermitian operator, its right-hand side
may not be necessary Hermitian. The right-hand side is therefore approximated by a Hermitian
operator, Sk, defined by

Sk := i

(
Uk

Nt f

)†
Utar − U†

tarU
k
Nt f

2
. (15)

In spite of this approximation, numerical simulations reveal that the Hamiltonians of the system
can be determined with a very good accuracy by this approach. The resulting equation is

dt

Nt f −1∑
n=0

(
Uk

n+1 + Uk
n

)†

2

(
δHk

0 + δHk
1 En

)Uk
n+1 + Uk

n

2
= Sk. (16)

Solving Equation (16) with respect to δHk
p with p = 0, 1 requires an inversion of linear

systems. In view of practical implementations, we rewrite equation (16) in a more explicit
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form. By denoting XM the vector representation of a given matrix M in a column-major order,
equation (16) is given by:

dt

⎛
⎝Nt f −1∑

n=0

HŪk
n

⎞
⎠ XδHk

0
+ dt

⎛
⎝Nt f −1∑

n=0

EnHŪk
n

⎞
⎠ XδHk

1
= XSk (17)

with

Ūk
n = Uk

n+1 + Uk
n

2
and

HŪn = ŪT
n ⊗ Ū†

n ,

where ⊗ denotes the Kronecker product, and ŪT
n is the transposed matrix of Ūn.

The properties of symmetry of δHk
0 , δHk

1 and Sk, induce redundancies in equation (17). The
linear system stated in equation (17) cannot be directly solved in this form. The system of scalar
equations associated with equation (17) is partially redundant. Indeed, the equations deal with
symmetric matrices (see equation (16)), so that one shall only consider the scalar equations
that correspond, e.g., to the entries above the diagonal in equation (16). Since the matrices
δHk

0 and δHk
1 are symmetric, there are also redundancies in the coefficients of the unknowns

XδHk
0

and XδHk
1
. As a consequence, the columns of the matrices involved in equation (17) have

to be merged (by adding) in the case they correspond to the same unknown coefficient of δHk
0

or δHk
1 . We denote by

dt

⎛
⎝Nt f −1∑

n=0

HŪk
n

⎞
⎠

red

X red
δHk

0
+ dt

⎛
⎝Nt f −1∑

n=0

EnHŪk
n

⎞
⎠

red

X red
δHk

1
= X red

Sk , (18)

the system obtained from equation (17) after these reductions. In this reduced form, note that
the number of equations is equal to the number of unknowns, i.e. Nd (Nd + 1)/2. The Newton
algorithm for the operator characterization problem can then be summarized as follows.
Algorithm 1. Given Tol > 0 and an initial guess (H0

0 , H0
1 ),

(i) Set k = 0 and e0 = +∞.
(ii) While ek > Tol do

(a) Solve equation (1) with the Crank–Nicholson propagator (7) and the Hamiltonian
operators H0 = Hk

0 and H1 = Hk
1 .

(b) Compute the right-hand side of equation (16) by using equation (15).
(c) Reduce the system (17) to get equation (18).
(d) Compute Xred

δHk
p

with p = 0, 1 the solutions of equation (18).

(e) Define the Hamiltonians for the next iteration k + 1 by

Hk+1
0 = Hk

0 + δHk
0

and

Hk+1
1 = Hk

1 + δHk
1 .

(f) Set k = k + 1.
(g) Set ek = ∑

p=0,1 ‖δHk−1
p ‖.
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Figure 1. Decomposition of the target operator into a series of Nc target operators with
U0

tar = eiS, Um
tar = eiS+ m

Nc
A, m = 1, . . . , Nc and UNc

tar = eiS+A = Utar.

2.2.3. Continuation method. It is well known that the convergence of the Newton algorithm
is guaranteed only under restrictive conditions [32]. In this way, the method may not converge
when the initial guess is not close enough to the solution. If no accurate approximate solution
of the problem is known, obtaining the convergence of the Newton algorithm can be difficult.
To bypass this difficulty, we propose a globalization strategy based on a continuation method
[34, 35].

Before summarizing the continuation method itself, we first introduce the key idea of
the strategy: For a given Hermitian operator Utar, there exist symmetric and antisymmetric
operators, S and A, respectively, such that

Utar = eiS+A. (19)

The matrices A and S can be computed easily by means of a standard eigenvector solver.
The continuation method consists of solving iteratively the operator identification problem by
using intermediate target states defined as:

Um
tar = e

m
Nc

A+iS , m = 0, . . . , Nc, (20)

where Nc is the number of intermediate targets. Figure 1 illustrates this decomposition of the
target operator into these intermediate targets. Each step uses the Hamiltonians obtained at the
previous step as an initial guess in the Newton solver.

The crucial point is that a solution is known analytically for the target state with m = 0.
Indeed, the pair (H0,0, H1,0) = (− S

t f
, 0Nd ) is a solution of equation (2) when the right-hand

side coincides with U0
tar. Here 0Nd is the Nd × Nd zero matrix.

We summarize the iterative algorithm of the continuation method as follows.

Algorithm 2. Given Nc > 0 and set m = 0, H0,0 = 0, H1,0 = −S/t f . While m < Nc + 1, do

(1) Define Um
tar := e

m
Nc

A+iS.
(2) Solve the operator identification problem by means of algorithm 1 with initial conditions

(H0
0,m, H0

1,m) = (H0,m−1, H1,m−1).
(3) Set m = m + 1.

Note that only the knowledge of the initial and target operators and the final time, t f , is
required. Through this strategy, the problem is decomposed into a set of smaller problems of
the same nature which are solved sequentially with the Newton algorithm.

Remark 1. The pair (− S
t f
, 0Nd ) is an exact solution of equation (2). As a consequence, these

matrices may not solve from equation (11), which includes an approximation, due to time
discretization. Instead, one may use Algorithm 1 with m = 0 to compute accurately a solution

6
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associated with the discretized setting and the targetU0
tar := eiS. The pair (− S

t f
, 0Nd ) can be used

as an initial guess. Moreover, this strategy accelerates the solving of the step corresponding to
m = 1 by providing a better initial guess.

Finally, note that the possible singularities of the Newton method are discussed in the
appendix.

3. Application to quantum systems

To test the efficiency of our procedures, we consider the problem of the Hamiltonian
identification on two key examples.

3.1. A driven two-level quantum system

As a first example, we consider a two-level quantum system. The Hamiltonian for a two-level
atom driven resonantly by a laser field in the rotating-wave approximation reads [33]

H(t) =
(

0 μE(t)
μE(t) �

)
, (21)

where � is the detuning term, i.e. the difference between the laser frequency and the frequency
of the two-level. The envelope of the control field is assumed to be of the form

E(t) = 1
2 E0E (t), (22)

where E (t) is defined by

E (t) = sin2

(
πt

t f

)
. (23)

The strength of the dipole coupling is taken to be μ = 1 au and the final propagation time is
t f = 9000 au.

3.1.1. Test of the Newton algorithm. The Hamiltonian considered in equation (21) can be
decomposed as

H = H0 + E(t)H1 (24)

with

H0 =
(

0 0
0 �

)
, H1 =

(
0 μ

μ 0

)
. (25)

The test of the Newton algorithm is performed as follows.

(1) We consider the Hamiltonian given in equation (21) and the initial state

U0 =
(

1 0
0 1

)
. (26)

We compute the corresponding final state UNt f
for the given final time t f . The states U0 and

Utar = UNt f
are respectively chosen as the initial and final states of the Newton algorithm,

so that (H0, H1) is the solution of the characterization problem.
(2) Secondly, we start the Newton algorithm by considering an initial guess of the form:

H0
0︷ ︸︸ ︷

H0 + ηδH0 +
H0

1︷ ︸︸ ︷
(H1 + ηδH1) E(t), (27)

where δH0 and δH1 are chosen randomly with entries in [−1, 1]. More precisely, these
matrices are determined such that they have the same symmetry properties as H0 and H1,

7
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Table 1. The convergence of the Newton algorithm from U0 to Utar when the guess
Hamiltonian is given by equation (27), with η = 10−3.

k log10 ‖H0 − Hk
0‖ log10 ‖H1 − Hk

1‖ log10 ‖Utar − Uk
Nt f

‖

1 −3.592 401 2132 −0.952 904 2109 −0.210 071 4376
2 −3.700 886 7006 −0.943 956 9383 −1.099 113 4448
3 −3.709 018 7513 −0.950 817 8308 −2.673 658 6007
4 −4.884 872 5497 −2.126 749 4911 −5.477 004 0955
5 −7.265 830 3406 −4.507 707 5456 −7.225 962 4695
6 −11.591 732 1736 −8.834 196 0474 −9.360 964 2102
7 −14.372 122 9804 −11.614 168 2339 −12.768 130 1304
8 −15.490 507 7048 −12.909 217 1963 −14.345 124 4509
9 −14.631 475 8067 −13.896 067 3510 −14.547 881 4535

i.e. δH0 and δH1 belong respectively to SNd ,Nd and SNd ,Nd
0 . The parameter η represents the

magnitude of the perturbation.

Since for Utar = UNt f
, the solution (H0, H1) is known, the goal here is to analyze the

convergence of the Newton procedure with respect to η when the initial guess is given by
equation (27). In the following, the detuning is set to 10−7 au. The convergence of the
algorithm is analyzed by averaging over 15 random initial guesses.

We first investigate the convergence of the Newton algorithm with respect to the number
of iterations for a fixed value of η. At each iteration of the Newton algorithm, the deviation
from the solution (H0, H1) is measured by taking the log10 of the norm of the difference
between Hp and Hk

p, where k is the iteration index (see algorithm 1) and p = 0, 1. The matrix
norm is defined here as the maximum absolute value of the eigenvalues of the matrix. In
the case η = 10−3, table 1 illustrates the typical quadratic convergence of a Newton algorithm
[32]. Starting from a randomly perturbed Hamiltonian, the initial pair (H0, H1) is recovered
after few iterations.

Figure 2 shows the convergence behavior of the Newton algorithm as a function of the
parameter η. Here again, the accuracy is evaluated by taking the log10 of the norm of the
difference between the Hamiltonians obtained after kmax = 9 iterations of the algorithm 1 and
the solution of the problem. As could be expected, the algorithm is efficient for small values
of η. In figure 2, we observe three cases of convergence behavior.

(1) Convergence to the initial solution (H0, H1) for η � 2.10−3 (log10 ‖Hp − Hkmax
p ‖ < −11,

with p = 0, 1). For small perturbations, the algorithm is able to find the expected solution.
(2) Convergence to another pair of Hamiltonians for 2.10−3 � η � 3.10−3. It can be

seen in figure 2 that the target is reached with a fidelity close to 100%. However,
the Hamiltonians found by the algorithm are not exactly the same as the initial ones
since log10 ‖H0 − Hkmax

0 ‖ ≈ −10 and log10 ‖H1 − Hkmax
1 ‖ ≈ −6. This result is a signature

of the non-uniqueness of the solution.
(3) Convergence failure: for larger perturbations (η > 3 10−3), the Newton algorithm fails to

converge. This may indicate the size of the basin of convergence, which is very narrow.

3.1.2. Test of the continuation procedure. In this section, the convergence of the continuation
algorithm is tested on the previous two-level quantum system. We keep the same target state
Utar and the same pair of Hamiltonian solutions (H0, H1) as in section 3.1. The convergence
behavior is illustrated in figure 3, with Nc = 20 the number of intermediate target states. At
each iteration of the continuation algorithm, a very good convergence of the initial state to the

8
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Figure 2. The convergence of the Newton procedure plotted as a function of the
magnitude of the perturbation η. The solid (blue) and the dashed (black) lines of
the bottom panel depict, respectively, the results for the Hamiltonians H0 and H1 at the
iteration kmax = 9.
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Figure 3. The convergence of the continuation algorithm plotted as a function of the
number of iterations, m. The target is decomposed into Nc = 20 intermediate target
operators. The panel (a) corresponds to the deviation of UNt f

from Um
tar and the panel (b)

to the deviation Hp,m from Hp, p = 0, 1 (p = 0 is the black dashed line with circles and
p = 1 is the red solid line with stars).

corresponding intermediate target is reached, as can be seen in figure 3(a). For each iteration
m, the number of required iterations of the Newton algorithm is of the order of 12. In the
lower panel, except for m = Nc, the deviation of the field-free and interaction Hamiltonians
from the solutions of the problem is larger than 10−5. However, for m = Nc, the solution
obtained is approximately the expected one, log10 ‖H0 − H0,Nc‖ ≈ −12 and log10 ‖H1 −
H1,Nc‖ ≈ −10.
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Figure 4. The potential curve of the molecular system as a function of the reaction
coordinate. The probability density of the ground state (v = 0) and of the excited state
(v = 3) are respectively plotted in purple (dark gray) and orange (light gray).

3.2. Driven double-well potential

As a second example, we consider an asymmetric double-well potential of massM = 1000 au.
Figure 4 displays the energy potential curve of the one-dimensional molecular system used in
the computations.

H(r; t) = − 1

2M
∂2

∂r2
+ r4 − r2 − 1

20
r︸ ︷︷ ︸

H0

+ 1

2
r︸︷︷︸

H1

E(t), (28)

where r is the reaction coordinate and E(t) is the electric field. The final time is set to
t f = 2 ps. To solve the Schrödinger equation, we use as a basis the eigenvectors of the field-
free Hamiltonian H0, which is defined in equation (28). We consider the control field that
transfers the population from the ground eigenstate with v = 0 to the excited eigenstate with
v = 3:

E(t) = 2π

t f μ0,3
sin2

(
4πt

t f

)
cos(ω0,3t), (29)

where μ0,3 is the matrix element of the coupling Hamiltonian associated with the eigenstates
v = 0 and v = 3, and ω0,3 is the energy difference between the eigenstates v = 0 and v = 3.
Figure 5 shows the time evolution of the population on the states v = 0 and v = 3 and the
corresponding control field. As in the case of the two-level quantum system, we apply the
Newton algorithm by considering a target operator Utar = UNt f

where UNt f
is the final state

obtained with the field of equation (29). We consider a finite Hilbert space of size Nd = 12,
which is sufficient for the intensity of the electric field used here. Setting η = 10−6, table 2
illustrates the convergence behavior of the Newton algorithm. For η = 10−6, the target is
reached with a high accuracy, log10 ‖UNt f

− Ukmax
tar ‖ < −11, with kmax = 11. However, the

Hamiltonian H1 found by the algorithm is slightly different from the expected one since
log10 ‖H1 − Hkmax

1 ‖ ≈ −7.5.
Note that the convergence to the target state is obtained only for very small values of η

(η < 10−6). We have also observed that the convergence behavior of the Newton algorithm

10
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Figure 5. The top panel represents the time evolution of the population on the states
v = 0 (dashed black line) and v = 3 (red solid line). The bottom part displays the time
evolution of the control field.

Table 2. The convergence of the Newton algorithm from U0 to Utar when starting from
a randomly perturbed Hamiltonian, H0

0 = H0 + η�H0 and H0
1 = H1 + η�H1 with

η = 10−6.

k log10 ‖UNt f
− Uk

tar‖ log10 ‖H0 − Hk
0‖ log10 ‖H1 − Hk

1 ‖

1 −1.154 802 8126 −5.596 124 4426 −2.183 138 9602
2 −3.157 961 8260 −6.317 177 1473 −2.198 345 3573
3 −3.195 204 0375 −7.945 856 0471 −4.217 378 3130
4 −6.990 458 7028 −10.740 712 3305 −6.391 117 9031
5 −9.935 922 3447 −11.781 054 9956 −7.264 342 9329
6 11.410 054 1376 −12.293 530 8612 −7.634 623 2913
7 11.771 043 0315 −12.209 967 3745 −7.610 588 9426
8 11.827 101 0726 −12.301 150 8009 −7.673 548 9057
9 11.802 765 0635 −12.272 802 9350 −7.620 427 7008

10 −11.922 938 2795 −12.276 316 2205 −7.587 701 3449
11 −11.819 066 1799 −12.209 261 3111 −7.549 306 6079

depends on the size of the Hilbert space. For example, for Nd = 6, the Newton algorithm
converges with η = 10−5.

The convergence and the efficiency of the continuation method are also analyzed in the
case of the double-well model for which we have considered the first Nd = 12 eigenvectors.
For the given initial operator, U0 = IdNd , the goal is to identify field-free and coupling
Hamiltonians which drive the system to Utar = UNt f

under the interaction with the electric
field. The target is decomposed into Nc = 30 intermediate target operators. Each intermediate
target state is reached after about 15 iterations of the Newton algorithm. As in figure 3, the
upper panel of figure 6 shows the deviation of UNt f

from Um
tar as a function of the number

of iterations, m. Very good results are observed showing the efficiency of the approach. The
middle and lower panels of figure 6 display the deviations of the solutions, H0,m and H1,m,
obtained with the continuation algorithm from H0 and H1, respectively. At each iteration of the
continuation algorithm, an accurate convergence to the intermediate target states is reached.
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Figure 6. The same as in figure 3, but for the example of the double-well potential. The
target is decomposed into Nc = 30 intermediate target operators
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Figure 7. Evolution of the computer time (CPU) in minutes as a function of the number
of iterations of the continuation method for the two-level quantum system and for the
model molecular one with six and twelve energy levels.

As opposed to the previous example, the Hamiltonian solution obtained with the continuation
method in this case is different from the expected solution. Here again, this behavior illustrates
the non-uniqueness of the solution.

3.3. Discussion

We discuss in this final paragraph the numerical cost of the algorithm with respect to the
complexity of the quantum system under concern. To illustrate this analysis, we have plotted
in figure 7 the computer time (CPU) used. More precisely, figure 7 displays the CPU time for
the two models as a function of the number of iterations of the continuation method. For a
given number of iterations, we see that the computational time roughly increases by a factor
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three from two to six quantum energy levels, which is a quasi-linear increase of the time with
the number of levels. However, note that the total duration of the computation is multiplied
by a factor six when going from six to 12 energy levels. This exponential explosion of the
CPU time shows that the algorithm cannot be applied actually to more complex systems with,
for instance, several dozens of energy levels. The current numerical procedure is therefore too
costly and improvements will be required in order to extend this approach to a wider family
of quantum systems.

4. Conclusion

We have proposed a Newton algorithm to characterize the Hamiltonians of the system in a
dynamical setting, i.e. when a control field is applied to the system. A crucial prerequisite of
the computational scheme is the perfect knowledge at a given time of the evolution operator of
the system. The procedure can be combined with a continuation method in order to enlarge its
basin of convergence. We demonstrate the efficiency of this technique on two key examples,
namely a two-level quantum system and a simple molecular model described by a double-
well potential. This work also provides important insights into the different features of this
algorithm, such as the size of the basin of the convergence and the non-uniqueness of the
solution. Such drawbacks could be removed by considering over-determined data, which is
not the case in this paper. The general applicability of the method makes it an interesting and
possibly useful tool to complete techniques of quantum state tomography.

In this work, we have assumed that the evolution operator is perfectly known at a given
time without any error. This ideal model has allowed us to highlight the properties of the
numerical algorithm. At this point, in view of applications to more realistic physical systems,
the question which naturally arises is the generalization of this approach to a non-ideal situation
in which the propagator can only be estimated to a given accuracy. Another open question
would be to consider more-complicated quantum systems such as molecular ones with a large
number of energy levels. This would require a modification of the present algorithm in order to
avoid the explosion of the computational time, as shown in figure 6. We are currently working
on these open questions.

Acknowledgments

Financial supports from the Conseil Régional de Bourgogne, the QUAINT coordination action
(EC FET-Open) and the Agence Nationale de la Recherche (ANR), Projet Blanc EMAQS
number ANR-2011-BS01-017-01, are gratefully acknowledged.

Appendix. Singularity problem of the Newton method

The Newton method is based on the matrix inversion of a Jacobian, and consequently can
lead to a numerical explosion if the rank of the latter becomes small. For the continuation
method discussed in this paper, we can find some examples of intermediate targets for which
singularities can occur. We describe such an example. Consider the case of the two-level
quantum system presented in section 3.1 with a target defined by

Utar =
(

0 1
1 0

)
. (A.1)
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After decomposition into Nc intermediate targets, the continuation algorithm starts with the
pair (H0,0, H1,0) = (S/t f , 0Nd ), see the Step 1 of the summary of the continuation method. For
the target given by equation (A.1), the corresponding Hamiltonian H0,0 is

H0,0 = − π

2t f

(
1 −1

−1 1

)
= V †

(− π
2t f

0

0 0

)
V, (A.2)

where V denotes the matrix of eigenvectors and V †, its adjoint. At each time, the system is
described by

U (t) = e−iH0,0t = V †

(
e

iπt
2t f 0
0 1

)
V. (A.3)

In the next step of the continuation algorithm (see step 2 of the summary of the continuation
method), the Newton algorithm is used to determine δH0 and δH1 from equation (16). In the
following, we prove that the Newton algorithm cannot be applied because of the occurrence
of singularities. First, let us recall that the operator identification problem is equivalent locally
to the study of the surjectivity of ϕ of equation (3). As proved in [29], this property can be
deduced from the surjectivity of dϕ, i.e. for a given S ∈ AH0,H1 , the equation∫ t f

0
U†(t)[δH0 + δH1E(t)]U (t) = S, (A.4)

has a solution. By inserting equation (A.3) into equation (A.4), we obtain:

V †
∫ t f

0

[ (
e

iπt
2t f 0
0 1

)
δH̃0

(
e
− iπt

2t f 0
0 1

)
+

(
e

iπt
2t f 0
0 1

)
δH̃1E(t)

(
e
− iπt

2t f 0
0 1

)
dt

]
V = S, (A.5)

with δH̃p = V †δH̃pV , p = 0, 1. Using the properties of symmetry of δH̃p, we can express
them as:

δH̃0 =
(

a b
b c

)
, δH̃1 =

(
0 d
d 0

)
. (A.6)

Here, we consider that the electric field E(t) is given by equation (23). With this assumption,
plugging equation (A.6) into equation (A.5) and evaluating the integral of this latter equation,
we arrive at: ⎛

⎜⎝ at f + ct f at f − ct f − 4ib

π

at f − ct f + 4ib

π
at f + ct f

⎞
⎟⎠ +

⎛
⎜⎝ 0 −14id

12
14id

12
0

⎞
⎟⎠ = S. (A.7)

It is possible to rewrite the left- and right-hand sides of equation (A.7) as a vector column:⎛
⎜⎜⎜⎜⎜⎜⎝

at f + ct f

at f − ct f − 4ib

π
− 14id

12

at f − ct f + 4ib

π
+ 14id

12
at f + ct f

⎞
⎟⎟⎟⎟⎟⎟⎠ = XS, (A.8)

where XS denotes the vector representation of the matrix S. We can then rewrite equation (A.8)
as: ⎛

⎜⎜⎜⎜⎜⎜⎝

t f 0 t f 0

t f −4i

π
−t f −14i

12

t f
4i

π
−t f

14i

12
t f 0 t f 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ = XS. (A.9)
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The matrix of the left-hand side of equation (A.9) has a rank equal to three and hence is
not invertible. Consequently, the solution of equation (A.4) cannot be obtained by a matrix
inversion. We conclude that the use of the Newton approach to compute δH0 and δH1 will lead
to singularities in this example.
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[35] Trélat E 2012 J. Optim. Theory Appl. 154 713

15

http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1103/PhysRevLett.104.083001
http://dx.doi.org/10.1051/m2an:2007008
http://dx.doi.org/10.1016/j.sysconle.2007.11.002
http://dx.doi.org/10.1007/s00211-006-0678-x
http://dx.doi.org/10.1016/0301-0104(89)90012-8
http://dx.doi.org/10.1063/1.1564043
http://dx.doi.org/10.1063/1.479328
http://dx.doi.org/10.1016/j.jmr.2007.08.007
http://dx.doi.org/10.1063/1.3543796
http://dx.doi.org/10.1103/PhysRevA.82.013415
http://dx.doi.org/10.1103/PhysRevA.70.063412
http://dx.doi.org/10.1002/jrs.1976
http://dx.doi.org/10.1103/PhysRevLett.110.093002
http://dx.doi.org/10.1103/PhysRevLett.90.193601
http://dx.doi.org/10.1103/PhysRevA.77.032322
http://dx.doi.org/10.1103/PhysRevLett.106.100401
http://dx.doi.org/10.1103/PhysRevA.69.050306
http://dx.doi.org/10.1063/1.1538242
http://dx.doi.org/10.1021/jp056189o
http://dx.doi.org/10.1103/PhysRevLett.89.263902
http://dx.doi.org/10.1051/cocv:2007013
http://dx.doi.org/10.1023/B:JOMC.0000007813.70019.39
http://dx.doi.org/10.1021/jp021762e
http://dx.doi.org/10.2514/2.4067
http://dx.doi.org/10.1063/1.1398311
http://dx.doi.org/10.1103/PhysRevA.77.023407
http://dx.doi.org/10.1051/cocv/2010004
http://dx.doi.org/10.1007/s10957-012-0050-5

	1. Introduction
	2. Theoretical framework
	2.1. Hamiltonian characterization problem
	2.2. Numerical algorithms

	3. Application to quantum systems
	3.1. A driven two-level quantum system
	3.2. Driven double-well potential
	3.3. Discussion

	4. Conclusion
	Acknowledgments
	Appendix. Singularity problem of the Newton method
	References

