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MONOTONIC PARAREAL CONTROL FOR QUANTUM SYSTEMS∗

YVON MADAY† , JULIEN SALOMON‡ , AND GABRIEL TURINICI§

Abstract. Following encouraging experimental results in quantum control, numerical simu-
lations have known significant improvements through the introduction of efficient optimization al-
gorithms. Yet, the computational cost still prevents using these procedures for high-dimensional
systems often present in quantum chemistry. Using parareal framework, we present here a time par-
allelization of these schemes which allows us to reduce significantly their computational cost while
still finding convenient controls.
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1. Introduction. In the last decade, quantum control has witnessed significant
developments including encouraging experimental results [5, 6, 9, 15, 16, 23, 24, 29, 36].
At the computational level [7, 25], the introduction of the monotonic algorithms of
Krotov (by Tannor [31]), Zhu and Rabitz [37], or the unified form of Maday and
Turinici [21] allows us to design efficient methods to obtain laser fields controlling the
molecular dynamics. On the other hand, parareal scheme (that stands for paralleliza-
tion in real time) has shown a convenient efficiency in the case of the Schrödinger
equation; see, e.g., [2, 33]. In what follows, we combine these two approaches by using
monotonic algorithms as the inner loop of a time-parallelization procedure.

Let us first briefly present the model and the corresponding optimal control frame-
work used in this paper. Consider a quantum system described by its wavefunction
ψ(x, t), also called state in what follows. Here “x” ∈ Ω denotes the relevant spatial
coordinates (the symbol x will often be omitted in what follows for reason of sim-
plicity). The operator V (x) is the potential part. The dynamics of this system is
characterized by its internal Hamiltonian:

H(x) = H0 + V (x).

In this equation H0, the kinetic part, could be

H0 = −1

2

p∑
n=1

1

mn
Δrn ,

where p is the number of particles considered, mn their masses, and Δrn the Laplace
operator with respect to their coordinates.
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A way to control such a system is to light it with a laser pulse. We denote by
ε(t) the intensity of this control field. The contribution of this parameter is taken
into account by introducing a perturbative term in the Hamiltonian which then reads
H(x) − μ(x)ε(t). The evolution of ψε(x, t) is governed by the Schrödinger equation
(we work in atomic units, i.e., � = 1):

(1.1)

{
i ∂
∂tψ

ε(x, t) = (H(x) − μ(x)ε(t))ψε(x, t),

ψε(x, 0) = ψinit(x),

where ψinit is the initial condition for ψε subject to the constraint:

‖ψinit‖L2(Ω) = 1.

Since H is self-adjoint, from (1.1) the norm of the state is constant with respect to
the time. In the numerical simulations, the ground state, i.e., a unitary eigenvector
of H associated with the lowest eigenvalue, is generally taken as initial condition.

The optimal control framework can then be applied to this bilinear control system
to design relevant control fields. The quality of the pulse is evaluated via a cost
functional. A general example of such a function is

(1.2) J(ε) = ‖ψε(T ) − ψtarget‖2
L2(Ω) +

∫ T

0

α(t)ε2(t)dt,

where T is the total time of control, α a positive function, and ψtarget a target state
which has to be reached.

At the minimum of the cost functional J , the Euler–Lagrange critical point equa-
tions are satisfied; a standard way to write these equations is to use a Lagrange
multiplier χε(x, t) called adjoint state. The following critical point equations are thus
obtained [37]: {

i ∂
∂tψ

ε(x, t) = (H(x) − ε(t)μ(x))ψε(x, t),

ψε(x, 0) = ψinit(x),
(1.3) {

i ∂
∂tχ

ε(x, t) = (H(x) − ε(t)μ(x))χε(x, t),

χε(x, T ) = ψtarget(x),
(1.4)

α(t)ε(t) = −Im〈χε(t)|μ|ψε(t)〉,(1.5)

where A is an operator on L2(Ω) and 〈f |A|g〉 =
∫
Ω
f(x)A(g)(x)dx.

Numerous optimization procedures exist to compute iteratively sequences (εk)k∈N

that approximate the solution of (1.3)–(1.5). The common feature of these algorithms
is that they involve repeated resolutions of Schrödinger equations (1.3) and (1.4),
which induce a heavy computational time cost. Depending on their order, the mere
computation of εk can also be time consuming due to the high nonlinearity of the cost
functional. In order to reduce the computation time, some time parallelization of the
resolution of (1.3)–(1.5) can be done. A standard method consists of subdividing the
interval [0, T ] into subintervals and to compute iteratively the corresponding adequate
initial conditions for parallel resolution on each subinterval. This approach is also the
base of the multiple shooting methods (see [22, sect. 17.1] and, e.g., [8]). In [10] a
comparison between these methods shows that the parareal algorithms can be recast
as a multiple shooting algorithm where the Jacobian matrix is approached by a finite
difference method on a coarse grid.



2470 YVON MADAY, JULIEN SALOMON, AND GABRIEL TURINICI

Another body of related literature was introduced in the pioneering works of
Hackbush; see [11, 12] and also [14, 19, 35]. The parareal method corresponds to
a two-level multigrid with a larger coarsening rate and an unusual smoother which
corresponds to a single phase of a bicolor relaxation scheme.

Such time parallelization procedures have already been associated to optimiza-
tion procedures to tackle control problems, e.g., in the case of ordinary differential
equations [13], or linear control of hyperbolic [17], or parabolic evolution equations
[4, 34]. On the contrary, we present here a new method to treat the bilinear optimal
control of the Schrödinger equation (1.1), and consider a particular decomposition of
J in sub-cost functionals corresponding to the time subdivision. In this framework,
an iterative optimization procedure is designed that converges to a critical point of J .

The paper is organized as follows: parareal optimal control settings corresponding
to our quantum control problem is presented in section 2. In section 3, we give an
algorithm achieving a parallel in time optimization. We prove the convergence of this
procedure towards a critical point of a discrete version of the cost functional J in
section 4 and we finally give some numerical results in section 5.

2. Parareal control setting. Throughout this section the control field ε is
either a function of L2([0, T ]) or its corresponding time discretization.

2.1. Main features of the parallelization. Following Lions, Maday, and
Turinici [18], we now introduce the necessary concepts and tools involved in the time
parallelization proposed by the parareal approach.

2.1.1. Subdivision of [0, T ] and virtual controls. Let N ≥ 1 be an inte-
ger. In order to design the time parallelized optimization procedure, we introduce a
subdivision of [0, T ]:

[0, T ] =

N−1⋃
�=0

[T�, T�+1],

with T0 = 0 and TN = T . Consider also a set Λ = (λ�)�=1,...,N−1 ∈
(
L2(Ω)

)N−1
. In

what follows, Λ will be called the set of virtual controls. For notational simplicity, we
will also denote by λ0 the initial state ψinit and by λN the target state ψtarget. The
resolution of (1.1) is now substituted by the resolution of the N problems:

(2.1)

{
i ∂
∂tψ

ε�
� (x, t) = (H(x) − ε�(t)μ(x))ψε�

� (x, t),

ψε�
� (x, T�) = λ�(x), � = 0, . . . , N − 1,

where ε� is the restriction of ε to [T�, T�+1] (with � = 0, . . . , N − 1). By (2.1), ψε�
�

also depends on λ�. In order to simplify the notations, we omit this dependence. The
solution of (2.1) coincides to that of (1.1) if and only if

(2.2) ∀� = 0, . . . , N − 1, ψε�
� (x, T�+1) = λ�+1(x).

The parareal framework provides different methods to iteratively compute a solution
Λ∗ of (2.1)–(2.2).

2.1.2. Coarse and fine propagators. Suppose that the numerical simulation
of (1.1) can be realized both by a coarse propagator and a fine propagator. Because
the use of the coarse propagator is considered to be cheap, it can be used for the
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resolution of (1.1) over the whole interval of control [0, T ]. On the contrary, the fine
propagator will only be used for parallel resolutions on [T�, T�+1].

The analysis of the algorithm presented below requires that the L2-norm of the
finely approximated solution be constant with respect to the time (as is the case for
the exact solution of (1.1)). Because of its numerical accuracy, we choose to consider
the Strang-second-order split-operator solver [3, 30], that fulfills this property. Let us
present it in some detail.

Consider two parameters of the time discretization n and δt = T
n , and define n0 =

0 < n1 < · · · < n� < · · · < nN = n, the time indexes associated with (T�)�=0,...,N . Let
us also introduce, for � = 0, . . . , N−1, j = n�, . . . , n�+1−1, the discretized control field
ε�,j and for � = 0, . . . , N − 1, j = n�, . . . , n�+1, the discretized state ψε�

�,j that stand,
respectively, for approximations of ε�(jδt) and ψε�

� (jδt). The time discretization of
(2.1) is given by

(2.3)

⎧⎨⎩ ψε�
�,j+1 = e

H0δt
2i e

V −με�,j
i δte

H0δt
2i ψε�

�,j , j = n�, . . . , n�+1 − 1,

ψε�
�,n�

= λ�, � = 0, . . . , N − 1.

We refer the reader to [20] for additional details about the corresponding full discre-
tization.

Remark 1. Though we focus on the Strang-second-order split-operator scheme,
the methodology presented in this paper can be adapted to other time discretizations.
Indeed, the analysis done below requires only that the norm of the wavefunction be
preserved during the propagation.

2.1.3. Parareal strategy. Parareal algorithms aim at computing in parallel on
each subinterval the solution of evolution equations such as (1.1). To do this, they
propose various iterative methods to update the virtual controls after each parallel
propagation. The purpose of what follows is to define an updated algorithm that
allows one to couple the parareal approach with an optimization procedure of quantum
control.

2.2. Parareal cost functionals. Let Λ = (λ�)�=1,...,N−1 be a set of virtual con-
trols and (ψε�

� )�=0,...,N−1 the corresponding time discretized solutions of the parallel
propagations (2.3), with ψε�

� = (ψε�
�,j)j=n�,...,n�+1

. In order to design a formulation
combining optimal control and parareal framework, let us also consider the following
cost functional:

(2.4) J‖(ε,Λ) =

N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,

where β� = n
n�+1−n�

and αj is an approximation α(jδt). This cost functional can be

decomposed as follows:

J‖(ε,Λ) =

N−1∑
�=0

β�J�(ε�, λ�, λ�+1),

where J� are the parareal cost functionals:

J�(ε�, λ�, λ�+1) = ‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) + δt

n�+1−1∑
j=n�

α′
�,jε

2
�,j ,
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with:

(2.5) α′
�,j =

αj

β�
.

Note that the optimization problems defined on [T�, T�+1] via J� are similar to the
initial control problem on [0, T ] corresponding to (1.2).

3. Monotonic parareal algorithm. Our aim is to optimize J‖(ε,Λ) with re-
spect to its two variables. We first present the main features of our algorithm and
then give further details on each step.

3.1. Structure of the algorithm. To couple parareal framework and the con-
trol optimization, we propose the following methodology: given ν > 0, consider the
termination criterion c(ε) = J(ε) + ν

∑N−2
�=0 |ε�,n�+1−1 − ε�+1,n�+1

|2. Given an initial
control field εk and a tolerance tol ≥ 0, the computation of εk+1 is done as follows:

1. If c(εk) ≤ tol, then stop.

2. Compute a coarse solution ψk = ψεk of (1.3).

3. Compute a coarse solution χk = χεk of (1.4).
4. Using ψk and χk, compute Λk, which optimizes J‖(ε

k,Λ) with respect to Λ.

5. On each interval [T�, T�+1], compute in parallel some control field εk+1
� , which

optimizes the cost functionals J�(ε�, λ
k
� , λ

k
�+1) with respect to ε�.

6. Define εk+1 as the concatenation of the control fields εk+1
� .

7. Assign k ← k + 1. Return to step 1.
This algorithm is similar to an alternate direction descent algorithm, in the sense

that it alternatively optimizes J‖(ε,Λ) with respect to Λ and to ε.
Of course, to take advantage of the time parallelization, steps 2 and 3 of the

previous algorithm are to be computed using the coarse propagator, whereas step 5
can be done simultaneously and by fine propagations.

Remark 2. Solving (1.4) exploits in an essential manner the time-reversibility
of the Schrödinger equation. Further work is required to extend this algorithm to
nonreversible cases.

3.2. Virtual controls definition. We present in this section some results which
will enable us to achieve efficiently step 4 of the monotonic parareal algorithm. As
we do not intend to deal with the coarse propagator properties, we will consider in
this section that steps 2 and 3 are done with the split-operator method presented in
section 2.1.2, with the (small) time step δt. Even though this is not what we want
to do ultimately, the results below keep a practical interest since the most expensive
part of the algorithm is the update of the control field which will be done in parallel.
Thus, given a control field ε = (εj)j=0,...,n−1, the states ψε = (ψε

j )j=0,...,n and the
adjoint states χε = (χε

j)j=0,...,n are computed by⎧⎨⎩ ψε
j+1 = e

H0δt
2i e

V −μεj
i δte

H0δt
2i ψε

j ,

ψε
0 = ψinit,

(3.1)

⎧⎨⎩ χε
j−1 = e−

H0δt
2i e−

V −μεj−1
i δte−

H0δt
2i χε

j ,

χε
n = ψtarget.

(3.2)

For reasons of simplicity, we use in what follows the following notation:

Fε
j,j′ψ

ε
j = ψε

j′ ,
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where 0 ≤ j, j′ ≤ n are two (time) indices, and ψε = (ψε
j )j=0,...,n is the solution of

(3.1). We still denote by J the time discretized cost functional corresponding to (1.2):

(3.3) J(ε) = ‖ψε
n − ψtarget‖2

L2(Ω) + δt

n−1∑
j=0

αjε
2
j .

The following theorem provides the optimal choice of virtual controls Λ.
Theorem 3.1. With the previous notations, let us define Λε = (λε

�)�=1,...,N−1 by

(3.4) λε
� = (1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�
,

where γ� = n�

n . Then

(3.5) Λε = argminΛ(J‖(ε,Λ)).

Moreover, we have

J‖(ε,Λ
ε) = J(ε).

Proof. For a given Λ = (λ�)�=1,...,N−1, let us first prove that J(ε) is a lower bound
for J‖(ε,Λ). The Cauchy–Schwarz inequality gives

N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) =

(
N−1∑
�=0

1

β�

)
N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω)(3.6)

≥
(

N−1∑
�=0

‖ψε�
�,n�+1

− λ�+1‖L2(Ω)

)2

.(3.7)

Recalling that Fε is a unitary operator, we have

∀� = 1, . . . , N − 1,

‖ψε�
�,n�+1

− λ�+1‖L2(Ω) = ‖Fε
n�,n�+1

(λ�) − λ�+1‖L2(Ω)

=
∥∥Fε

n�+1,n

(
Fε

n�,n�+1
(λ�) − λ�+1

)∥∥
L2(Ω)

= ‖Fε
n�,n

(λ�) −Fε
n�+1,n

(λ�+1)‖L2(Ω).(3.8)

Hence

N−1∑
�=0

‖ψε�
�,n�+1

− λ�+1‖L2(Ω) =

N−1∑
�=0

‖Fε
n�,n

(λ�) −Fε
n�+1,n

(λ�+1)‖L2(Ω)

≥ ‖Fε
0,n(ψinit) − ψtarget‖L2(Ω).(3.9)

Combining (3.9) and (3.6) we obtain, since Fε
0,n(ψinit) = ψε

n,

J‖(ε,Λ) ≥ J(ε).

By (3.4), we have

ψε�
�,n�+1

− λε
�+1 = Fε

n�,n�+1
(λε

�) − λε
�+1

= Fε
n�,n�+1

(
(1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�

)
−
(
(1 − γl+1)ψ

ε
n�+1

+ γ�+1χ
ε
n�+1

)
(3.10)

= (γ�+1 − γ�)
(
ψε
n�+1

− χε
n�+1

)
.
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Hence,

‖ψε�
�,n�+1

− λε
�+1‖L2(Ω) =

1

β�
‖ψε

n − ψtarget‖L2(Ω).

Combining this equality with (2.4), we obtain the following:

J‖(ε,Λ
ε) =

N−1∑
�=0

1

β�
‖ψε

n − ψtarget‖2
L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,

= ‖ψε
n − ψtarget‖2

L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,(3.11)

and the theorem follows.
Remark 3. The trajectory

(
(1 − j

N )ψε
j + j

N χε
j

)
j=0,...,n

is an ideal trajectory

that reaches exactly the target ψtarget. The choice Λ = Λε is equivalent to define
the virtual controls on this trajectory. This interpretation is closely related to the
concept of reference trajectory tracking: through the introduction of the parareal
cost functionals, the initial problem is transformed into N − 1 optimization problems
that aim to minimize on each subinterval the distance between the current trajectory
and this ideal (unknown) trajectory.

Remark 4. An alternative definition for Λ can be

(3.12) λ� =
(1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�

‖(1 − γ�)ψε
n�

+ γ�χε
n�
‖L2(Ω)

,

which has the advantage that the norms of the virtual controls are preserved. Fur-
thermore, it can be proved that λ corresponds to a critical point of J‖(ε,Λ) under the
constraint

∀� = 1, . . . , N − 1, ‖λ�‖L2(Ω) = 1.

3.3. Monotonic schemes. Let us now describe a practical implementation of
step 5 of the monotonic parareal algorithm. Given a set of virtual controls Λ =
(λ�)�=1,...,N−1 (recall that λ0 = ψ0 and λN = ψtarget), the parareal cost functional J�
reads

J�(ε�, λ�, λ�+1) = ‖λ�‖2
L2(Ω) + ‖λ�+1‖2

L2(Ω) − 2Re〈ψ�,n�+1
, λ�+1〉

+ δt

n�+1−1∑
j=n�

α′
�,jε

2
�,j , � = 0, . . . , N − 1.(3.13)

The first two terms of J� will not change during the optimization of ε. An efficient way

to minimize cost functionals of the form J̃(ε) = −2Re〈ψ(T ), ψtarget〉+
∫ T

0
α(t)ε2(t)dt

associated with the Schrödinger equation is to use monotonic schemes [21, 37].
In our case, the time discretized monotonic scheme corresponding to (3.13) can

be defined by the following procedure.
Let us consider (δ, η) ∈ [0, 2[ × [0, 2[ and introduce the notations

χ̃�,j = e
H0δt

2i χ�,j , ψ̆�,j = e
H0δt

2i ψ�,j , χ̆�,j = e−
H0δt

2i χ�,j , ψ̃�,j = e−
H0δt

2i ψ�,j ,
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and μ∗(h), an approximation of μ, defined by

(3.14) μ∗(h) =
e−iμhδt − Id

−ihδt
,

where Id is the identity operator.

Given a control field εk, its restriction εk� to the interval [T�, T�+1] and the corre-
sponding ψk

� = (ψk
�,j)j=n�,...,n�+1

are defined iteratively by

(3.15)

⎧⎨⎩ ψk
�,j+1 = e

H0δt
2i e

V −μεk�,j
i δte

H0δt
2i ψk

�,j , j = n�, . . . , n�+1 − 1,

ψk
�,n�

= λ�, � = 0, . . . , N − 1.

The computation of εk+1
� is performed as follows:

1. For � = 0, . . . , N −1, compute iteratively an intermediate control field ε̃k� and
its corresponding adjoint state χk

� by

(3.16) χk
�,j = e−

H0δt
2i e

−V +με̃k�,j
i δte−

H0δt
2i χk

�,j+1, j = n�, . . . , n�+1 − 1,

where ε̃k�,j is such that

(3.17) ε̃k�,j = (1 − η)εk�,j −
η

α′
�,j

Im〈χ̆k
�,j+1|μ∗(εk�,j − ε̃k�,j)|ψ̃k

�,j+1〉,

with the final condition

χk
�,n�+1

= λ�+1.

2. For � = 0, . . . , N − 1, compute iteratively the control field εk+1
� and its corre-

sponding state ψk+1
� by

ψk+1
�,j+1 = e

H0δt
2i e

V −με
k+1
�,j

i δte
H0δt

2i ψk+1
�,j , j = n�, . . . , n�+1 − 1,

where εk+1
�,j is such that

(3.18) εk+1
�,j = (1 − δ)ε̃k�,j −

δ

α′
�,j

Im〈χ̃k
j |μ∗(εk+1

�,j − ε̃k�,j)|ψ̆k+1
�,j 〉,

with the initial condition

(3.19) ψk+1
�,n�

= λ�.

The implicit equations (3.17) and (3.18) are solved independently for ε̃k�,j and εk+1
�,j ,

respectively, at each time step by a Newton method (all other parameters involved
are known). We refer the reader to [20] for a proof of the existence of solutions and
further details on this scheme.

In what follows, the initial value ε0 of the monotonic scheme is considered fixed.
An important property of this algorithm is given in the following theorem [21].
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Theorem 3.2. For any η, δ ∈ [0, 2] the algorithm given in (3.16)–(3.19) is well
defined and converges monotonically in the sense that

∀� = 0, . . . , N − 1,

J�(ε
k+1
� , λ�, λ�+1) − J�(ε

k
� , λ�, λ�+1) = −δt

n�+1−1∑
j=n�

α′
�,j(ε

k+1
j,� − εkj,�)

2 ≤ 0.(3.20)

This optimization procedure can be done in parallel on each interval [T�, T�+1].

Consequently, the computations can be carried out with fine propagators Fεk+1
� .

Remark 5. As was the case for step 4 (see Remark 3), this step of the algorithm is
also linked to the concept of reference trajectory tracking: in the monotonic schemes,
the control field ε̃k�,j1 (resp., εk+1

�,j ) is chosen such that the distance between the current

states and adjoint state ‖ψk
�,j −χk

�,j‖L2(Ω) (resp., ‖ψk+1
�,j+1 −χk

�,j+1‖L2(Ω)) decreases at
each time step. We refer the reader to [28, 32] for details about the relationship
between the monotonic schemes and local tracking algorithms.

Remark 6. Note that several iterations of this scheme can be done during step 5 of
the monotonic parareal algorithm, especially in case of slow convergence (see Table 5.1
in section 5.4 for numerical results about it).

The algorithm is schematically depicted in Figure 3.1.

χk(t)

ψk(t)

χk+1
0 (t)

χk+1
1 (t)

χk+1
2 (t)

χk+1
3 (t)

χk+1
4 (t)

χk+1
5 (t)

ψinit

ψtarget

λk+1
1

λk+1
2

λk+1
3

λk+1
4

λk+1
5

ψk+1
0 (t)

ψk+1
1 (t)

ψk+1
2 (t)

ψk+1
3 (t)

ψk+1
4 (t)

ψk+1
5 (t)

0 TTime of control

Fig. 3.1. Symbolic representation of one iteration of the monotonic parareal algorithm. The
optimization is achieved in parallel on each subinterval [T�, T�+1]. The virtual controls λk

� are
updated at each iteration.

3.4. Monotonicity of the algorithm. The combination of the two previous
strategies allows us to define

Λk = Λεk
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and εk+1 as the concatenation of the sequence (εk+1
� )�=0,...,N−1. We have thus ob-

tained a global monotonic algorithm since

J(εk+1) = J‖(ε
k+1,Λk+1) ≤ J‖(ε

k+1,Λk) ≤ J‖(ε
k,Λk) = J(εk).

4. Convergence of the algorithm. The convergence of the sequence (εk)k∈N

defined by the previous algorithm is described in the next theorem.
Theorem 4.1. Given an initial control field ε0, consider the sequence (εk)k∈N

obtained by the algorithm (3.16)–(3.19), where the coarse propagator in steps 2–3 is
taken to be the same as the fine propagator. The sequence (εk)k∈N converges towards
a critical point of J .

Proof. Since the proof is very similar to that presented in [26], we give only a
brief overview.

Denote by CJ the set of critical points of J . Using the previous notations, this
set reads

(4.1) CJ =
{
ε/ ∀j = 0, . . . , N − 1, Im〈χ̃ε

j |μ|ψ̆ε
j 〉 + αjεj = 0

}
.

Let Cε0 be the set of limit points of (εk)k∈N.
Since ‖λk

0‖L2(Ω) = ‖λk
N‖L2(Ω) = 1, (3.4) implies that

∀� = 0, . . . , N, ‖λk
� ‖L2(Ω) ≤ 1.

It can then be proved by induction that (see [20, Theorem 3])

(4.2) ∀k ∈ N, ∀j = 0, . . . , n− 1, |εkj | ≤ M,

with

(4.3) M = max

(
‖ε0‖∞,max

(
1,

δ

2 − δ
,

η

2 − η

)
‖μ‖∗

minj=1,...,n−1

(
αj

)) ,

where ‖μ‖∗ denotes the operator norm of μ and ‖ε0‖∞ = maxj=0,...,n−1(|ε0
j |). Con-

sider now a converging subsequence (εkp)p∈N and its limit ε∞ ∈ Cε0 . The corre-
sponding state ψεkp = ψkp and adjoint state χεkp = χkp defined by (3.1) and (3.2)
converge, respectively, towards ψε∞ and χε∞ . By (3.4), the sequence (Λk

p)p∈N con-

verges towards Λε∞ . Then, a similar proof indicates that (ψ
kp

� )p∈N and (χ
kp

� )p∈N

converge towards ψε∞

� and χε∞

� . Thanks to the similar structures of J� and J , one
can adapt the proof of Lemma 3.3 in [26] which shows that

(4.4) ∀� = 0, . . . , N − 1, ∀j = n�, . . . , n�+1 − 1, Im〈χ̃ε∞

�,j |μ|ψ̆ε∞

�,j 〉 + α′
�,jε

∞
�,j = 0.

Another use of (3.4) proves that
(4.5)

∀� = 0, . . . , N − 1, ∀j = n�, . . . , n�+1 − 1,
1

β�
Im〈χ̃ε∞

�,j |μ|ψ̆ε∞

�,j 〉 = Im〈χ̃ε∞

j |μ|ψ̆ε∞

j 〉.

Combining (4.4) and (4.5) with (2.5), we obtain that

(4.6) Cε0 ⊂ CJ .

Since (J(εk))k∈N is a bounded (by 2 + maxj=0,...,n−1(αj)TM) monotonic sequence,
it converges towards a limit denoted by lε0 .
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We are now in the position to reproduce the analysis in Theorem 4.5 of [26] which
shows that

∃θ ∈
]
0,

1

2

]
, ∃κ > 0, ∃k0 ∈ N/ ∀k ≥ k0,

(lε0 − J(εk))θ − (lε0 − J(εk+1))θ ≥ κ‖εk+1 − εk‖2,(4.7)

where ‖.‖2 denotes the usual Euclidean norm on Rn. Hence, the sequence (εk)k∈N is
a Cauchy sequence and by (4.6) the theorem follows.

5. Numerical results.

5.1. Model. In order to test the performance of the algorithm, a case already
treated in the literature has been considered. The system is a molecule of HCN
modelled as a rigid rotator. We refer the reader to [1, 27] for numerical details
concerning this system. The goal is to control the orientation of the system; this is
expressed through the requirement that ‖ψ(T ) − ψtarget‖L2(Ω) is minimized, where
the target function ψtarget corresponds to an orientated state.

5.2. Propagators. All the propagations are done through a Strang-second-
order split-operator type as, e.g., in (3.15). The coarse propagator, corresponding
to (3.1) and (3.2), is used with a large time step, whereas the fine propagator, as it
appears in (3.18) and (3.17), is used with a small time step. The ratio of these two
time steps is 10. We have observed that a renormalization (3.12) slightly reduces the
speed of convergence, but has no effect on the converged control fields.

5.3. Numerical convergence. Let us present some results concerning the con-
vergence of the monotonic parareal algorithm.

5.3.1. Evolution of (εk)k∈N. In a first test, N = 10 identical subintervals are
considered to parallelize the algorithm. Figures 5.1–5.3 show a typical evolution of the
sequence (εk)k∈N computed by our algorithm. Figure 5.4 represents the control field
obtained without parallelization by a monotonic algorithm applied to J . Note that
the discontinuities that are visible on Figure 5.1 and even on Figure 5.2 disappear as
the number of iteration increases.

5.3.2. Variation of the number of subintervals. The control field obtained
at the numerical convergence appears to be independent of the number N of subinter-
vals. This is coherent with Theorem 4.1 which claims that the limit depends only on
the initial cost functional J . In order to evaluate the effect of N on the convergence
of the algorithm, we have run the algorithm for different values of this parameter.
Figure 5.5 shows the evolution of the cost functional values for N = 1, 2, 5, 10, 50, 100.
The convergence speed decreases when N becomes larger. One has thus to find an
optimum between the acceleration obtained by parallelization and the reduction of
the convergence speed induced by it. This compromise depends on the choice of the
coarse and fine propagators. In our case, the parallel optimizations and the coarse
propagations allow us to reach a satisfactory cost functional value with an actual gain
in “wall-clock” time roughly equal to 7. We have not sought to optimize the coarse
and the fine propagators for these numerical tests. In particular, a coarser propagator
should improve this result.

5.4. About the full efficiency. Consider again N = 10 identical subintervals.
An ideal time parallelization should divide the computational time by 10. In order to
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Fig. 5.1. Field of control obtained after
one iteration.
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Fig. 5.2. Field of control obtained after
10 iterations.
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Fig. 5.3. Field of control obtained after
250 iterations. In such nonlinear equations
the typical number of iterations is in the range
102–104 [1, 27].
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Fig. 5.4. Field of control obtained by
a nonparallelized monotonic algorithm (i.e.,
with N = 1) after 250 iterations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  100  150  200  250  300  350  400  450  500

N = 1 :
N = 2 :
N = 5 :

N = 10 :
N = 20 :

N = 50 :
N = 100 :

J
(ε

)

Number of iterations

Fig. 5.5. Evolution of the cost functional value during the first 500 iterations.
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Table 5.1

Results obtained for several subiterations of the monotonic schemes (3.16)–(3.19) during step 5
of the monotonic parareal algorithm.

k m Comp. time J(εk)
Case 0 100 1 100.10.Tf 0.2983
Case 1 100 1 100.(Tf + TC) 0.2986
Case 2 50 2 50.(2Tf + TC) 0.3062
Case 3 25 4 25.(4Tf + TC) 0.3295

approach such a full efficiency, a strategy would be to increase the parallel computa-
tions (step 5) with respect to the coarse propagations (steps 2 and 3 of the algorithm).
In this perspective, the influence on the convergence of the number of iterations (de-
noted by m) of the monotonic algorithm (3.17)–(3.18) done during step 5 has been
tested (see Remark 6). Let us denote by k the number of iterations of the monotonic
parareal algorithm, by Tf the computational time of one iteration of the monotonic
algorithm in a subinterval, and by TC the computational time of both step 2 and
step 3. Table 5.1 summarizes the cases that have been tested.

Case 0 corresponds to the nonparallelized monotonic algorithm (i.e., with N = 1)
computed with the fine propagator. Figure 5.6 shows that the best strategy corre-
sponds to case 1. Further work is needed to reach the full efficiency (corresponding
in our case to a computational time close to 100.Tf ).
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Fig. 5.6. Evolutions of the cost functional values for different values of m.
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