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Abstract. Standard nonlinear schemes for the the simulation of elastodynamic problems have
several shortcomings when considering high-speed rotations. To tackle these problems, we use a
corotational framework and a corresponding specific linearization to design new energy-conserving
numerical schemes. In the two-dimensional case, an algorithm preserving also angular momentum is
presented. The existence of a solution for the fully discrete setting of this algorithm is established.
Numerical results illustrate the flexibility and efficiency of the proposed algorithms.
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1. Introduction. The time discretization of elastodynamic problems involving
large rotations and translations is a well-known challenge in the simulation of con-
tinuum mechanics. Usually, geometrically nonlinear strain measures such as Green–
Lagrange strains are applied to tackle this kind of problem. The resulting nonlinear
equation requires iterative solvers which can be very costly, for example when con-
sidering high-speed rotation in combination with large time steps. Moreover, such
methods show unsatisfying numerical results in these cases as the global motion is
not reproduced correctly and spurious oscillations can be observed.

In order to accelerate the computations, one can use the framework of linear
elasticity, i.e., linearize the evolution equation with respect to parameters associated
with the displacements of the body. However, this kind of linearization does not show
satisfying results for rotating bodies. In particular, rigid body rotations wrongly
contribute to the elastic energy as the small deformation assumption is not fulfilled
anymore.

As a remedy, the motion can be split into a rigid body motion and a purely elastic
effective deformation. This idea was initially introduced in [10] to trace the global
motion of elastic bodies in the context of aircraft and spacecraft dynamics. Then,
the approach was put in an abstract framework by Fraejis de Veubeke [20], where
different criteria were presented to guarantee the uniqueness of the decomposition.
Nowadays, this idea is often used by the engineering community where it is referred
to as “corotational formulation.” In this paper, we use this splitting to carry out
the linearization with respect to the effective displacements. To this end, we make
use of the Fraejis de Veubeke’s criterion and choose the corotational decomposition
that minimizes the L2-norm of the effective displacements. The well-posedness of the
associated system has been proved recently in [23, 24].
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The problem of handling large rotations in the Lagrangian kinematic descrip-
tion of continuum mechanics has spawned several publications, e.g., [1, 2, 3, 25].
The application of the splitting of the deformation in combination with finite ele-
ments was introduced by Wempner [37] and Belytschko and Hsieh [7]. In the engi-
neering literature, the term “corotational finite elements” was established for this
method starting with [5, 6] where the splitting was used for each element, resulting
in additional degrees of freedom per element. Some developments of this approach
were presented in [17, 18, 34, 36]. The method was improved by defining a coro-
tated frame per element [8, 9]; see also the overview [27]. Crisfield [12, 13] developed
the concept of consistent linearization in the corotational formulation. Nour-Omid
and Rankin [26], Rankin and Brognan [32], and Rankin and Nour-Omid [33] finally
invented the element-independent corotational formulation, where projectors were
used to separate the total deformation. Recently, the corotational formulation has
been used for control and regulation [4, 28], sensitivity analysis [29, 30, 31], and mod-
ern solution techniques for large-scale simulations [15, 16]. For a more exhaustive
overview of the development of the corotational formulation, we refer the reader to
[19]. However, the design of suitable time integration methods for the corotational
framework is still an open question; see topic E of section 7 in [19].

An important property of a suitable time discretization is the conservation of
energy and angular momentum. For standard schemes, one can proceed using the
discrete energy momentum method by Simo and Tarnow; see [35] or similar vari-
ants, e.g., [22]. This method has also been successfully adapted to the corotational
framework for special finite element models; see [14, 21]. However, conservation of
the angular momentum is not always guaranteed and the effect of linearizations with
respect to effective deformations has not been considered so far.

In this paper, we show how the linearization induced by a corotational formula-
tion enables us to design a new energy-conserving time discretization of elastodynamic
problems in two and three dimensions. In two dimensions, one of our algorithms also
preserves the angular momentum. The existence of a solution for the fully discrete
setting is established in this case. In the other cases, the angular momentum is
asymptotically preserved and a priori estimates are obtained. These new algorithms
are compared to standard algorithms used in the simulation of elastodynamics involv-
ing large rigid body motion.

Our new schemes are quite attractive from the computational point of view and
show high accuracy in the case of large rigid body motions. Moreover, the approach
can be easily extended to nonlinear strain measures and nonlinear material laws.
Numerical simulations indicate that the resulting algorithms are almost as efficient as
the linearized version.

Though most of the concepts presented in this paper hold for both two and three
dimensions, we focus on the two-dimensional (2D) case for simplicity. However, the
necessary adaptations to the three-dimensional (3D) case are presented together with
a 3D version of one of our algorithms.

The rest of the paper is organized as follows. In section 2, we derive the 2D model
and present the continuous linearized system of equations describing the evolution of
the system. We state two time-discretized energy conservative algorithms in section 3.
In section 4, the space discretization on a constrained space and the existence of a
solution is discussed. In section 5, we extend one of our algorithms to the 3D case.
Finally, in section 6, we show the efficiency and flexibility of our approach by means
of various numerical tests.
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2. Problem setting. Throughout this paper, we use the notation

.
a(x, t) :=

∂

∂t
a(x, t),

..
a(x, t) :=

∂2

∂t2
a(x, t).

Given a matrix A, we denote by A� its transposed and by tr(A) its trace. The identity
matrix of R

2 is denoted by I and Rθ represents the rotation of θ, Rθ := ( cos θ − sin θ
sin θ cos θ

).

The matrix Π is defined by Π := Rπ
2

= ( 0 −1
1 0 ) and A : B := tr(A�B) is the usual

matrix scalar product. We note that using this notation the derivative of the rotation
matrix reads d

dθRθ = ΠRθ.

2.1. Nonlinear evolution equation. Let Ω ⊂ R
2 be a bounded domain with a

piecewise sufficiently smooth boundary Γ := ∂Ω describing an elastic body with mass
density ρ(x). The coordinate system is chosen such that the center of gravity has the
coordinates (0, 0), i.e.,

∫
Ω
ρx = 0. The body is subject to some volume forces f(x, t)

and boundary tractions g(x, t). Let ϕ : Ω× [0, T ] → R
2 be the deformation mapping.

In the fully nonlinear setting, the evolution of ϕ is described by the weak form of the
equilibrium condition [11],

(2.1)

∫
Ω

ρ
..
ϕ · η +

∫
Ω

∂

∂E
W

(
E(d)

)
: F�∇η =

∫
Ω

f · η +

∫
Γ

g · η,

where η is a function in V := [H1(Ω)]2, d := ϕ − x, and F := ∇ϕ = I + ∇d is the
deformation gradient. The so-called Green–Lagrange strain is given by

(2.2) E(d) :=
1

2
(∇d + ∇d� + ∇d�∇d).

We assume a Saint Venant–Kirchhoff material model where the stored energy W
(
E(d)

)
is calculated from

W
(
E(d)

)
:=

λ

2

(
tr
(
E(d)

))2
+ μ tr

(
E(d)2

)
,

with Lamé parameters λ and μ. For this linear material model, the second Piola–
Kirchhoff stress tensor Σ(d) := ∂

∂EW
(
E(d)

)
reads

Σ(d) = 2μE(d) + λ trE(d)I.

Energy- and momentum-conserving time integration schemes for this setting are well-
known; see, e.g., [35]. However, when considering high-speed rotation in combination
with large timesteps, these standard time integration schemes show poor accuracy:
In this case, the rotation speed is not reproduced correctly which results in a wrong
solution; see section 6.1.

2.2. Corotational decomposition of the motion. As a remedy, the corota-
tional formulation proposes to work with effective displacements in smaller spaces by
removing the large rigid body component of the displacements involved in the elastic
term of (2.1). The deformation is decomposed as follows [24]:

(2.3) ϕ(x, t) = τ(t) + Rθ(t)

(
x + u(x, t)

)
.

In this equation, τ(t) ∈ R
2 describes the rigid body translation of the body and Rθ

its rigid body rotation. After this change of variable, the effective displacements are
described by u. An important property of the decomposition (2.3) is that

(2.4) E
(
d) = E

(
u
)
,
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which shows that the nonlinear model correctly cancels the rigid body motion appear-
ing in ϕ. In order to define a unique triple (τ, θ, u) and to work with small effective
displacements, we consider the decomposition that minimizes the weighted L2-norm
of u,

∫
Ω
ρu2; see [20]. A straightforward computation shows that if

∫
Ω
ρ(x+u) ·x �= 0,

the minimization condition for u is equivalent to (see [23, 24])

(2.5)

∫
Ω

ρu = 0,

∫
Ω

ρu · Πx = 0.

We note that the first condition results from the translation and the second condition
from the rotation term. Thus, we are looking for the effective displacements u in the
linear space X := Xtrans ∩Xrot defined by

Xtrans :=

{
u ∈ V ;

∫
Ω

ρu = 0

}
, Xrot :=

{
u ∈ V ;

∫
Ω

ρu · Πx = 0

}
.

Let us now consider the effects of this change of variable on (2.1).
We start with the elastic term of (2.1). Defining F̂ := I + ∇u, we have, thanks
to (2.4),
(2.6)∫

Ω

∂

∂E
W

(
E(d)

)
: F�∇η =

∫
Ω

∂

∂E
W

(
E(u)

)
: F̂�R�

θ ∇η =

∫
Ω

Σ(u) : F̂�R�
θ ∇η.

The inertial term of (2.1) can also be rewritten in this new setting. To this end, we
define the relative velocity by

(2.7) s(x, t) := R�
θ(t)

( .
ϕ(x, t) − .

τ(t)
)

=
.
u(x, t) +

.

θ(t)Π
(
x + u(x, t)

)
.

The acceleration term can then be expressed by

(2.8)
..
ϕ(x, t) =

..
τ(t) + Rθ(t)

(
.
s(x, t) +

.

θ(t)Πs(x, t)
)
.

Using this representation of
..
ϕ and reducing the test space to X, (2.1) now reads

(2.9)

∫
Ω

ρ
(

.
s +

.

θΠs
)
· v +

∫
Ω

Σ(u) : F̂�∇v = Bθ(v) ∀v ∈ X,

where we have set v = R�
θ η and

(2.10) Bθ(v) :=

∫
Ω

f ·Rθv +

∫
Γ

g ·Rθv.

We note that the term
∫
Ω

..
τ · Rθv cancels because Rθv ∈ Xtrans. To compensate this

reduction of the test space, additional constraints have to be imposed which are then
used to determine the correct values of θ and τ . Thus, in addition to (2.9), we require
that the linear and angular momentum are preserved. To obtain the corresponding
conditions, we formally test (2.9) with v1

trans = R�
θ (0, 1)�, v2

trans = R�
θ (1, 0)�, and

vrot = Π(x + u), respectively, to get the linear and angular momentum equations.
Using u ∈ Xtrans, this gives the conservation of the linear momentum,

(2.11) M..
τ =

∫
Ω

f +

∫
Γ

g,
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and the conservation of the angular momentum,

(2.12)
.

J = Bθ(Π(x + u)),

where M and J are defined by

M :=

∫
Ω

ρ, J :=

∫
Ω

ρs · Π(x + u).

2.3. Linearization of the elastic term. In order to accelerate the computa-
tion or when considering numerical methods to solve (2.9), some additional lineariza-
tion can be introduced. For small effective displacements u, the strain relationship
can be linearized. Using the following approximation of (2.2):

E(u) ≈ ε(u) :=
1

2
(∇u + ∇u�),

and F̂ ≈ I, the equilibrium equation (2.9) becomes linear with respect to u,

(2.13)

∫
Ω

ρ
(

.
s +

.

θΠs
)
· v +

∫
Ω

σ(u) : ∇v = Bθ(v),

where σ(u) := 2με(u) + λ tr ε(u)I.

We will consider the nonlinear models (2.1) and (2.9) as a reference to measure
the efficiency of our algorithms.

Let us now introduce the space Y defined by

Y :=

{
u ∈ X;

∫
Ω

ρ(x + u) · x > 0

}
.

In a recent paper [23] (see also [24]), Grandmont, Maday, and Metier have obtained
the following existence result concerning the system (2.11)–(2.13).

Theorem 2.1. Let τ0,
.
τ0 be given in R

2, θ0,
.

θ0 be real numbers, u0 ∈ Y,
.
u0 ∈

L2(Ω), f ∈ L2
loc(0,+∞;L2(Ω)), and g ∈ H1

loc(0,+∞;H− 1
2 (Γ)) ∩ L2

loc(0,+∞;L1(Γ)).
There exists T � > 0 such that for all T < T � there exists a unique triplet (τ, θ, u)
with τ ∈ H2(0, T ), θ ∈ H2(0, T ), u ∈ H2(0, T ; (H1(Ω))′) ∩ W 1,∞(0, T ;L2(Ω)) ∩
L∞(0, T ;H1(Ω)), and u ∈ C0([0, T ];Y ) satisfying

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M..
τ =

∫
Ω

f +

∫
Γ

g in L2(0, T ),

.

J = Bθ(Π(x + u)) in D′(0, T ),

∀v ∈ X,

∫
Ω

ρ
(

.
s +

.

θΠs
)
· v + σ(u) : ε(v) = Bθ(v) in D′(0, T ),

where s is defined by (2.7) together with τ(0) = τ0,
.
τ(0) =

.
τ0, θ(0) = θ0,

.

θ(0) =
.

θ0,
u(0) = u0,

.
u(0) =

.
u0.

Moreover, the following alternative holds:

• T � = +∞ or
• limt→T�

∫
Ω
ρ(x + u) · x = 0.
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3. Energy conservative algorithms. We now present our energy conservative
algorithms which are based on two different time discretizations of (2.14). The first
one guarantees the conservation of the energy, but not of the angular momentum.
Next, an alternative scheme is presented that preserves both quantities. We briefly
outline the strategies we have followed to design our algorithms. Denoting by d

dt the
time derivation operator, we find in terms of (2.7) and (2.8),

R�
θ (

..
ϕ− ..

τ) =

(
d

dt
+

.

θΠ

)
s(3.1)

=

(
d

dt
+

.

θΠ

)2

(x + u)

=
..
u + Π

(
d

dt
(
.

θu) +
.

θ
.
u

)
− (

.

θ)2(x + u).(3.2)

The first algorithm is now obtained by discretizing each term of (3.2). In the second

algorithm, we first discretize s = ( d
dt +

.

θΠ)(x + u) (see (3.16)) and then discretize
R�

θ (
..
ϕ− ..

τ) via (3.1) (see the first term of (3.15)).

3.1. Midpoint time discretization and discrete setting. Let us denote the
timestep by Δt and the time index by n with tn := nΔt. We use a midpoint time
discretization which has the property

(3.3)
.
an+1/2bn+1/2 + an+1/2

.

bn+1/2 =
.

[ab]n+1/2,

where we have used the following notations for a generic time-discretized quantity �:

(3.4) �n+1/2 :=
�n+1 + �n

2
,

.
�n+1/2 :=

�n+1 − �n
Δt

.

Let us also define the total energy of the linearized system at time tn by

(3.5) En :=
1

2
M .

τ
2
n +

1

2

∫
Ω

ρs2
n +

1

2

∫
Ω

σ(un) : ε(un).

The angular momentum is given by

(3.6) Jn :=

∫
Ω

ρsn · Π(x + un).

Here sn is a time discretization of (2.7), depending on the algorithm under consider-
ation.

Note that without linearization of the strain term, the energy corresponding to
(2.9) is defined by

(3.7) Enl
n :=

1

2
M .

τ
2
n +

1

2

∫
Ω

ρs2
n +

1

2

∫
Ω

Σ(un) : E(un),

which coincides with (3.5) when neglecting terms of second order with respect to ∇un.
Finally, we discretize Bθ at time tn+1/2 by

Bn+1/2(v) :=

∫
Ω

fn+1/2 ·Rθn+1/2
v +

∫
Γ

gn+1/2 ·Rθn+1/2
v.
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3.2. Algorithm I. A time discretization of (2.14) can be done in terms of (3.2).
Special care has to be taken about the energy conservation property. To this end, we

choose suitable approximations, for example (
.

θ(tn+1/2))
2 ≈

.

θn
.

θn+1.

Algorithm I then reads: Let τ0,
.
τ0, θ0,

.

θ0, u0, as well as the external forces

(fn+1/2)n∈N and (gn+1/2)n∈N be given, and suppose that τn,
.
τn, θn,

.

θn and un,
.
un ∈ X

have already been computed. The derivation of τn+1,
.
τn+1, θn+1,

.

θn+1 and un+1,
.
un+1 ∈ X is carried out by solving

M..
τn+1/2 =

∫
Ω

fn+1/2 +

∫
Γ

gn+1/2,(3.8)

1

Δt

(∫
Ω

ρ
.

θn+1(x + un+1)
2 −

∫
Ω

ρ
.

θn(x + un)2
)

+

∫
Ω

ρΠ

.

θn+1un+1 +
.

θnun

2
.

θn+1/2

· ..un+1/2

= Bn+1/2(Π(x + un+1/2)),(3.9)∫
Ω

ρ

(
..
un+1/2 + Π

.

θn+1un+1 −
.

θnun

Δt
+ Π

.

θn+1/2
.
un+1/2 −

.

θn
.

θn+1(x + un+1/2)

)
· v

+

∫
Ω

σ(un+1/2) :ε(v) = Bn+1/2(v) ∀v ∈ X.(3.10)

Equations (3.8)–(3.10) correspond to the three equations of (2.14). We refer the
reader to section 4 for details about how to guarantee that un+1 ∈ X.

We note that using the discretized relative velocity

(3.11) sn :=
.
un +

.

θnΠ(x + un),

and the fact that un,
.
un ∈ X, the angular momentum Jn can be written as

Jn =

∫
Ω

ρsn · Π(x + un) =
.

θn

∫
Ω

ρ(x + un)2 +

∫
Ω

ρ
.
un · Πun.

This quantity is not preserved exactly by Algorithm I because of the third term of the
left-hand side of (3.9). It is, however, possible to specify the local order with respect
to Δt. Indeed, we have

(3.12) Jn+1 − Jn − ΔtBn+1/2

(
Π(x + un+1/2)

)
=

Δt2

4

..

θn+1/2
.

θn+1/2

Π
.
un+1/2 ·

..
un+1/2.

Although the momentum is asymptotically preserved if Δt tends to zero, we observe
that local oscillations occur; see Figure 6.11. This motivates the introduction of
Algorithm II.

3.3. Algorithm II. We now describe a time discretization of (2.14) that pre-
serves both the energy and the angular momentum.

Let τ0,
.
τ0, θ0, u0, s0, the external forces (fn+1/2)n∈N, and (gn+1/2)n∈N be given,

and suppose that τn,
.
τn, θn, un ∈ X and sn have already been computed. The

derivation of τn+1,
.
τn+1, θn+1, un+1 ∈ X and sn+1 ∈ V is carried out by solving

M..
τn+1/2 =

∫
Ω

fn+1/2 +

∫
Γ

gn+1/2,(3.13)

.

J n+1/2 = Bn+1/2

(
Π(x + un+1/2)

)
,(3.14)

G(
.
sn+1/2, sn+1/2,

.

θn+1/2, un+1/2; v) = Bn+1/2(v) ∀v ∈ X,(3.15)
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with

G(
.
s, s,

.

θ, u; v) :=

∫
Ω

ρ(
.
s +

.

θΠs) · v +

∫
Ω

σ(u) : ε(v)

and

(3.16) sn+1/2 :=
.
un+1/2 +

.

θn+1/2Π
(
x + un+1/2

)
.

Equations (3.13)–(3.15) correspond to the three equations of (2.14). Equation
(3.14) guarantees that the angular momentum is preserved by this algorithm.

Remark. We note that the time discretization of the auxiliary variable s is done
at the timestep n (see (3.11)) in Algorithm I and at the staggered timestep (n+ 1/2)
(see (3.16)) in Algorithm II. Moreover, given a parameter � and denoting by �I and
�II its time discretizations in Algorithms I and II, respectively, we have that

sIn+1/2 = sIIn+1/2 +
Δt2

4

..

θ
II

n+1/2Π
.
u
II
n+1/2.

3.4. Energy conservation. Let us state the main property of our algorithms.
Theorem 3.1. Algorithms I and II defined by (3.8)–(3.10) and (3.13)–(3.15),

respectively, guarantee the energy conservation in the sense that

En+1 − En = Δt
(∫

Ω

fn+1/2 ·
.
ϕn+1/2 +

∫
Γ

gn+1/2 ·
.
ϕn+1/2

)
.

Here, En is the total energy defined by (3.5) where s is defined by (3.11) when consider-
ing Algorithm I and by (3.16) when considering Algorithm II. The time discretization
of

.
ϕ is done by

.
ϕn+1/2 :=

.
τn+1/2 + Rθn+1/2

sn+1/2.

Proof. We give only the proof for the case of Algorithm II, since the one corre-
sponding to Algorithm I can be obtained in a similar way.

Testing (3.15) with v =
.
un+1/2, we obtain

(3.17)∫
Ω

ρ(
.
sn+1/2 +

.

θn+1/2Πsn+1/2) ·
.
un+1/2 +

∫
Ω

σ(un+1/2) : ε(
.
un+1/2) = Bn+1/2(

.
un+1/2).

On the other hand, using (3.3), (3.14) reads

(3.18)

∫
Ω

ρ
.
sn+1/2 ·Π(x+ un+1/2) +

∫
Ω

ρsn+1/2 ·Π
.
un+1/2 = Bn+1/2

(
Π(x+ un+1/2)

)
.

Multiplying (3.18) by Δt
.

θn+1/2 and (3.17) by Δt and adding the two resulting equa-
tions, we get by means of (3.16),

Δt

∫
Ω

ρ
.
sn+1/2 ·

( .
un+1/2 +

.

θn+1/2Π(x + un+1/2)
)

+ Δt

∫
Ω

σ(un+1/2) : ε(
.
un+1/2)

=
1

2

(∫
Ω

ρs2
n+1 + σ(un+1) : ε(un+1) −

∫
Ω

ρs2
n + σ(un) : ε(un)

)
,
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and thus

(3.19)

1

2

(∫
Ω

ρs2
n+1 + σ(un+1) : ε(un+1) −

∫
Ω

ρs2
n + σ(un) : ε(un)

)
= ΔtBn+1/2(sn+1/2).

Using (3.13), we end up with

1

2
M .

τ
2
n+1 −

1

2
M .

τ
2
n = Δt

(∫
Ω

fn+1/2 ·
.
τn+1/2 +

∫
Γ

gn+1/2 ·
.
τn+1/2

)
,

which yields the energy conservation in combination with (3.19).
In contrast to Algorithm I(see (3.12)), Algorithm II preserves the angular mo-

mentum; thanks to (3.14), we have

(3.20) Jn+1 − Jn − ΔtBn+1/2

(
Π(x + un+1/2)

)
= 0.

4. Space discretization. In this section, we present a suitable space discretiza-
tion for the time-discretized systems. We focus on (3.15), although the same method
can be used for the discretization of (3.10). The space X motivates the use of a
Galerkin method based on the spectral decomposition of the operator −div(σ(·)).
Indeed, we note that X is spanned by the eigenvectors with nonzero eigenvalue and is
orthogonal (in the sense of the L2(Ω) scalar product) on the kernel of this operator.

Unfortunately, finite elements do not fit into this setting. We observe that the
conditions (2.5) are not satisfied by nodal finite element basis functions. The orthog-
onal projection of these basis functions onto the space X leads to a nonlocal support
of the finite element basis and additional computational costs. We therefore use a
Lagrange multiplier approach to guarantee (2.5) and state the problem in a saddle
point framework. For this fully discretized setting, we show the existence of a solution
of (3.13)–(3.15).

4.1. Finite element approximation of the space X. We assume that the
domain Ω is resolved by a mesh consisting of quadrilaterals and/or triangles. We use
a conforming finite element space of lowest order, denoting the nodal basis functions
by φi and the finite element space by Vh. The mass matrix is referred to by M , Mij :=∫
Ω
ρφi · φj , and the stiffness matrix for linear elasticity by S, Sij :=

∫
Ω
σ(φi) : ε(φj).

The subspace Xh of X is defined by Xh := X ∩ Vh.
To guarantee that u ∈ Vh is also in Xh, i.e., satisfies (2.5), we introduce two

Lagrange multipliers α ∈ R and β ∈ R
2 and rewrite (3.15) as

G(
.
sn+1/2, sn+1/2,

.

θn+1/2, un+1/2; v) + α

∫
Ω

ρv · Πx +

∫
Ω

ρβ · v = Bn+1/2(v) ∀v ∈ Vh,∫
Ω

ρun+1/2 · Πx = 0,(4.1) ∫
Ω

ρun+1/2 = 0.

The Lagrange multiplier β can be eliminated by static condensation as follows.
First, we recall that sn, un, un+1/2 ∈ Xtrans, implying

∫
Ω
ρΠun+1/2 = Π

∫
Ω
ρun+1/2 =

0. Therefore Πun+1/2 ∈ Xtrans and thus sn+1/2,
.
sn+1/2 ∈ Xtrans. Using a constant
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v ∈ Vh, we have ε(v) = 0 and therefore G(
.
sn+1/2, sn+1/2,

.

θn+1/2, un+1/2; v) = 0. We

use v1 = (1, 0)� and v2 = (0, 1)�, respectively, in (4.1) and finally obtain

(4.2) β =
1

M

(∫
Ω

R�
θn+1/2

fn+1/2 +

∫
Γ

R�
θn+1/2

gn+1/2

)
= R�

θn+1/2

..
τn+1/2.

Inserting (4.2) in (4.1) gives the following system:

(4.3)

G(
.
sn+1/2, sn+1/2,

.

θn+1/2, un+1/2; v) + α

∫
Ω

ρv · Πx= B̃n+1/2(v) ∀v ∈ Vh,∫
Ω

ρun+1/2 · Πx= 0,

where B̃n+1/2 is defined by

B̃n+1/2(v) := Bn+1/2(v) −
∫

Ω

ρR�
θn+1/2

..
τn+1/2 · v.

We note that the first line of (4.3) ensures
∫
Ω
ρun+1/2 = 0, i.e., un+1/2 ∈ Xtrans.

We rewrite (4.3) in terms of un+1/2 and obtain the following linear system for the
vector of nodal values:
(4.4)⎛⎜⎜⎝

G̃(θn+1 − θn,Δt) MΠx

(MΠx)� 0

⎞⎟⎟⎠ .

⎛⎜⎜⎝
un+1/2

αn+1/2

⎞⎟⎟⎠ =

⎛⎜⎜⎝
c̃n+1/2(θn+1 − θn,Δt)

0

⎞⎟⎟⎠ ,

where
• G̃(δ,Δt) := M

(
2I + δΠ

)2
+ Δt2S,

• c̃n+1/2(δ,Δt) := M
(
2I + δΠ

)
(2un − δΠx) + 2MΔtsn + Δt2B̃n+1/2.

We note that we follow the widely applied abuse of notation; i.e., the symbols un,
un+1/2, sn, and B̃n+1/2 denote the function or the vector of coefficients of the finite
element representation, depending on the situation. We also keep the notation “·” for
the scalar product in what follows.

Equation (3.14) now reads

(4.5) h(θn+1 − θn,Δt) = 0,

with

h(δ,Δt) : = 4δ(x + un+1/2) ·M(x + un+1/2)

+
(
−δM(x + un) + 2ΔtMΠsn + Δt2ΠR�

θn+δ/2B̃n+1/2

)
· (x + un+1/2),

where un+1/2 is the solution of (4.4) corresponding to θn+1 − θn = δ.

4.2. Existence of a solution for the fully discretized algorithm. This sec-
tion is devoted to the existence of a solution of the fully discretized system associated
with Algorithm II.

Theorem 4.1. Given Emax > 0, Bmax > 0, and ν > 0, suppose that at time tn
we have En ≤ Emax, ‖B̃n+1/2‖ ≤ Bmax, where ‖ · ‖ is a given norm on Vh and

(4.6) ν ≤ x ·M(x + un).
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Then there exists Δt∗ > 0 depending on Emax, Bmax, and ν such that, given Δt ≤ Δt∗,
τn,

.
τn, θn, un, and sn, as well as the external forces fn+1/2 and gn+1/2, there exists

θn+1 ∈ R satisfying (4.5) (with un+1/2 the corresponding solution of (4.4)).
Moreover, there exist δ+(Δt), δ−(Δt) such that

• limΔt→0 δ
+(Δt) = 2,

• limΔt→0 δ
−(Δt) = −2,

• θn+1 ∈ [θn + δ−(Δt), θn + δ+(Δt)].
Proof. Given Δt > 0, η ∈]0, 1[, and δ ∈ L := [−2 − η, 2 + η], we denote by

u(δ,Δt) := un+1/2 the solution of (4.4) corresponding to θn+1 − θn = δ. Since G̃(δ, 0)

is invertible for δ ∈ L, there exists Δt0 (depending only on S) such that G̃(δ,Δt) is
invertible on L× [0,Δt0]. Then, let us define q(δ,Δt) by

q(δ,Δt) := Πx · G̃(δ,Δt)−1Πx.

The inversion of (4.4) provides

u(δ,Δt) = G̃(δ,Δt)−1

(
c̃n+1/2(δ,Δt)− 1

q(δ,Δt)

(
(Πx) · G̃(δ,Δt)−1c̃n+1/2(δ,Δt)

)
Πx

)
.

By means of (4.6), we get for δ �= 0,

(Πx) · G̃(δ, 0)−1c̃n+1/2(δ, 0) = − 2δ

(4 + δ2)2
x ·M(x + un) �= 0.

There exists Δt′0 depending on Emax, Bmax, and ν such that

∀(δ,Δt) ∈ {[−2 − η,−2 + η] ∪ [2 − η, 2 + η]} × [0,Δt′0],

(Πx) · G̃(δ,Δt)−1c̃n+1/2(δ,Δt) �= 0.(4.7)

Let us focus now on the behavior of q(·, ·) on {[−2−η,−2+η]∪ [2−η, 2+η]}× [0,Δt′0].
We have

q(δ, 0) =
4 − δ2

(4 + δ2)2
x ·Mx,

such that q(−2, 0) = q(2, 0) = 0 and q(δ, 0) �= 0 for δ �= ±2. Moreover, since

∂q

∂δ
(±2, 0) = ∓ 1

16
x ·Mx �= 0,

the implicit function theorem proves the existence of Δt′′0 (depending only on S) and
two functions δ+ and δ− defined on [0,Δt′′0 ] such that

∀Δt ∈ [0,Δt′′0 ], q
(
δ+(Δt),Δt

)
= 0, q

(
δ−(Δt),Δt

)
= 0,

lim
Δt→0

δ−(Δt) = −2, lim
Δt→0

δ+(Δt) = 2.

We have then proved the existence of two roots of δ �→ q(δ,Δt) in L for all Δt ≤ Δt′′0 .
By decreasing Δt′′0 , these two roots can be guaranteed to be unique: indeed, suppose
that there exists a sequence (Δtn)n∈N of [0,Δt′′0 ] converging towards 0 and (rn)n∈N a
sequence of roots of h(·,Δtn) such that

∀n ∈ N, rn �= δ+(Δtn), rn �= δ−(Δtn).
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Since L is compact, we can assume that (rn)n∈N is convergent. By continuity of q(·, ·),
the possible limits are −2 and 2. Suppose, for example, that

lim
n→+∞

rn = 2;

then

lim
n→∞

q
(
δ+(Δtn),Δtn

)
− q(rn,Δtn)

δ+(Δtn) − rn
= 0 =

∂q

∂δ
(2, 0) �= 0,

which gives a contradiction. The case limn→+∞ rn = −2 is treated similarly.
Thanks to (4.7), we obtain that for Δt ≤ Δt∗ := min(Δt0,Δt′0,Δt′′0), the function

φ : δ �→ u(δ,Δt) ·Mu(δ,Δt) satisfies
• φ is continuous on L− {δ−(Δt), δ+(Δt)},
• limδ→δ−(Δt) φ(δ) = limδ→δ+(Δt) φ(δ) = +∞.

Since h(δ,Δt) = 4δφ(δ)+an+1/2(δ).u(δ,Δt)+bn+1/2(δ), where an+1/2 and bn+1/2 are
bounded on L, the existence of θn+1 follows.

Remark. Note that the hypothesis (4.6) is the discretized version of the one of
Theorem 2.1 and relies on the fact that the model is valid only for motions close to
the rigid body motion, whereas the hypothesis on the parameters Bmax and Emax

stem from the discretization.

5. Extension to the 3D case. This section is devoted to the extension of
Algorithm II to the 3D case. Here the rotation is parameterized by a vector. As a
consequence, Algorithm I cannot be extended to three dimensions since it strongly
relies on the scalar nature of the angular parameter; see, e.g., (3.9).

The subset Ω is now a domain in R
3. We denote by × the cross product defined by⎛⎝ a

b
c

⎞⎠×

⎛⎝ a′

b′

c′

⎞⎠ :=

⎛⎝ bc′ − b′c
a′c− ac′

ab′ − a′b

⎞⎠ .

5.1. Parameterization of 3D rotations. The major problem met when ext-
ending Algorithm II to three dimensions is to parameterize the rotation corresponding
to the previous Rθ. We choose to describe it by using the Euler angles and refer the
reader to Appendix A of [19] for a review on other parameterizations. We remark
that the representation of a rotation with respect to Euler angles is not unique. Given
θ ∈ R, let us introduce the rotation matrices R1

θ, R
2
θ, and R3

θ given by

R1
θ :=

⎛⎝ 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞⎠ , R2
θ :=

⎛⎝ cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

⎞⎠ ,

R3
θ :=

⎛⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞⎠ .

We also define for i = 1, 2, 3 the matrices Πi := 1
2

(
Ri

π
2
−Ri

−π
2

)
.

Consider now θ = (θ1, θ2, θ3) ∈ R
3. We can express a general 3D rotation matrix

Rθ as follows:

Rθ := R1
θ1R

2
θ2R

3
θ3 .
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For θ depending on the time variable t, the derivative of Rθ reads
.

Rθ = RθΘθ(t),

where Θθ(t) is the skew-symmetric matrix defined by
(5.1)

Θθ(t) :=
.

θ1(t)(R
3
θ3(t)

)�(R2
θ2(t)

)�Π1R3
θ3(t)

R2
θ2(t)

+
.

θ2(t)(R
3
θ3(t)

)�Π2R3
θ3(t)

+
.

θ3(t)Π
3.

Note that Θθ(t) depends on both θ(t) and
.

θ(t).

5.2. Corotational model. Before considering the system of evolution equa-
tions, we introduce the space X̃ = X̃trans ∩ X̃rot, defined by

X̃trans :=

{
u ∈ Ṽ ;

∫
Ω

ρu = 0

}
, X̃rot :=

{
u ∈ Ṽ ;

∫
Ω

ρu× x = 0

}
,

where Ṽ := [H1(Ω)]3.
Let us now look at the time derivatives of the deformation ϕ. As for the 2D case,

we decompose ϕ into

ϕ(x, t) = τ(t) + Rθ(t)(x + u(x, t)),

with τ(t) ∈ R
3 and u ∈ X̃.

Introducing the relative velocity s defined by

s(x, t) :=
.
u(x, t) + Θθ(t)

(
x + u(x, t)

)
,

we obtain

.
ϕ(x, t) =

.
τ(t) + Rθ(t)s(x, t)

and

..
ϕ(x, t) =

..
τ(t) + Rθ(t)

(
.
s(x, t) + Θθ(t)s(x, t)

)
.

The angular momentum is given by

J := Rθ

∫
Ω

ρs× (x + u).

Note that, in contrast to the 2D case, we have to keep the rotation Rθ in this definition,
since

∫
Ω
ρs×(x+u) cannot be collinear to the axis of the rotation. This fact motivates

the introduction of the relative angular momentum m defined by

m :=

∫
Ω

ρs× (x + u).

In terms of m, the time derivative of J reads
.

J = Rθ

( .
m + Θθm

)
.

The dynamics of our system can be described by the following three equations:

M..
τ =

∫
Ω

f +

∫
Γ

g,

.
m + Θθm =

∫
Ω

R�
θ f × (x + u) +

∫
Γ

R�
θ g × (x + u),
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and ∫
Ω

ρ(
.
s + Θθs) · v +

∫
Ω

σ(u) : ε(v) = Bθ(v) ∀v ∈ X̃,

where

Bθ(v) :=

∫
Ω

f ·Rθv +

∫
Γ

g ·Rθv.

5.3. 3D Algorithm. We are now able to extend Algorithm II to the 3D case.
We keep the notation corresponding to the midpoint time discretization; see (3.4).

Let τ0,
.
τ0, θ0, u0, s0, as well as the external forces (fn+1/2)n∈N and (gn+1/2)n∈N

be given, and suppose that τn,
.
τn, θn, un ∈ X̃, and sn have already been computed.

The derivation of τn+1,
.
τn+1, θn+1, un+1 ∈ X̃ and sn+1 ∈ Ṽ is carried out by the

resolution of

M..
τn+1/2 =

∫
Ω

fn+1/2 +

∫
Γ

gn+1/2,(5.2)

K(
.
mn+1/2,mn+1/2,

.

θn+1/2,θn+1/2) =

∫
Ω

R�
θn+1/2

fn+1/2 × (x + un+1/2)

+

∫
Γ

R�
θn+1/2

gn+1/2 × (x + un+1/2),(5.3)

(5.4)

G(
.
sn+1/2, sn+1/2,

.

θn+1/2,θn+1/2, un+1/2; v) = Bn+1/2(v) ∀v ∈ X̃,

with

K(
.
m,m,

.

θ,θ) : =
.
m + Θθm,

G(
.
s, s,

.

θ,θ, u; v) : =

∫
Ω

ρ(
.
s + Θθs) · v +

∫
Ω

σ(u) : ε(v),

Bn+1/2(v) : =

∫
Ω

fn+1/2 ·Rθn+1/2
v +

∫
Γ

gn+1/2 ·Rθn+1/2
v,

and
(5.5)

mn+1/2 :=

∫
Ω

ρsn+1/2 ×
(
x + un+1/2

)
, sn+1/2 :=

.
un+1/2 + Θθ

n+1/2

(
x + un+1/2

)
.

Here, Θθ
n+1/2 is the time discretization of Θθ(tn+1/2) computed with θn+1/2 and

.

θn+1/2 by (5.1).

5.4. Angular momentum and energy conservation. The energy conserva-
tion of the 3D Algorithm can be established as in the 2D case. However, regarding
the angular momentum, we only get a weaker conservation property, namely that the
norm of the angular momentum vector is preserved.

Theorem 5.1. The 3D Algorithm defined by (5.2)–(5.4) guarantees the energy
conservation in the sense that

En+1 − En = Δt
(∫

Ω

fn+1/2 ·
.
ϕn+1/2 +

∫
Γ

gn+1/2 ·
.
ϕn+1/2

)
,
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where En is the total energy defined by (3.5). The time discretization of
.
ϕ is done by

.
ϕn+1/2 :=

.
τn+1/2 + Rθn+1/2

sn+1/2,

with sn+1/2 as given in (5.5).
The proof of Theorem 5.1 can be obtained by following the one of Theorem 3.1.

Note that we do not have exact angular momentum conservation since
.

J cannot be
written as an explicit variation of a time discretization of J between two timesteps.
As for Algorithm I in two dimensions, it is however possible to specify the local order
with respect to Δt. Defining the time-discretized angular momentum J by

Jn := Rθn
mn,

where θn, un, and sn are computed by the 3D Algorithm, it can be shown that there

exists Cn+1/2, depending only on
.

θn+1/2, such that∥∥∥Jn+1 − Jn − Δt
(∫

Ω

fn+1/2 ×Rθn+1/2
(x + un+1/2)

+

∫
Γ

gn+1/2 ×Rθn+1/2
(x + un+1/2)

)∥∥∥ ≤ Cn+1/2Δt2,

where ‖·‖ is a norm in R
3. Moreover, the norm of the angular momentum is preserved

in the following sense:

J 2
n+1 − J 2

n = 2Δt
(∫

Ω

fn+1/2 ×Rθn+1/2
(x + un+1/2) ·Rθn+1/2

mn+1/2

+

∫
Γ

gn+1/2 ×Rθn+1/2
(x + un+1/2) ·Rθn+1/2

mn+1/2

)
.

6. Numerical examples. In this section, we present some numerical exam-
ples which show the flexibility and efficiency of our method. We start with several
2D examples based on the linear Saint Venant–Kirchhoff material model, which are
numerically studied using the energy- and momentum-conserving algorithm (Algo-
rithm II). Then, we apply our corotational scheme to a nonlinear material law. At
the end, we present a 3D example.

In our 2D examples, we compare the two corotational formulations (with and with-
out the linearization of strains introduced in section 2.3) with the standard nonlinear
formulation, where the linearization is not possible due to the rotation. In what fol-
lows, we call these three formulations “corotational linear,” “corotational nonlinear,”
and “(standard) nonlinear,” where “nonlinear” is always referred to using the nonlin-
earized Green–Lagrange strains (2.2). We remark that in the corotational nonlinear
setting, two nonlinearities occur: the nonlinearity to determine the correct rotation
angle and the nonlinearity in the stiffness term. For the nonlinear formulations, we
use an energy-conserving time discretization as introduced, e.g., in [35].

To compare the results, we compute from the solution ϕn of the standard nonlin-
ear setting in a postprocessing step the translation τn and the rotation angle θn such
that the minimization condition (2.5) is fulfilled, i.e.,

τn :=

∫
Ω

ρϕn,

∫
Ω

ρR�
θn(ϕn − τn) · Πx = 0.
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We then set
.
τn+1/2 = τn+1−τn

Δt and
.

θn+1/2 = θn+1−θn
Δt . The energy for the standard

nonlinear formulation is computed by

1

2

∫
Ω

ρ
.
ϕ

2
n +

1

2

∫
Ω

Σ(dn) : E(dn),

with dn := ϕn − x, whereas the angular momentum is given by∫
Ω

ρ
.
ϕn · Πϕn.

For the corotational formulations, the energies are computed by (3.5) and (3.7),
respectively, and the angular momentum by (3.6).

As initial deformations, we use either u0 = 0, i.e., ϕ0 = x, or u0 = urot(
.

θ0)

and ϕ0 = ϕrot(
.

θ0), respectively, where urot, ϕrot are the effective displacements and

deformations of a body rotating with a given constant angular speed
.

θ0.

We obtain urot(
.

θ0) for the linearized setting by solving the system

(6.1) −(
.

θ0)
2M(x + urot) + Surot = 0.

We note that multiplying (6.1) by Πx gives Murot · Πx = 0 and thus urot ∈ Xh.

For the nonlinearized strains, ϕrot(
.

θ0) is given by the solution of

(6.2) −(
.

θ0)
2Mϕrot + S(ϕrot − x) = 0.

Here, S(·) denotes the discretized nonlinear elasticity operator.
The nonlinear equation (4.5) is solved for our examples using a Newton scheme.

We note that the derivative d
dθun+1/2 can be computed by solving the system (4.4)

with a modified right-hand side. For the corotational nonlinear setting, we do not use a
full Newton scheme to resolve both nonlinearities but a nested iteration scheme leading
here to an inner iteration where the tangential matrix can be computed in the same
way as in the standard nonlinear setting. Restricting the number of inner iterations
(also called inexact solving), we get an efficient solver that is easy to implement.

6.1. Examples using the standard nonlinear setting. We start with two
examples demonstrating the effect of large timesteps when using the standard nonlin-
ear setting to simulate high-speed rotating bodies; see Figure 6.1. First, we simulate
a rigid body motion with a constant rotation speed of 20; for details see Example 1
later. Here we see that the larger the stepwidth is, the worse the rotational speed is
approximated. Second (see Example 3), a rigid body motion with high-speed elastic
oscillations is depicted. These high-speed oscillations cannot be resolved for large
timesteps. Yet, it turns out that the standard nonlinear setting with energy- and
momentum-conserving time integration scheme not only reproduces a wrong mean
value of the rotational speed but also artificially increases the oscillation.

6.2. Example 1: Rotating beam. We consider a beam that is rotating with a
constant speed. The domain Ω is given by [−0.5, 0.5]× [−0.05, 0.05] (see Figure 6.2),
and the material parameters are given by E = 1.62 · 105, ν = 0.2, and ρ = 1.0.

We assume no boundary and no volume forces, i.e., g = 0 and f = 0. As initial

rotation speed, we use
.

θ0 = 20. For the corotational setting, we use the initial effective

displacement u0 = urot(
.

θ0) and u0 = ϕrot(
.

θ0) − x for the linear and nonlinear strain
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Fig. 6.1. Calculated rotation speed using standard time discretization. Left: rigid body motion.
Right: rotation plus oscillation.

Fig. 6.2. Example 1. Left: grid. Middle: initial condition for corotational formulation. Right:
initial condition for nonlinear formulation (displacement with factor 200, effective stress).

Fig. 6.3. Example 1. Deformed mesh and effective stress (corotational linear) at time t =
0, 0.1, 0.2, 0.3, 0.4.

setting, respectively, and set s0 =
.

θ0Π(x + u0), θ0 = 0.
.
τ0 = (1, 1)�, τ0 = (0, 0)�.

With these initial conditions, it is easy to verify that the solution of (3.13)–(3.15) is

given by θn = nΔt
.

θ0,
.

θn =
.

θ0, τn = nΔt
.
τ0,

.
τn =

.
τ0, un = u0, sn = s0. The solution

at various timesteps is given in Figure 6.3.

For the standard nonlinear setting, we set ϕ0 = ϕrot(
.

θ0) and
.
ϕ0 =

.

θ0Πϕ0. As
timesteps we use Δt = 0.05, 0.01, 0.001. We note that in our corotational formulations
the solution is independent of the choice of Δt. Moreover, only one Newton iteration is

needed if the iteration is started with θn+1 such that
.

θn+1/2 =
.

θn which is the correct
solution. This holds for both corotational formulations with and without linearized
strain. For the standard nonlinear setting, we observe an increasing number of Newton
steps with increasing Δt; see Figure 6.4. Moreover, it turns out that for large Δt the
nonlinear approach is not able to handle the rotation correctly resulting in a wrong
rotational speed.

6.3. Example 2: Rotation of a soft disc with no initial deformation. In
this example, we consider a soft rotating disc, given by a circle with radius r = 1.0
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Fig. 6.4. Example 1. Computed angular speed and number of iterations, both corotational
formulations vs. nonlinear approach with different timesteps.

Fig. 6.5. Example 2. Deformed mesh and effective stress (corotational linear) at time tn,
n = 0, 5, 10, 15, 20.

and the material parameters E = 500, ν = 0.2, and ρ = 1.0. We assume no boundary
and volume forces and use the timestep Δt = 0.001. As initial conditions for the

corotational settings, we use
.

θ0 = 20 and assume no initial displacements, therefore

u0 = 0. The initial speed is given by s0 =
.

θ0Πx and the initial rotation angle by

θ0 = 0. For the standard nonlinear setting, we have ϕ0 = x,
.
ϕ0 =

.

θ0Πx. We assume
zero translation, i.e., τ = (0, 0)�,

.
τ = (0, 0)�.

In Figure 6.5, the solution of the corotational linear setting at various times
is shown. The calculated angular speed for the corotational and standard nonlinear
approaches is depicted in Figure 6.6. We observe that the corotational linear approach
fails to resolve the frequency of the solution. This is due to the linearized strain which
leads to a wrong approximation of the elastic term for large deformations. However,
the corotational nonlinear setting perfectly reproduces the results obtained by the
standard nonlinear setting. When comparing the energies and angular momenta for
the three formulations (Figure 6.7), we see that all settings yield conservation of these
quantities.

In Figure 6.8, the necessary Newton steps per timestep for the standard nonlinear
and the two corotational settings are shown. For Δt = 0.01 we see that the stan-
dard nonlinear setting even performs somewhat better than the corotational formu-
lations. In a second test, we increase the stepwidth to Δt = 0.1. Here, a comparable
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Fig. 6.6. Example 2. Angular speed using nonlinear, corotational nonlinear, and corotational
linear formulation.
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Fig. 6.7. Example 2. Energies for nonlinear, corotational nonlinear, and corotational linear
formulation.
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Fig. 6.8. Example 2. Number of Newton iterations for nonlinear, corotational nonlinear, and
corotational linear formulation at different timesteps.
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Fig. 6.9. Example 3. Number of Newton iterations comparing standard nonlinear with corota-
tional settings.

performance is obtained for all three schemes.

6.4. Example 3: Rotation of a hard disc with no initial deformation.
Now, we consider a rotating hard disc given by a circle with radius r = 1.0 and
the material parameters E = 1.62 · 105, ν = 0.2, and ρ = 1.0. We use the same
initial and boundary conditions as in the previous example and the timesteps Δt =
0.001, 0.005, 0.01, 0.02.

In Figure 6.9, the necessary Newton steps per timestep for the three formulations
are shown. One can see that for small timesteps all settings perform quite well.
For larger timesteps, however, the number of iterations using the standard nonlinear
approach increases while the corotational formulations stay at low iteration numbers.
When comparing the corotational linear with the corotational nonlinear setting, we
can clearly see that in this example the linearization enhances the performance, which
is expectable because the very stiff body is close to a rigid body motion.

The angular speed
.

θ obtained by the three settings is depicted in Figure 6.10. We
see that for large timesteps the time integration scheme is no longer able to handle
the oscillations correctly. Moreover, the standard nonlinear approach gives a wrong
average rotation speed. This points out the fact that the standard time integration
scheme with a large timestep is not able to handle the rotation correctly even when
using the nonlinear strain relationship. Here, the corotational approach yields a good
approximation of the angular speed for both strain-displacement relationships.

In Figure 6.11, we compare the angular momentum for the two different algo-
rithms presented in this paper. While Algorithm II preserves the angular momentum,
we see a small oscillation when using Algorithm I.
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Fig. 6.10. Example 3. Angular speed for nonlinear and corotational settings with different Δt.
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Fig. 6.11. Example 3. Angular momentum using Algorithms I and II.

6.5. Example 4: Rotation of a beam under surface traction. We con-
sider a rotating beam under surface traction. For such rotational problems, boundary
forces normal or perpendicular to the rotated configuration are quite common. This
leads to a boundary force g = Rθgrel, where grel is the boundary force relative to the
rotated configuration and θ is the actual rotation angle that can be defined, for exam-
ple, by (2.5). This setting causes extra difficulties when solving with standard time
integration schemes as the right-hand side depends on the actual solution. However,
in the corotational framework, this type of boundary condition can be modeled in a
natural way and moreover gives a right-hand side that is independent of the actual
rotation.

We use the same setting and initial conditions as in Example 1 and a timestep
of Δt = 0.01. Here, the surface traction is given by grel = (0,−20)� on the right
boundary and grel = (0, 20)� on the left boundary. On the top and bottom, we assume
no surface traction. The rotation angle and angular speed using the corotational
linear framework are depicted on the left of Figure 6.12, and the energy and angular
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Fig. 6.12. Example 4. Left: rotation angle and rotation speed. Right: energy and angular
momentum.

Fig. 6.13. Example 4. Effective stress and effective displacement u (factor 200) at time t =
0, 0.2, 0.4, 0.5.
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Fig. 6.14. Example 4. Number of iterations.

momentum are shown on the right. In Figure 6.13, the effective displacement u is
plotted at various timesteps. We note that for this example the number of necessary
Newton iterations is two for all timesteps; see Figure 6.14. Computing the same
setting with the corotational nonlinear scheme leads to iteration numbers between 4
and 5 without improving the results.

6.6. Example 5: Nonlinear material law. In this example, we apply our
corotational formulation to a nonlinear material law. We use the Mooney–Rivlin
material model with E = 500, ν = 0.2, and cm = 1

11 . The computational domain
and initial conditions are the same as in Examples 2 and 3, i.e., a circle with initial
speed 20 and no initial displacements. Again, we use a stepwidth of Δt = 0.001. To
achieve energy conservation, we use the method of Gonzalez [22]. The results for the
rotation angle and angular speed comparing the standard nonlinear scheme with the
corotational nonlinear schemes are given in Figure 6.15. Comparing with the linear
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Fig. 6.15. Example 5. Left: angular speed. Middle and right: energies and angular momenta.
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Fig. 6.16. Example 5. Iteration numbers.

Fig. 6.17. Example 6. Deformed mesh at time t = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

Saint Venant–Kirchhoff material model used in Example 2, we see that the body is
artificially hardened by the linearization in the material law. Good agreement of the
angular speed is achieved for the two schemes. This can also be observed in the energy
plots. However, in contrast to our new corotational scheme, the standard nonlinear
scheme does not preserve the angular momentum; see Figure 6.15. The number of
iterations per timestep is compared in Figure 6.16 for stepwidths Δt = 0.001 and
Δt = 0.01. Here, both schemes yield similar iteration numbers with the standard
nonlinear scheme performing somewhat better.

6.7. Example 6: Rotation of a 3D cube. In our last example, we apply our
algorithm to a 3D problem. We model a rotating cube with constant rotation axis
(1, 1, 1)�. We note that for this kind of rotation, R can be represented in terms of
just one rotation angle. Moreover, the angular momentum is exactly preserved in
this example as the algorithm preserves the norm of the angular momentum. The
domain is given by [0, 1]× [0, 1]× [0, 1] and the material parameters by E = 1.62 ·104,
ν = 0.2, and ρ = 1.0. We use Δt = 0.001, an initial angular speed of 20, and zero
initial effective displacement. The deformed mesh at various timesteps is presented in
Figure 6.17. As the cube is not rotationally symmetric with respect to the rotation
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Fig. 6.18. Example 6. Left: angular speed. Right: energy and angular momentum.

axis, we do not get the periodic behavior as in the 2D examples; see Figure 6.18.
However, the energy and angular momentum are still preserved.
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