Examen partiel - Analyse fonctionnelle approfondie

On justifiera CHAQUE réponse.

Exercice 1.

- 1. Soit $E \subset \mathbb{R}$ dénombrable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions de E dans \mathbb{R} telle que pour tout n et tout x de E, $|f_n(x)| \leq 1$. Montrer qu'il existe une sous-suite de $(f_n)_{n \in \mathbb{N}}$ qui converge simplement vers une fonction $f: E \to \mathbb{R}$.
- 2. Soit $(x_n)_{n\in\mathbb{N}}$ une suite orthogonale d'un espace de Hilbert H de norme notée $\|\cdot\|$. Montrer l'équivalence :

$$\sum_{n\in\mathbb{N}} x_n$$
 converge $\Leftrightarrow \sum_{n\in\mathbb{N}} ||x_n||^2$ converge.

3. Soit F une partie équi-continue de C(K, E), où K est un espace compact et E un e.v.n. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de F. Montrer l'équivalence :

 $(f_n)_{n\in\mathbb{N}}$ converge simplement vers $f\Leftrightarrow (f_n)_{n\in\mathbb{N}}$ converge uniformément vers f.

- 4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'un espace de Hilbert H. Soit K, une partie compacte de H et $x\in H$. On suppose :
 - $\forall n \in \mathbb{N}, \ x_n \in K,$
 - $-x_n \rightharpoonup x$.

Montrer que $x_n \to x$.

5. Soit H un espace de Hilbert. On suppose que pour toute suite $(x_n)_{n\in H}$

$$x_n - x \rightarrow 0 \Rightarrow x_n - x \rightarrow 0.$$

Montrer que H est de dimension finie.

Exercice 2.

On considère une famille $(g_n)_{n\in\mathbb{N}}$ de fonctions continues de [0,1] dans \mathbb{R} telle que

$$\forall n \in \mathbb{N}, \ \int_0^1 g_n^2(x) dx \leqslant 1$$

On considère les fonctions $f_n:[0,1]\to\mathbb{R}$ telle que

$$\forall n \in \mathbb{N}, \forall x \in [0, 1], \ f_n(x) = \int_0^x g_n(t)dt$$

- 1. Montrer qu'on peut extraire de la famille $(f_n)_{n\in\mathbb{N}}$ une sous-suite qui converge uniformément vers une fonction $f\in\mathcal{C}([0,1],\mathbb{R})$.
- 2. Montrer, en construisant un contre-exemple, que le résultat précédent n'est pas valable pour la famille $(g_n)_{n\in\mathbb{N}}$.

Exercice 3.

On considère un espace de Hilbert séparable H possédant une base hilbertienne notée $(e_i)_{i\in\mathbb{N}}$.

- 1. Vérifier que la suite $(e_i)_{i\in\mathbb{N}}$ converge faiblement vers 0.
- 2. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels bornés. On note

$$u_n = \frac{1}{n+1} \sum_{i=0}^{n} a_i e_i.$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ converge fortement vers 0.

3. Montrer que $(\sqrt{n}u_n)_{n\in\mathbb{N}}$ converge faiblement vers 0.