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Consider the regression problem
Yi=f(i/n)+ €., € ~N(0, 0% (1)

where f : [0,1] — R and 0 € R* are unknown
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Consider the regression problem
Yi=f(i/n)+€, € ~N(0,0%) (1)

where f : [0,1] — R and 0 € R* are unknown

We want to test, for 0 < o <1

Ho : f \(versus Hy : fis not \, and f € Hy(L)
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More precisely we want a test that
@ require no regularity assumptions under the null
@ has good asymptotic properties (consistency)
@ does not depend on the regularity o under the alternative
@ achieves the "optimal” separation rate for a wide variety of o
@ is easy to implement
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Shape constrained estimation appears in a variety of models (Drug
Response, Global Warming, Survival Analysis, . ..)
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Shape constrained estimation appears in a variety of models (Drug
Response, Global Warming, Survival Analysis, . ..)
Many tests in the frequentist literature
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Shape constrained estimation appears in a variety of models (Drug
Response, Global Warming, Survival Analysis, . ..)
Many tests in the frequentist literature but no Bayesian results . ..
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We build a prior on f by considering a piecewise constant approximation

k
fuk = Zwi]l](/q)/k,i/k]

=1

and a prior
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|dea for a test

We will test the monotonicity of the sequence (w;); and thus need
@ A criteria for monotonicity
o Conditions on the prior such that f, x concentrates around f
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We define

H(w, k) = 1<rp2/>;k(wj — w)
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We define

H(w, k) = l<rp<aj_>;k(wj — w)

We consider the test

5T = 11{7r(H(w, k) > MH|Y,) > 1/2}
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We define
H(w, k) = P — W,
(w, k) 122);,((“’1 wi)

We consider the test

5T = ]1{7r(H(w, k) > MH|Y,) > 1/2}

@ This is a modified version of the Bayes Factor

@ We reject monotonicity if we have sufficiently strong evidence that
fis not \,
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We will say that §7 is consistent if

sup Eq(d7) = o(1)
~

sup Eo(1—47) = o(1)
d(F,\)>p.FEHa(L)

Separation rate

We define the separation rate p, of our test as the minimal sequence r,
such that

sup Eq(d7) = o(1)
feN

sup Eg(1—07) =o(1)
d(f,\)>rn,fEH(L)

(3)
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Theorem

Let M5 = Mqy+\/klog(n)/n and let w be a prior on f, x such that w; " g
and k ~ m, o ~ h. Assume that g and h put mass on R and R**
respectively and that . is such that there exist positive constants Cy
and C, such that

Where L(k) is either log(k) or 1. Consider the test

Ho : £\ versus Hy : f not \,, T € Hy(L)

let p, = M(n/log(n)) "~ a/(2a+1)

achieve the separation rate p,,.

, then the test ¢y is consistent and
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e

For a fixed k, let wq be such that

wo = argmin {w, KL(fyx. )}

We first prove

Result
7r<ma><|w,—w?| > Cg,’ﬂY”) < 1/2 4 opp(1). (4)
1
where ££ is such that

¢k o (n/log(n)=3 if £\
" Y ps if f not \,, f € Hq(L)
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o For f\,
H(w, k) <2max|w; — w?
1
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o For f\,
H(w, k) <2max|w; — w?
1

@ For f not N\, and f € Hy(L)
H(w, k) > dn(fyo k0 ) — 2 max |w; — w,o|
1

> Pn— ||ﬁu°,k - f||n_2ml_ax‘wi _w?|
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d

o ||fyox — flln < pn/4 given some consistency results
@ M < £5/4 with posterior probability — 1
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d

o ||fyox — flln < pn/4 given some consistency results
@ M < £5/4 with posterior probability — 1

Under Hg

T (H(w, k) > ME|Y") < 7 (max|w; — w?| > £K/8)
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t'd

o ||fyox — flln < pn/4 given some consistency results
@ M < £5/4 with posterior probability — 1

Under Hg
T (H(w, k) > ME|Y") < 7 (max|w; — w?| > £K/8)

Under H;

—|If —f _Mk
7 (H(w, k) < MEY,) < (max|wi —wl| > on = Ilfus 4 = Flln = My |Y”>
1

4
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We run our test for nine functions adapted from the frequentist

literature

Functions

F1

SALOMOND

Adaptive Bayes Test for monotonicity

F3

015-
010-

005-

6

Fo.
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00 02 04 06 08 10
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@ We propose a generic choice for the prior
@ We study the behaviour of our test for various values of n
@ Compare our results with those obtained in the literature
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OO0@000

lor

We choose

° k~P(N)

o olk ~ IG(a, B)

° wilk, 02~N(m,o?/u)
With specific choices for the
hyper-parameters
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OO0@000
prior
We choose
o k~P(N) @ We get a closed form
e olk ~ IG(a,B) formulation for the
o wilk, 02~N(m, 0%/1) posterior distribution.
1 ’ ’

@ All the computations are

With specific choices for the straightforward

hyper-parameters
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“ion study

f o2 Barraud et Akakpo et Bayes Test, n:

al. n=100 al. n=100 100 250 500 1000
fi | 0.01 99 99 100.0 100.0 100.0 100.0
f» | 0.01 99 100 99.1 100.0 100.0 100.0
f3 0.01 99 98 99.6 100.0 100.0 100.0
fa | 0.01 100 99 100.0 100.0 100.0 100.0
fs | 0.004 99 99 99.6 100.0 100.0 100.0
fs | 0.006 98 99 100.0 100.0 100.0 100.0
fz | 0.01 76 68 20.1 40.5 61.6 85.4
fs | 0.01 - - 0.5 1.0 0.6 0.4
fo | 0.01 - - 6.2 6.2 4.4 3.4
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We apply our procedure to Global Warming dataset
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We apply our procedure to Global Warming dataset

We model the annual temperature anomalies since the 1850's.
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We apply our procedure to Global Warming dataset

We model the annual temperature anomalies since the 1850’s. Used in
the frequentist literature to perform isotonic regression
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We apply our procedure to Global Warming dataset

We model the annual temperature anomalies since the 1850’s. Used in
the frequentist literature to perform isotonic regression
— Is there a monotone trend ?
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Temperature Anomaly

0.4 0.6
Rescaled date

We run the MCMC sampler using K = 10° iterations
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[elejelele] ]

Temperature Anomaly

0.4 0.6
Rescaled date

We run the MCMC sampler using K = 10° iterations — non monotonic
trend (1)
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@ A consistent test for monotonicity
@ that achieve an “optimal” separation rate

@ that is easy to implement
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.

We have

@ A consistent test for monotonicity
@ that achieve an “optimal” separation rate
@ that is easy to implement

Problems

@ We don’t control for the constant
@ No idea how the BF behave
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