Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion

Adaptive Bayes Test for monotonicity

Journées MAS - Clermont Ferrand

J-B. Salomond

CREST - Dauphine

August 30, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Contents	5				

- Simulated examples
- Real Data

5 Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Introdu	uction				

Consider the regression problem

$$Y_i = f(i/n) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2) \tag{1}$$

where $f : [0, 1] \rightarrow \mathbb{R}$ and $\sigma \in \mathbb{R}^+$ are unknown

(日) (四) (日) (日) (日)

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Introdu	uction				

Consider the regression problem

$$Y_i = f(i/n) + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2) \tag{1}$$

where $f : [0, 1] \rightarrow \mathbb{R}$ and $\sigma \in \mathbb{R}^+$ are unknown

Aim

We want to test, for 0 < $lpha \leq 1$

 $H_0: f \searrow$ versus $H_1: f$ is not \searrow and $f \in H_{\alpha}(L)$

			000000	
ion cont'd				
	ion cont'd	ion cont'd	ion cont'd	ion cont'd

More precisely we want a test that

- require no regularity assumptions under the null
- has good asymptotic properties (consistency)
- ullet does not depend on the regularity lpha under the alternative
- \bullet achieves the "optimal" separation rate for a wide variety of α
- is easy to implement

イロト 不得 トイヨト イヨト 三日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Why?					

Shape constrained estimation appears in a variety of models (Drug Response, Global Warming, Survival Analysis, ...)

(日) (四) (日) (日) (日)

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Why?					

Shape constrained estimation appears in a variety of models (Drug Response, Global Warming, Survival Analysis, ...) Many tests in the frequentist literature

▲日▼▲母▼▲日▼▲日▼ ヨーシック

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Why?					

Shape constrained estimation appears in a variety of models (Drug Response, Global Warming, Survival Analysis, ...) Many tests in the frequentist literature but no Bayesian results ...

イロト イポト イヨト イヨト 一日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Our Mod	lei				

We build a prior on f by considering a piecewise constant approximation

$$f_{\omega,k} = \sum_{i=1}^{k} \omega_i \mathbb{1}_{](i-1)/k, i/k]}$$

and a prior

$$\pi:\begin{cases} k & \sim \pi_k \\ \omega_i & \stackrel{iid}{\sim} g \\ \sigma & \sim h \end{cases}$$

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Test in	a nutshell				

Idea for a test

We will test the monotonicity of the sequence $(\omega_i)_i$ and thus need

- A criteria for monotonicity
- Conditions on the prior such that $f_{\omega,k}$ concentrates around f

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Bayes	Test				

We define

$$H(\omega, k) = \max_{1 < i < j \le k} (\omega_j - \omega_i)$$

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
D	T				
Bayes	lest				

We define

$$H(\omega, k) = \max_{1 < i < j \le k} (\omega_j - \omega_i)$$

Test

We consider the test

$$\delta_n^{\pi} = \mathbb{1}\left\{\pi\left(H(\omega, k) > M_n^k | Y_n\right) > 1/2\right\}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

ntroduction	Main result	Sketch of the proof	Examples 000000	Conclusion
t				
	ntroduction	troduction Main result	ttroduction Main result Sketch of the proof	troduction Main result Sketch of the proof Examples

We define

$$H(\omega, k) = \max_{1 < i < j \le k} (\omega_j - \omega_i)$$

Test

We consider the test

$$\delta_n^{\pi} = \mathbb{1}\left\{\pi\left(H(\omega, k) > M_n^k | Y_n\right) > 1/2\right\}$$

Remarks

- This is a modified version of the Bayes Factor
- We reject monotonicity if we have sufficiently strong evidence that f is not \searrow

イロン スポン スポン スポン 一部

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Some	definitions				

Consistency

We will say that δ_n^{π} is consistent if

$$\sup_{\substack{f\searrow\\d(f,\searrow)>\rho, f\in H_{\alpha}(L)}} \mathbb{E}_{0}^{n}(\delta_{n}^{\pi}) = o(1)$$

$$(2)$$

Separation rate

We define the separation rate ρ_n of our test as the minimal sequence r_n such that

$$\sup_{f \in \mathcal{Y}} E_0^n(\delta_n^{\pi}) = o(1)$$

$$\sup_{d(f, \mathcal{Y}) > r_n, f \in H_\alpha(L)} E_0^n(1 - \delta_n^{\pi}) = o(1)$$
(3)

▲圖▶ ▲圖▶ ▲圖▶

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
N4 · -	T 1				
Main	I heorem				

Theorem

Let $M_n^k = M_0 \sqrt{k \log(n)/n}$ and let π be a prior on $f_{\omega,k}$ such that $\omega_i \stackrel{iid}{\sim} g$ and $k \sim \pi_k$, $\sigma \sim h$. Assume that g and h put mass on \mathbb{R} and \mathbb{R}^{+*} respectively and that π_k is such that there exist positive constants C_d and C_u such that

 $e^{-C_d k L(k)} \leq \pi_k(k) \leq e^{-C_u k L(k)}$

Where L(k) is either log(k) or 1. Consider the test

 $H_0: f \searrow$ versus $H_1: f$ not \searrow , $f \in H_{\alpha}(L)$

let $\rho_n = M(n/\log(n))^{-\alpha/(2\alpha+1)}$, then the test δ_n^{π} is consistent and achieve the separation rate ρ_n .

イロト 不得 トイヨト イヨト 三日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Sketch	of the pro	of			

For a fixed k, let ω_0 be such that

$$\omega_0 = \operatorname{argmin} \{ \omega, \mathsf{KL}(f_{\omega,k}, f) \}$$

We first prove

Result $\pi \left(\max_{i} |\omega_{i} - \omega_{i}^{0}| \geq C\xi_{n}^{k}|Y^{n} \right) \leq 1/2 + o_{P_{0}^{n}}(1).$ (4)
where ξ_{n}^{k} is such that $\xi_{n}^{k} := \begin{cases} (n/\log(n))^{-1/3} & \text{if } f \searrow \\ \rho_{n} & \text{if } f \text{ not } \searrow, f \in H_{\alpha}(L) \end{cases}$

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Sketch a	of the pro	of cnt'd			

• For $f \searrow$

$$H(\omega, k) \leq 2 \max_{i} |\omega_i - \omega_i^0|$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Sketch	of the pro	of cnt'd			

• For
$$f \searrow$$

 $H(\omega, k) \leq 2 \max_{i} |\omega_{i} - \omega_{i}^{0}|$
• For f not \searrow , and $f \in H_{\alpha}(L)$
 $H(\omega, k) \geq d_{n}(f_{\omega^{0},k}, \searrow) - 2 \max_{i} |\omega_{i} - \omega_{i}^{0}|$
 $\geq \rho_{n} - ||f_{\omega^{0},k} - f||_{n} - 2 \max_{i} |\omega_{i} - \omega_{i}^{0}|$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Skotch	of the pro	of cpt'd			
Skelch	or the pro	or chi u			

Results

- $||f_{\omega^0,k} f||_n \le \rho_n/4$ given some consistency results
- $M_n^k \leq \xi_n^k/4$ with posterior probability $\rightarrow 1$

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Sketch	of the pro	of cnt'd			

Results

- $||f_{\omega^0,k} f||_n \le \rho_n/4$ given some consistency results
- $M_n^k \leq \xi_n^k/4$ with posterior probability $\rightarrow 1$

Under H_0

$$\pi\left(H(\omega,k) > M_n^k | Y^n\right) \le \pi\left(\max|\omega_i - \omega_i^0| > \xi_n^k/8\right)$$

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Sketch	of the pro	of cnt'd			

Results

- $||f_{\omega^0,k} f||_n \le \rho_n/4$ given some consistency results
- $M_n^k \leq \xi_n^k/4$ with posterior probability $\rightarrow 1$

Under H_0

$$\pi\left(H(\omega,k) > M_n^k | Y^n\right) \le \pi\left(\max|\omega_i - \omega_i^0| > \xi_n^k/8\right)$$

Under H_1

$$\pi\left(H(\omega,k) \leq M_n^k | Y_n\right) \leq \pi\left(\max_i |\omega_i - \omega_i^0| \geq \frac{\rho_n - ||f_{\omega^0,k} - f||_n - M_n^k}{4} | Y^n\right)$$

We run our test for nine functions adapted from the frequentist literature

(日) (四) (日) (日) (日)

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Simulated examples					
Simulate	d Examp	les cnt'd			

- We propose a generic choice for the prior
- We study the behaviour of our test for various values of *n*
- Compare our results with those obtained in the literature

▲日▼▲母▼▲日▼▲日▼ ヨーシック

Contents	Introduction	Main result	Sketch of the proof	OO0000	Conclusion
Simulated examples					
Some sp	ecific cho	pice of prio	r		

We choose

- $k \sim \mathcal{P}(\lambda)$
- $\sigma | k \sim IG(\alpha, \beta)$
- $\omega_i | k, \sigma^2 \sim \mathcal{N}(m, \sigma^2/\mu)$

With specific choices for the hyper-parameters

イロト 不得下 イヨト イヨト 二日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Simulated exampl	es				
Some s	pecific cho	pice of pric	or		

We choose

- $k \sim \mathcal{P}(\lambda)$
- $\sigma | k \sim IG(\alpha, \beta)$
- $\omega_i | k, \sigma^2 \sim \mathcal{N}(m, \sigma^2/\mu)$

With specific choices for the hyper-parameters

- We get a closed form formulation for the posterior distribution.
- All the computations are straightforward

イロト 不得下 イヨト イヨト 二日

Conter	ts	Introductio	on	Main result	Sketch of the proof	Examples 000000	Conclusion
Simula	ted examples						
		C	<u> </u>	1			

Results of the Simulation study

f	σ^2	Barraud et	Akakpo et		Bayes 7	Fest, <i>n</i> :	
1	0	al. <i>n</i> = 100	al. <i>n</i> = 100	100	250	500	1000
f_1	0.01	99	99	100.0	100.0	100.0	100.0
f_2	0.01	99	100	99.1	100.0	100.0	100.0
f_3	0.01	99	98	99.6	100.0	100.0	100.0
f_4	0.01	100	99	100.0	100.0	100.0	100.0
f_5	0.004	99	99	99.6	100.0	100.0	100.0
f_6	0.006	98	99	100.0	100.0	100.0	100.0
f_7	0.01	76	68	20.1	40.5	61.6	85.4
f ₈	0.01	-	-	0.5	1.0	0.6	0.4
f_9	0.01	-	-	6.2	6.2	4.4	3.4

Skip Real Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○●O	Conclusion
Real Data					
Real D	atas				

・ロト ・ 日 ・ モー・ トー 日 ・ うへで

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○●O	Conclusion
Real Data					
Real D	Datas				

Data

We model the annual temperature anomalies since the 1850's.

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○●O	Conclusion
Real Data					
Real D	Datas				

Data

We model the annual temperature anomalies since the 1850's. Used in the frequentist literature to perform isotonic regression

イロト イポト イヨト イヨト 二日

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○●O	Conclusion
Real Data					
Real D	Datas				

Data We model the annual temperature anomalies since the 1850's. Used in the frequentist literature to perform isotonic regression \rightarrow ls there a monotone trend ?

イロト イポト イヨト イヨト 一日

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○ ○●	Conclusion
Real Data					
Real D	Data cnt'd				

We run the MCMC sampler using $K = 10^5$ iterations

Contents	Introduction	Main result	Sketch of the proof	Examples ○○○○ ○●	Conclusion
Real Data					
Real D)ata cnt'd				

We run the MCMC sampler using ${\cal K}=10^5$ iterations \rightarrow non monotonic trend (!)

イロン スポン スポン スポン 一部

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Summary	/				

We have

- A consistent test for monotonicity
- that achieve an "optimal" separation rate
- that is easy to implement

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Contents	Introduction	Main result	Sketch of the proof	Examples 000000	Conclusion
Summa	ary				

We have

- A consistent test for monotonicity
- that achieve an "optimal" separation rate
- that is easy to implement

Problems

- We don't control for the constant
- No idea how the BF behave

イロト イポト イヨト イヨト 二日