

Bayes test for monotonicity

Jean-Bernard Salomond (jean.bernard.salomond@ensae.fr) CREST & Université Paris Dauphine

We propose a Bayesian procedure for testing monotonicity of a regression function. Our test is proved to be consistent and to achieve the optimal separation rate (up to a log(n) factor). We propose a choice for the prior distribution and study the behaviour of our test for finite samples.

Theorem

Let $M_n^k = M_0 \sqrt{k \log(n)/n}$ and let π be a prior on $f_{\omega,k}$ such that $\omega_i \stackrel{na}{\sim} g$ and $k \sim \pi_k$, $\sigma \sim h$. Assume that g and h put mass on \mathbb{R} and \mathbb{R}^{+*} respectively and that π_k is such that there exist positive constants C_d and C_u such that $e^{C_d k L(k)} < \pi_k(k) < e^{C_u k L(k)}$ Where L(k) is either $\log(k)$ or 1. Consider the test

 $H_0: f \searrow versus H_1: f \text{ not } \searrow, f \in H_\alpha(L)$ let $\rho_n = M(n/\log(n))^{-\alpha/(2\alpha+1)}$, then the test δ_n^{π} is consistent and achieve the separa-

tion rate ρ_n .

Context and Aim

We consider the model

 $Y_i = f(i/n) + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0; \sigma^2),$ (1) with σ^2 fixed or unknown. We want to test $H_0: f \searrow vs H_1: f not \searrow$

We thus test a non parametric null, versus a non parametric alternative

> **Bayesian approach to** monotonicity testing

We build a prior on f by considering a piecewise constant approximation

 $f_{\omega,k}(.) = f_{\omega,k}(.)$

(2)

• Simulated data with σ known

- Regression functions adapted from the frequentist literature
- We choose for the prior

 $\pi_k := \mathcal{P}(\lambda)$ $q := \mathcal{N}(m; s^2)$

- explicit posterior \rightarrow easy to sample from
- The hyperparameter λ has a great influence on the results

Examples

FIGURE: Plot of the regression function

20

40

60

80

100

and then consider the prior

$$\pi: \begin{cases} k & \sim \pi_k \\ \omega_i & \stackrel{iid}{\sim} g \\ \sigma & \sim h \end{cases}$$

i=1

The Bayes Factor approach fails under H_0 when f has flat parts (see [McVinish and Rousseau, 2011]). We thus consider a modified version of the BF. For a given M_n^k

$$\delta_n^{\pi} = \mathbb{1}\left\{\pi\left(H(\omega, k) > M_n^k | Y_n\right) > 1/2\right\}$$

where

 $H(\omega, k) = \max_{i > i} (\omega_j - \omega_i)$

it is thus straightforward to implement.

We want our test to be consistent against

2.0% 4.0% 1.0% 1.0% 3.0% 16.0% 14.0% f8 – 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.0% 0.0% 0.0% f7 – 81.0% 14.0% 22.0% 20.0% 36.0% 45.0% 73.0% 84.0% 79.0% 82.0% 42.0% 46.0% % of rejections 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.0% 100.0% f3 – 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% f2 – 100.0% 100.0% 100.0% 100.0% 99.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% f1 — 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 1000 100 250 500 250 500 100 1000 1000

FIGURE: Result of the simulation study

Comparison with frequentist methods

Extensions

Our method could easily be adapted to

α -Hölderian alternatives

$$\sup_{\substack{f\searrow\\f\searrow}} E_0^n(\delta_n^\pi) = o(1)$$

$$\sup_{l(f,\searrow)>\rho, f\in H_\alpha(L)} E_0^n(1-\delta_n^\pi) = o(1)$$
(3)

and to achieve an optimal separation rate ρ_n obtained in [Akakpo et al., 2012] $\sup E_0^n(\delta_n^\pi) = o(1)$ $f \in \searrow$ (4) $\mathcal{E}_0^n(1-\delta_n^\pi)=o(1)$ sup $d(f, \searrow) > \rho_{\mathbf{n}}, f \in H_{\alpha}(L)$

- Frequentist methods \rightarrow computationally difficult
- We obtain similar results for $\{f_1, \ldots, f_6\}$
- Loss of power for f_7
- Similar Type I error for $\lambda = 3\sigma_y$

test for other qualitative assumptions

- H_0 : f is positive
- H_0 : f is convex
- H_0 : f is unimodal

References

• • • •

[Akakpo et al., 2012] Akakpo, N., Balabdaoui, F., and Durot, C. (2012).

Testing monotonicity via local least concave majorants.

[McVinish and Rousseau, 2011] McVinish, R. and Rousseau, J. (2011).

Bayesian testing of decreasing densities.