Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study 000000

Adaptive Bayes Test for monotonicity ENSAI-ENSAE

J-B. Salomond

CREST - Dauphine

22-23 Mars 2012

イロト イポト イヨト イヨト

3

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study 000000
Table des	matières			

Introduction

- Testing for Monotonicity
- Motivations
- A Bayesian approach
 - Our Model
 - The testing procedure
 - 3 Main results

Simulation study

- Useful remark
- Experimental design
- Results

・ 同 ト ・ ヨ ト ・ ヨ ト

Programme	Introduction ●○	A Bayesian approach 00000	Main results	Simulation study 000000
Testing for Monotonic	ity			
Introductio	n			

We consider the regression model with Gaussian residuals

$$Y_i = f(i/n) + \epsilon_i$$

イロト イロト イヨト イヨト 二日

Programme	Introduction ●○	A Bayesian approach 00000	Main results	Simulation study 000000
Testing for Monotonici	ty			
Introductio	n			

We consider the regression model with Gaussian residuals

$$Y_i = f(i/n) + \epsilon_i$$

Aim

We want to test f is monotone non increasing versus f is not

イロト イポト イヨト イヨト 三日

Programme	Introduction ●○	A Bayesian approach 00000	Main results	Simulation study 000000
Testing for Monot	onicity			
Introduct	cion			

We consider the regression model with Gaussian residuals

 $Y_i = f(i/n) + \epsilon_i$

Aim

We thus construct a Bayesian testing procedure which

- has good asymptotic properties
- is easy to implement and does not require heavy computations, even for large datasets

イロト 不得下 イヨト イヨト 二日

Programme	Introduction ○●	A Bayesian approach 00000	Main results	Simulation study
Motivations				
Why?				

Monotonicity appears in many applications (drug response models for instance)

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Programme	Introduction ○●	A Bayesian approach 00000	Main results	Simulation study
Motivations				
Why?				

Monotonicity appears in many applications (drug response models for instance) Many results in the frequentist literature but no Bayesian results are known

Programme	Introduction 00	A Bayesian approach ●0000	Main results	Simulation study 000000
Our Model				
Our Model				

Given a partition $(I_i)_i$ of (0, 1) in k steps, we consider a piecewise constant approximation of the regression function

$$f_{\omega,k}(.) = \sum_{i=1}^{k} \omega_i \mathbb{1}_{l_i}(.)$$

and put a prior on f by choosing a prior on ω and k

・ロト ・四ト ・ヨト ・ヨト

Programme	Introduction 00	A Bayesian approach o●○○○	Main results	Simulation study 000000
Our Model				
Our Model	cnt'd			

When f is monotone, $f_{\omega,k}$ will be monotone

Idea for a test We will thus test the monotonicity of the sequence $(\omega_i)_i$ and thus need

- A criteria for monotonicity
- Conditions on the prior such that $f_{\omega,k}$ concentrates around f

イロト イポト イヨト イヨト 三日

Programme	Introduction 00	A Bayesian approach ○○●○○	Main results	Simulation study
The testing proce	edure			
The test	ing procedu	re		

We consider $H(\omega, k) = \max_{j>i} (\omega_j - \omega_i)$. We thus have a test

$$\delta_n^{\pi} = \mathbb{1}\left\{\pi\left(H(\omega, k) > M_n^k | Y_n\right) > 1/2\right\}$$

where M_n^k is a threshold such that our test is consistent.

・ロト ・御 ト ・ ヨ ト ・ ヨ ト … ヨ

Programme	Introduction 00	A Bayesian approach ○○0●0	Main results	Simulation study 000000
The testing procedure				
Required as	symp. prop	erties		

Let ${\mathcal F}$ be the set of monotone non increasing functions. We would like our test to be consistent

$$\sup_{f \in \mathcal{F}} \mathsf{E}_0^n(\delta_n^{\pi}) = o(1) \tag{1a}$$

イロト イポト イヨト イヨト 二日

$$\sup_{f,d(f,\mathcal{F})>\rho,f\in H_{\alpha}(L)} \mathsf{E}_{0}^{n}(1-\delta_{n}^{\pi}) = o(1) \tag{1b}$$

Programme	Introduction 00	A Bayesian approach ○○○○●	Main results	Simulation study 000000
The testing procedure				
Required a	symp. pro	perties cnt'd		

We would like our test to achieve an optimal separation rate

$$\sup_{f \in \mathcal{F}} \mathsf{E}_0^n(\delta_n^\pi) = o(1) \tag{2a}$$

・ロト ・個人 ・モト ・モト 三臣

$$\sup_{f,d(f,\mathcal{F})>\rho_n,f\in H_{\alpha}(L)} \mathsf{E}_0^n(1-\delta_n^{\pi}) = o(1) \tag{2b}$$

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study 000000
Main Th	eorem			

Theorem

Let $M_n^k = M_0 \sqrt{k \log(n)/n}$ and let π a prior on $f_{\omega,k}$ such that $\omega_i | k \stackrel{iid}{\sim} g$ and $k \sim \pi_k$. Assume that g puts mass on \mathbb{R} and that π_k is such that their exist positive constants C_d and C_u such that

 $e^{C_d k L(k)} \leq \pi_k(k) \leq e^{C_u k L(k)}$

Where L(k) is either log(k) or 1. Consider the test

 $H_0: f \in \mathcal{F}$ versus $H_1: f \notin \mathcal{F}, f \in H_{\alpha}(L)$

let $\rho_n = M(n/\log(n))^{-\alpha/(2\alpha+1)}$, then δ_n^{π} is consistent and achieve the separation rate ρ_n

イロト 不得下 イヨト イヨト 二日

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study ●○○○○○
Useful remark				
Some us	eful results			

Some specific choices for the prior can be handy.

Prior

We take $k \sim \mathcal{P}(\lambda)$ and $\omega | k \sim \mathcal{N}(m, v^2)$. Then, if $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ we get

$$\pi_{k}(k|Y^{n}) = C(Y^{n})e^{1/2\sum_{i}\left(\frac{\mathbf{Y}_{i}/\sigma^{2}+m/v^{2}}{ni/\sigma^{2}+1/v^{2}}\right)^{2}}\prod_{i=1}^{k}\left(n_{i}/\sigma^{2}+1/v^{2}\right)^{1/2}\pi_{k}(k)$$
$$\omega_{i}|Y^{n}, k \sim \mathcal{N}\left(\frac{m/v^{2}+\mathbf{Y}_{i}/\sigma^{2}}{n_{i}/\sigma^{2}+1/v^{2}}; \frac{1}{n_{i}/\sigma^{2}+1/v^{2}}\right)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study ○●○○○○
Experimental desig	n			
Experime	ental design			

We choose nine regression functions and generate N independent samples y_i , $i = 1 \dots n$. For each sample we perform our test and approximate the proportion of rejection.

12/16

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study
Experimental design				
Experime	ntal design	cnt'd		

For some empirically realistic value for the parameters, simulate N = 25 samples for n = 100, 250, 500, 1000.

Still performing simulation for larger values of N and n

イロト 不得 とうき とうとう

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study
Results				
Results				

Good results even for small sample size

・ロト ・聞ト ・ヨト ・ヨト

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study ○○○○●○
Results				
Results cn	t'd			

We now compare our result with the existing procedures

Function	σ^2	Bayes	S _n reg	T_B
f_1	0.01	1.00	0.99	0.99
f_2	0.01	1.00	1.00	0.99
f_3	0.01	1.00	0.98	0.99
f_4	0.01	1.00	0.99	1.00
f_5	0.004	1.00	0.99	0.99
f_6	0.006	1.00	0.99	0.98
f_7	0.01	0.68	0.68	0.76

Table: Comparison with the existing procedures for n = 100

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study ○○○○○●
Results				
Results of	cnt'd			

Comparison with the				n	
Bayes Factor approach		100	250	500	1000
Ma compute the following	f_1	0.00	0.00	0.00	0.00
ve compute the following	f_2	0.00	0.00	0.00	0.00
Bayes Factor	f_3	0.02	0.00	0.00	0.00
	f ₄	0.00	0.00	0.00	0.00
$BF_{01} =$	f_5	0.00	0.00	0.00	0.00
$\pi(H(\omega,k)\leq 0 Y^n)$	f_6	0.00	0.00	0.00	0.00
$\overline{\pi(H(\omega,k)>0 Y^n)}^{\wedge}$	f_7	0.00	0.00	0.00	0.00
$\pi(H(\omega, k) > 0)$	f_8	0.94	0.37	0.23	0.10
$\overline{\pi(H(\omega, k) \leq 0)}$	<i>f</i> 9	0.11	0.02	0.00	0.00
		Tal	ole: B ₀₁		

(日) (四) (三) (三)

æ

Programme	Introduction 00	A Bayesian approach 00000	Main results	Simulation study ○○○○○●
Results				
Results of	cnt'd			

Compa	arison	with	the
Bayes	Facto	r app	roach

Satisfying results under H_1 , but our procedure perform better under H_0

	n				
	100	250	500	1000	
f_1	0.00	0.00	0.00	0.00	
f_2	0.00	0.00	0.00	0.00	
f_3	0.02	0.00	0.00	0.00	
f ₄	0.00	0.00	0.00	0.00	
f_5	0.00	0.00	0.00	0.00	
f_6	0.00	0.00	0.00	0.00	
f_7	0.00	0.00	0.00	0.00	
f ₈	0.94	0.37	0.23	0.10	
f ₉	0.11	0.02	0.00	0.00	

Table: B₀₁