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Abstract

In this paper, we consider the well known problem of estimating a
density function defined on a compact set under qualitative assumption.
More precisely, we study monotone non increasing densities in a Bayesian
setting, and derive convergence rate for the posterior distribution for two
types of priors, namely, a Dirichlet process and finite mixture prior. We
prove that the posterior distribution based on both prior concentrates
at the rate (n/ log(n))−1/3, which is the minimax rate of estimation up
to a log(n) factor. We also prove that the posterior probability of the
continuous limit of the density at 0 is consistent, which is of particular
interest as the classical non parametric maximum likelihood estimator is
known to be inconsistent at this point.

1 Introduction

The non parametric problem of estimating monotone non increasing curve, and
monotone densities in particular, has been well studied in the literature, both
form a theoretical and applied perspective. For instance, Groeneboom (1985)
and more recently, Balabdaoui and Wellner (2007) studied very precisely the
asymptotic properties of the non parametric maximum likelihood estimator
(NPMLE) , namely, the Grenander estimator, which is proved to be consistent
and to converge at the minimax rate n−1/3 when the support of the distribution
is compact. Monotone non increasing densities arise naturally when considering
survival analysis, where it is natural to assume that the uncensored survival
time have a monotone non increasing density.

In this paper, we study the asymptotic properties of a Bayesian estimator
of a monotone non increasing density function with a compact support. Fol-
lowing Khazaei et al. (2010) we study two families of non parametric priors on
F , the class of monotone non increasing densities with support on [0, 1]. We
obtained the two families of prior a concentration rate of order (n/ log(n))−1/3.
Interestingly, the NPMLE is not consistent at 0, (see Sun and Woodroofe (1996)
and Balabdaoui and Wellner (2007) for instance). However, we prove that the
posterior distribution of f(0) is still concentrate around the true value a the rate
(n/ log(n))−1/3. The non parametric prior are constructed from the mixture rep-
resentation of monotone non increasing density. It is known since Williamson
(1956) that any monotone non increasing density on R+ has a mixture repre-
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sentation

f(x) =

∫ ∞
0

I[0,θ](x)

θ
dP (θ) (1)

where P is a probability distribution on R+, namely a mixing distribution. In
order to indicate the dependence on P , we shall note fP the density function
admiting representation (1). Let F be the set

F =

{
f s.t. f > 0, f ↘

∫ L

0

f = 1

}

Mixtures models have been well studied in a Bayesian framework and various
types of prior have been considered for the mixing distribution. The most pop-
ular non parametric mixture prior model is the Dirichlet Process prior (DP)
introduced by Ferguson (1983) and in their article, Wu and Ghosal (2008) stud-
ied properties of general mixtures models. Using the mixture representation od
monotone non increasing densities (1) we construct non parametric priors on
the set F by considering a prior on the mixing distribution P . We thus fall in
the set up of non parametric mixture prior models. We consider two types of
prior

Type 1 : Dirichlet Process prior P ∼ DP (A,α) where A is a positive constant
and α a probability distribution on [0, L]

Type 2 : Finite mixture P =
∑K
j=1 pjδxj

with K a non zero integer and δx the
dirac distribution on x. We define a prior on P by a distribution Q on K
and given K, distributions πx,K on (x1, . . . , xK) and πp,K on (p1, . . . , pK)

Each of these are prior on the set of probability distributions. For Xn =
(X1, . . . , Xn), a sample of n independent and identically distributes random
variables with a common probability distribution function f0 in F with respect
to the Lebesgue measure, we denote Π(·|Xn) the posterior probability measure
associated with the prior Π. Most of the results on the convergence rates of pos-
terior distribution requires that the prior puts enough mass on Kullback Leiber
neighborhood of the true density

Π({P,KL(fP , f0) ≤ ε}) > 0 (2)

where KL(f1, f2) is the Kullback Leiber divergence between f1 and f2 defined
by KL(f1, f2) =

∫
f1 log(f1/f2). In particular, Wu and Ghosal (2008) proved

that this condition is satisfied by the Type 1 prior in the case of monotone non
increasing densities, under mild conditions on f0. The study of the Type 2 prior
is more delicate as it does not satisfy (2) in general. Moreover, it has been proved
(see Khazaei et al. (2010) ) that for this choice of prior, Π({P,KL(fP , f0) =
∞}) = 1. However, we achieve to prove that the posterior based on a Type 2
prior concentrate at the same rate without the Kullback Leiber property.

The paper is organised as follow. the main results are given in section 2,
where conditions on the priors are discussed. The proof are given afterward.
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2 Main results

Convergence rate of the posterior distribution have been well studied in the
literature and some general results links the rate to the prior (see Ghosal et al.
(2000)). We deduce from these results the optimality of the Bayesian estimator
(up to a log(n) factor).The following theorem gives general conditions on the
prior to achieve a posterior convergence rate of (n/ log(n))−1/3.

Theorem 1. Let Xn = (X1, . . . , Xn) be a iid sample with a common probability
distribution function f0 ∈ F ; and let α be a positive probability density on [0, 1]
with respect to the Lebesgue measure that satisfy for θ close to 0, and t > 1

α(θ) . θt (3a)

Define also Q a probability distribution on N and πp,K a probability distribution
on the simplex of RK satisfying for some positive constants C1, C2, a1, . . . , aK , c

e−C1K log(K) ≥ Q(K) ≥ e−C2K log(K) (3b)
πp,k(p1, . . . , pK) ≥ K−KcKpa11 . . . paKK (3c)

and finally, let (xi)i be the order statistics of K iid random variables from α.
If d is either the L1 or Hellinger distance, then for Π a Type 1 or Type 2 prior,
there exists a positive constant C such that

Π

(
f, d(f, f0) ≥ C

(
n

log(n)

)−1/3
|Xn

)
→ 0, P0 a.s. (4)

when n goes to infinity.

The proof of this theorem is given in section 3. Condition (3) are roughly
the same than in Khazaei et al. (2010). This Theorem is thus an extension of
their result when the density’s support is compact. Given that f0 is in F , we
can uniquely define f0(0) by considering the left limit of f0(x) when x↘ 0. Let
f0(0) = limx↘0 f0(x), under some mild conditions on the first derivative of f ,
we get the consistency and the convergence rate of the posterior distribution
and of the Bayesian estimator associated with the absolute loss, namely, the
posterior median.

Theorem 2. Let f0 ∈ F such that, f ′(0+) < 0. Let Xi
iid∼ f0 for i = 1 . . . n,

and let Π be a prior satisfying (3), then, if εn = C(n/ log(n))−1/3

Pπ
(
|fP (0)− f0(0)| > εn|Xn

)
→ 0 (5)

Consider the posterior median f̂n(0) = inf{x, Pπ
[
fp(0) ≤ x

]
> 1/2} thus

P0

(
|f̂n(0)− f0(0)| > εn|Xn

)
→ 0 (6)

Thus the Bayesian approach is yield a consistent estimator of f0(0), which is
not the case of the maximum likelihood approach. It is known that integrating
the parameter as done in Bayesian approaches induces a penalization. This is
particularly useful in testing or model choice problems but can also be effective
in estimation problems, see for instance Rousseau and Mengersen (2011). The
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problem of estimating f0(0) under monotonicity constraints is another example
of the effectiveness of penalization induced by integration on the parameters.
However, contrariwise to Rousseau and Mengersen (2011), we have not clearly
identified how the penalisation act, and only observe that it leads to a consistent
posterior distribution and a consistent estimator. Furthermore, we only studied
here the consistency in probability and it is not clear whether or not stronger
consistency results, such as almost sure consistency, should be expected.

3 Proofs

We present here the proof of the two main theorem. The proof of Theorem
1 adapted from Ghosal et al. (2000), and is based on a piecewise constant
approximation of f0 in the sense of Kullback Leiber divergence. We therefore
detail the construction of this approximation in the following section. Note that
this is not the construction proposed in Khazaei et al. (2010) which was adapted
to the L1 distance but not to the Kullback Leiber divergence. This construction
is adapted from the one proposed by van der Vaart and Wellner (1996) in the
proof of theorem 2.7.5.

3.1 Proof of Theorem 1
The piecewise constant approximation of f0 is base on a sequential subdivision
of the interval [0, L] with more refined subdivision where f0 is less regular. We
then identify the piecewise constant density by a mixture of uniformes. The
following Lemma gives the form of the probability distribution P such that fP
is in the Kullback Leiber neighbourhood of f0.

Lemma 3. Let f ∈ F be such that f(0) ≤ M < +∞. For all 0 < ε < 1
there exists m . M2/3ε−1, p = (p1, . . . , pm) and x = (x1, . . . , xm) such that
P =

∑m
i=1 δxi

pi satisfy

KL(f, fP ) . ε2,

∫
f log

(
f

fP

)2

. ε2 (7)

where fP is defined as in (1) and KL denote the Kullback Leiber divergence.

Proof. For a fixed ε, let f be in F . Consider P0 the coarsest partition :

0 = x00 < x01 = L

at the ith step, let Pi be the partition

0 = xi0 < xi1 < · · · < xini
= L

and define
εi = max

j

{
(f(xij−1)− f(xij))(x

i
j − xij−1)1/2

}
For each j ≤ 1, if (f(xij−1) − f(xij))(x

i
j − xij−1)1/2 ≥ εi√

2
we split the interval

[xj−1, xj ] into two subsets of equal length. We then get a new partition Pi+1.
We continue the partitioning until the first k such that ε2k ≤ ε3. At each step
i, let ni be the number of intervals in Pi, si the number of interval in Pi



3.1 Proof of Theorem 1 5

that have been divided to obtain Pi+1, and c = 1/
√

2. Thus, it is clear that
εi+1 ≤ 2−1/2εi = cεi

si(cεi)
2/3 ≤

∑
j

(f(xij−1)− f(xij))
2/3(xij − xij−1)1/3

≤

∑
j

f(xij−1)− f(xij)

2/3∑
j

xij − xij−1

1/3

≤M2/3L1/3

using Hölder inequality. We then deduce that

k∑
j=1

nj = k +

k∑
j=1

jsk−j ≤ 2

k∑
j=1

jsk−j ≤ 2

k∑
j=1

jM2/3L1/3(cεk−j)
−2/3

≤ 2M2/3L1/3ε
−2/3
k 21/3

k∑
j=1

j2−j/3

≤ K0M
2/3L1/3ε

−2/3
k

where K0 is a constant. Thus

nk ≤ K0M
2/3L1/3ε−1 (8)

Now, let f be in F , we prove that there exists a stepwise density with less
than C 1

ε pieces, where C is a constant depending on f , such that

KL(f, h) ≤ O(ε2) and
∫
f log(

f0
fP

)2(x)dx ≤ O(ε2) (9)

In order to lighten notations, we define

xi = xki , li = xi − xi−1, gi = f(xi−1)1/2

Thus consider the relation defined above with f1/2 which is also monotone
nonincreasing based on g =

∑
I[xi−1,xi]gi

||f1/2 − g||22 =

∫
(f1/2 − g)2(x)dx =

nk∑
i=1

∫
Ii

(f1/2 − g)2(x)dx

≤
nk∑
i=1

∫
Ii

(f1/2(xki−1)− f1/2(xki ))2dx

≤
nk∑
i=1

(xki − xki−1)(f1/2(xki−1)− f1/2(xki ))2

≤ nkε2k ≤ K0M
2/3ε2

We then define h = g2∫
g2

and have
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∫
g2dx =

∫
(g2 − f)(x)dx+ 1

=

∫
(g −

√
f)(g +

√
f)(x)dx+ 1

= 1 +O(ε)

and deduce that (
∫
g2)1/2 = 1 +O(ε). Let H be the Hellinger distance

H2(f, h) = H2

(
f,

g2∫
g2

)
≤ H2(f, g2) +H2(g2,

g2∫
g2

)

≤ ε2 +

∫
(g − g

(
∫
g2)1/2

)2(x)dx ≤ O(ε2)

Since ||h/f ||∞ = ||g/f ||∞(
∫
g2)−1 ≤ (

∫
g2)−1 together with the above bound

on H(f, h) and the following lemma 8 from Ghosal and van der Vaart (2007),
we obtain the required result.

Let P be a probability distribution defined by

P =

nk∑
i=1

piδ(x
k
i ) pi = (hi−1 − hi)xki pnk

= hnk
xknk

= hnk
L

thus fP = h and given the previous result, lemma 3 is proved.

The proof of Theorem 1 is based on theorem 2.1 of Ghosal et al. (2000). It
consists in obtaining a lower bound on the prior mass of Kullback Leiber neigh-
bourhoods of any density in F . An interesting feature of mixtures distributions
having a parameter dependent support is that in many cases, the prior mass
of sets the sets {f,KL(f0, f) = +∞} is 1 for most f0 ∈ F . Hence we cannot
apply the result of Ghosal et al. (2000). We thus extended the approach used in
Khazaei et al. (2010) to the convergence rate framework and get similar results
as those presented in Ghosal et al. (2000). Thus we only have to bound from
below, for a sequence θn such that F0(θn)n ∈ [1− ε, 1− ε/2] , the prior mass of
sets

Sn(ε, θn) =

{
f,KL(fn, f0,n) ≤ ε2,

∫
f0,n(x) log

(
f(x)

f0(x)

)2

dx ≤ ε2
}

(10)

where

fn(·) =
f(·)I[0,θn](·)
F (θn)

, f0,n(·) =
f0(·)I[0,θn](·)
F0(θn)

(11)

Lemma 4. Let Π either a Type 1 or Type 2 prior on F satisfying (3) and let
Sn(ε, θn) be a set as in (10), then

Π(Sn(ε, θn) & eC1ε
−1 log(ε) (12)
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Consider ε > 0 and θn such that F0(θn)n ∈ [1 − ε, 1 − ε/2], thus θn ≤
1 − ε(2nf0(0))−1 and define fPn and f0,n as in (11). Using lemma 3 with
L = θn, we obtain that there exists a distribution P =

∑nk

i=1 δxi
pi such that for

some constants C0, C
′
0 > 0 such that

KL(f0,n, fPn) ≤ C0ε
2, and

∫
f0,n log

(
f0,n
fPn

)2

≤ C ′0ε2

Note that fP has support [0, θn] and put a positive mass on θn. Now, setm = nk
and consider P ′ the mixing distribution associated with {m,x′1, . . . , x′m, p′1 . . . , p′m}
with

∑m
i=1 p

′
i = 1. Define for 1 ≤ j ≤ m − 1 the set Ui = [0 ∨ (xi − ε3, xi + ε3]

and Um = (θn, θn + ε(1 − θn) ∧ ε3]. Construct P ′ such that x′i ∈ Ui and
|P ′(Ui)− pi| ≤ ε2n−1
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