On the speed of Random Walks among Random Conductances (in 5 minutes!)

Interaction between Analysis and Probability in Physics, Oberwolfach

Michele Salvi

TU Berlin

January 26, 2012

Michele Salvi (TU Berlin)

On the speed of RWRC

First minute The model

2 Second minute• The speed problem

Third & fourth minute
 A log-moments issue

4 Fifth minute

• Can you do better?

5 Extra 10 seconds

A nice picture

Michele Salvi (TU Berlin)

3

イロト イヨト イヨト イヨト

Lattice \mathbb{Z}^d , assign to any bond (x, y) a random weight ω_{xy} (conductance) s.t.

- $\omega_{xy} = \omega_{yx}$ (symmetry),
- $\omega_{xy} \geq 0$ (positivity).

Lattice \mathbb{Z}^d , assign to any bond (x, y) a random weight ω_{xy} (conductance) s.t.

- $\omega_{xy} = \omega_{yx}$ (symmetry),
- $\omega_{xy} \geq 0$ (positivity).

The discrete-time Random Walk among Random Conductances (RWRC) $(X_n)_{n \in \mathbb{N}}$ has probability transitions

$$\mathsf{P}^{\omega}(x,y) = \frac{\omega_{xy}}{\sum_{z \sim x} \omega_{xz}}.$$

Lattice \mathbb{Z}^d , assign to any bond (x, y) a random weight ω_{xy} (conductance) s.t.

- $\omega_{xy} = \omega_{yx}$ (symmetry),
- $\omega_{xy} \geq 0$ (positivity).

The discrete-time Random Walk among Random Conductances (RWRC) $(X_n)_{n \in \mathbb{N}}$ has probability transitions

$$\mathsf{P}^{\omega}(x,y) = \frac{\omega_{xy}}{\sum_{z \sim x} \omega_{xz}}$$

It is is reversible (!) w.r.t.

$$\pi(x)=\sum_{z\sim x}\omega_{xz}.$$

The annealed probability is

$$\mathbb{P}(\cdot) = \int_{\Omega} P^{\omega}(\cdot) \,\mathrm{d} Pr(\omega).$$

Image: A matrix and a matrix

æ

The annealed probability is

$$\mathbb{P}(\cdot) = \int_{\Omega} P^{\omega}(\cdot) \, \mathrm{d} Pr(\omega).$$

Question

What is its annealed behaviour of the speed $\lim_{n\to\infty} \frac{X_n}{n}$ (for d=2)?

The annealed probability is

$$\mathbb{P}(\cdot) = \int_{\Omega} P^{\omega}(\cdot) \, \mathrm{d} Pr(\omega).$$

Question

What is its annealed behaviour of the speed $\lim_{n \to \infty} \frac{X_n}{n}$ (for d = 2)?

Two well known cases:

- i.i.d. conductances $\implies \mathbb{P}(\lim_{n \to \infty} \frac{X_n}{n} = 0) = 1$ (point of view of the particle);
- bounded conductances $\implies \mathbb{P}(\lim_{n \to \infty} \frac{X_n}{n} = 0) = 1$ (e.g. Rayleigh principle).

Question

Take an ergodic and translation invariant environment. Are there sufficient conditions for the speed to be zero?

Question

Take an ergodic and translation invariant environment. Are there sufficient conditions for the speed to be zero?

Proposition

If
$$\exists \alpha > 1$$
 s.t. $\mathbb{E}[\log^{\alpha} \omega_{xy}] < \infty$ then $\mathbb{P}(\lim_{n \to \infty} \frac{X_n}{n} = 0) = 1$.
(Varopulos-Carne heat kernel estimates)

Question

Take an ergodic and translation invariant environment. Are there sufficient conditions for the speed to be zero?

Proposition

If
$$\exists \alpha > 1$$
 s.t. $\mathbb{E}[\log^{\alpha} \omega_{xy}] < \infty$ then $\mathbb{P}(\lim_{n \to \infty} \frac{X_n}{n} = 0) = 1$.
(Varopulos-Carne heat kernel estimates)

Question

What if the log-moments are finite only for $\alpha < 1$?

(Beautiful picture at the blackboard)

$$\mathbb{E}[\log^{lpha}\omega_{\mathrm{xy}}]\simeq\sum_{k=1}^{\infty}\Pr(h(y)>k)\,k^{Alpha-1},\quad 1< A<rac{1}{lpha}$$

where h(y) is the distance from the farthest leaf in the branch of y. In the example

$$\mathbb{P}(h(y) \ge k) \ge \frac{C}{k^{1/2}},$$

so we don't have finite moments for $\alpha > 1/2$.

$$\mathbb{E}[\log^{lpha}\omega_{xy}]\simeq\sum_{k=1}^{\infty} \Pr(h(y)>k)\,k^{Alpha-1},\quad 1< A<rac{1}{lpha}$$

where h(y) is the distance from the farthest leaf in the branch of y. In the example

$$\mathbb{P}(h(y) \ge k) \ge \frac{C}{k^{1/2}},$$

so we don't have finite moments for $\alpha > 1/2$.

Question

Can we push α as close as we want to 1?

$$\mathbb{E}[\log^{lpha}\omega_{xy}]\simeq\sum_{k=1}^{\infty} \Pr(h(y)>k)\,k^{Alpha-1},\quad 1< A<rac{1}{lpha}$$

where h(y) is the distance from the farthest leaf in the branch of y. In the example

$$\mathbb{P}(h(y) \ge k) \ge \frac{C}{k^{1/2}},$$

so we don't have finite moments for $\alpha > 1/2$.

Question

Can we push α as close as we want to 1? Is there a directed tree with $\mathbb{P}(h(y) \ge n) \le \frac{C}{n}$?

$$\mathbb{E}[\log^{lpha}\omega_{xy}]\simeq\sum_{k=1}^{\infty} \Pr(h(y)>k)\,k^{Alpha-1},\quad 1< A<rac{1}{lpha}$$

where h(y) is the distance from the farthest leaf in the branch of y. In the example

$$\mathbb{P}(h(y) \ge k) \ge \frac{C}{k^{1/2}},$$

so we don't have finite moments for $\alpha > 1/2$.

Question

Can we push α as close as we want to 1? Is there a directed tree with $\mathbb{P}(h(y) \ge n) \le \frac{C}{n}$? Yes!

$$\mathbb{E}[\log^{lpha}\omega_{xy}]\simeq\sum_{k=1}^{\infty}\Pr(h(y)>k)\,k^{Alpha-1},\quad 1< A<rac{1}{lpha}$$

where h(y) is the distance from the farthest leaf in the branch of y. In the example

$$\mathbb{P}(h(y) \geq k) \geq \frac{C}{k^{1/2}},$$

so we don't have finite moments for $\alpha > 1/2$.

Question

Can we push α as close as we want to 1? Is there a directed tree with $\mathbb{P}(h(y) \ge n) \le \frac{C}{n}$? Yes! What is the speed of the RWRC on such a tree?

Exercise

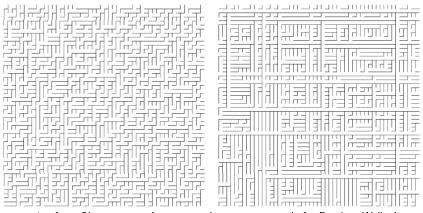
Find such a tree! (hint: umbrellas)

< A

э

Exercise

Find such a tree! (hint: umbrellas)



(picture stolen from Shortest spanning trees and a counterexample for Random Walks in

Random Environments, by M. Bramson, O. Zeitouni and M. Zerner (2006))

Michele Salvi (TU Berlin)

< A