Law of large numbers for the Mott Variable Range Hopping model

World Congress in Probability and Statistics, Fields Institute, Toronto

Michele Salvi

Paris-Dauphine

July 13th, 2016

Michele Salvi (Paris-Dauphine)

LLN for Mott walk

Doped semiconductors

LLN for Mott walk

Variable range hopping or Mott random walk

Michele Salvi (Paris-Dauphine)

LLN for Mott walk

July 13th, 2016 3 /

Variable range hopping or Mott random walk

Environment:

- {x_k} simple point process in ℝ^d, law ℙ. Assume x₀ = 0.
 (site percolation on ℤ^d, diluted (quasi-)crystals, Poisson point process...)
- $\{E_k\}$ energy marks on sites, i.i.d. on [-1, 1].

Variable range hopping or Mott random walk

Environment:

- {x_k} simple point process in ℝ^d, law ℙ. Assume x₀ = 0.
 (site percolation on ℤ^d, diluted (quasi-)crystals, Poisson point process...)
- $\{E_k\}$ energy marks on sites, i.i.d. on [-1, 1].

Transition probabilities:

$$p(x_j, x_k) = \frac{1}{Z_j} e^{-|x_j - x_k|^{\alpha} - \beta u(E_j, E_k)}$$

- Z_j is the proper normalization.
- $\alpha \ge 1$. $\beta > 0$ inverse of the temperature.
- u is a symmetric bounded function (e.g., $u(E_j, E_k) = |E_j - E_k| + |E_j| + |E_k|$).

From now on:

- *d* = 1
- $\{x_{j+1} x_j\}_{j \in \mathbb{Z}}$ stationary and ergodic sequence.

э

From now on:

- *d* = 1
- $\{x_{j+1} x_j\}_{j \in \mathbb{Z}}$ stationary and ergodic sequence.

Theorem (P. Caputo, A. Faggionato (2009)) If $\mathbb{E}[\mathrm{e}^{|x_1|^{lpha}}] < \infty$

we have a quenched CLT with diffusion $\sigma^2 > 0$.

From now on:

- d = 1
- $\{x_{j+1} x_j\}_{j \in \mathbb{Z}}$ stationary and ergodic sequence.

Theorem (P. Caputo, A. Faggionato (2009)) If $\mathbb{E}[\mathrm{e}^{|x_1|^lpha}] < \infty$

we have a quenched CLT with diffusion $\sigma^2 > 0$.

Some more literature:

- Annealed CLT in $d \ge 2$ (A. Faggionato, H. Schulz-Baldes, D. Spehner (2006)).
- Quenched CLT in $d \ge 2$ (P. Caputo, A. Faggionato, T. Prescott (2013)).
- Behaviour for $\beta \to \infty$ (P. Caputo, A. Faggionato) and annealed CLT with weaker conditions in d = 1.

Take $\alpha = 1, \beta = 1$.

Assumption: $|x_{k+1} - x_k| > d > 0$ a.s.

$$p(x_j, x_k) = \frac{1}{Z_j} e^{-|x_j - x_k| - u(E_j, E_k)}$$

3

Take $\alpha = 1, \beta = 1$.

Assumption: $|x_{k+1} - x_k| > d > 0$ a.s.

$$p^{\lambda}(x_j, x_k) = \frac{1}{Z_j^{\lambda}} e^{-|x_j - x_k| - u(E_j, E_k) + \lambda(x_k - x_j)}$$

Introduce an external field of intensity $\lambda \in (0, 1)$.

э

Take $\alpha = 1, \beta = 1$.

Assumption: $|x_{k+1} - x_k| > d > 0$ a.s.

$$p^{\lambda}(x_j, x_k) = \frac{1}{Z_j^{\lambda}} e^{-|x_j - x_k| - u(E_j, E_k) + \lambda(x_k - x_j)}$$

Introduce an external field of intensity $\lambda \in (0, 1)$.

- The random walk has a "tendency" to go to the right.
- The reversible measure explodes!

Take $\alpha = 1, \beta = 1$.

Assumption: $|x_{k+1} - x_k| > d > 0$ a.s.

$$p^{\lambda}(x_j, x_k) = \frac{1}{Z_j^{\lambda}} e^{-|x_j - x_k| - u(E_j, E_k) + \lambda(x_k - x_j)}$$

Introduce an external field of intensity $\lambda \in (0, 1)$.

- The random walk has a "tendency" to go to the right.
- The reversible measure explodes!

Question

Does the walk have a limiting speed for all $\lambda > 0$?

Theorem (A. Faggionato, N. Gantert, M.S.)

Let $(X_n(\lambda))_{n\in\mathbb{N}}$ be the Mott random walk with bias $\lambda \in (0,1)$. Then

Michele Salvi (Paris-Dauphine)

ъ

Theorem (A. Faggionato, N. Gantert, M.S.)

Let $(X_n(\lambda))_{n\in\mathbb{N}}$ be the Mott random walk with bias $\lambda \in (0,1)$. Then

(i) $\lim_{n\to\infty} X_n(\lambda) = +\infty$ a.s. (transience to the right).

э

Theorem (A. Faggionato, N. Gantert, M.S.) Let $(X_n(\lambda))_{n \in \mathbb{N}}$ be the Mott random walk with bias $\lambda \in (0, 1)$. Then (i) $\lim_{n \to \infty} X_n(\lambda) = +\infty$ a.s. (transience to the right). (ii) If

$$\mathbb{E}[\mathrm{e}^{(1-\lambda)x_1}] < \infty,$$

then

$$\lim_{n \to \infty} \frac{X_n(\lambda)}{n} = v(\lambda) > 0 \qquad a.s.$$

æ

Theorem (A. Faggionato, N. Gantert, M.S.) Let $(X_n(\lambda))_{n \in \mathbb{N}}$ be the Mott random walk with bias $\lambda \in (0, 1)$. Then (i) $\lim_{n \to \infty} X_n(\lambda) = +\infty$ a.s. (transience to the right). (ii) If

$$\mathbb{E}[\mathrm{e}^{(1-\lambda)x_1}] < \infty,$$

then

$$\lim_{n \to \infty} \frac{X_n(\lambda)}{n} = v(\lambda) > 0 \qquad a.s.$$

(iii) If

$$\mathbb{E}[\mathrm{e}^{(1-\lambda)x_1-(1+\lambda)|x_{-1}|}] = \infty,$$

then

$$\lim_{n \to \infty} \frac{X_n(\lambda)}{n} = 0 \qquad a.s.$$

Michele Salvi (Paris-Dauphine)

э

$$\begin{split} \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1}] &< \infty \qquad \Rightarrow \quad v(\lambda) > 0\\ \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] &= \infty \quad \Rightarrow \quad v(\lambda) = 0 \end{split}$$

Э.

(日) (四) (日) (日) (日)

$$\begin{split} \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1}] &< \infty \qquad \Rightarrow \quad v(\lambda) > 0\\ \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] &= \infty \quad \Rightarrow \quad v(\lambda) = 0 \end{split}$$

• For i.i.d. we have dichotomy:

$$\exists \lambda_c \ge 0: \qquad \begin{cases} v(\lambda) > 0 & \forall \lambda > \lambda_c \\ v(\lambda) = 0 & \forall \lambda < \lambda_c. \end{cases}$$

æ

$$\begin{split} \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1}] &< \infty \qquad \Rightarrow \quad v(\lambda) > 0\\ \mathbb{E}[\mathrm{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] &= \infty \quad \Rightarrow \quad v(\lambda) = 0 \end{split}$$

- For i.i.d. we have dichotomy: $\exists \lambda_c \ge 0: \qquad \begin{cases} v(\lambda) > 0 & \forall \lambda > \lambda_c \\ v(\lambda) = 0 & \forall \lambda < \lambda_c. \end{cases}$
- The speed might be NOT continuous in λ .

$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1}] < \infty \qquad \Rightarrow \quad v(\lambda) > 0$$
$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] = \infty \quad \Rightarrow \quad v(\lambda) = 0$$

- For i.i.d. we have dichotomy: $\exists \lambda_c \ge 0: \qquad \begin{cases} v(\lambda) > 0 & \forall \lambda > \lambda_c \\ v(\lambda) = 0 & \forall \lambda < \lambda_c. \end{cases}$
- The speed might be NOT continuous in λ .
- Different from biased random walk on percolation cluster, where $\exists \lambda_c : \forall \lambda > \lambda_c$ one has $v(\lambda) = 0$.

$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1}] < \infty \qquad \Rightarrow \quad v(\lambda) > 0$$
$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] = \infty \quad \Rightarrow \quad v(\lambda) = 0$$

- For i.i.d. we have dichotomy: $\exists \lambda_c \ge 0: \qquad \begin{cases} v(\lambda) > 0 & \forall \lambda > \lambda_c \\ v(\lambda) = 0 & \forall \lambda < \lambda_c. \end{cases}$
- The speed might be NOT continuous in λ .
- Different from biased random walk on percolation cluster, where $\exists \lambda_c : \forall \lambda > \lambda_c$ one has $v(\lambda) = 0$.

Why? Big λ helps to overjump traps.

$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1}] < \infty \qquad \Rightarrow \quad v(\lambda) > 0$$
$$\mathbb{E}[\mathbf{e}^{(1-\lambda)x_1 - (1+\lambda)|x_{-1}|}] = \infty \quad \Rightarrow \quad v(\lambda) = 0$$

- For i.i.d. we have dichotomy: $\exists \lambda_c \ge 0: \qquad \begin{cases} v(\lambda) > 0 & \forall \lambda > \lambda_c \\ v(\lambda) = 0 & \forall \lambda < \lambda_c. \end{cases}$
- The speed might be NOT continuous in λ .
- Different from biased random walk on percolation cluster, where $\exists \lambda_c : \forall \lambda > \lambda_c$ one has $v(\lambda) = 0$. Why? Big λ helps to overjump traps.
- Counterexample with $\mathbb{E}[e^{(1-\lambda)x_1}] = +\infty$ and $v(\lambda) > 0$.

Suppose that $\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$.

Michele Salvi (Paris-Dauphine)

LLN for Mott walk

< (T) >

ъ

Suppose that
$$\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$$
.

The environment viewed from the Mott random walker admits an invariant and ergodic distribution \mathbb{Q}^{∞} absolutely continuous to \mathbb{P} .

Suppose that
$$\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$$
.

The environment viewed from the Mott random walker admits an invariant and ergodic distribution \mathbb{Q}^{∞} absolutely continuous to \mathbb{P} .

Furthermore

$$0 < \gamma \leq \frac{d\mathbb{Q}^{\infty}}{d\mathbb{P}} \leq F \,, \qquad \mathbb{P}^{-a.s.}$$

where γ is a universal constant and $F \in L^1(\mathbb{P})$.

Suppose that
$$\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$$
.

The environment viewed from the Mott random walker admits an invariant and ergodic distribution \mathbb{Q}^{∞} absolutely continuous to \mathbb{P} .

Furthermore

$$0 < \gamma \leq \frac{d\mathbb{Q}^{\infty}}{d\mathbb{P}} \leq F \,, \qquad \mathbb{P}^{-a.s.}$$

where γ is a universal constant and $F \in L^1(\mathbb{P})$.

•
$$v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$$

Suppose that
$$\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$$
.

The environment viewed from the Mott random walker admits an invariant and ergodic distribution \mathbb{Q}^{∞} absolutely continuous to \mathbb{P} .

Furthermore

$$0 < \gamma \leq \frac{d\mathbb{Q}^{\infty}}{d\mathbb{P}} \leq F \,, \qquad \mathbb{P}^{-a.s.}$$

where γ is a universal constant and $F \in L^1(\mathbb{P})$.

- $v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$
- Not clear whether this is enough to obtain an Einstein Relation.

Suppose that
$$\mathbb{E}[e^{(1-\lambda)x_1}] < +\infty$$
.

The environment viewed from the Mott random walker admits an invariant and ergodic distribution \mathbb{Q}^{∞} absolutely continuous to \mathbb{P} .

Furthermore

$$0 < \gamma \leq \frac{d\mathbb{Q}^{\infty}}{d\mathbb{P}} \leq F \,, \qquad \mathbb{P}^{-a.s.}$$

where γ is a universal constant and $F \in L^1(\mathbb{P})$.

- $v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$
- Not clear whether this is enough to obtain an Einstein Relation. Conjecture: When $\lambda_c = 0$,

$$\lim_{\lambda \to 0} \frac{v(\lambda)}{\lambda} = \sigma^2$$

Techniques (case $v(\lambda) > 0$)

Many ideas from F. Comets, S. Popov (2011). Big difference: $p^{\lambda}(x_k, x_{k+1})$ is not bounded from below!

Techniques (case $v(\lambda) > 0$)

Many ideas from *F. Comets, S. Popov (2011).* Big difference: $p^{\lambda}(x_k, x_{k+1})$ is not bounded from below!

Note:

Classical regenerative structure (non-backtracking) does NOT work!

Techniques (case $v(\lambda) > 0$)

Many ideas from F. Comets, S. Popov (2011). Big difference: $p^{\lambda}(x_k, x_{k+1})$ is not bounded from below!

Note:

Classical regenerative structure (non-backtracking) does NOT work!

STEP 1 (CUT-OFF)

 $(X_n^{\rho})_{n \in \mathbb{N}}$: Suppress jumps more than $\rho \in \mathbb{N}$ points away.

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$

ヨト ヨ

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$

Key factor: $P(X_{T_{k\rho}}^{\rho} = x_{k\rho}) > \varepsilon.$

э

æ

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$

Key factor: $P(X_{T_{k\rho}}^{\rho} = x_{k\rho}) > \varepsilon$.

Take $(\xi_n)_{n\in\mathbb{N}}$ i.i.d. Bernoulli (ε) .

 $(0,1,0,0,0,1,0,0,0,0,0,0,1,0,\ldots)$

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$

Key factor: $P(X_{T_{k\rho}}^{\rho} = x_{k\rho}) > \varepsilon.$

Take $(\xi_n)_{n\in\mathbb{N}}$ i.i.d. Bernoulli (ε) .

 $\begin{array}{ccc} (0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,...) \\ \uparrow & \uparrow & \uparrow \\ \ell_1 & \ell_2 & \ell_3 \end{array}$

æ

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$
factor: $P(X_{T_{k\rho}}^{\rho} = x_{k\rho}) > \varepsilon.$

Take $(\xi_n)_{n\in\mathbb{N}}$ i.i.d. Bernoulli (ε) .

Key

$$(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, ...)$$

 $\uparrow \qquad \uparrow \qquad \uparrow$
 $\ell_1 \qquad \ell_2 \qquad \ell_3$

Couple Bernoullis and random walk s.t.

$$\xi_j = 1 \quad \Rightarrow \quad X^{\rho}_{T_{j\rho}} = x_{j\rho}.$$

$$T_{k\rho} := \inf\{n \in \mathbb{N} : X_n^{\rho} \ge x_{k\rho}\}.$$

Key factor: $P(X_{T_{k\rho}}^{\rho} = x_{k\rho}) > \varepsilon.$

Take $(\xi_n)_{n\in\mathbb{N}}$ i.i.d. Bernoulli (ε) .

$$(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, ...)$$

 $\uparrow \qquad \uparrow \qquad \uparrow$
 $\ell_1 \qquad \ell_2 \qquad \ell_3$

Couple Bernoullis and random walk s.t.

$$\xi_j = 1 \quad \Rightarrow \quad X^{\rho}_{T_{j\rho}} = x_{j\rho}.$$

The regeneration times are $T_{\ell_1\rho}, T_{\ell_2\rho}, T_{\ell_3\rho}...$

Note: $(\tau_{X_j^{\rho}}\omega: T_{\ell_k\rho} \leq j < T_{\ell_{k+1}\rho})$ is a stationary and ergodic sequence of random paths for the environment from the POV of the particle.

Note: $(\tau_{X_j^{\rho}}\omega: T_{\ell_k\rho} \leq j < T_{\ell_{k+1}\rho})$ is a stationary and ergodic sequence of random paths for the environment from the POV of the particle.

 \implies Obtain invariant measure for process from POV particle, \mathbb{Q}^{ρ} .

Note: $(\tau_{X_j^{\rho}}\omega: T_{\ell_k\rho} \leq j < T_{\ell_{k+1}\rho})$ is a stationary and ergodic sequence of random paths for the environment from the POV of the particle.

 \implies Obtain invariant measure for process from POV particle, \mathbb{Q}^{ρ} .

Need: Estimates on $\mathbb{E}'[T_{\ell_1\rho}]$.

Note: $(\tau_{X_j^{\rho}}\omega: T_{\ell_k\rho} \leq j < T_{\ell_{k+1}\rho})$ is a stationary and ergodic sequence of random paths for the environment from the POV of the particle.

 \implies Obtain invariant measure for process from POV particle, \mathbb{Q}^{ρ} .

Need: Estimates on $\mathbb{E}'[T_{\ell_1\rho}]$.

Via comparison with n.n. walk $(\rho = 1)$:

 $K_1 \cdot \mathcal{C}^1_{\text{eff}}(A \leftrightarrow B) \leq \mathcal{C}^{\rho}_{\text{eff}}(A \leftrightarrow B) \leq K_2 \cdot \mathcal{C}^1_{\text{eff}}(A \leftrightarrow B)$

 $\forall \rho \in \mathbb{N} \cup \{+\infty\}, K_1, K_2 \text{ constants independent of } A, B \subset \mathbb{Z} \text{ and of } \rho.$

STEP 4 (SEND ρ TO ∞)

$$v^{\rho}(\lambda) := \mathbb{E}_{\mathbb{Q}^{\rho}}[E_0^{\omega}[X_1^{\rho}]].$$

æ

STEP 4 (SEND ho TO ∞)

$$v^{\rho}(\lambda) := \mathbb{E}_{\mathbb{Q}^{\rho}}[E_0^{\omega}[X_1^{\rho}]].$$

Want: $\rho \to \infty$, so that

 $\mathbb{Q}^{\rho} \xrightarrow{w} \mathbb{Q}^{\infty}$

and

$$v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$$

프 🕨 🗉 프

STEP 4 (SEND ρ TO ∞)

$$v^{\rho}(\lambda) := \mathbb{E}_{\mathbb{Q}^{\rho}}[E_0^{\omega}[X_1^{\rho}]].$$

Want: $\rho \to \infty$, so that

 $\mathbb{O}^{\rho} \xrightarrow{w} \mathbb{O}^{\infty}$

and

$$v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$$

Need: Control on the Radon-Nikodym derivative of \mathbb{Q}^{ρ} w.r.t. \mathbb{P} .

э

STEP 4 (SEND ρ TO ∞)

$$v^{\rho}(\lambda) := \mathbb{E}_{\mathbb{Q}^{\rho}}[E_0^{\omega}[X_1^{\rho}]]$$

Want: $\rho \to \infty$, so that

 $\mathbb{Q}^{\rho} \xrightarrow{w} \mathbb{Q}^{\infty}$

and

$$v(\lambda) = \mathbb{E}_{\mathbb{Q}^{\infty}}[E_0^{\omega}[X_1]].$$

Need: Control on the Radon-Nikodym derivative of \mathbb{Q}^{ρ} w.r.t. \mathbb{P} . We have

$$0 < \gamma \le \frac{\mathrm{d}\mathbb{Q}^p}{\mathrm{d}\mathbb{P}}(\omega) \le F(\omega)$$

where F is in $L^1(\mathbb{P})$.

Ŧ

• Monotonicity of $v(\lambda)$;

æ

- Monotonicity of $v(\lambda)$;
- Find right rescaling in the sub-ballistic regime;

- Monotonicity of $v(\lambda)$;
- Find right rescaling in the sub-ballistic regime;
- CLT for $(X_n(\lambda) v(\lambda) \cdot n)_{n \in \mathbb{N}}$;

- Monotonicity of $v(\lambda)$;
- Find right rescaling in the sub-ballistic regime;
- CLT for $(X_n(\lambda) v(\lambda) \cdot n)_{n \in \mathbb{N}}$;
- Einstein relation, in and out of equilibrium.

- Monotonicity of $v(\lambda)$;
- Find right rescaling in the sub-ballistic regime;
- CLT for $(X_n(\lambda) v(\lambda) \cdot n)_{n \in \mathbb{N}}$;
- Einstein relation, in and out of equilibrium.

Thank you!