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Doped semiconductors



The Variable range hopping model

Environment:
{xk} simple point process in Rd, law P. Assume x0 = 0̄.
(site percolation on Zd, diluted (quasi-)crystals, Poisson point process...)
{Ek} energy marks on sites, i.i.d. on [−1, 1].

Transition probabilities:

p(xj , xk) =
1

Zj
e−|xj−xk|

α−βu(Ej ,Ek)

Zj is the proper normalization.
α ≥ 1. β > 0 inverse of the temperature.
u is a symmetric bounded function
(e.g., u(Ej , Ek) = |Ej − Ek|+ |Ej |+ |Ek|).
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The Variable range hopping model

From now on:
d = 1

{xj+1 − xj}j∈Z stationary and ergodic sequence.

Theorem (P. Caputo, A. Faggionato (2009))

If
E[e|x1|

α
] <∞

we have a quenched CLT with diffusion σ2 > 0.

Some more literature:

Annealed CLT in d ≥ 2 (A. Faggionato, H. Schulz-Baldes, D. Spehner (2006)).

Quenched CLT in d ≥ 2 (P. Caputo, A. Faggionato, T. Prescott (2013)).

Behaviour for β →∞ (P. Caputo, A. Faggionato) and annealed CLT with
weaker conditions in d = 1.
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The external field

Take α = 1, β = 1.

Assumption: |xk+1 − xk| > d > 0 a.s.

pλ(xj , xk) =
1

Zλj
e−|xj−xk|−u(Ej ,Ek)+λ(xk−xj)

Introduce an external field of intensity λ ∈ (0, 1).

The random walk has a “tendency” to go to the right.
The reversible measure explodes!

Question
Does the walk have a limiting speed for all λ > 0?
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The external field



Main Theorem

Theorem (A. Faggionato, N. Gantert, M.S.)

Let (Xn(λ))n∈N be the Mott random walk with bias λ ∈ (0, 1). Then

(i) limn→∞Xn(λ) = +∞ a.s. (transience to the right).

(ii) If
E[e(1−λ)x1 ] <∞,

then
lim
n→∞

Xn(λ)

n
= v(λ) > 0 a.s.

(iii) If
E[e(1−λ)x1−(1+λ)|x−1|] =∞,

then
lim
n→∞

Xn(λ)

n
= 0 a.s.
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Main Theorem

E[e(1−λ)x1 ] <∞ ⇒ v(λ) > 0

E[e(1−λ)x1−(1+λ)|x−1|] =∞ ⇒ v(λ) = 0

Remarks
For i.i.d. we have dichotomy:

∃λc ≥ 0 :

{
v(λ) > 0 ∀λ > λc

v(λ) = 0 ∀λ < λc.

The speed might be NOT continuous in λ.

Different from biased random walk on percolation cluster, where
∃λc : ∀λ > λc one has v(λ) = 0.
Why? Big λ helps to overjump traps.

Counterexample with E[e(1−λ)x1 ] = +∞ and v(λ) > 0.
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Main Theorem

Theorem

Suppose that E
[
e(1−λ)x1

]
< +∞.

The environment viewed from the Mott random walker admits an
invariant and ergodic distribution Q∞ absolutely continuous to P.

Furthermore
0 < γ ≤ dQ∞

dP
≤ F , P–a.s.

where γ is a universal constant and F ∈ L1(P).

Remarks
v(λ) = EQ∞ [Eω0 [X1]].

Not clear whether this is enough to obtain an Einstein Relation.
Conjecture: When λc = 0,

lim
λ→0

v(λ)

λ
= σ2.
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Techniques

Many ideas from F. Comets, S. Popov (2011).
Big difference: pλ(xk, xk+1) is not bounded from below!

Note:
Classical regenerative structure (non-backtracking) does NOT work!

STEP 1 (CUT-OFF)

(Xρ
n)n∈N: Suppress jumps more than ρ ∈ N points away.
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Techniques

Tkρ := inf{n ∈ N : Xρ
n ≥ xkρ}.

Key factor: P (Xρ
Tkρ

= xkρ) > ε.

Take (ξn)n∈N i.i.d. Bernoulli(ε).

(0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, ...)

↑ ↑ ↑
`1 `2 `3

Couple Bernoullis and random walk s.t.

ξj = 1 ⇒ Xρ
Tjρ

= xjρ.

The regeneration times are T`1ρ, T`2ρ, T`3ρ...
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Techniques

Note: (τXρ
j
ω : T`kρ ≤ j < T`k+1ρ) is a stationary and ergodic sequence

of random paths for the environment from the POV of the particle.

=⇒ Obtain invariant measure for process from POV particle, Qρ.

Need: Estimates on E′[T`1ρ].

Via comparison with n.n. walk (ρ = 1):

K1 · C1
eff(A↔ B) ≤ Cρeff(A↔ B) ≤ K2 · C1

eff(A↔ B)

∀ρ ∈ N ∪ {+∞}, K1,K2 constants independent of A,B ⊂ Z and of ρ.
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Techniques

vρ(λ) := EQρ [E
ω
0 [Xρ

1 ]].

Want: ρ→∞, so that
Qρ w−→ Q∞

and
v(λ) = EQ∞ [Eω0 [X1]].

Need: Control on the Radon-Nikodym derivative of Qρ w.r.t. P.

We have
0 < γ ≤ dQρ

dP
(ω) ≤ F (ω)

where F is in L1(P).
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Further developments

Monotonicity of v(λ);

Find right rescaling in the sub-ballistic regime;

CLT for (Xn(λ)− v(λ) · n)n∈N;

Einstein relation, in and out of equilibrium.

Thank you!
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