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Introduction

Markov chains were �rst introduced in 1906 by the Russian mathematician
Andrey Markov. Their importance in the �eld of Probability grew along the
whole past century, from the development of stochastic processes in the '20s,
through the axiomatization of probability in the '30s, and into the 80's when
the modern approach to Markov chains arose.

Particularly in the last thirty years, Markov processes assumed a central
role of interest, �nding applications in a huge number of di�erent scienti�c
�elds, from genetics to theoretical computer science, from statistical physics
to economics, from cryptography to Social sciences, just to name a few. To
give an idea of the way they a�ect modern society, it is su�cient to say
that the underlying algorithm of the web search engine Google is based on
a particular Markov chain.

One of their most important applications is in computer simulations,
which have revolutionized applied mathematics by providing ways to deal
with high-dimensional intractable computations. One fundamental problem
is: given a probability distribution π, how can we sample a random object
with this distribution? The Monte Carlo method is an answer to this ques-
tion: we can start a Markov chain with π as stationary distribution and let
it run for enough time. Then the distribution of the last step of the chain
will be a good approximation of π.

The `classical' theory of Markov chains tries to quantify this enough,
estimating how long we have to wait in order to reach a good approximation
of the requested measure. We call this time the mixing time of the chain.
The next step is to consider families of chains instead of one single process.
The challenge is to understand how the mixing time grows as, for example,
the size of the problem becomes bigger and bigger.

In this context, David Aldous and Persi Diaconis, in their article of 1986
([1]), introduced for the �rst time the notion of cut-o� to describe the sharp
transition in convergence to stationarity for Markov chains modelling the
shu�ing of a card deck.

Take a sequence of Markov chains on the state spaces Ω(n) with transi-
tion matrices P (n). Suppose that each chain is reversible with respect to a
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probability measure π(n) on Ω(n), that is, ∀x, y ∈ Ω(n)

π(n)(x)P (n)(x, y) = π(n)(y)P (n)(y, x).

De�ne d(n)(t) as the distance (for example measured in total variation) of
the n-th chain from π(n) at time t in the case of the worst starting point:

d(n)(t) := max
x∈Ω(n)

‖P (n)(x, ·)− π(n)(·)‖TV .

The ε-mixing time of the n-th chain is the �rst time when d(n) becomes
smaller than ε:

t
(n)
mix(ε) := min{t : d(n)(t) ≤ ε}.

We say that this sequence of Markov chains exhibits a cut-o� if, for any
0 < ε < 1

2 ,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

This means that, when the size of the problem (for example, in the
shu�ing card process it is the number of the cards in the deck) is very big,
the distance from π goes from almost 1 (the maximum) to almost 0 in an
interval around the mixing time that is relatively very small with respect to
the mixing time itself.

Knowing the existence of the cut-o� and the order of the mixing time is
very useful for Monte Carlo simulations. In fact, we know that in order to
have a good approximation of the measure π we have to run the chain at
least for O(tmix) steps; but we also know that waiting much longer is quite
useless.

In the years after the article by Aldous and Diaconis, this particular
behaviour was observed for a wide class of natural examples. Nevertheless,
it is in general quite hard to prove rigorously the existence of a cut-o�. The
aim of this work is to present an overview of some of the latest results in
this �eld.

In the �rst chapter, the basic theory on �nite discrete-time Markov chains
is summarized, stressing the notion of convergence to a stationary distri-
bution. Then some useful techniques are presented, such as coupling and
spectral analysis of the chains.

The second chapter introduces the de�nition of cut-o� and cut-o� window
for ergodic Markov chains. After giving some basic results on this subject,
an example of a chain that exhibits a cut-o� is discussed: the simple random
walk on the n-dimensional hypercube.

Chapter 3 is completely dedicated to birth-and-death processes. The
most signi�cant part is the proof of a necessary and su�cient condition for
cut-o� in such chains, according to the article [10] by Ding, Lubetzky and
Peres, of 2008.
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Chapter 4 deals with Glauber dynamics for the Ising model on the com-
plete graph. Following [16] and [9], it is shown that in the high temperature
regime this process has a cut-o� at t = n logn

2(1−β) with a window of size n, while
for any temperatures lower or equal to critical there is no cut-o� and the
order of mixing time changes.

Finally, in the last chapter, we change the subject a bit. We consider the
Glauber dynamics treated in Chapter 4 in the continuous-time case and make
an attempt to bound the Log-Sobolev constant with an analytical method,
based on conditioning the entropy on the magnetization of the system.



Chapter 1

Background material

1.1 Finite Markov chains

1.1.1 De�nition

A stochastic process is a family {Xt}t∈I of random variables indexed by
a parameter t ≥ 0 which is usually to be thought as a time parameter.
The set I can be either discrete or continuous. In this work, except for the
last chapter, we will analyze only a particular kind of stochastic processes,
namely the Markov chains.

A Markov chain with state space Ω is a sequence of random variables
(X0, X1, ...) taking their values in Ω with a simple property: at time t it
�chooses� its following position taking into account only its present position,
Xt, and forgetting all its past moves. More precisely, ∀t ∈ N, ∀x, y ∈ Ω and
for all the possible values of x0, x1, x2, ..., xt−1 ∈ Ω, we have that

P (Xt+1 = y|X0 = x0, ..., Xt−1 = xt−1, Xt = x) = P (Xt+1 = y|Xt = x)
= P (x, y) , (1.1)

where P (x, ·) is a �xed probability distribution. Equation (1.1) is called the
Markov property. If Ω has a �nite number of elements, then the |Ω|x|Ω|
matrix P whose elements Pij are the probabilities P (xi, xj) is called the
transition matrix. Of course, ∀x ∈ Ω,∑

y∈Ω

P (x, y) = 1,

so we say that P is a stochastic matrix. We will often call the whole Markov
chain just P .

Let's call µt the |Ω|-row-vector that describes the distribution of the chain
at time t,

µt(·) = P (Xt = ·) ;
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if we condition on all possible values of the chain at time t− 1, we have:

µt(y) =
∑
x∈Ω

P (Xt−1 = x)P (x, y) =
∑
x∈Ω

µt−1(x)P (x, y).

Rewriting this in vector form gives, for all t,

µt = µt−1P

and iterating
µt = µ0P

t, (1.2)

where µ0 is an arbitrary starting distribution. In words, multiplying the
present-distribution-row-vector by P on the right gives the distribution of
the next step. Since we will often deal with chains with the same transition
probabilities but di�erent starting distributions, we will use the notations
Pµ and Eµ for, respectively, the probabilities and the expectations given
µ0 = µ. Similarly, Px and Ex will consider a δ distribution in x as starting
distribution, that is, the case in which we start the chain surely from the
state x.

So, for example, starting in x, the probability of arriving in the state y
after t steps will be

Px (Xt = y) = (δxP t)(y),

and this is equivalent to the (x, y)-th entry of the matrix P t.
Finally, if we consider a |Ω|-column-vector f , function of the states of Ω,

and apply to the left the transition matrix, we obtain the expected value of
f after one step:

Pf(x) =
∑
y∈Ω

P (x, y)f(y) =
∑
y∈Ω

f(y)Px (X1 = y) = Ex [f(X1)] .

1.1.2 Irreducibility, aperiodicity and regularity

In this section we are going to introduce two important properties of some
Markov chains: aperiodicity and irreducibility. Almost every chain studied
in this paper has these two properties, or can be slightly modi�ed to become
a chain of this kind, as we will see in the following.

The �rst property is very simple to understand: it just means that, start-
ing from any other point of Ω, it is possible to reach any other state after
some steps. To say it precisely, a Markov chain with transition matrix P is
called irreducible if, ∀x, y ∈ Ω, there exists a t (possibly depending on x
and y) such that P t(x, y) > 0.
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Let's move to the second property. Let T(x) :=
{
t ≥ 1 : P t(x, x) > 0

}
be the set of times when, starting in x, it is possible to go back to x itself.
The greatest common divisor of T(x) is the period of the state x. If all
states of the chain have period 1, then the chain is said to be aperiodic,
otherwise it is periodic.

Finally we say that a chain is regular if exists an integer s such that
P s(x, y) > 0 for all x, y ∈ Ω. It means that at time s we could be everywhere,
no matter the starting point. Let's demonstrate a little result:

Proposition 1.1. If P is irreducible and aperiodic, than it is regular.

Proof: It's not hard to demonstrate that if S ⊂ N+, a set of non-negative
integers closed under addition, has greatest common divisor 1, than there is
some integer k such that ∀j ≥ k, j ∈ S. Of course, for x ∈ Ω, the set T(x) is
closed under addition: if s, t ∈ T(x), then P t+s(x, x) ≥ P t(x, x)P s(x, x) > 0,
and hence s + t ∈ T(x). Besides, because of aperiodicity, the gcd of T (x)
is 1. Therefore there exists a t(x) such that if t ≥ t(x) than t ∈ T(x).
By irreducibility we know that ∀y ∈ Ω there exists r = r(x, y) such that
P r(x, y) > 0. Therefore, if we take t ≥ t(x) + r, we have

P t(x, y) ≥ P t−r(x, x)P r(x, y) > 0.

This is true for every x and y. So, taking t ≥ maxx∈Ω (t(x) + maxy∈Ω r(x, y)),
we obtain that P t(x, y) > 0 for all x, y ∈ Ω. �

As we said above the problem of periodicity can be easily avoided with a
simple trick: at each step we allow the chain to stand still with probability
1
2 . The new transition matrix will be P̃ = 1

2Id + 1
2P , where Id is the

identity matrix and P the original transition matrix. This way, our new
Markov chain, called the lazy version of the original chain, will be obviously
aperiodic, since ∀x ∈ Ω we have P̃ (x, x) > 0. On the other hand, it's easy
to verify that it preserves most of the original properties.

1.1.3 Stationary distributions

We say that a probability measure π on Ω is a stationary distribution for
a Markov chain with transition matrix P if

π = πP, (1.3)

or, rewriting this element-wise,

π(x) =
∑
y∈Ω

π(y)P (y, x) ∀x ∈ Ω. (1.4)
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This means that if we are distributed according to π and perform a step of
the chain, we are still distributed the same way.

These distributions will play a fundamental role in our study of the
Markov chains: under very common conditions we have that as the time
passes the chain approaches the stationary distribution in some sense. This
is shown more precisely by the following famous theorem.

Theorem 1.2 (Ergodic theorem). Let {Xt} be a regular Markov chain
with transition matrix P . Then there exists a unique stationary distribution
π for the chain. Moreover

P t(x, y) t→∞−−−→ π(y) ∀x, y ∈ Ω. (1.5)

In particular, for every starting distribution µ0 and for every function h :
Ω→ R, we have

Eµ0 [h(Xt)]
t→∞−−−→ π(h). (1.6)

Proof: We will demonstrate an even stronger property that straight
implies (1.5): there exists a unique stationary distribution π that veri�es
�∃δ > 0 such that

max
x∈Ω
|P t(x, y)− π(y)| ≤ 1

δ
e−δt ∀t ∈ N, ∀y ∈ Ω�. (1.7)

De�ne  My(t) := max
x∈Ω

P t(x, y)

my(t) := min
x∈Ω

P t(x, y)
.

Obviously my(t) ≤My(t). Besides, we have

My(t+ 1) = max
x∈Ω

∑
z∈Ω

P (x, z)P t(z, y) ≤ max
x∈Ω

∑
z∈Ω

P (x, z)My(t) = My(t)

and similarly my(t+ 1) ≥ my(t).
Let {

My(∞) := lim
t→∞

My(t)

my(∞) := lim
t→∞

my(t)
.

so that My(t)↘My(∞) and my(t)↗ my(∞).
From the hypothesis of regularity we know that ∃t0 ∈ N and ε > 0:

P t0(x, y) ≥ ε ∀x, y ∈ Ω.
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So, taking t ≥ t0 we have

P t(x, y) =
∑
z∈Ω

P t0(x, z)P t−t0(z, y)

=
∑
z∈Ω

[
P t0(x, z)− εP t0(y, z)

]
P t−t0(z, y) + εP t(y, y)

≤My(t− t0)
∑
z∈Ω

[
P t0(x, z)− εP t0(y, z)

]
+ εP t(y, y)

= (1− ε)My(t− t0) + εP t(y, y).

Since this is true for every x ∈ Ω, we have also

My(t) ≤ (1− ε)My(t− t0) + εP t(y, y).

The very same way one can see that

my(t) ≥ (1− ε)My(t− t0) + εP t(y, y).

Putting together these two inequalities we obtain

0 ≤My(t)−my(t) ≤ (1− ε)[My(t− t0)−my(t− t0)];

iterating this, if t ≥ kt0, k ∈ N,

My(t)−my(t) ≤ (1− ε)k[My(t− kt0)−my(t− kt0)].

Write t = b tt0 ct0 + l, 0 ≤ l ≤ t0; then

My(t)−my(t) ≤ (1− ε)b
t
t0
c[My(l)−my(l)] ≤ (1− ε)b

t
t0
c ≤ 1

δ
e−δn

for some δ > 0. Now the vector π with π(y) = lim
t→∞

My(t) = lim
t→∞

my(t) is

well de�ned. It remains to show that π is actually a stationary distribution
for P and that it is the only one.

Since, ∀t > 0 and x ∈ Ω,
∑

y P
t(x, y) = 1, then

∑
y π(y) = 1, so π is a

probability vector. It is also invariant:∑
y∈Ω

π(y)P (y, x) = lim
t→∞

∑
y∈Ω

P t(z, y)P (y, x) = lim
t→∞

P t+1(z, x) = π(x).

If we have another probability vector µ such that µP = µ, then, ∀t > 0,
µP t = µ and

µ(x) = lim
t→∞

∑
y

µ(y)P t(y, x) =
∑
y

µ(y)π(x) = π(x),

so that µ = π. Finally, since we know that for every possible probability
vector µ0 we have that µ0P

t → π, for every function h

Eµ0 [h(Xt)] =
∑
x

∑
y

µ0(y)P t(y, x)h(x) t→∞−−−→
∑
x

π(x)h(x) = π(h).

�
Because of this theorem, we can also call π the equilibrium distribu-

tion.
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1.1.4 Reversibility

We say that a distribution of probability π satis�es the detailed balance

equations for a Markov chain P if, ∀x, y ∈ Ω,

π(x)P (x, y) = π(y)P (y, x). (1.8)

This property is often useful to verify that a probability distribution is
stationary:

Proposition 1.3. If π veri�es the detailed balance equations for a chain P ,
then it is stationary for that chain.

Proof: We have just to sum over all y ∈ Ω on both sides of (1.8) and
remember that P is a stochastic matrix. �

Iterating (1.8) we obtain, for any sequence x0, ...xt ∈ Ω,

π(x0)P (x0, x1)...P (xt−1, xt) = π(xn)P (xt, xt−1)...P (x1, x0).

This means that, starting from the stationary measure, the distribution of
the variables (X0, ..., Xt) and that of (Xt, ..., X0) is the same. This is why
such kind of Markov chains are called reversible.

1.2 Convergence to equilibrium

1.2.1 Total variation distance

We have shown with the Ergodic Theorem (Theorem 1.2) that Markov
chains, under some conditions, in the in�nite time limit �look like� their
own stationary distributions. A natural question that arises is: how fast is
this convergence? After how many steps we can consider the chain close to
its equilibrium?

To answer we need �rst of all to de�ne what the word �close� mean, that
is, we have to de�ne a metric in the contest of probability measures.

There are many choices we can do to de�ne a distance on the space of
all probability measures on the discrete space Ω. Widely used examples of
such objects are the lp-distances, useful especially for an analytic approach
to the study of Markov chains. Given an integer p ≥ 1 and two probability
measures µ (thought as the `reference measure') and ν on Ω, the lp distance
deals with the density of ν respect to µ:

∥∥∥ν
µ
− 1
∥∥∥
lp

=

(∑
x∈Ω

∣∣∣ ν(x)
µ(x)

− 1
∣∣∣p) 1

p
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and ∥∥∥ν
µ
− 1
∥∥∥
l∞

= max
x∈Ω

∣∣∣ν(x)
µ(x)

− 1
∣∣∣.

Another natural metric we can de�ne on the same space is the one in-
ducted by the total variation distance:

‖µ− ν‖TV := max
A⊂Ω
|µ(A)− ν(A)| = max

A⊂Ω

∣∣∣∑
x∈A

(µ(x)− ν(x))
∣∣∣. (1.9)

The interpretation is probabilistic: take the event on which the di�erence
between µ and ν is maximum; then this di�erence is exactly the TVd. The
next proposition gives a useful characterization:

Proposition 1.4. Let µ and ν be two probability distributions on Ω. Then
the total variation distance between them is exactly one half the l1 distance,
that is

‖µ− ν‖TV =
1
2

∑
x∈Ω

|µ(x)− ν(x)|. (1.10)

Proof: Let B := {x ∈ Ω : µ(x) ≥ ν(x)}. For any event A we have

µ(A)− ν(A) = µ(A∩B)− ν(A∩B) +µ(A∩Bc)− ν(A∩Bc) ≤ µ(B)− ν(B)

since, by de�nition of B, µ(A∩Bc)−ν(A∩Bc) is negative and in the second
inequality we have just added a positive term (µ(Ac ∩ B) − ν(Ac ∩ B)).
Analogously, for any event A′,

ν(A′)− µ(A′) ≤ ν(Bc)− µ(Bc).

Note that

(µ(B)− ν(B))− (ν(Bc)− µ(Bc)) = µ(Ω)− ν(Ω) = 0

so that the two upper bounds we have found have the same value. Further-
more, if we take A = B and A′ = Bc, then |µ(A)− ν(A)| is exactly equal to
the upper bounds. Thus

‖µ− ν‖TV =
1
2

(µ(B)− ν(B)) +
1
2

(ν(Bc)− µ(Bc)) =
∑
x∈Ω

|µ(x)− ν(x)|.

�

Note that from this characterization follows immediately the triangle
inequality:

‖µ− ν‖TV =
1
2

∑
x∈Ω

|µ(x)− ν(x)| ≤ 1
2

∑
x∈Ω

(|µ(x)− η(x)|+ |η(x)− ν(x)|)

= ‖µ− η‖TV + ‖η − ν‖TV
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for any probability measures µ, ν and η on Ω. If we had any doubt, now
we are sure that the total variation is actually a distance. Finally we give a
further way of describing the TVd between two measures:

Proposition 1.5. Let µ and ν be two probability distributions on Ω. Then

‖µ− ν‖TV =
1
2

sup
f :‖f‖∞≤1

|µ(f)− ν(f)| . (1.11)

Proof: ∀f such that ‖f‖∞ := maxx∈Ω |f(x)| ≤ 1,

1
2

∣∣∣∣∣∑
x∈Ω

f(x)µ(x)−
∑
x∈Ω

f(x)ν(x)

∣∣∣∣∣ ≤ 1
2

∑
x∈Ω

|f(x)(µ(x)− ν(x))|

≤ 1
2

∑
x∈Ω

|µ(x)− ν(x)|

≤ ‖µ− ν‖TV , (1.12)

which shows the (≥) side. For the reverse, set

f∗(x) :=
{

+1 if µ(x) ≥ ν(x)
−1 if µ(x) < ν(x).

Then∣∣∣∑
x∈Ω

f∗(x)(µ(x)− ν(x))
∣∣∣ =

∑
µ(x)≥ν(x)

(µ(x)− ν(x)) +
∑

µ(x)<ν(x)

(ν(x)− µ(x))

=
∑
x∈Ω

|µ(x)− ν(x)|, (1.13)

and Lemma 1.4 ends the proof. �

1.2.2 Distance from equilibrium

From now on, we will call d(t) the distance of a Markov chain P at time t
from its stationary distribution π starting from the worst initial distribution:

d(t) := max
µ
‖Pµ (Xt = ·)− π(·)‖TV

Note that

max
µ

1
2

∑
y∈Ω

|Pµ (Xt = y)− π(y)| = max
µ

1
2

∑
y∈Ω

∣∣∣∑
x∈Ω

(µ(x)P t(x, y)− µ(x)π(y))
∣∣∣

≤ max
µ

1
2

∑
x∈Ω

∑
y∈Ω

|P t(x, y)− π(y)|µ(x)
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≤ max
µ

1
2

max
x∈Ω

∑
y∈Ω

|P t(x, y)− π(y)|

∑
x∈Ω

µ(x)

= max
x∈Ω

1
2

∑
y∈Ω

|P t(x, y)− π(y)|

 = max
x∈Ω
‖P t(x, ·)− π(·)‖TV .

Since the maximum over all possible distribution is made also on the point
masses, the inverse inequality holds too. It follows that we can take just the
worst starting point instead of the worst starting distribution:

d(t) := max
x∈Ω
‖P t(x, ·)− π(·)‖TV . (1.14)

As one could expect the function d(t) is decreasing in time, as follows
from next proposition.

Proposition 1.6. Let P be the transition matrix of a Markov chain with
state space Ω and let µ, ν be any two probability distributions on Ω. Then

‖µP − νP‖TV ≤ ‖µ− ν‖TV (1.15)

Proof:

1
2

∑
x∈Ω

|µP (x)− νP (x)| = 1
2

∑
x∈Ω

∣∣∣∑
y∈Ω

µ(y)P (y, x)− ν(y)P (y, x)
∣∣∣

≤ 1
2

∑
y∈Ω

∑
x∈Ω

P (y, x)|µ(y)− ν(y)| = ‖µ− ν‖TV

�

Corollary 1.7. Let P be the transition matrix of a Markov chain with sta-
tionary distribution π. Then, for any t ≥ 0

d(t+ 1) ≤ d(t). (1.16)

Proof: For any x ∈ Ω, taking in Proposition 1.6 µ := δxP
t and ν :=

πP t = π, we have

‖P t+1(x, ·)− π(·)‖TV ≤ ‖P
t(x, ·)− π(·)‖TV .

So, if x̄ is a state that realizes the maximum maxx∈Ω ‖P t+1(x, ·)− π(·)‖TV ,
we have

d(t+ 1) = max
x∈Ω
‖P t+1(x, ·)− π(·)‖TV = ‖P t+1(x̄, ·)− π(·)‖TV
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≤ ‖P t(x̄, ·)− π(·)‖TV ≤ max
x∈Ω
‖P t(x, ·)− π(·)‖TV

= d(t).

�

In section 1.1.3 we have seen that every irreducible and aperiodic (regular
would be su�cient) Markov chain has its stationary measure and that the
distribution of the process is exactly this measure in the limit for the time
going to in�nity. In the proof of the Ergodic Theorem 1.2, also known as
the Perron-Frobenius theorem, it was even shown that this convergence has
an exponential rate. As a direct consequence of this fact, we have that also
the total variation distance of the chain from the stationary distribution has
this behaviour:

Corollary 1.8 (of Theorem 1.2). Let P be an irreducible and aperiodic
Markov chain with stationary distribution π. Then there exist constants α ∈
(0, 1) and C > 0 such that

max
x∈Ω
‖P t(x, ·)− π(·)‖TV ≤ Cα

t. (1.17)

Proof:

max
x∈Ω
‖P t(x, ·)− π(·)‖TV = max

x∈Ω

1
2

∑
y∈Ω

|P t(x, y)− π(y)|

≤ max
x∈Ω

1
2

∑
y∈Ω

max
x,y∈Ω

(
|P t(x, y)− π(y)|

)
=
n

2
max
x,y∈Ω

(
|P t(x, y)− π(y)|

)
,

where n := |Ω|. From equation (1.7) we know that there exists a δ > 0 such
that for any y ∈ Ω, t ≥ 0,

max
x,y∈Ω

(
|P t(x, y)− π(y)|

)
≤ 1
δ
e−δt,

so that setting C := n
2δ and α := e−δ we have (1.17). �

Theorem 1.2 and Corollary 1.8 ensure that one day our Markov chain will
be very close to stationarity. But since we don't know anything about the
constants (δ, C, α...) involved in the statements, we can not say how much
we have to wait to be su�ciently close.

A good branch of the studies on Markov chains in the last decades con-
centrated its e�orts in understanding more in detail this kind of problems.
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1.2.3 The mixing time

Suppose we want to know how long we have to wait before some Markov
chain P reaches a distance from its stationary distribution of ε. It would be
useful to have a time-parameter that formalizes this concept. We de�ne the
ε-mixing time of the chain as

tmix(ε) := min {t : d(t) ≤ ε} . (1.18)

A chain is said rapidly mixing if tmix(ε) is polynomial in log
(

1
ε

)
and the size

of the problem.
By convention if we take ε = 1

4 , we call it simply mixing time:

tmix := tmix

(
1
4

)
= min

{
t : d(t) ≤ 1

4

}
. (1.19)

The study of the only tmix is often su�cient, because of the next result:

Proposition 1.9. Let P be the transition matrix of an irreducible, aperiodic
Markov chain with tmix(c) ≤ T for some c < 1

2 . Then, for this Markov
chain,

tmix(ε) ≤
⌈

log ε
log (2c)

⌉
T. (1.20)

In particular
tmix(ε) ≤

⌈
log2 ε

−1
⌉
tmix. (1.21)

The proof of this fact requires the notion of coupling, thus it is put o�
to Section 1.3.4.

1.3 Some techniques

1.3.1 The specrtal gap and the Dirichlet form

An important and powerful method to analyze the convergence to equilib-
rium of a Markov chain is the study of the eigenvalues of its transition matrix.
First of all let's see some basic properties of these eigenvalues.

Proposition 1.10. Let P be the transition matrix of a �nite Markov chain.
If λ is an eigenvalue of P , then |λ| ≤ 1.

Proof: For any function f : Ω → R, the in�nity-norm is de�ned as
‖f‖∞ := maxx∈Ω |f(x)|. For any x ∈ Ω we have

|Pf(x)| =
∣∣∣∑
y∈Ω

P (x, y)f(y)
∣∣∣ ≤ ‖f‖∞∣∣∣∑

y∈Ω

P (x, y)
∣∣∣ = ‖f‖∞.
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Taking the maxx∈Ω we have

‖Pf‖∞ ≤ ‖f‖∞.

Thus, if φ is the eigenfunction corresponding to the eigenvalue λ, choosing
f = φ,

‖φ‖∞ ≥ ‖Pφ‖∞ = ‖λφ‖∞ = λ‖φ‖∞.

�

It is also possible to prove that if P is irreducible, then the vector 1̄ :=
(1, 1, ..., 1) generates the vector space of the eigenfunctions corresponding to
the eigenvalue 1, and that if P is also aperiodic, then −1 is not an eigenvalue
of P .

Proposition 1.11. If P̃ is the transition matrix of the lazy version of a chain
with transition matrix P , then all the eigenvalues of P̃ are non-negative.

Proof: Let f be an eigenfunction of P̃ = P+Id
2 with eigenvalue λ. Then

λf = P̃ f =
Pf + f

2
.

It follows that (2λ − 1) is an eigenvalue of P . Thus 2λ − 1 ≥ −1, and so
λ ≥ 0. �

For a reversible transition matrix P we label the eigenvalues in a decreas-
ing order:

1 = λ1 > λ2 ≥ ... ≥ λ|Ω| ≥ −1. (1.22)

De�ne
λ∗ := max{|λ| : λ is an eigenvalue of P , λ 6= 1}. (1.23)

We call the di�erence γ∗ := 1 − λ∗ the absolute spectral gap, while the
di�erence γ := 1 − λ2 is just the spectral gap. If P is aperiodic and
irreducible, then γ∗ > 0 since, as we said, there is no −1-eigenvalue. Of
course, by Proposition 1.11, whenever P is a lazy chain, γ∗ = γ.

De�ne now on the space RΩ the inner product

〈f, g〉π :=
∑
x∈Ω

f(x)g(x)π(x). (1.24)

We will write f ⊥π g if 〈f, g〉π = 0. A well known property of reversible
chains is that the inner product space (RΩ, 〈·, ·〉π) has an orthonormal basis
of real-valued eigenfunctions {fj}nJ=1 corresponding to the real eigenvalues
{λj}. It follows that any function f : Ω→ R can be decomposed as

P tf =
|Ω|∑
j=1

〈f, fj〉πfjλtj . (1.25)
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In this case we can de�ne the Dirichlet form associated to our chain as

D(f, g) := 〈(Id− P )f, g〉π

where f and g are functions on Ω. In particular, we de�ne D(f) := D(f, f).
Just manipulating the de�nition and using the reversibility we can rewrite
it as

D(f) =
1
2

∑
x,y∈Ω

[f(x)− f(y)]2π(x)P (x, y). (1.26)

We introduced the Dirichlet form for the following useful characterization
of the spectral gap:

Lemma 1.12.

γ = min
f∈RΩ

f⊥π 1̄,‖f‖2=1

{D(f)} (1.27)

Proof: Say |Ω| = n. Let {f1, ..., fn} be an orthonormal basis of eigen-
functions for (RΩ, 〈·, ·〉π), with fk associated to the eigenvalue λk for all k.
Take f1 = 1̄. By (1.25) we know that any function f can be written as∑

j〈f, fj〉πfj and then the l2 norm of f is

‖f‖22 = 〈f, f〉π =
n∑
j=1

|〈f, fj〉π|2.

Whenever ‖f‖2 = 1 and f ⊥π 1̄ we can write f as f =
∑n

j=2 ajfj with∑n
j=2 a

2
j = 1. Thus

〈(Id− P )f, f〉π =
n∑
j=2

a2
j (1− λj) ≥ (1− λ2).

Finally take f = f2 to realize the minimum. �

Notice that equivalent expressions are

γ = min
f∈RΩ

f⊥π 1̄,f 6≡0

{
D(f)
‖f‖22

}
, (1.28)

since f̃ = f
‖f‖2 has l2 norm equal to one and satis�es D(f̃) = D(f)

‖f‖22
, and

γ = min
f∈RΩ

V arπ(f)6=0

{
D(f)

V arπ(f)

}
(1.29)

(where V arπ(f) =
∑
f2(x)π(x) − (

∑
f(x)π(x))2), just replacing the f of

the lemma with f̃ = f − Eπ [f ].
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1.3.2 The relaxation time

How can we relate the eigenvalues of the transition matrix to our study of
the speed of convergence of the chain?
The relaxation time of a reversible Markov chain is de�ned as

trel :=
1
γ∗
. (1.30)

One possible link between tmix and trel is the inequality

V arπ(P tf) ≤ (1− γ∗)2tV arπ(f), (1.31)

that we don't prove here. But the most interesting relation is shown in the
next theorem.

Theorem 1.13. Let P be the transition matrix of a reversible, irreducible
and aperiodic Markov chain with state space Ω and let πmin := minx∈Ω π(x).
Then

(trel − 1) log
(

1
2ε

)
≤ tmix(ε) ≤ log

(
1

επmin

)
trel. (1.32)

Proof: For the �rst inequality suppose that f is an eigenfunction of
P with eigenvalue λ 6= 1. Since the eigenfunctions are orthogonal with
respect to the inner product 〈·, ·〉π and since 1̄ is an eigenfunction, it follows∑

y π(y)f(y) = 〈1̄, f〉π = 0. Therefore

|λtf(x)| = |P tf(x)| =
∣∣∣∑
y∈Ω

[P t(x, y)f(y)− π(y)f(y)]
∣∣∣ ≤ ‖f‖∞2d(t).

Taking the state x which realizes the in�nity norm and setting t = tmix(ε)
gives

|λtmix(ε)| ≤ 2d(tmix(ε)) ≤ 2ε.

Whence

tmix(ε)
(

1
|λ|
− 1
)
≥ tmix(ε) log

(
1
|λ|

)
≥ log

(
1
2ε

)
.

Minimizing the left hand side over the eigenvalues di�erent from 1 and rear-
ranging gives the bound.

Now the second (and more useful) inequality. By Proposition 1.5 we can
write

‖P t(x, ·)− π‖TV =
1
2

sup
g:|g|≤1

|P tx(g)− π(g)| = 1
2

sup
g:|g|≤1

|P tx(g̃)| (1.33)
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where g̃ is the function g minus its mean. For all functions g̃ with 0-mean
we have

|P tx(g̃)| ≤ 1
π(x)

∑
y∈Ω

π(y)|P ty(g)|

≤ 1
π(x)

V arπ(P t(g̃))
1
2

≤ 1
π(x)

e−tγ
∗
V arπ(g)

1
2 (1.34)

where we have used Schwartz inequality and equation (1.31). Remember
that ‖g‖∞ ≤ 1 and hence V ar(g) ≤ π(g2) ≤ 1. Summarizing

max
x∈Ω
‖P t(x, ·)− π‖TV ≤

1
π∗
e−tγ

∗
.

The right hand side is smaller than ε if

t ≥ 1
γ∗

log
(

1
επ∗

)
,

so that tmix has to be smaller than the required quantity. �

Most of the times �nding precisely the eigenvalues of a transition matrix
on a big state space turns out to be almost impossible. Some techniques to
bound the spectral gap of a chain will be shown in the next chapters.

1.3.3 Coupling

A coupling of two probability distribution µ and ν on a state space Ω is a
pair of random variables (X,Y ), de�ned on Ω×Ω, such that their marginal
distributions are respectively µ and ν:∑

y∈Ω

P (X = x, Y = y) = µ(x),

∑
x∈Ω

P (X = x, Y = y) = ν(y).

There always exists a coupling between any two probability distribution, for
example letting X and Y be independent. However very interesting proper-
ties come out when we force the two random variables to assume the same
values. Next proposition, for example, gives a nice and useful characteriza-
tion of the total variation distance based on the concept of coupling.

Proposition 1.14. Given two probability distributions µ and ν on Ω, we
have that

‖µ− ν‖TV = inf {P (X 6= Y ) : (X,Y ) is a coupling of µ and ν} . (1.35)
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Proof: First note that for every coupling (X,Y ) of µ and ν and for any
event A ⊆ Ω

µ(A)− ν(A) = P (X ∈ A)− P (Y ∈ A)
= P (X ∈ A, Y 6∈ A) + P (X ∈ A, Y ∈ A)− P (Y ∈ A)
≤ P (X ∈ A, Y 6∈ A)
≤ P (X 6= Y ) .

Taking the maximum over all possible events on the left side and the in�mum
over all possible coupling on the right we obtain:

‖µ− ν‖TV ≤ inf {P (X 6= Y ) : (X,Y ) is a coupling of µ and ν} . (1.36)

Now we'll construct a coupling such that equality holds, forcing X and Y to
be equal as often as possible. To do that, ∀x ∈ Ω we will assign value x to
both X and Y with the highest probability allowed, that is µ(x) ∧ ν(x).

Set
p =

∑
x∈Ω

µ(x) ∧ ν(x) =
∑
x∈Ω:

µ(x)≤ν(x)

µ(x) +
∑
x∈Ω:

ν(x)<µ(x)

ν(x).

Adding and subtracting
∑

x:µ(x)>ν(x) µ(x) to the right-hand side gives

p = 1−
∑
x∈Ω:

ν(x)<µ(x)

(µ(x)− ν(x)) = 1− ‖µ− ν‖TV ,

where the last equality follows immediately from the proof of Proposition
1.4.

Now �ip a coin with probability of heads equal to p. If the coin comes
up heads then we will take X = Y = x with probability

µ(x) ∧ ν(x)
p

;

if the coin comes up tails, we will choose X according to the probability
distribution

dX(x) =


µ(x)− ν(x)

1− p
if µ(x) > ν(x)

0 otherwise

and independently Y according to the probability distribution

dY (x) =


ν(x)− µ(x)

1− p
if ν(x) > µ(x)

0 otherwise.
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With simple calculations it is possible to verify that dX and dY are actually
probability distributions and that with this choice the marginals of X and
Y are µ and ν. Finally note that X = Y if and only if the coin shows tails,
so that

P (X 6= Y ) = 1− p = ‖µ− ν‖TV .

�

1.3.4 Coupling of Markov chains

Let's take two Markov chains de�ned on the same state space Ω, both with
transition matrix P , but with di�erent starting positions chosen according
to µ0 and ν0. We would like to couple, in the sense of the last section, the
distributions of the two chains at each step.

A coupling of these two chains is a process (Xt, Yt)t≥0 such that Xt ∼ P tµ0

and Yt ∼ P tν0
. If Xt and Yt start from the points x and y, we will use the

notation Px,y for the probability on the space where both the chains are
de�ned.

Again we will be interested in forcing the two processes to be in the same
point of Ω. Besides, once they have met, we will keep them together forever:

Xs = Ys ⇒ Xt = Yt ∀t ≥ s. (1.37)

This can be easily achieved choosing next position for Xt according to P and
then making the same choice for Yt.

A very useful result provided by the coupling method is a bound for the
distance from the stationarity, as stated by the Corollary of the following
theorem.

Theorem 1.15. Given a transition matrix P on the space Ω, consider two
Markov chains starting from two di�erent states x, y and evolving according
to P . Take any coupling (Xt, Yt) of the chains verifying (1.37), and de�ne

τc := min{t : Xt = Yt},

the �rst time the two copies meet. Then

‖P t(x, ·)− P t(y, ·)‖TV ≤ Px,y (τc > t) . (1.38)

Proof: Since at each step (Xt, Yt) is a coupling of the measures P t(x, ·)
and P t(y, ·) by construction, Proposition 1.14 gives immediately

‖P t(x, ·)− P t(y, ·)‖TV ≤ Px,y (Xt 6= Yt) .

Furthermore (1.37) implies Px,y (Xt 6= Yt) = Px,y (τc > t), so we are done. �
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Corollary 1.16. Suppose that for each pair of state x, y ∈ Ω there is a
coupling (Xt, Yt)t≥0 such that X0 = x, Y0 = y. Then

d(t) ≤ max
x,y∈Ω

Px,y (τc > t) , (1.39)

where τc is de�ned as in the previous theorem.

Proof: By the de�nition of the stationary distribution π

‖P t(x, ·)− π‖TV = max
A⊂Ω
|P t(x,A)− π(A)|

= max
A⊂Ω

∣∣∣∑
y∈Ω

π(y)(P t(x,A)− P t(y,A))
∣∣∣

≤ max
A⊂Ω

∑
y∈Ω

π(y)|P t(x,A)− P t(y,A)|

≤
∑
y∈Ω

π(y)‖P t(x, ·)− P t(y, ·)‖TV

≤ max
y∈Ω
‖P t(x, ·)− P t(y, ·)‖TV .

Taking also the maximum over all possible x's, we have �nally

d(t) ≤ max
x,y∈Ω

‖P t(x, ·)− P t(y, ·)‖TV .

Putting together this and Theorem 1.15 gives the corollary. �

We are now able to prove Proposition 1.9:

Proof (of Proposition 1.9): Let's consider two di�erent starting states
x, y ∈ Ω for the chain. By de�nition of tmix(c), we have both

‖P T (x, ·)− π(·)‖TV ≤ c and ‖P T (y, ·)− π(·)‖TV ≤ c.

Hence, by triangular inequality, ‖P T (x, ·)− P T (y, ·)‖TV ≤ 2c. As we have
seen in Proposition 1.14 we can construct a particular coupling (XT , YT )
of the measures P T (x, ·) and P T (y, ·) such that P (XT 6= YT ) ≤ 2c. Now
consider a new Markov chain on the same state space with transition matrix
Q := P T ; in words this new process performs a step every T steps of the
original chain P . The coupling we have described above guarantees that
the probability that the two instances of the new chain starting from x and
y have not coupled in one �Q-step� is at most 2c. So, by induction, the
probability that the two copies of the Q-chain have not coupled in k steps
is less or equal to (2c)k. By Corollary 1.16, Q is within variation distance ε
from its stationary distribution after k steps if

(2c)k ≤ ε.
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It follows that after dlog ε/ log (2c)e steps the new chain is closer than ε to its
stationary distribution. But Q and P have the same stationary distribution,
and one Q-step is equivalent to T P -steps. Therefore,

tmix(ε) ≤
⌈

log ε
log (2c)

⌉
T

for the original Markov chain. �



Chapter 2

The Cut-o� phenomenon

2.1 Cut-o�

2.1.1 Main de�nition

Now that our knowledge of �nite Markov chains is pretty good, we are ready
to introduce the main subject of this work.

Take a sequence of Markov chains indexed by n = 1, 2, ... with their state
space Ω(n); we can think that as n grows, the size of the Ω's grows. Suppose
that each of these chains has its stationary distribution π(n) and its mixing

time t
(n)
mix(ε). We say that the sequence has a cut-o� if, for any 0 < ε < 1

2 ,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1. (2.1)

In general, the time to reach a distance (1− ε) from the stationary distribu-
tion is smaller than the time to reach a distance ε. We can write

t
(n)
mix(ε)− t(n)

mix(1− ε) = τ (n) > 0.

What equation (2.1) is telling us is that, in the limit for n→∞, τ (n) becomes

negligible on a time-scale of t
(n)
mix. Since ε can be taken arbitrarily small, we

are also saying that the time to pass from the maximum distance from π to
an almost-0 distance is (relatively) very short.

Graphically, if we draw the function dn(t) (that is the d(t) fot the chain
n) and zoom out the picture on a time-scale of t

(n)
mix, we see that as n grows

the function approaches a step-function with jump at t
(n)
mix (see Figure 2.1.1).

Knowing the existence of the cut-o� for some family of Markov chains can
be very useful: if we want to approach the distribution π(n) (for example in

a simulation), we know that we have at least to wait t
(n)
mix steps but also that

is quite useless to run the chain much longer. This nice property seems to
appear in many `natural' Markov chains; nevertheless, nowadays the family

25
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Figure 2.1: For a sequence of chains with cut-o�, the graph of dn(t) against

t, zoomed on a time-scale of t
(n)
mix, approaches a step function as n→∞.

of processes that are known to have a cut-o� is pretty small, since verifying
that a given sequence satis�es the de�nition can be quite hard. For this
reason there are other weaker de�nitions for the cut-o�, such as the pre-
cuto� and the weak lp-cut-o�.

For example a sequence of Markov chains indexed by n on the state

spaces Ωn, with stationary distributions π(n) and mixing times t
(n)
mix(ε), is

said to show a pre-cut-o� if

sup
0<ε< 1

2

lim sup
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

<∞. (2.2)

In 2004 David Aldous showed a simple chain that has pre-cut-o� but not
cut-o�.

2.1.2 An equivalent de�nition

Lemma 2.1. A sequence of Markov chains exhibits a cut-o� ⇐⇒

⇐⇒ dn(c t(n)
mix) n→∞−−−→

{
1 if c < 1
0 if c > 1

Proof: ⇐) From the de�nition of limit, for any γ > 0 we can choose n

big enough to make dn((1− γ) t(n)
mix) arbitrarily close to 1. It follows that for

any 0 < ε < 1
2 we can choose n such that dn((1− γ) t(n)

mix) > (1− ε). Hence,
for such n,

t
(n)
mix(1− ε) ≥ (1− γ)t(n)

mix; (2.3)
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in the very same way we can choose n big enough such that

t
(n)
mix(ε) ≤ (1 + γ)t(n)

mix. (2.4)

Therefore exists n such that

1 ≤
t
(n)
mix(ε)

t
(n)
mix(1− ε)

≤ 1 + γ

1− γ
, (2.5)

and taking the limit for γ → 0 (so that n→∞) we obtain the de�nition of
cut-o�.
⇒) From the de�nition of limit, �xing γ, there exists n̄ such that ∀n > n̄

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≤ (1 + γ) = c (2.6)

so that
tmix(ε) ≤ c t(n)

mix(1− ε) ≤ c t(n)
mix.

Therefore, from the de�nition of d(n)(·) and taking the limit over n to cover
all possible 0 < ε < 1

2 ,

lim
n→∞

d(n)(c t(n)
mix) ≤ ε. (2.7)

Letting ε → 0 we have the case c > 1. The case c < 1 is completely
analogous. �

2.1.3 The cut-o� window

We would like to be more precise to describe how long it takes for the chain
to fall from a distance ∼ 1 to a distance ∼ 0. We say that a sequence of

Markov chains has a cut-o� with a window of size ωn if ωn = o(t(n)
mix) and

lim
α→∞

lim inf
n→∞

dn(t(n)
mix − αωn) = 1, (2.8)

lim
α→∞

lim sup
n→∞

dn(t(n)
mix + αωn) = 0. (2.9)

Equivalently we can say that a sequence {ωn} is a cut-o� window for a

family of chains
(
X

(n)
t

)
if ωn = o(t(n)

mix) and

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεωn. (2.10)

So with {ωn} we know the size of the little interval around t
(n)
mix in which

the total variation distance of the chain from its stationary distribution col-
lapses.
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2.1.4 A necessary condition for the cut-o�

Proposition 2.2. For a sequence of irreducible, aperiodic and reversible

Markov chains with spectral gaps {gap(n)} and mixing times {t(n)
mix}, if

lim
n→∞

t
(n)
mix · gap(n) <∞,

then there is no pre-cut-o�.

Proof: Recall the �rst bound of Theorem 1.13:

(trel − 1) log
(

1
2ε

)
≤ tmix(ε).

Dividing both sides by t
(n)
mix we know from the hypothesis that there exist a

constant c > 0 such that, ∀n and ∀ε ∈ (0, 1
2),

t
(n)
mix(ε)

t
(n)
mix(1− ε)

≥
t
(n)
mix(ε)

t
(n)
mix

≥
t
(n)
rel − 1

t
(n)
mix

log
(

1
2ε

)
≥ c log

(
1
2ε

)
.

Letting ε→ 0, the left hand side goes to ∞. �

2.2 An example: the simple random walk on the

hypercube

2.2.1 The model

Till the end of this chapter we will apply the theoretical de�nitions and
results seen so far to a concrete simple example.

The n-dimensional hypercube is a graph whose vertices are the binary
strings of length n taking values in {0, 1}n. Obviously there are 2n of such
vertices. Any two points are connected by an edge if and only if they di�er
for just one coordinate (or bit). If we imagine the picture of this graph in the
3-dimensional space, we obtain a typical cube of size 1. Its generalisation in
n dimensions is the hypercube.

Our random process is the simple random walk on this graph. Imagine
a cat that lies on a vertex of the hypercube; every �second� the cat chooses
at random, that is with equal probability, one of the n vertices connected by
an edge to its current position and jumps immediately there. The process
will be the random sequence of the sites visited by the cat.

It is of course a Markov chain: the cat jumps over the next site without
taking into account its past moves, but only considering its present position.
The transition matrix P of the process has 1

n -entries in the places P (u, v)
where u and v are connected by an edge, and is 0 everywhere else. Besides,
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the chain is irreducible, since after at most n jumps the cat can arrive with
positive probability everywhere.

As all the cats, also our random cat can be very lazy. In this case
we de�ne a lazy version of the process, in which the cat can decide (with
probability 1

2), to rest a bit and remain for one �second� on its position. In
the transition matrix of the process 1

2 will appear on the whole diagonal and
all the 1

n 's will be replaced by 1
2n . The advantage in this case is that the

process becomes also aperiodic, so that we can apply a lot of the theorems
we have seen in the �rst chapter.

Note that, by the detailed balance equations (1.8), it is very simple to
verify that the uniform measure is the stationary distribution for the chain.

Finally we can observe that this process has a particularity: the chain
looks the same from any point in the state space Ω (the set of all vertices).
That is, the possible kind of choices of the cat are always the same, doesn't
matter on which vertex he is lying. Formally, for each couple (x, y) ∈ Ω×Ω
there is a bijection φ = φ(x,y) : Ω → Ω such that φ(x) = y and P (z, w) =
P (φ(z), φ(w)), ∀z, w ∈ Ω. Such kind of chains is called transitive. One
obvious consequence of this property is that in order to calculate the total
variation distance of the chain from its stationary distribution we can let the
chain start from any point of Ω.

2.2.2 Mixing time

Let's start studying the mixing time of our lazy random walk on the hyper-
cube. With a very simple and intuitive coupling we will be able to bound tmix
from above and this bound will be of the correct order in n up to constants.

This is the description of our coupling: take two copies of the chain
starting from any two vertices of the hypercube. Choose at random one of
the n coordinates and toss a fair coin: if it comes up heads, upload in both
chains the chosen coordinate with a 0 bit, otherwise with a 1. This way,
once the j -th coordinate has been chosen, the two chains will have the same
bit in the j -th position forever.

Clearly, if all coordinate have been chosen at least once, the two chains
proceed together. Then it is useful to de�ne

τ := {First time all the coordinates have been chosen at least once}.

Proposition 2.3. ∀c > 0,

P (τ > dn log n+ cne) ≤ e−c. (2.11)

Proof: De�ne the events

Ai := {The i-th coordinate have not been chosen in the �rst dn log n+ cne
steps}.
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Then, ∀i = 1, 2, ..., n,

P (Ai) =
(

1− 1
n

)dn logn+cne
≤ e−dlogn+ce ≤ 1

n
e−c.

Therefore

P (τ > dn log n+ cne) = P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P (Ai) ≤ e−c.

�

Proposition 2.4. For the simple lazy random walk on the n-dimensional
hypercube

tmix(ε) ≤ n log n+ n log
(

1
ε

)
. (2.12)

Proof: From the coupling we have described above, from Corollary 1.16
and from equation (2.11) we obtain

d(n log n+ cn) ≤ P (τ > dn log n+ cne) ≤ e−c,

and the conclusion follows immediately from the de�nition of mixing time.
�

The order O(n log n) we have found is actually the right order for the
mixing time, but it can be improved by a constant factor of 1

2 as it will be
shown later in this chapter.

2.2.3 The Ehrenfest urn and the Hamming's weight

We want to introduce another process that at a �rst glance could appear
totally unlinked from the original random walk. Imagine to have two urns,
say Urn I and Urn II, in which are distributed n balls. At each step of
the process we choose at random one of the n balls and transfer it from its
current urn to the other. So, if we call Yt the number of balls in Urn I at
time t, the transition matrix of our chain is

P (j, k) =


n− j
n

if k = j + 1
j

n
if k = j − 1

0 otherwise.

(2.13)

Yt is a Markov chain on the state space ΩE := {0, 1, ..., n} and, as one can see
from the transition matrix, it has a drift towards the middle of this interval.
Of course, if we leave a 1

2 probability for the balls to stand still at each
step, we obtain a lazy version of the chain. Thanks to the detailed balance
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equations it is very easy to verify that πW , the stationary distribution for
both these chains (lazy and not lazy), is a binomial distribution of parameters
n and 1

2 , so that ∀t
EπW [Wt] =

n

2
(2.14)

and
V arπW (Wt) =

n

4
. (2.15)

Which is the link between this chain, called the Ehrenfest urn process,
and the random walk on the hypercube?

For a vertex of the hypercube, we can de�ne its Hamming's weight as
the number of 1's that appear in the string representation of such vertex:

W (x) =
n∑
j=1

x(j) (2.16)

where x(j) ∈ {0, 1}. If Xt is the (not-lazy) random walk, then we can study
its projection

Wt := W (Xt). (2.17)

If Wt = j, then it increments by a unit amount if one of the n − j 0-
coordinates is �ipped, while it decrements if one of the j 1-coordinates is
chosen. It follows that Wt is again a Markov chain and that its transition
probabilities are described as well by (2.13).

In this parallel the j-th coordinate of the random walk Xt can be thought
as the j-th ball of the urns process: if the j-th bit is 1, then the ball is in
Urn I, while if the bit is 0 the ball is in Urn II.

The following lemma provides another key connection between the two
models. It will allow us to deal with the Ehrenfest urn instead of the more
complicated random walk on the hypercube in order to demonstrate the
upper bound for the cut-o�.

Lemma 2.5. Let Xt be the simple random walk on the hypercube and let
Wt :=

∑n
j=1Xt(j) be the Hamming's weight of the chain at each step (cor-

responding to an Ehrenfest urn chain). Then

‖P1̄ (Xt ∈ ·)− π‖TV = ‖Pn (Wt ∈ ·)− πW ‖TV , (2.18)

where P1̄ says that we are starting the random walk by the vertex with all 1's
coordinates and Pn says that we are starting the urns chain with all the balls
in Urn I.
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Proof: De�ne Ωw := {x ∈ Ω : W (x) = w}. By symmetry, both x →
P1̄ (Xt = x) and x→ π(x) are constant functions over Ωw. Then∑

x∈Ω:
W (x)=w

|P1̄ (Xt = x)− π(x)| =
∣∣∣ ∑

x∈Ω:
W (x)=w

P1̄ (Xt = x)− π(x)
∣∣∣

= |P1̄ (Wt = x)− πW (w)|,

where we used the fact that all the terms in the �rst summation are equal.
Summing over all possible w ∈ {0, 1, ..., n} and dividing by 2 we obtain
equation (2.18). �

2.2.4 Some other tools

In this section we will state some general results that will be useful for the
proof of the cut-o� for the random walk on the hypercube.

One way to produce a lower bound for the mixing time tmix is to �nd
a statistic (a real-valued function) f on Ω such that the distance between
f(Xt) and the distribution of f under the stationary distribution π can be
bounded from below. In fact we have the following lemmas:

Lemma 2.6. Let µ and ν be two probability measures on Ω and let f : Ω→
Λ, with Λ a �nite set. Setting, ∀A ⊂ Ω,

µf−1(A) := µ({x : f(x) ∈ A}),

we have
‖µ− ν‖TV ≥ ‖µf

−1 − νf−1‖TV . (2.19)

Proof:

max
B⊂Λ
|µf−1(B)− νf−1(B)| = max

B⊂Λ
|µ(f−1(B))− ν(f−1(B))|

≤ max
A⊂Ω
|µ(A)− ν(A)|.

�

Lemma 2.7. Let f : Ω → Λ, with Λ a �nite set, and let µ and ν two
probability measures on Ω such that

Eν [f ]− Eµ[f ] ≥ rσ∗,

for some r > 0, where
Eµ[f ] =

∑
x∈Ω

µ(x)f(x)

and

σ∗ :=
√

max{V arµ(f), V arν(f)}.

Then

‖µ− ν‖TV ≥ 1− 8
r2
. (2.20)



CHAPTER 2. THE CUT-OFF PHENOMENON 33

Proof: Let

A :=
(
Eµ[f ] +

rσ∗
2
,∞
)

and apply Chebychev inequality:

µf−1(A) = µ({x : f(x) ≥ Eµ[f ] +
rσ∗
2
})

≤ µ({x : |f(x)− Eµ[f ]| ≥ rσ∗
2
})

≤ 4
r2

and

νf−1(A) = ν({x : f(x) ≥ Eµ[f ] +
rσ∗
2
})

≥ ν({x : f(x) ≥ Eν [f ]− rσ∗ +
rσ∗
2
})

≥ ν({x : |f(x)− Eν [f ]| ≤ rσ∗
2
})

≥ 1− 4
r2
.

Therefore, thanks to Lemma 2.6, we have

‖µ− ν‖TV ≥ ‖µf
−1 − νf−1‖TV = sup

B⊂Λ
|µf−1(B)− νf−1(B)|

≥ |µf−1(A)− νf−1(A)| ≥ 1− 4
r2
− 4
r2

= 1− 8
r2
.

�

Going back to the problem of knowing how long we have to wait to refresh
the coordinates in the random walk on the hypercube, the last lemma of this
section gives a good amount of informations.

Lemma 2.8. Consider the simple random walk on the n-dimensional hyper-
cube. Let

Ij(t) := χ{j-th coordinate has not been chosen up to time t}

and

Rt :=
n∑
j=1

Ij(t) = #{coordinates not refreshed at time t}.

Therefore the Ij(t)'s are negatively correlated and if

p :=
(

1− 1
n

)t
,
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then, ∀t > 0,
E [Rt] = np (2.21)

and
V ar(Rt) ≤ np(1− p) ≤

n

4
. (2.22)

Proof: Since

P ({j-th coordinate has not been chosen up to time t}) = p,

we have that the Ij(t)'s are Bernoulli random variables of parameter p; then

E [Ij(t)] = p,

V ar(Ij(t)) = p− p2 = p(1− p)

and (2.21) follows immediately.
For k 6= j we have

E [Ij(t)Ik(t)] =
(

1− 2
n

)t
;

therefore

Cov(Ij(t), Ik(t)) =
(

1− 2
n

)t
−
(

1− 1
n

)2t

≤ 0, (2.23)

and (2.22) is a direct consequence, keeping in mind that ∀q ∈ [0, 1]

q(1− q) ≤ 1
2
.

�

2.2.5 Lower bound for the cut-o�

Proposition 2.9. For the lazy simple random walk on the n-dimensional
hypercube

d

(
1
2
n log n− αn

)
≥ 1− 8e−2α+1. (2.24)

Proof: We would like to apply Lemma 2.7 with f(·) = W (·), µ = π
and ν = δ1̄ (that is the random walk starting by the vertex with all the
coordinates equal to 1: X0 = (1, 1, ..., 1)). Let's evaluate σ∗.

First of all note that by (2.15) we have

V arπ(W (Xt)) = V arπW (Wt) =
n

4
. (2.25)

Then, using the notation of Lemma 2.8, call Rt the number of coordinates
that have not been selected up to time t. Starting by the 1̄-con�guration,
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the distribution of W (Xt) given Rt = r is the distribution of the random
variable B + r, where B is a binomial of parameters (n− r) and 1

2 . Then

E1̄ [W (Xt)|Rt] = Rt +
n−Rt

2
=

1
2

(Rt + n); (2.26)

taking another expectation over the possible values of Rt and using equation
(2.21) we obtain

E1̄ [W (Xt)] =
n

2

[
1 +

(
1− 1

n

)t]
. (2.27)

Plugging in equation (2.26) in the identity given by the well known `total
variation formula'

V ar1̄(W (Xt)) = V ar(E1̄ [W (Xt)|Rt]) + E [V ar1̄(W (Xt)|Rt)] (2.28)

and remembering the nature of W (Xt) given Rt, we have

V ar1̄(W (Xt)) =
1
4
V ar(Rt) +

1
4

[n− E [Rt]] . (2.29)

Since Rt is the summation of indicator functions negatively correlated

V ar(Rt) = E
[(∑

j

Ij

)2]
− E2

[∑
j

Ij

]
=
∑
j 6=k

E [IjIk] +
∑
j

E
[
Ij

2
]
−
∑
j 6=k

E [Ij ] E [Ik]−
∑
j

E2 [Ij ]

≤
∑
j

E [Ij ]−
∑
j

E2 [Ij ]

≤ E [Rt] ,

so

V ar1̄(W (Xt)) ≤
1
4
np+

1
4

[n− np] =
n

4
.

This means that

σ∗ =
√
n

2
. (2.30)

Therefore

|E1̄ [W (Xt)]− Eπ [W (Xt)] | =
n

2

(
1− 1

n

)t
= σ∗

√
n

(
1− 1

n

)t
= σ∗e

−t(− log (1− 1
n))e

logn
2

≥ σ∗e−
t
n(1+ 1

n)+ logn
2
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where in the last inequality we've used the fact that log (1− x) ≥ −x− x2,
∀0 ≤ x ≤ 1.

From Lemma 2.7 we have

‖P t(1̄, ·)− π‖TV ≥ 1− 8e
2t
n (1+ 1

n)−logn

and since

tn :=
[
1− 1

n+ 1

] [
1
2
n log n−

(
α− 1

2

)
n

]
≥ 1

2
n log n− αn

we �nally obtain

d

(
1
2
n log n− αn

)
≥ d(tn)

≥ 1− 8e
2tn
n (1+ 1

n)−logn

= 1− 8e−2α+1. (2.31)

�

2.2.6 Upper bound for the cut-o�

As we said before, the result of Section 2.2.2 can be improved by a constant
factor, completing the proof of the existence of the cut o� for our Markov
chain.

Proposition 2.10. For the lazy simple random walk on the n-dimensional
hypercube there exists a constant c > 0 such that

d

(
1
2
n log n+ αn

)
≤ c√

α
. (2.32)

Proof: Since the chain is transitive, we have, recalling Lemma 2.5,

d(t) = ‖P1̄ (Xt ∈ ·)− π‖TV = ‖Pn (Wt ∈ ·)− πW ‖TV , (2.33)

so that it will be su�cient to bound the right hand side of (2.33). We will
use again the powerful coupling method to do that.

Let's build two copies of the Ehrenfest urn model, Wt and Zt, starting
from di�erent points of ΩW , W0 = w and Zt = z with z ≥ w without loss
of generality. At each step we throw a fair coin in order to decide which of
the two copies will perform a move according to the probabilities described
in table (2.13). This way, looking separately at Wt and Zt, we will see two
copies of the lazy Ehrenfest urn process. Besides, once the two chains meet,
we can force them to stay together forever.

De�ne
Dt := Zt −Wt, (2.34)
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the di�erence of the number of balls in Urn I in the two copies; by construc-
tion Dt ≥ 0, ∀t ≥ 0. Let also

τ := min{t ≥ 0 : Zt = Wt} (2.35)

be the �rst time the two copies meet.
As long as τ > t,

Dt+1 −Dt =


1 with prob.

1
2

(
1− Zt

n

)
+

1
2
Wt

n

−1 with prob.
1
2
Zt
n

+
1
2

(
1− Wt

n

)
.

(2.36)

Therefore, if τ > t,

Ez,w [Dt+1 −Dt|Zt = zt,Wt = wt] = −zt − wt
n

= −dt
n
. (2.37)

From this, the fact that χ{τ>t} depends only on the history of the chain up
to time t and from the Markov property (1.1), we have

Ez,w
[
χ{τ>t}Dt+1|Z0, ..., Zt,W0, ...,Wt

]
=
(

1− 1
n

)
χ{τ>t}Dt. (2.38)

Taking the expectation over all possible paths of Z and W

Ez,w
[
χ{τ>t}Dt+1

]
=
(

1− 1
n

)
Ez,w

[
χ{τ>t}Dt

]
(2.39)

and since, ∀t,
χ{τ>t+1} ≤ χ{τ>t}

we have

Ez,w
[
χ{τ>t+1}Dt+1

]
≤
(

1− 1
n

)
Ez,w

[
χ{τ>t}Dt

]
. (2.40)

Iterating (2.40)

Ez,w
[
χ{τ>t}Dt

]
≤
(

1− 1
n

)t
(z − w)

≤ ne−
t
n . (2.41)

Now note that if τ > t the increments Dt+1 − Dt tend to be negative; in
fact, the probabilities in (2.36) and equation (2.37) say that at each step Dt

increases of one unit with probability not bigger than 1
2 −

1
2n and decreases

of one unit with probability at least 1
2 + 1

2n . Therefore it is possible to couple
Dt with a symmetric random walk St on the state space ΩS := N0 that has
probability 1

2 −
1

2n to go either to the left or to the right and that is slightly
lazy (it stands still with probability 1

n). We can suppose S0 = z − w and
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force St to dominate Dt in the sense that whenever St performs a step to
the left, we oblige Dt to do the same; this way ∀t ≤ τ , St ≥ Dt.

Call τ̃ := min{t ≥ 0 : St = 0}. Then, for what we said, τ ≤ τ̃ and by a
general result for the simple random walks that will be proved in Corollary
2.12 at the end of this section, ∃c > 0 such that for k ≥ 0

Pz,w (τ > u) ≤ Pz−w (τ̃ > u) ≤ c(z − w)√
u

. (2.42)

Therefore

Pz,w (τ > s+ u|D0, D1, ..., Ds) = χ{τ>s}PDs (τ > u) ≤ χ{τ>s}
cDs√
u

; (2.43)

taking the expectation and applying (2.41)

Pz,w (τ > s+ u) ≤ cne−
s
n

√
u

. (2.44)

Choosing s = 1
2n log n and u = αn we �nally obtain

Pz,w
(
τ >

1
2
n log n+ αn

)
≤ c√

α
. (2.45)

By Corollary 1.16 we have the thesis. �

There is only left to prove the general result on the random walks we
used in (2.42).

Theorem 2.11. Let {Zi} be i.i.d. integer-valued random variables with
E [Zi] = 0 and V ar(Zi) = σ2, ∀i. If we de�ne Xt :=

∑t
i=1 Zi, then

P (Xt 6= 0 for 1 ≤ t ≤ r) ≤ 4σ√
r
. (2.46)

Proof: For I ⊂ Z let

Lr(I) := {t ∈ {0, 1, ..., r} : Xt ∈ I}

be the set of times up to r in which Xt ∈ I. Then let

Ar := {t ∈ Lr(0) : Xt+u 6= 0 for 1 ≤ u ≤ r}

be the set of times t in Lr(0) = Lr({0}) after which the walk doesn't touch
0 for other r steps (clearly |Ar| ≤ 1).

Since the future of the walk after visiting 0 doesn't depend on what
happened before,

P (t ∈ Ar) = P (t ∈ Lr(0))αr
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where
αr := P0 (Xt 6= 0, t = 1, 2, ..., r) .

Summing over t gives

1 ≥ E [|Ar|] = E

[
r∑
t=0

χ{t∈Ar}

]
=

r∑
t=0

P (t ∈ Ar)

=
r∑
t=0

P (t ∈ Lr(0))αr = E

[
r∑
t=0

χ{t∈Lr(0)}

]
αr

= E [|Lr(0)|]αr. (2.47)

It remains only to estimate E [|Lr(0)|] from below. By Chebychev inequality
(keeping in mind that V ar(Xt) = tσ2)

P
(
|Xt| ≥ σ

√
r
)

= P
(
|Xt − 0| ≥ σ

√
t

√
r√
t

)
≤ t

r
.

Taking I := (−σ
√
r, σ
√
r),

E [|Lr(Ic)|] = E

[
r∑
t=0

χ{t∈Lr(Ic)}

]
≤

r∑
t=0

t

r
=
r + 1

2
,

whence
E [|Lr(I)|] = r + 1− E [|Lr(Ic)|] >

r

2
.

Furthermore, for any v 6= 0,

E [|Lr(v)|] = E

[
r∑
t=0

χ{Xt=v}

]
= E

[
r∑

t=τv

χ{Xt=v}

]
≤ Ev

[
r∑
t=0

χ{Xt=v}

]

= E0

[
r∑
t=0

χ{Xt=0}

]
,

where for the inequality we have used the Markov property, which says that
the chain after τv has the same distribution of the chain started from v.

Thus
r

2
≤ E [|Lr(I)|] ≤ 2σ

√
rE [|Lr(0)|] ,

that in conjunction with (2.47) proves the theorem. �

Corollary 2.12. Let Xt ba a simple random walk on Z with probability
0 ≤ p ≤ 1

2 of remaining in its current position at each step. Then

Pk (τ0 > r) ≤ 8|k|√
r
. (2.48)
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Proof: By conditioning on the �rst move of the walk and using the fact
that the distribution of the walk is symmetric about 0, for r ≥ 1

P0

(
τ+

0 > r
)

=
1− p

2
P1 (τ0 > r − 1) +

1− p
2

P−1 (τ0 > r − 1)

≥ 1
2

P1 (τ0 > r − 1) (2.49)

where τ+
0 indicates the �rst time the walk hits 0 after time t = 0. Note that

the event {the walk hits k before 0 and then for r steps doesn't touch 0}
is contained in the event {the walk doesn't touch 0 for r − 1 steps}. Then,
using both (2.46) and (2.49), and reminding that for this kind of random
walks σ2 ≤ 1, we have

P1 (τk < τ0) Pk (τ0 > r) ≤ P1 (τ0 > r − 1) ≤ 2P0

(
τ+

0 > r
)
≤ 8√

r
. (2.50)

It is well known (see the gambler's ruin problem, e.g. Proposition 2.1 in [17])
that

P1 (τk < τ0) =
1
k
,

and the thesis follows immediately. �

2.2.7 Conclusion

Theorem 2.13. The lazy random walk on the n-dimensional hypercube has
a cut-o� at 1

2n log n with a window of size n.

Proof: Propositions 2.9 and 2.10. �

Finally, using a lot of interesting techniques, we managed to prove the ex-
istence of the cut-o� for our random walk. We have seen that the stationary
distribution for the chain is the uniform measure over all the vertices of the
hypercube and that to be su�ciently close to this measure we have to run
the chain for about 1

2n log n steps, that is the correct order for tmix. If we
wait less than this time, we are still able some way to recognize from which
position we started and the uniform distribution is not well approximated,
while waiting more is quite useless. In particular, these `less' and `more' are
quanti�able: they are exactly described by the O(n) of the window size.



Chapter 3

Birth and death processes

3.1 Birth and death chains

3.1.1 The models

A Birth and death chain on Ωn := {0, 1, ..., n} is a Markov chain P such
that P (x, y) = 0 unless |x− y| ≤ 1. Write

b(x) := P (x, x+ 1) for x = 0, 1, ..., n− 1, (3.1)

r(x) := P (x, x) ∀x ∈ Ω, (3.2)

d(x) := P (x, x− 1) for x = 1, 2, ..., n (3.3)

and set for convention d(0) = 0 and b(n) = 0.
Two important classes of Birth and death chains are those with absorbing

walls, that is b(0) = 0 and d(n) = 0 (once we arrive at the extreme points
we stay there forever), and with repulsive, or partially repulsive, walls, that
is with b(0) > 0 and d(n) > 0.

Here we are interested in irreducible chains, so that we will assume that
b(x) > 0 for x ∈ [0, n − 1] and d(x) > 0 for x ∈ [1, n]. The stationary
distribution for this kind of chains is

π(x) :=
1
Z

x∏
y=1

b(y − 1)
d(y)

, (3.4)

where Z is a normalizing constant. In fact with this measure the detailed
balance holds:

π(x)P (x, x+ 1) =
1
Z

x∏
y=1

b(y − 1)
d(y)

b(x)

=
1
Z

x+1∏
y=1

b(y − 1)
d(y)

d(x+ 1) = π(x+ 1)P (x+ 1, x).

41
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Irreducibility guarantees also that λ2, the second greatest eigenvalue of
the transition matrix, is strictly smaller than 1. Besides, allowing at least
one state x ∈ Ωn to have r(x) > 0, we avoid the problem of periodicity. In
this case we know that −1 is not an eigenvalue of the transition matrix.

Given 0 < ε < 1 we de�ne the quantile states of the chain as

Q(ε) := min

k ∈ Ωn :
k∑
j=0

π(j) ≥ ε

 (3.5)

and symmetrically

Q̃(ε) := max

k ∈ Ωn :
n∑
j=k

π(j) ≥ ε

 . (3.6)

For the sake of simplicity we will assume that our chain verify ∀0 < ε < 1

Q(ε) = Q̃(1− ε).

Even if it is not generally true for all ε ∈ (0, 1), we note that only at most
n values of the parameter can break this rule for a chain with n states.
Therefore for any countable family of chains we can remove a countable set
of such critical values of ε saving the above equality.

3.1.2 Bound of the mixing time

In this section we collect a series of general results for Birth and death chains
that will be useful in the next sessions.

Lemma 3.1. For any lazy irreducible Birth and death chain, for any 0 <
ε < 1 and t ≥ 0

‖P t(0, ·)− π‖TV ≤ P0

(
τQ(1−ε) > t

)
+ ε. (3.7)

Furthermore, for all k ∈ Ωn,

‖P t(k, ·)− π‖TV ≤ Pk
(
max{τQ(ε), τQ(1−ε)} > t

)
+ 2ε. (3.8)

Proof: We start a coupling (Xt, X̃t) of the chain such that X0 = 0 and
X̃0 ∼ π. The two copies evolve according to the following rule: at each step
a fair coin is tossed; if it comes up heads, we perform a not-lazy move of Xt,
otherwise we perform a not-lazy move of X̃t. Once they meet, they proceed
together. This way both chains individually act as the original lazy chain.
Observe that the two chains never cross each other, since they have to meet
before doing that.
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Call τQ(1−ε) the �rst time the chain Xt hits Q(1 − ε) and notice that

X̃τQ(1−ε) is distributed according to π (since this is true at any time). There-
fore, by the de�nition of Q(1− ε),

P0,µ

(
XτQ(1−ε) ≥ X̃τQ(1−ε)

)
≥ 1− ε.

This means that with probability at least 1−ε the two chains have coalesced
before τQ(1−ε). By Corollary 1.16 we have

‖P t(0, ·)− π‖TV ≤ P0,π

(
Xt 6= X̃t

)
= 1− P0,π

(
Xt = X̃t|t > τQ(1−ε)

)
P0

(
t > τQ(1−ε)

)
≤ 1− (1− ε)(1− P0

(
t < τQ(1−ε)

)
)

≤ P0

(
τQ(1−ε) > t

)
+ ε. (3.9)

The same argument can be used for Xt starting in k. In fact, the same
coupling gives

Pk,µ
(
XτQ(ε)

≤ X̃τQ(ε)

)
≥ 1− ε

and
Pk,µ

(
XτQ(1−ε) ≥ X̃τQ(1−ε)

)
≥ 1− ε.

Therefore the probability that the two copies meet between τQ(ε) and τQ(1−ε)
is at least 1− 2ε, giving the thesis as before. �

Corollary 3.2. If Xt is an irreducible lazy Birth and death chain on Ωn,
then, for any 0 < ε < 1

16 ,

tmix ≤ 16 max
{
E0

[
τQ(1−ε)

]
,En

[
τQ(ε)

]}
. (3.10)

Proof: Take two points x, y ∈ Ωn. Clearly at least one of the endpoints
s ∈ {0, 1} veri�es

Es [τy] ≥ Ex [τy] (3.11)

(that is, to go from one endpoint to y we have to cross x). Denoting with R
the right hand side of (3.10) we have

Px
(
max{τQ(ε), τQ(1−ε)} ≥ R

)
≤ Px

(
τQ(ε) ≥ R

)
+ Px

(
τQ(1−ε) ≥ R

)
≤

Es
[
τQ(ε)

]
R

+
Es′
[
τQ(1−ε)

]
R

≤ 1
16

+
1
16

=
1
8

where we have used together Markov's inequality and (3.11). The proof now
follows directly from (3.8). �
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3.1.3 Bound for the variance of the Q(1− ε)-hitting time

We have established that the order of the mixing time is at most the bigger
expected value of the hitting times of Q(1− ε) starting from 0 and of Q(ε)
starting from n. Without loss of generality we will assume from now that
the �rst one is bigger than the second, so that we can simplify (3.10) as

tmix ≤ 16E0

[
τQ(1−ε)

]
, for 0 < ε <

1
16
. (3.12)

A key element for our work is a result of Karlin and McGregor [14],
proved in its discrete version by Fill [11], which represents hitting times for
Birth and death chains as a sum of independent exponential variables.

Theorem 3.3. Consider a Birth and death chain on Ωm := {0, 1, ...,m} and
suppose that m is an absorbing state (r(m) = 1), while for all other states
x ∈ Ωm, b(x) > 0 and d(x) > 0 (except for d(0) = 0). Then the probability
generating function for the absorption time in m is

f(u) :=
m−1∏
j=0

[
(1− λj)u
1− λju

]
(3.13)

where the λj's are the m non-unit eigenvalues of the transition matrix P .
Furthermore, if P has non-negative eigenvalues, then the absorption time in
m is distributed as the sum of m independent geometric random variables
whose failure probabilities are the non-unit eigenvalues of P .

Since we are interested in the hitting time of certain states (namely Q(1−
ε)) starting from 0, it is clearly equivalent to consider chains with the target
state as an absorbing end point and this is just what the above theorem
deals with.

Lemma 3.4. Let (X ′t) be a lazy Birth and death chain on Ωm := {0, 1, ...,m},
with m absorbing state and b(x), d(x) > 0 for all the other x ∈ Ωm (except
for d(0) = 0). Let gapm denote its spectral gap. Then

V ar0(τm) ≤ E0 [τm]
gapm

. (3.14)

Proof: Call λ0 ≥ λ1 ≥ ... ≥ λm−1 the m non-unit eigenvalues of the tran-
sition matrix of (X ′t). By Proposition 1.11 we know that all the eigenvalues
are positive, so that we can use the second part of Theorem 3.3 and consider
τm as the sum of m independent geometric random variables of parameters
(1− λj), j = 0, ...,m− 1. Therefore

E0 [τm] =
m−1∑
j=0

1
1− λj

, V ar0(τm) =
m−1∑
i=0

λj

(1− λj)2 . (3.15)
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Since λ0 ≥ λi, ∀i = 1, ...,m− 1, we have

V ar0(τm) ≤ 1
1− λ0

m−1∑
j=0

1
λj

=
E0 [τm]
gapm

as required. �

As we said before, the hitting time of a state in our original chain is
distributed as the hitting time of that state in a chain where it is an absorbing
end-point. Anyway we would like to bound the variance of τQ(1−ε) with
objects of the only original chain.

Proposition 3.5. Let (Xt) be a lazy irreducible Birth and death chain on
Ωn and call gap its spectral gap. For 0 < ε < 1

V ar0(τQ(1−ε)) ≤
E0

[
τQ(1−ε)

]
ε · gap

. (3.16)

Proof: The proof of the proposition is straight obtained by plugging the
result of next lemma into (3.14). �

Lemma 3.6. Let X(t) be a lazy irreducible Birth and death chain on Ωn :=
{0, 1, ..., n} and denote with gap its spectral gap. Fix ε ∈ (0, 1) and let
m := Q(1 − ε). Consider now the lazy Birth and death chain on Ωm with
absorbing state in m and call gapm its spectral gap. Then

gapm ≥ ε · gap. (3.17)

Proof: By the representation of the spectral gap given in Lemma 1.12 we
know that

gap = min
f̃ 6≡0

Eπ[f̃]=0

〈(Id− P )f̃ , f̃〉π
〈f̃ , f̃〉π

= min
f̃ 6≡0

Eπ[f̃]=0

1
2

∑
i,j(f̃(i)− f̃(j))2P (i, j)π(i)∑

i f̃(i)2π(i)
.

(3.18)
Note that gapm is (1−θ), where θ is the largest eigenvalue of Pm, the principal
sub-matrix on the �rst m rows and columns, indexed by {0, 1, ...,m−1}. By
irreducibility of (Xt) it follows that Pm is strictly sub-stochastic. Besides,
the reversibility of (Xt) implies that Pm is a symmetric operator on Rm with
respect to the inner product 〈·, ·〉π, that is 〈Pmx, y〉π = 〈x, Pmy〉π for every
x, y ∈ Rm. The Rayleigh-Ritz formula (see e.g. Theorem XIII.1 in [20])
gives

θ = max
x∈Rm
x 6=0

〈Pmx, x〉π
〈x, x〉π

.
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Therefore

gapm = 1− θ = min
f 6=0

f(k)=0∀k≥m

∑n
i=0(f(i)−

∑n
j=0 P (i, j)f(j))f(i)π(i)∑n
i=0 f(i)2π(i)

= min
f 6=0

f(k)=0∀k≥m

1
2

∑n
i,j=0 (f(i)− f(j))2P (i, j)π(i)∑n

i=0 f(i)2π(i)
. (3.19)

Note that, ∀f ,

(f(i)− f(j))2 = ((f(i)− Eπ [f ])− (f(j)− Eπ [f ]))2 = (f̃(i)− f̃(j))2

where f̃ is a function with mean 0. Hence, in order to compare gap and
gapm we are allowed to consider just the denominators of (3.18) and (3.19),
that is the terms

∑
i f̃(i)2π(i) = V arπ(f) and

∑
i f(i)2π(i) = Eπ

[
f2
]
.

Recall for brevity Eπ [f ] = ξ. Then every f satisfying f(k) = 0, ∀k =
m, ..., n, veri�es

Eπ
[
f2
]

π(f 6= 0)
= Eπ

[
f2|f 6= 0

]
≥ (Eπ [f |f 6= 0])2 =

ξ2

π(f 6= 0)
,

where we have used Holder's inequality. Then

1
Eπ [f2]

≤ π(f 6= 0)
ξ2

≤ 1− ε
ξ2

,

where the last inequality follows by the de�nition of m as Q(1 − ε). This
gives

V arπ(f)
Eπ [f2]

= 1− ξ2

Eπ [f2]
≥ ε. (3.20)

By the considerations made before on the ratio gap
gapm

we conclude that

gapm ≥ ε · gap.

�

3.1.4 Another result

In this section we are going to demonstrate just a technical Lemma that will
be necessary for the proof of the main theorem.

Lemma 3.7. Let (Xt) be a lazy irreducible Birth and death chain on Ωn and
suppose that there is an ε ∈ (0, 1

16) such that

trel < ε4E0

[
τQ(1−ε)

]
. (3.21)

Then, for any �xed ε ≤ α ≤ β < 1− ε,

EQ(α)

[
τQ(β)

]
≤ 3

2ε

√
trel · E0

[
τQ( 1

2
)

]
. (3.22)
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Proof: Obviously it is su�cient to demonstrate (3.22) for α = ε and
β = 1 − ε. Consider the random variable ν distributed according to the
stationary distribution π restricted to the states in the set [0, Q(ε)], that is

ν(k) :=
π(k)

π([0, Q(ε)])
χ{k∈Q(ε)}

and let w be the vector with components w(k) := χ{k∈Q(ε)}
π([0,Q(ε)]) . By the re-

versibility of (Xt), we have for any state k

P t(ν, k) =
∑
i

w(i)P t(i, k)π(i) =
∑
i

w(i)P t(k, i)π(k) = (P tw)(k) · π(k).

Thus,

‖P t(ν, ·)− π‖TV =
1
2

n∑
k=0

π(k)
∣∣(P tw)(k)− 1

∣∣ =
1
2
‖P t(w − 1̄)‖L1(π)

≤ 1
2
‖P t(w − 1̄)‖L2(π) (3.23)

since we are in a �nite space. As 〈w − 1̄, 1̄〉L2(π) = 0, the function w − 1̄
has to be decomposable as a combination of eigenfunctions with eigenvalues
λ0, ..., λn−1 6= 1 (because, as we said in the �rst chapter, 1̄ generates the
space of the functions with eigenvalue 1). Calling λ the greatest of these
eigenvalues (note that gap = 1− λ), then, for all f orthogonal to 1̄, we have

‖P t(f)‖L2(π) =
(∑

x

∣∣∣∑
y

P t(x, y)
(∑

j

〈f, fj〉πfj(y)
)∣∣∣2π(x)

) 1
2

=
(∑

x

∣∣∣∑
j

〈f, fj〉πλtjfj(x)
∣∣∣2π(x)

) 1
2

≤ λt
(∑

x

f2(x)π(x)
) 1

2

and thus
‖P t(w − 1̄)‖L2(π) ≤ λt‖w − 1̄‖L2(π).

Whence

‖P t(ν, ·)− π‖TV ≤
1
2
λt‖w − 1̄‖L2(π)

=
1
2
λt
( ∑
x∈[0,Q(ε)]

( 1
π([0, Q(ε)])

− 1
)2
π(x)

+
∑

x/∈[0,Q(ε)]

π(x)
) 1

2

≤1
2
λt

√
1

π([0, Q(ε)])
− 1 ≤ λt

2
√
ε
. (3.24)
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De�ne

tε :=
⌈

3
2

log
(

1
ε

)
trel

⌉
and observe that ε ≤ 1

16 implies

tε ≤ 2 log
(

1
ε

)
trel.

Since log
(

1
x

)
≥ 1−x for all x ∈ (0, 1], it follows that λtε = εd

3
2

log 1
λ
trele ≤ ε

3
2

and so
‖P tε(ν, ·)− π‖TV ≤

ε

2
. (3.25)

On the other hand, calling A := [Q(1− ε), n] and observing that π(A) ≥ ε,

‖P tε(ν, ·)− π‖TV ≥ |P
tε(ν,A)− π(A)| ≥ ε− P tε(ν,A)

by the de�nition of total variation distance, and so

Pν
(
τQ(1−ε) ≤ tε

)
≥ P tε(ν,A) ≥ ε− ‖P tε(ν, ·)− π‖TV ≥

ε

2
. (3.26)

Besides, being ν supported by [0, Q(ε)], Chebychev inequality yields

Pν
(
τQ(1−ε) ≤ tε

)
≤ PQ(ε)

(
τQ(1−ε) ≤ tε

)
≤

V arQ(ε)(τQ(1−ε))

|EQ(ε)

[
τQ(1−ε)

]
− tε|2

. (3.27)

Combining (3.26) and (3.27),

EQ(ε)

[
τQ(1−ε)

]
≤ tε +

√
2
ε
V arQ(ε)(τQ(1−ε)). (3.28)

The variance under the square root is bounded above by V ar0(τQ(1−ε)), since
the Q(1− ε)-hitting time starting from 0 is the sum of the hitting time from
0 to Q(ε) plus the hitting time from Q(ε) to Q(1 − ε) and these two are
independent. Thus Proposition 3.5 implies

EQ(ε)

[
τQ(1−ε)

]
≤ 2 log

(
1
ε

)
trel +

(
1
ε

)√
2trelE0

[
τQ(1−ε)

]
. (3.29)

The last e�ort is to rewrite the right hand side of this last equation
in function of the only trel and τQ( 1

2). Using twice the hypothesis trel <

ε4E0

[
τQ(1−ε)

]
and remembering that ε < 1

16 we have

EQ(ε)

[
τQ(1−ε)

]
≤ (2ε3 log

(
1
ε

)
+
√

2)εE0

[
τQ(1−ε)

]
≤ 3

2
εE0

[
τQ(1−ε)

]
. (3.30)
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The intuitive bound

E0

[
τQ(1−ε)

]
≤ E0

[
τQ( 1

2)
]

+ EQ(ε)

[
τQ(1−ε)

]
(3.31)

together with (3.30) shows that

E0

[
τQ(1−ε)

]
≤

E0

[
τQ( 1

2)
]

1− 3
2ε

. (3.32)

Plugging this back in (3.29) we obtain

EQ(ε)

[
τQ(1−ε)

]
≤ 2 log

(
1
ε

)
trel +

1
ε

√√√√2trelE0

[
τQ( 1

2)
]

1− 3
2ε

.

Applying for the last time the hypothesis on trel, the fact that ε < 1
16 and

using the inequality (3.32) �nally gives

EQ(ε)

[
τQ(1−ε)

]
≤

2ε2 log
(

1
ε

)
+
√

2
ε√

1− 3
2ε

√trelE0

[
τQ( 1

2)
]

≤ 3
2ε

√
trelE0

[
τQ( 1

2)
]

(3.33)

as required. �

3.2 A necessary and su�cient condition for the cut-

o� in B&D chains

3.2.1 A su�cient condition?

In section 2.1.4 we pointed out that a necessary condition for the existence
of a cut-o� for any sequence of Markov chains indexed by n with mixing

times t
(n)
mix is that

lim
n→∞

t
(n)
mix · gap(n) →∞. (3.34)

After having proved this fact, Yuval Peres conjectured in 2004 that for many
natural classes of Markov chains this is also a su�cient condition. Neverthe-
less, many examples show that this is not true for any sequence of Markov
chains: an important open problem is to characterize the classes of chains
for which (3.34) implies the cut-o�.

In 2006 Diaconis and Salo�-Coste ([7]) proved a variant of the conjecture
in the case of continuous-time Birth and death chains. They veri�ed that,
when the convergence to equilibrium is measured in the so called separation
distance, `for continuous-time irreducible Birth and death chains, cut-o�
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occurs i� (3.34) holds'; the separation distance between two distributions µ
and ν is de�ned as

sep(µ, ν) := sup
x∈Ω

(
1− µ(x)

ν(x)

)
,

but it is not even an actual distance since it is not symmetric.
Following the article by Ding, Lubetzky and Peres [10] we are going to

demonstrate that this is true also for arbitrary lazy irreducible discrete-time
Birth and death chains with convergence to stationarity measured in total
variation distance. This is implied by the following key theorem:

Theorem 3.8. For any 0 < ε < 1
2 there exists an explicit cε > 0 such that

every lazy irreducible discrete Birth and death chain satis�es

tmix(ε)− tmix(1− ε) ≤ cε
√
trel · tmix. (3.35)

In [10] it is also shown, with a bit more of work, that this result can be
extended to the cases of δ-lazy chains (r(x) > δ, ∀x) and continuous-time
chains.

The proof of the theorem is put o� to the next section. Now let's see
how it implies what we were looking for.

Corollary 3.9. Let (X(n)
t ) be a sequence of lazy irreducible discrete Birth

and death chains. Then it exhibits a cut-o� in total variation distance if and
only if

t
(n)
mix · gap

(n) n→∞−−−→∞.

Proof (of the Corollary): Remembering the de�nition (2.1), (3.35) gives
immediately the cut-o�. In fact, for 0 < ε < 1

4 ,

1−
t
(n)
mix(1− ε)
t
(n)
mix(ε)

≤
t
(n)
mix(ε)− t(n)

mix(1− ε)
t
(n)
mix

≤ cε

√
t
(n)
rel · t

(n)
mix

t
(n)
mix

=
cε√

t
(n)
mix · gap

n→∞−−−→ 0. (3.36)

The fact that this condition is also necessary for cut-o� is the result of
Proposition 2.2. �
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3.2.2 Proof of theorem 3.8

The hardest part of the theorem lies in the case where trel is much smaller
than tmix. Therefore we prove apart an intermediate result for this regime
and this task will require all the general properties of the Birth and death
chains obtained so far.

Theorem 3.10. Let (Xt) be a lazy irreducible Birth and death chain such
that

trel < ε5 · tmix (3.37)

for some 0 < ε < 1
16 . Then

tmix(4ε)− tmix(1− 2ε) ≤ 6
ε

√
trel · tmix. (3.38)

Proof: Recall the (not compromising) assumption

En
[
τQ(ε)

]
≤ E0

[
τQ(1−ε)

]
,

and de�ne

t− = t−(γ) :=
⌊
E0

[
τQ( 1

2)
]
− γ
√
trel · E0

[
τQ( 1

2)
]⌋
,

t+ = t+(γ) :=
⌈
E0

[
τQ( 1

2)
]

+ γ

√
trel · E0

[
τQ( 1

2)
]⌉

(we will see that these are the extremes of the cut-o� window).
First let's �nd a lower bound for tmix(1−2ε). Putting together hypothesis

(3.37) with (3.12) gives

trel ≤ 16ε5 · E0

[
τQ(1−ε)

]
≤ ε4 · E0

[
τQ(1−ε)

]
. (3.39)

Now, Lemma 3.7 provides

E0

[
τQ(ε)

]
≥ E0

[
τQ( 1

2)
]
−EQ(ε)

[
τQ(1−ε)

]
≥ E0

[
τQ( 1

2)
]
− 3

2ε

√
trel · E0

[
τQ( 1

2)
]
,

while Proposition 3.5 guarantees that

V ar0(τQ(ε)) ≤
1

1− ε
trel · E0

[
τQ( 1

2)
]
.

Therefore Chebychev inequality yields, ∀γ > 3
2ε ,

P0

(
τQ(ε) ≤ t−

)
≤ P0

(∣∣∣τQ(ε) − E0

[
τQ(ε)

] ∣∣∣ ≤ t− − E0

[
τQ(ε)

])
≤

V ar0(τQ(ε))(
3
2ε

√
trel · E0

[
τQ( 1

2)
]
− γ
√
trel · E0

[
τQ( 1

2)
])

≤ 2(
3
2ε − γ

)2 , (3.40)
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and this implies

‖P t−(0, ·)− π‖TV ≥ 1− ε− P0

(
τQ(ε) ≤ t−

)
≥ 1− ε− 2(

3
2ε − γ

)2 .
Choosing γ = 2

ε (but it can be taken even smaller, since ε < 1
16) we conclude

that

tmix(1− 2ε) ≥ E0

[
τQ( 1

2)
]
− 2
ε

√
trel · E0

[
τQ( 1

2)
]
. (3.41)

The argument to bound from above tmix(4ε) is very similar. Taking again
0 < ε < 1

16 , Lemma 3.7 and Proposition 3.5 (in particular the bound (3.32))
show that

En
[
τQ(ε)

]
≤ E0

[
τQ(1−ε)

]
≤ E0

[
τQ( 1

2)
]

+
3
2ε

√
trel · E0

[
τQ( 1

2)
]
, (3.42)

V ar0(τQ(1−ε)) ≤
1
ε
trel · E0

[
τQ(1−ε)

]
≤
trel · E0

[
τQ( 1

2)
]

ε
(
1− 3

2ε
) ≤ 2

ε
trel · E0

[
τQ( 1

2)
]
,

V arn(τQ(ε)) ≤
1
ε
trel · En

[
τQ(ε)

]
≤ 2
ε
trel · E0

[
τQ( 1

2)
]
.

Then, for γ > 3
2ε and for all k ∈ Ω, we can use again Chebychev inequality

in order to estimate d(t+):

‖P t+(k, ·)− π‖TV ≤ 2ε+ P0

(
τQ(1−ε) > t+

)
+ Pn

(
τQ(ε) > t+

)
≤ 2ε+

4

ε
(
γ − 3

2ε

)2 . (3.43)

Choosing γ = 35
12ε (with other room to spare)

tmix(4ε) ≤
⌈
E0

[
τQ( 1

2)
]

+
35
12ε

√
trel · E0

[
τQ( 1

2)
]⌉
.

We can assume Q
(

1
2

)
> 0 (otherwise our estimates would give En

[
τQ(ε)

]
=

E0

[
τQ(1−ε)

]
= 0, then Q(1 − ε) = 0, Q(ε) = n and so Ω = {0}). Whence,

since ε is small,

tmix(4ε) ≤ E0

[
τQ( 1

2)
]

+
3
ε

√
trel · E0

[
τQ( 1

2)
]
. (3.44)

The last step is to rewrite the bounds in terms of the only trel and tmix.
For this purpose note that (3.32) gives

trel < ε4E0

[
τQ(1−ε)

]
≤ ε4

1− 3
2ε

E0

[
τQ( 1

2)
]
,
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and putting this into equation (3.41) itself leads to

tmix ≥ tmix(1− 2ε) ≥

1− 2ε√
1− 3

2ε

E0

[
τQ( 1

2)
]
≥ 5

6
E0

[
τQ( 1

2)
]
. (3.45)

Melting together (3.41),(3.44) and (3.45) �nally yields

tmix(4ε)− tmix(1− 2ε) ≤ 5
ε

√
trel · E0

[
τQ( 1

2)
]
≤ 6
ε

√
trel · tmix.

�

We are �nally ready to prove (3.35). Remember that it says that for any
0 < ε < 1

2 we can �nd cε > 0 such that

tmix(ε)− tmix(1− ε) ≤ cε
√
trel · tmix.

Proof (of Theorem 3.8): Let us �rst analyze the case of Theorem 3.10,
that is when trel < ε5 · tmix. Call ε′ := ε

4 ; taking for example ε′ < 1
64 ,

Theorem 3.10 gives

tmix(ε)−tmix(1−ε) ≤ tmix(4ε′)−tmix(1−2ε′) ≤ 6
ε′
√
trel · tmix =

24
ε

√
trel · tmix

so that (3.35) holds for cε = 24
ε . But since the left hand side of (3.35) is

monotone decreasing in ε by the de�nition of mixing time, this result can be
extended to any value of ε < 1

2 by choosing

c1(ε) = 24 max
{

1
ε
, 64
}
.

There is left to treat the regime trel ≥ ε5tmix. For ε < 1
4 , because of the

submoltiplicativity of the mixing time (1.21), we have

tmix(ε)− tmix(1− ε) ≤ tmix(ε) ≤
⌈
log2 ε

−1
⌉√

tmix
√
tmix

≤ ε−
5
2 log2

(
1
ε

)√
tmixtrel. (3.46)

Again by monotonicity of the left hand side of (3.35) it is su�cient to take

c2(ε) = max
{
ε−

5
2 log2

(
1
ε

)
, 64
}

(where 64 is obtained as (1/4)−
5
2 log2( 1

1/4)) to extend the argument to all
other epsilons.

In conclusion, setting

cε = max{c1(ε), c2(ε)},

we obtain a constant valid in any case and for all 0 < ε < 1
2 . �
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3.2.3 A tight cut-o� window

Remember by (2.10) that a sequence ωn is a cut-o� window if it dominates
the di�erence tmix(ε) − tmix(1 − ε) up to a constant and if ωn = o(tmix).
Therefore Theorem 3.8 implies that in the case of lazy irreducible Birth

and death chains the geometric mean between t
(n)
mix and t

(n)
rel can be taken

as cut-o� window (the condition ωn = o(tmix) is implied by the fact that
tmix · (trel)−1 →∞).

A natural question that arises is: can this result be improved? Does a
smaller upper bound valid for all chains of this kind exist?
The answer is no. In fact it is possible to build explicitly examples of such

chains where the window is exactly of order

√
t
(n)
mix · t

(n)
rel . The construction

is roughly the following: take any family (X(n)
t ) of lazy irreducible Birth

and death chains with their mixing times t
(n)
M and relaxation times t

(n)
R (we

know tR = o(tM ) by Corollary 3.9) which exhibits cut-o�; it is possible

to choose λ1, ..., λn ∈ [0, 1) such that there exist new chains (Y (n)
t ) which

have these numbers as non-trivial eigenvalues, which have mixing times sat-

isfying t
(n)
mix = (1

2 + o(1))t(n)
M and relaxation times t

(n)
rel = 1

2 t
(n)
R . This can

be easily achieved by taking (Y (n)
t ) as a Birth and death chains having all

death-probabilities equal to 0, an absorbing state at n and with non-trivial

eigenvalues λ1, ..., λn. It is possible to show that the sequence (Y (n)
t ) has

cut-o� window at least
√
tM · tR. At this point it is su�cient to perturb a

bit the transition probabilities in order to get irreducible chains and �nally

take their lazy versions: this way we double the values of t
(n)
rel and t

(n)
mix and

obtain chains such that{
(1− ε)t(n)

M ≤ t(n)
mix ≤ (1 + ε)t(n)

M

|t(n)
rel − t

(n)
R | ≤ ε

(3.47)

and with cut-o� window of size

√
t
(n)
mix · t

(n)
rel .



Chapter 4

Glauber dynamics for the Ising

model

In this chapter our purpose is to prove the existence of the cut-o� phe-
nomenon for the Glauber dynamics on the Ising model with β < 1 when
the underlying graph is complete, following the works by Levin, Luczak and
Peres of December 2007, [16], and by Ding, Lubetzky and Peres of June
2008, [9]. The sequence of Markov chains will be indexed of course by n, the
number of vertices of the graph.

4.1 The Ising model on the complete graph

4.1.1 The Curie-Weiss model

A spin system on a graph G = (V,E) is a probability distribution on the
state space Ω := {−1,+1}V . From a physical point of view, we can imagine
that in each vertex of the graph there is a small magnet that can point upward
(if the spin in this site is +1) or downward (if the spin is −1). Moreover if
two vertices are connected by an edge, then the magnets on these vertices
in�uence each other, trying to point in the same direction. This interaction
is conditioned by a parameter β ≥ 0 that can be physically interpreted as
the inverse of the temperature of the environment: β = 1

T . The lower is the
temperature, the stronger is the interaction between the spins.

In the Ising model we associate to each possible con�guration of spins
σ ∈ Ω an energy:

H(σ) := −
∑

v,w∈V :
v∼w

σ(v)σ(w),

where the sum is extended to all pair of vertices that are connected by an
edge, and where with σ(v) we indicate the spin of con�guration σ in the site
v. As one can see by the formula, the energy decreases as the number of
pairs of neighbors whose spins agree grows.

55
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Finally we assign a probability to each con�guration σ:

µ(σ) :=
e−βH(σ)

Z(β)
. (4.1)

Here Z(β) is the so called partition function, which ensures that µ is a
probability measure:

Z(β) :=
∑
σ∈Ω

e−βH(σ). (4.2)

The probability measure µ on Ω is know as the Gibbs distribution corre-
sponding to the energy H.

We are going to deal just with a particular kind of graphs, that is the
complete graphs. So, in our model every site will be connected with all the
others by an edge. In particular, our energy will take into account all the
possible

(
n
2

)
pairs of vertices and will be normalized for convenience:

H(σ) := − 1
n

∑
(v,w)

σ(v)σ(w), (4.3)

`(v, w)' meaning that the pairs of the kind (v1, v2) and (v2, v1) are counted
just once.

Note that at in�nite temperature (β = 0) the energy H plays no role;
this means that the spins are completely independent between them and
that the measure µ becomes uniform over all possible con�gurations in Ω.
As β grows (the temperature decreases) H gets importance and µ favours
con�gurations where more spins are aligned.

4.1.2 The Glauber dynamics

The process we want to consider is the heat-bath Glauber dynamics on
the model we have just described. At each step we select a vertex v ∈ V
at random, we �delete� the current spin in v and replace it with a brand
new spin chosen according to measure µ conditioned on the spins of all other
vertices. So, we are changing only one spin in the whole system for each
step. More precisely, de�ne the normalized magnetization as

S(σ) :=
1
n

∑
v∈V

σ(v); (4.4)

then, if we have chosen vertex v to be updated, the probability of putting a
"+"-spin in v is given by p+(S(σ)− σ(v)

n ), where

p+(x) :=
eβx

eβx + e−βx
=

1 + tanh (βx)
2

. (4.5)
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Analogously, the probability of updating v with a negative spin is given by
p−(S(σ)− σ(v)

n ), with

p−(x) :=
e−βx

eβx + e−βx
=

1− tanh (βx)
2

. (4.6)

Since functions p+ and p− are always strictly positive, the chain is aperiodic
and since it is possible to go from a con�guration in Ω to any other con�g-
uration in at most n steps, the chain is also irreducible. Furthermore it is
easy to check that the chain is reversible with respect to measure µ. We will
denote the Glauber dynamics by (Xt)∞t=0.

What happens if β = 0?
Once we have selected a vertex to be uploaded the probability of placing

either a "+" or a "-" is the same. If we call the possible spins "0" and "1"
instead of "+" and "-" and if we give an order to the vertices, it's not hard
to recognize that we are dealing exactly with the lazy random walk on the
n-dimensional hypercube we studied in Chapter 2! In this case we already
know that there is a cut-o� at time 1

2n log n with window of size n.

4.1.3 Monotone coupling

The grand coupling is a coupling that involves several copies of our original
chain. In particular, we let start a version Xσ

t of the Glauber dynamics
from any possible con�guration σ ∈ Ω. The evolution of every copy is
subject to a common source of randomness: at each step we choose with
equal probability a vertex v ∈ {1, 2, ..., n} and generate an uniform random
variable U ∼ Unif([0, 1]) independently from v; then ∀σ ∈ Ω we set

T σ =

{
+1 if 0 ≤ U ≤ p+

(
S(σ)− σ(v)

n

)
−1 otherwise.

(4.7)

and upload in v every instance of the chain with the respective spin generated
this way.

This kind of coupling is also called monotone coupling. The reason
for this name is that if we start two copies of the chain from con�gurations
σ and σ̃ such that σ(w) ≤ σ̃(w), ∀w ∈ V , and if we update these two copies
with the above rule, then ∀t ≥ 0 we'll have Xσ

t (w) ≤ X σ̃
t (w), ∀w ∈ V .

To lighten the notations, the bidimensional projection of the grand cou-
pling on two generic coordinates starting by con�gurations σ and σ̃ will be
indicated with (Xt, X̃t) instead of (Xσ

t , X̃
σ̃
t ).

Finally we de�ne the Hamming distance between two con�gurations
σ and σ̃ as the number of sites in which they have di�erent spins:

dist(σ, σ̃) :=
1
2

n∑
j=1

|σ(j)− σ̃(j)|. (4.8)
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Proposition 4.1. The monotone coupling satis�es

E
[
dist(Xt, X̃t)

]
≤ ρtdist(σ, σ̃), (4.9)

where

ρ := 1− 1
n

+ tanh
(
β

n

)
. (4.10)

Proof: First of all we prove the thesis in the case t = 1 and dist(σ, σ̃) = 1.
This means that σ and σ̃ di�er only in one site, say in vertex v, with σ(v) =
−1 and σ̃(v) = +1 without loss of generality. We start two copies of the
Glauber dynamics (Xt, X̃t) and use the monotone coupling to update them.
By de�nition, if v is selected we put there the same spin in both chains. If
w 6= v is selected (remember that σ(w) = σ̃(w)), we put a di�erent spin in
w if and only if

p+(S(σ)− σ(w)) ≤ U ≤ p+(S(σ̃))− σ̃(w)), (4.11)

where U ∼ Unif([0, 1]).
Thus we can calculate the expectation of the distance between the two

chains after one step:

Eσ,σ̃
[
dist(X1, X̃1)

]
= 1− 1

n
+
∑
w 6=v

P ({w is chosen and (4.11) holds}) .

Note that S(σ̃)− σ̃(w)
n = S(σ)− σ(w)

n + 2
n if w 6= v. Setting Ŝw

n := S(σ)− σ(w)
n

we have

P ({w is chosen and (4.11) holds}) =
1

2n

[
tanh

(
β
Ŝw + 2
n

)
− tanh

(
β
Ŝw
n

)]

≤ 1
n

tanh
β

n
.

Therefore

Eσ,σ̃
[
dist(X1, X̃1)

]
= 1− 1

n
+ tanh

(
β

n

)
= ρ ∼ 1− 1

n
+
β

n
. (4.12)

Now take any two con�gurations σ and σ̃. Suppose that dist(σ, σ̃) = k, with
1 ≤ k ≤ n. We know that there is a path σ0, σ1, ..., σk such that σ0 = σ,
σk = σ̃ and dist(σi−1, σi) = 1, ∀i = 1, ..., k. Therefore

Eσ,σ̃
[
dist(X1, X̃1)

]
≤

k∑
i=1

E
[
dist(Xσi

1 , X
σi−1

1 )
]
≤ ρk = ρ dist(σ, σ̃). (4.13)

Iterating (4.13) t-times we are done. �
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4.2 Related chains

4.2.1 Magnetization chain

We can associate to (Xt) another interesting and useful chain. We de�ne the
magnetization chain

St := S(Xt) =
1
n

n∑
j=1

Xt(j). (4.14)

It is a projection of the Glauber dynamics on the set

ΩS :=
{
−1,−1 +

2
n
, ..., 1− 2

n
, 1
}
.

(St) is again a Markov chain, since the transition probabilities of (Xt) depend
actually on the only magnetization. In fact, the transition probabilities for
the magnetization chain are given by

PS(s, s′) =


1 + s

2
p−

(
s− 1

n

)
if s′ = s− 2

n

1− s
2

p+

(
s+

1
n

)
if s′ = s+ 2

n

1− PS
(
s, s− 2

n

)
− PS

(
s, s+ 2

n

)
if s′ = s.

(4.15)

Notice that PS(s, s′) = PS(−s,−s′), so that the distribution of (St) starting
from s ∈ ΩS is exactly the same as that of (−St) starting from −s: there is
a strong symmetry around 0 in this process.

Using the same convention as before, we will call the magnetization of a
chain started in σ̃ just S̃t.

The magnetization chain will play a key role in the demonstration of
the cut-o� for the Glauber dynamics. In order to know better this useful
process, we start studying how (St) is a�ected by the results obtained with
the monotone coupling technique for (Xt).

Lemma 4.2. For the monotone coupling (Xt, X̃t) on the original chain, we
have

Eσ,σ̃
[
|St − S̃t|

]
≤ 2
n
ρtdist(σ, σ̃), (4.16)

where ρ is the same de�ned in (4.10).

Proof:

|St − S̃t| =

∣∣∣∣∣∣ 1n
 n∑
j=1

Xt(j)− X̃t(j)

∣∣∣∣∣∣
≤ 2
n
dist(Xt, X̃t). (4.17)
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Taking the expectation and using the result of Proposition 4.1 gives (4.16).
�

Proposition 4.3. ∀s, s̃ ∈ ΩS such that s ≥ s̃, we have

0 ≤ Es [S1]− Es̃ [S1] ≤ ρ(s− s̃). (4.18)

Furthermore, ∀s, s̃,

|Es [S1]− Es̃ [S1] | ≤ ρ|s− s̃|. (4.19)

Proof: We can always see s and s̃ as the magnetizations of two con�g-
urations σ and σ̃ in Ω (S(σ) = s, S(σ̃) = s̃) such that σ ≥ σ̃ (in the sense
that σ(v) ≥ σ̃(v), ∀v ∈ V ).

Starting a monotone coupling (Xt, X̃t) from these con�gurations we have

0 ≤ Eσ,σ̃
[
|S1 − S̃1|

]
(monotonicity)

= Eσ [S1]− Eσ̃[S̃1]
(St is a MC)

= Es [S1]− Es̃[S̃1]

(note that this last term does not depend on the coupling). On the other
hand, by Proposition 4.1,

Eσ,σ̃
[
|S1 − S̃1|

]
= Eσ,σ̃

[
2
n
dist(X1, X̃1)

]
≤ 2
n
ρ dist(σ, σ̃) = ρ(s− s̃).

Putting together these two inequalities we obtain (4.18), while an analogous
bound in the case S(σ) ≤ S(σ̃) establishes (4.19). �

4.2.2 Other results for the magnetization chain

Let's study in detail the drift of the magnetization chain (St).

Proposition 4.4. For β ≤ 1, s ≥ 0, we have

E [St+1 − St|St = s] ≤ s(β − 1)
n

. (4.20)

Proof: Writing explicitly the value of the expectation we have

E [St+1 − St|St = s] =
2
n

(
1− s

2

)
p+

(
s+

1
n

)
− 2
n

(
1 + s

2

)
p−
(
s− 1

n

)
=

1
n

[fn(s)− s+ θn(s)] , (4.21)

where

fn(s) :=
1
2

[
tanh

(
β

(
s+

1
n

))
+ tanh

(
β

(
s− 1

n

))]
(4.22)
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and

θn(s) := −s
2

[
tanh

(
β

(
s+

1
n

))
− tanh

(
β

(
s− 1

n

))]
. (4.23)

Now, by the concavity of the function tanh(·) we have that fn(s) ≤ tanh (βs)
and, since it's an increasing function, θn(s) is negative ∀s ≥ 0. Thus

E [St+1 − St|St = s] ≤ 1
n

(tanh (βs)− s) ≤ s(β − 1)
n

.

�

From this proposition (and by a symmetry argument) we see that for
β < 1 the magnetization tends always to decrease in absolute value; in fact
it has a drift towards 0 that is stronger as we go far away from it.

De�ne

τ0 := inf
{
t ≥ 0 : |St| ≤

1
n

}
. (4.24)

Clearly, if the number of vertices of the complete graph n is even, then
Sτ0 = 0, while if n is odd, then Sτ0 = ± 1

n . The next lemma establishes that
the probability of staying away from 0 decreases quite fast as time passes.

Lemma 4.5. Suppose β ≤ 1 and, for simplicity, n even. There is a constant
c > 0 such that ∀s ∈ ΩS, ∀u, t ≥ 0

P (|Su| > 0, |Su+1| > 0, ..., |Su+t| > 0 |Su = s) ≤ cn|s|√
t
. (4.25)

Proof: Because of the symmetry, it will be su�cient to demonstrate
(4.25) for s > 0. By (4.20) we know that E [St+1 − St|St] ≤ 0 as long as
St > 0.

Looking at the transition probabilities we know that there exists a con-
stant b > 0 such that P (St+1 − St 6= 0|St) ≥ b for all times t and uniformly
in n (this guarantees that the probability for St of not remaining still is al-
ways big enough). We can couple St with a symmetric random walk Wt on
Z such that

• W0 = ns
2 ;

• P (W1 −W0 6= 0|W0 = w) = b > 0 for all w;

• nSt
2 ≤Wt till τ0.

We just have to force St to go to the left (that is, to decrease of one unit)
whenever Wt does. Applying Corollary 2.12 there exists a constant c > 0
such that

P (Su > 0, Su+1 > 0, ..., Su+t > 0 |Su = s) ≤ Pns
2

(W1 > 0, ...,Wt > 0)

≤ cns√
t
.

�
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4.2.3 Variance bound for the magnetization chain

Let's �rst state a general result.

Lemma 4.6. Let Zt be a Markov chain on R; if there exists ρ ∈ (0, 1) such
that for every z, z̃ ∣∣∣Ez [Zt]− Ez̃[Z̃t]

∣∣∣ ≤ ρt|z − z̃|,
then vt := supz0 V arz0(Zt) veri�es

vt ≤ v1 min
{
t,

1
1− ρ2

}
. (4.26)

Proof: By the `total variance formula' we have

V arz0(Zt) = V arz0 (Ez0 [Zt|Z1]) + Ez0 [V arz0(Zt|Z1)] . (4.27)

Let Zt and Z
∗
t be two independent copies of the chain starting from z0, and

set ϕ(z) = Ez [Zt−1]. The �rst part of (4.27) can be bounded by

V arz0 (Ez0 [Zt|Z1]) =
1
2
· 2
(
Ez0

[
ϕ2(Z1)

]
− E2

z0 [ϕ(Z1)]
)

=
1
2
{Ez0

[
ϕ2(Z1)− ϕ(Z1)ϕ(Z∗1 )

]
+ Ez0

[
ϕ2(Z∗1 )− ϕ(Z∗1 )ϕ(Z1)

]
}

=
1
2

Ez0
[
(ϕ(Z1)− ϕ(Z∗1 ))2

]
(hp)

≤ 1
2

Ez0
[
ρ2(t−1)|Z1 − Z∗1 |

2
]

≤ v1ρ
2(t−1), (4.28)

while we bound the second part of (4.27) with

Ez0 [V arz0(Zt|Z1)] ≤ Ez0 [vt−1] = vt−1. (4.29)

Putting all together yields

V arz0(Zt) ≤ v1ρ
2(t−1) + vt−1.

Iterating this inequality gives

vt ≤ v1ρ
2(t−1) + vt−1 ≤ ... ≤ v1

t−1∑
j=0

ρ2j ≤ v1 min
{

1
1− ρ2

, t

}
.

�
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Observe that we don't actually need one coupling valid for all pairs of
states. It is enough that for every pair of states z, z̃ there exists a coupling
such that

Ez,z̃
[∣∣∣Z1 − Z̃1

∣∣∣] ≤ ρ|z − z̃|. (4.30)

Besides, if the state space of the Markov chain is discrete and if there is a
path metric, it is su�cient that (4.30) holds for all pairs of neighbours.

Let's apply this lemma to our case:

Proposition 4.7. If β < 1, then

V ar(St) = O

(
1
n

)
(4.31)

as n→∞. If β = 1, then

V ar(St) = O

(
t

n2

)
(4.32)

as n→∞.

Proof: Put together Lemma 4.3 and Lemma 4.6, and observe that

v1 = sup
z0

Ez0
[
(Z1 − Ez0 [Z1])2

]
≤ sup

z0
Ez0

[( 4
n

)2
]

=
16
n2
.

�

4.2.4 Expected spin value

In order to establish the cut-o� at high temperature we also need to consider
the number of positive and negative spins among subsets of the vertices.

Lemma 4.8. Let β < 1. Then

(i) ∀σ ∈ Ω and ∀i = 1, 2, ..., n, we have

|Eσ [St]| ≤ 2e−
(1−β)t
n (4.33)

and
|Eσ [Xt(i)]| ≤ 2e−

(1−β)t
n . (4.34)

(ii) ∀A ⊂ V de�ne

Mt(A) :=
1
2

∑
j∈A

Xt(j); (4.35)

then
|Eσ [Mt(A)]| ≤ |A|e−

(1−β)t
n (4.36)

and, for some constant c > 0,

V ar(Mt(A)) ≤ cn. (4.37)
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(iii) ∀σ ∈ Ω and ∀A ⊂ V

Eσ [|Mt(A)|] ≤ ne−
(1−β)t
n +O(

√
n). (4.38)

Proof: (i): Let 1̄ be the con�guration with all "+"-spins and let (X+
t , X̃t)

be the monotone coupling with X+
0 = 1̄ and X̃0 ∼ µ. By Lemma 4.2 we

have

E1̄

[
S+
t

]
≤ E1̄,µ

[
|S+
t − S̃t|

]
+

=0︷ ︸︸ ︷
Eµ
[
S̃t

]
≤ 2
n
ρt

∑
σ∈Ω

1
2

n∑
j=1

≤2︷ ︸︸ ︷
|1− σ(j)|

µ(σ)


≤ 2ρt ≤ 2e−

(1−β)t
n .

Then

E1̄

[
S+
t

]
=

1
n

n∑
j=1

E1̄

[
X+
t (j)

]
= E1̄

[
X+
t (j)

]
by symmetry, while by monotonicity we have

Eσ [Xt(i)] ≤ E1̄

[
X+
t (i)

]
≤ 2e−

(1−β)t
n .

Since the distribution of −St started in −s is the same as the distribution
of St started in s, we also have

−2e−
(1−β)t
n ≤ Eσ [Xt(i)] .

(ii): The �rst part follows directly from (i). For the second part, remem-
ber that the spins are positively correlated, so that

V ar
(∑
i∈A

Xt(i)
)
≤ V ar

( n∑
i=1

Xt(i)
)
≤ n2V ar(St) ≤ cn,

by Proposition 4.7.
(iii): Let (Xt, X̃t) be the monotone coupling with X0 = σ, X̃0 ∼ µ.

Then, with obvious notations,

Eσ [|Mt(A)|] ≤ Eσ,µ
[
|M̃t(A)−Mt(A)|

]
+ Eµ

[
|M̃t(A)|

]
≤ Eσ,µ

[
dist(Xt, X̃t)

]
+
√

Eµ
[
M̃t(A)

2
]

≤ nρt +

√
n2

4
Eµ
[
S̃2
t

]
= nρt +

n

2

√
V arµ(S̃t)

= nρt +O(
√
n)

≤ ne−
(1−β)t
n +O(

√
n),
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where for the second passage we have used Cauchy-Schwartz inequality, for
the third we used Proposition 4.1 and the positive correlations among the
spins {X̃t(i)}, while for the estimate of the variance we used Proposition
4.7. �

4.2.5 Two coordinates chain

The last chain related to the Glauber dynamics we want to analyze is the
two coordinates chain. De�ne

Ω0 :=
{
σ : |S(σ)| ≤ 1

2

}
(4.39)

and �x once and for all a con�guration σ0 ∈ Ω0. Let

ū0 := |{i : σ0(i) = +1}|, v̄0 := |{i : σ0(i) = −1}| (4.40)

be the number of positive and negative spins in σ0 respectively. De�ne also
Λ0 := {(u, v) : n

4 ≤ u, v ≤ 3n
4 } and observe that σ0 ∈ Ω0 ⇔ (ū0, v̄0) ∈ Λ0.

Given σ ∈ Ω, we can de�ne

U(σ) = Uσ0(σ) := |{i ∈ {1, 2, ..., n} : σ(i) = σ0(i) = +1}| , (4.41)

V (σ) = Vσ0(σ) := |{i ∈ {1, 2, ..., n} : σ(i) = σ0(i) = −1}| (4.42)

the number sites in which both σ and σ0 have a "+"-spin (respectively, a
"−"-spin).

Now, given a Glauber dynamics (Xt), we de�ne the process

(Ut, Vt)t≥0 := (U(Xt), V (Xt))t≥0. (4.43)

Since we can write the magnetization of a con�guration η as

S(η) = 2U(η)− 2V (η)− S(σ0)

(note that S(σ0) here is just a constant) and since, as we have seen, the tran-
sition probabilities for (Xt) depend only on the magnetization of the current
state, we can deduce that also (Ut, Vt)t≥0 is a Markov chain. Its transition
probabilities depend of course on σ0 and its state space is {0, 1, ..., u0} ×
{0, 1, ..., v0}. We will call its stationary measure π2.

The connection between the original dynamics and this chain is shown
in the following lemma:

Lemma 4.9.

‖Pσ0 (Xt ∈ ·)− µ‖TV = ‖P(ū0,v̄0) ((Ut, Vt) ∈ ·)− π2‖TV . (4.44)
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Proof: Let

Ω(u,v) := {σ ∈ Ω : (U(σ), V (σ)) = (u, v)}.

Since µ( · |Ω(u,v)) and Pσ0 (Xt ∈ · |(Ut, Vt) = (u, v)) are uniform over Ω(u,v),
we have, for all η ∈ Ω,

µ(η) = µ(η|Ω(U(η),V (η)))µ(Ω(U(η),V (η))) =
µ(Ω(U(η),V (η)))
|Ω(U(η),V (η))|

;

therefore

Pσ0 (Xt = η)− µ(η) =
∑
u,v

χ{η∈Ω(u,v)}

|Ω(u,v)|
[Pσ0 ((Ut, Vt) = (u, v))− µ(Ω(u,v)].

Using the triangle inequality, summing over η ∈ Ω and changing the order
of the summations

‖Pσ0 (Xt ∈ ·)− µ‖TV ≤ ‖P(ū0,v̄0) ((Ut, Vt) ∈ ·)− π2‖TV .

For the reverse inequality note that

π2((u, v)) = µ({σ : Uσ0(σ) = u, Vσ0(σ) = v});

if B := {σ : (Uσ0(σ), Vσ0(σ)) ∈ (Ū , V̄ )}, where (Ū , V̄ ) ⊂ {0, 1, ..., n} ×
{0, 1, ..., n}, then

‖P (Xt ∈ ·)− µ‖TV ≥ sup
B
|P ((Xt ∈ B)− µ(B)|

= sup
(Ū ,V̄ )

|P
(
(Ut, Vt) ∈ (Ū , V̄ )

)
− π2((Ū , V̄ ))|.

�

The main result we have to know about the two-coordinates chain is the
following:

Proposition 4.10. Let σ, σ̃ ∈ Ω such that S(σ) = S(σ̃) and R0 := U(σ̃)−
U(σ) > 0. Let

Ξ :=
{
{σ : min{U(σ), ū0 − U(σ), V (σ), v̄0 − V (σ)} ≥ n

16

}
. (4.45)

There exists a coupling (Xt, X̃t) of the Glauber dynamics with X0 = σ, X̃0 =
σ̃, such that

(i) S(Xt) = S(X̃t), ∀t ≥ 0;

(ii) let Rt := U(X̃t)− U(Xt); then Rt ≥ 0 for all t ≥ 0 and

Eσ,σ̃
[
Rt+1 −Rt|Xt, X̃t

]
≤ 0; (4.46)
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(iii) ∃c > 0 independent from n such that, if Xt ∈ Ξ and X̃t ∈ Ξ, then

Pσ,σ̃
(
Rt+1 −Rt 6= 0|Xt, X̃t

)
≥ c. (4.47)

Proof: For any con�guration σ ∈ Ω we can divide the vertices in four
sets:

A(σ) := {j ∈ {1, 2, ..., n} : σ0(j) = +1, σ(j) = +1}
B(σ) := {j ∈ {1, 2, ..., n} : σ0(j) = +1, σ(j) = −1}
C(σ) := {j ∈ {1, 2, ..., n} : σ0(j) = −1, σ(j) = +1}
D(σ) := {j ∈ {1, 2, ..., n} : σ0(j) = −1, σ(j) = −1}. (4.48)

Clearly,

|A(σ)| = U(σ), |B(σ)| = ū0−U(σ), |C(σ)| = v̄0−V (σ), |D(σ)| = V (σ).

The description of the coupling is the following: Xt is updated as usual,
that is a vertex v is chosen at random in V and the spin in v is replaced with
a new spin

ζ :=

 +1 with prob. p+
(
St − Xt(v)

n

)
−1 with prob. p−

(
St − Xt(v)

n

)
.

For X̃t we choose at random a vertex w such that Xt(v) = X̃t(w) and replace
the spin in w with ζ. Furthermore, once U(Xt) = U(X̃t), we can force to
take the vertices v and w from the same set among those in (4.48) ensuring
Rt ≥ 0 for all t ≥ 0. Clearly condition (i) is automatically satis�ed because
of the construction of the coupling.

In order to study the behaviour of Rt+1−Rt the following table is useful:

v w spin Rt+1 −Rt
v ∈ B(Xt) w ∈ D(X̃t) +1 −1
v ∈ C(Xt) w ∈ A(X̃t) −1 −1
v ∈ A(Xt) w ∈ C(X̃t) −1 +1
v ∈ D(Xt) w ∈ B(X̃t) +1 +1
All other cases 0

Now it is quite easy to describe the probabilities for the increments of Rt:

Pσ,σ̃
(
Rt+1 −Rt = −1|Xt, X̃t

)
= a(Ut, Vt, Rt), (4.49)

Pσ,σ̃
(
Rt+1 −Rt = +1|Xt, X̃t

)
= b(Ut, Vt, Rt), (4.50)
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where

a(Ut, Vt, Rt) =
(
v̄0 − Vt
n

)(
Ut +Rt

v̄0 + Ut − Vt

)
p−
(
St −

1
n

)
+

+
(
ū0 − Ut

n

)(
Vt +Rt

ū0 − Ut + Vt

)
p+

(
St +

1
n

)
(4.51)

and

b(Ut, Vt, Rt) =
(
Ut
n

)(
v̄0 − Vt −Rt
v̄0 + Ut − Vt

)
p−
(
St −

1
n

)
+

+
(
Vt
n

)(
ū0 − Ut −Rt
ū0 − Ut + Vt

)
p+

(
St +

1
n

)
. (4.52)

We obtain

Eσ,σ̃
[
Rt+1 −Rt|Xt, X̃t

]
= b(Ut, Vt, Rt)− a(Ut, Vt, Rt)

= −Rt
n

[
p−
(
St −

1
n

)
+ p+

(
St +

1
n

)]
(4.53)

and in particular

Eσ,σ̃
[
Rt+1 −Rt|Xt, X̃t

]
≤ 0. (4.54)

Finally, for point (iii), note that p+ and p− are uniformly distant by 0 and
1, so that there exists a constant c > 0 (uniform in n) for which

Pσ,σ̃
(
Rt+1 −Rt 6= 0|Xt, X̃t

)
≥ b(Ut, Vt, Rt) ≥ c.

�

4.3 Cut-o� for the Glauber dynamics

4.3.1 The main theorem

All the work done so far in this chapter will be used to demonstrate the
existence of the cut-o� for the Glauber dynamics. So, we have to consider
the sequence of the complete graphs Gn = (Vn, En), with |Vn| = n; on each
graph we de�ne the Ising model with its Gibbs' measure µn and the Glauber
dynamics (Xn

t ). For each of these chains we can de�ne as usual the distance
to the stationary measure as

dn(t) := max
σ∈Ωn

‖Pσ ((Xn
t ∈ ·)− µn)‖TV

and the mixing time as

tnmix := min
{
t ≥ 0 : dn(t) ≤ 1

4

}
.
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For the ergodic theorem tnmix is �nite for each �xed n, since dn(t) → 0 as
t → ∞. Nevertheless dn(t) will go to ∞ with n. Our aim is to understand
the growth rate of the sequence tnmix.

Theorem 4.11. Let β < 1. The Glauber dynamics for the Ising model on
the n-complete graph has a cut-o� at time tn := n logn

2(1−β) with a window of size
n.

The proof of the theorem is rather long and will be split into two parts:
the upper and the lower bound. They will be proved separately in the next
sections.

Note again that the case where all the spins are independent (or equiv-
alently β = 0) coincides with the random walk on the n-dimensional hy-
percube, and the result of the theorem agrees with the result of Theorem
(2.13).

Yuval Peres conjectured a much general result. Our main theorem can
be seen as a particular case of his hypothesis:

Conjecture 4.12. Let (Gn) be a sequence of transitive graphs. If the Glauber
dynamics on Gn has tnmix = O(n log n), then there is a cut-o�.

We didn't de�ne the Glauber dynamics for a generic graph, but it's just
the natural extension of our de�nition.

4.3.2 Upper bound

Theorem 4.13. For β < 1

lim
γ→∞

lim sup
n→∞

dn

(
n log n

2(1− β)
+ γn

)
= 0. (4.55)

This upper bound is by all means the hardest part to demonstrate. The
proof requires many �changes of strategy�, so we will split it in three main
phases and many sub-phases that will be brie�y described in the following
and deepened in the next sections.

Recall the useful de�nitions

ρ := 1− 1
n

+ tanh
(
β

n

)
,

τ0 := min
{
t ≥ 0 : |St| ≤

1
n

}
,

and de�ne also

tn :=
1

2(1− β)
n log n, (4.56)

tn(γ) := tn + γn. (4.57)

These are the main phases, summarized in Figure 4.1:
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Figure 4.1: Time line that describes the proof of Theorem 4.13. Note that
these events are not certain, but happen with high probability.

Phase 1: we will let the chain run for a burn-in period of t0 := θ0n steps.
After this period we will �nd ourselves in a �good� position (that is,
in a con�guration σ0 ∈ Ω0 (remind its de�nition in (4.39))) with high
probability:

dn(t) ≤ max
σ0∈Ω0

‖Pσ0 (Xt ∈ ·)− µn‖TV +O

(
1
n

)
.

Here we will �x once and for all a con�guration σ0 ∈ Ω0, with its ū0

and v̄0, that will be fundamental in Phase 3. In the following we will
ignore these t0 steps, imaging to start in Ω0 at time t = 0.

Phase 2: in this part we will start two instances of the chain, one starting by
σ0 and the other by any σ ∈ Ω. The aim is to make the magnetizations

of these two chains merge with high probability after O
(
n logn
2(1−β)

)
steps.

We will use di�erent kinds of coupling:

2a) for tn steps we will use the monotone coupling and we will obtain
the magnetizations to be quite close:

Eσ,σ̃
[n

2
|Stn − S̃t|

]
≤ cost.

√
n.

2b) Let τ1 := min{t ≥ tn : n
2 |St − S̃t| ≤ 1}. We will run the two

chains independently till τ1 and will show that

Pσ,σ̃ (τ1 > tn + γn) ≤ O
(

1
√
γ

)
.

2c) If the number of "+"-spins in con�guration Xτ1 will still be one
more than those of con�guration X̃τ1 , we will quickly (in γn steps)
arrange the situation with a simple coupling.
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Phase 3: Thanks to Lemma 4.9 it is possible to deal just with the two-
coordinates chain. We will show that the hypothesis of Proposition 4.10
are veri�ed in the time interval [tn(2γ), tn(3γ)], so that we can start a
coupling (Xt, X̃t) of the underlying Glauber dynamics and dominate
Rt := U(X̃t)−U(Xt) with a simple random walk. This way, calling τc
the �rst time the two chains meet, we will be able to show that

Pσ0,σ̃ (τc > tn(3γ)) ≤ cost.

γ
+O

(
1
n

)
γ,n→∞−−−−−→ 0.

This, together with the coupling corollary (Corollary 1.16), gives the
theorem.

4.3.3 Phase 1

First of all let's demonstrate a general result.

Lemma 4.14. ∀Ω0 ⊂ Ω,

d(t0 + t) = max
σ∈Ω
‖Pσ (Xt0+t ∈ ·)− µ‖TV

≤ max
σ0∈Ω0

‖Pσ0 (Xt ∈ ·)− µ‖TV + max
σ∈Ω

Pσ (Xt0 /∈ Ω0) . (4.58)

Proof: ∀A ⊂ Ω we have

‖Pσ(Xt0+t ∈ A− µ(A))‖TV ≤

≤
∣∣∣ ∑
σ0∈Ω0

[Pσ (Xt0+t ∈ A|Xt0 = σ0)− µ(A)] Pσ (Xt0 = σ0)

+ [Pσ (Xt0+t ∈ A|Xt0 /∈ Ω0)− µ(A)] Pσ (Xt0 /∈ Ω0)
∣∣∣

≤
∑
σ0∈Ω0

|Pσ (Xt0+t ∈ A|Xt0 = σ0)− µ(A)|Pσ (Xt0 = σ0) + Pσ (Xt0 /∈ Ω0) .

If we take the maximum over all possible A ⊂ Ω

‖Pσ(Xt0+t ∈ ·)− µ‖TV
≤
∑
σ0∈Ω0

‖Pσ (Xt0+t ∈ ·|Xt0 = σ0)− µ‖TV Pσ (Xt0 = σ0) + Pσ (Xt0 /∈ Ω0)

≤ max
σ0∈Ω0

‖Pσ0 (Xt ∈ ·)− µ‖TV + Pσ (Xt0 /∈ Ω0) ,

where in the last step we used the Markov property. �

Now we have just to apply the lemma with our Ω0 = {σ ∈ Ω : |S(σ)| ≤
1
2}. By Lemma 4.8 we know that there is θ0 > 0 such that

|Eσ [Sθ0n] | ≤ 2e−(1−β)
(θ0n)
n ≤ 1

4
.
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Thus, for n big enough,

Pσ (Xθ0n /∈ Ω0) = P
(
|Sθ0n| >

1
2

)
≤ Pσ

(
|Sθ0n − Eσ [Sθ0n] | > 1

4

)
≤ 16V arσ(Sθ0n).

By Proposition 4.7 we �nally have

dn(θ0n+ t) ≤ max
σ0∈Ω0

‖Pσ0 (Xt ∈ ·)− µ‖TV +O

(
1
n

)
. (4.59)

After these t0 steps we �x the con�guration σ0 := Xt0 and its ū0, v̄0

de�ned in (4.40). From now on, whenever we will mention σ0, we will be
talking about this precise con�guration.

4.3.4 Phase 2

In Phase 2 we will use a particular coupling of the Glauber dynamics, letting
two copies of the chain start one in σ0 and the other in another generic σ ∈ Ω;
our aim will be to make the magnetizations of the two copies be the same
after O(tn) steps.

Phase 2 is the part where the original chain has to spend more time. In
fact, the heaviest part of the whole work is to force the magnetizations of
the two copies to be su�ciently close, where su�ciently means that their
di�erence (if we consider the not-normalized magnetizations) has to be at
most of O(

√
n). To do that we will take advantage of the power of the drift

towards 0 when the magnetization is far from it. This task itself will require
O(tn) steps, that is also the cut-o� order, so we can say that the heart of
the problem is here.

For simplicity we will forget the �rst t0 = θ0n steps, assuming to start
directly at time t = 0 in the position σ0 ∈ Ω0. The following proposition is
stated for any starting points σ, σ̃, but we can think σ as being our σ0.

Proposition 4.15. Let σ, σ̃ be any two con�gurations in Ω. There exist
a coupling (Xt, X̃t) of the Glauber dynamics with X0 = σ, X̃0 = σ̃ and a
constant c > 0 (independent of σ, σ̃, n) such that, if we de�ne

τmag := min{t ≥ 0 : S(Xt) = S(X̃t)}, (4.60)

then
Pσ,σ̃ (τmag > tn(2γ)) ≤ c

√
γ
. (4.61)
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Proof: The coupling will change its updating rules in the course of time.
For the �rst tn steps we will use the monotone coupling described in Section
4.1.3. Suppose, without loss of generality, S(σ) > S(σ̃). De�ne

∆t :=
n

2
|St − S̃t| =

1
2

∣∣∣∑
j

Xt(j)− X̃t(j)
∣∣∣ ∈ [0, n] (4.62)

a measure of the di�erent of the not-normalized magnetizations. By Lemma
4.2 there exists c1 > 0 such that

Eσ,σ̃ [∆tn ] =
n

2
Eσ,σ̃

[
|St − S̃t|

]
≤ ρtndist(σ, σ̃)

≤
(

1− 1− β
n

) 1
2(1−β)

n logn

n

≤ e−
(

1−β
n

1
2(1−β)

n logn
)
n

≤ c1

√
n. (4.63)

Now we change strategy: de�ne

τ1 := min{t ≥ tn : |∆t| ≤ 1}. (4.64)

As long as tn ≤ t < τ1, we let Xt and X̃t evolve independently. By Lemma
4.3, since St ≥ S̃t for all times till τ1, (St − S̃t)tn≤t≤τ1 has negative drift.
Furthermore, because of the independence, the probability that St − S̃t 6= 0
is uniformly bigger then 0. Therefore there is a simple random walk (Wt)t≥tn
on Z that satis�es:

• E [Wt+1 −Wt] = 0,

• Wt+1 −Wt ≤ const.,

• n(Stn − σ̃tn) = Wtn ,

• n(St − S̃t) ≤Wt ∀tn ≤ t < τ1.

We can apply Corollary 2.12 and see that

Pσ,σ̃
(
τ1 > tn + γ′n|Xtn , X̃tn

)
≤ Pσ,σ̃

(
Wtn+1 > 0, ...,Wtn+γ′n > 0|Xtn , X̃tn

)
≤ n|Stn − S̃tn |√

γ′n
.

Taking the expectation and plugging in (4.63) gives

Pσ,σ̃
(
τ1 > tn + γ′n

)
≤ O

(
1√
γ′

)
. (4.65)
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At this point the number of "+"-spins in Xτ1 can be equal to or one more
than the number of "+"-spins in X̃τ1 . In the �rst case τ1 = τmag, so we are
done. If there is still one positive spin of di�erence, then we use a modi�ed
version of the monotone coupling: we put in a one-to-one correspondence the
vertices with positive spin in X̃τ1 with those with positive spin in Xτ1 , and
pair all the other vertices arbitrarily. Then we let the system evolve with
the rules of monotone coupling, updating together the matched vertices. We
are allowed to use Lemma 4.2 replacing dist, the Hamming distance, with

dist′ := #{matched vertices with a di�erent spin}

obtaining

Pσ,σ̃
(
τmag > τ1 + γ′′n|Xτ1 , X̃τ1

)
= Pσ,σ̃

(
∆τ1+γ′′n ≥ 1|Xτ1 , X̃τ1

)
≤ Eσ,σ̃

[
∆τ1+γ′′n|Xτ1 , X̃τ1

]
≤
(

1− 1− β
n

)γ′′n
· 1

≤ e−(1−β)γ′′ , (4.66)

where for the second line we have used the well known Markov inequality.
In conlusion, taking γ := max{γ′, γ′′},

Pσ,σ̃(τmag > tn(2γ))
= Pσ,σ̃ (τmag > tn + 2γn|τ1 > tn + γn) Pσ,σ̃ (τ1 > tn + γn)
+ Pσ,σ̃ (τmag > tn + 2γn|τ1 ≤ tn + γn) Pσ,σ̃ (τ1 ≤ tn + γn)

≤ O
(

1
√
γ

)
· 1 + 1 · e−(1−β)γ

= O

(
1
√
γ

)
.

�

4.3.5 Phase 3

Remember that Lemma 4.9, together with the fact that σ0 ∈ Ω0 ⇔ (ū0, v̄0) ∈
Λ0, says

max
σ0∈Ω0

‖Pσ0 (Xt ∈ ·)− µ‖TV = max
(ū0,v̄0)∈Λ0

‖P(ū0,v̄0) ((Ut, Vt) ∈ ·)− π2‖TV ,

(4.67)
so that it will be su�cient to �nd a bound for the right hand side.

We would like to use Proposition 4.10 to be able to dominate the quantity
Rt := U(X̃t) − U(Xt) with a simple random walk for γn steps. Let's show
that all the hypothesis of the proposition are veri�ed with high probability.
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De�ne the events

H1 := {τmag ≤ tn(2γ)} (4.68)

H2(t) := {Xt ∈ Ξ, X̃t ∈ Ξ} (4.69)

H2 :=
⋂
t∈I

H2(t), (4.70)

where I is the time interval [tn(2γ), tn(3γ)].
Proposition 4.15 guarantees that H1 is veri�ed with probability at least

1− c√
γ ; under this event we can take as starting con�gurations for the new

coupling σ = Xtn(2γ) and σ̃ = X̃tn(2γ), which verify the �rst condition S(σ) =
S(σ̃).

Without loss of generality we can assume U(σ)− U(σ̃) > 0.
There is only left to demonstrate that H2 happens with high probability

in order to get allowed to use point (iii) of the proposition for all times t ∈ I.

Lemma 4.16.

Pσ0,σ̃ (Hc
2) = O

(
1
n

)
. (4.71)

Proof: Recall the de�nition

Mt(A) :=
1
2

∑
j∈A

Xt(j)

and let

A0 := {i ∈ V : σ0(i) = +1}

B∗ :=
⋃
t∈I
{|Mt(A0)| ≥ n

32
},

Y :=
∑
t∈I

χ{|Mt(A0)|>n/64}

(clearly |A0| = ū0). M̃t(A), B̃∗ and Ỹ have the very same de�nitions with
X̃t instead of Xt.

If Mt(A0) goes once over the value n
32 in the interval I, it follows that it

has to stay at least n
64 times over the value n

64 , since its increments are in
the set {−1, 0,+1}. Consequently B∗ ⊂ {Y > n

64} and

Pσ0,σ̃ (B∗) ≤ Pσ0,σ̃

(
Y >

n

64

)
≤ c0Eσ0,σ̃ [Y ]

n
(4.72)

by Markov inequality. By Lemma 4.8 (ii), we know that

Pσ0,σ̃

(
|Mt(A0)| > n

64

)
= O

(
1
n

)
,
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so E [Y ] = O(1), and equation (4.72) gives

Pσ0,σ̃ (B∗) = O

(
1
n

)
. (4.73)

The same deductions lead to

Pσ0,σ̃

(
B̃∗
)

= O

(
1
n

)
. (4.74)

Observe that

Hc
2(t) ⊂

{
|Mt(A0)| ≥ n

16

}
∪
{
|M̃t(A0)| ≥ n

16

}
. (4.75)

In fact if Ut ≤ n
16 , then ū0−Ut ≥ 3n

16 (since ū0 ≥ n
4 (because σ0 ∈ Ω0)); thus

|Mt(A0)| = 1
2
|Ut − (ū0 − Ut)| ≥

1
2

((ū0 − Ut)− Ut) ≥
n

16
.

Similarly if ū0 − Ut ≤ n
16 , then Ut ≥ 3n

16 and thus |Mt(A0)| ≥ n
16 and the

argument can be extended to Vt, v̄0 − Vt, Ũt, ū0 − Ũt, Ṽt and v̄0 − Ṽt.
Taking the union over the times in I, (4.75) implies, together with (4.74)

and (4.73), that

Pσ,σ̃ (Hc
2) ≤ Pσ,σ̃ (B∗) + Pσ,σ̃

(
B̃∗
)

= O

(
1
n

)
.

�

Recall that Rt := U(X̃t)− U(Xt). Thanks to Proposition 4.10 we know
that, under the events H1 and H2, the process Rt can be dominated between
tn(2γ) and tn(3γ) by a nearest-neighbor random walk until the �rst time
when Rt visits 0.

Thus by Corollary 2.12, under H1

Pσ0,σ̃

(
{τc > tn(3γ)} ∩H2|Xtn(2γ), X̃tn(2γ)

)
≤
c1|Rtn(2γ)|√

nγ
. (4.76)

where τc is the �rst time t such that Ut = Ũt. Taking the expectation gives

Pσ0,σ̃ ({τc > tn(3γ)} ∩H2 ∩H1) ≤
c1Eσ0,σ̃

[
|Rtn(2γ)|

]
√
nγ

. (4.77)

Writing Ut = 1
2(Ut− (ū0−Ut) + ū0) = Mt(A0) + ū0

2 and Ũt = z̃Mt(A0) + ū0
2

we have |Rt| ≤ |Mt(A0)|+ |M̃t(A0)|. Applying Lemma 4.8 (iii),

Eσ0,σ̃

[
|Rtn(2γ)|

]
≤ Eσ0

[
|Mtn(2γ)(A0)|

]
+ Eσ̃

[
|M̃tn(2γ)(A0)|

]
≤ 2

(
ne−(1−β)

tn(2γ)
n +O(

√
n)
)

= O(
√
n). (4.78)
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Finally, using estimate (4.77),

Pσ0,σ̃ (τc > tn(3γ)) ≤Pσ0,σ̃ ({τc > tn(3γ)} ∩H1 ∩H2)
+ Pσ0,σ̃ (Hc

1) + Pσ0,σ̃ (Hc
2)

≤ c2√
γ

+O

(
1
n

)
. (4.79)

By equation (4.67) and by Corollary 1.16 we can conclude that

d(tn + 3γn) ≤ c2√
γ

+O

(
1
n

)
n→∞−−−→
γ→∞

0, (4.80)

that is the thesis of Theorem 4.13.

4.3.6 Lower bound

Theorem 4.17. For β < 1

lim
γ→∞

lim inf
n→∞

dn

(
n log n

2(1− β)
− γn

)
= 1. (4.81)

Proof: Since the magnetization chain is a projection of the Glauber dy-
namics (Xt), it will be su�cient to �nd a lower bound for the distance of
(St) to its stationary distribution πS .

Observing the de�nition (4.23), we see that θn(s) = O
(

1
n

)
; thus, expand-

ing tanh
(
βs+ β

n

)
around βs in (4.22), we have, by (4.21),

E [St+1|St = s] ' s+
1
n

[
tanh (βs) +O

(
1
n2

)
− s+O

(
1
n2

)]
' s+

βs

n
− β3s3

3n
− βs

n
+O

(
1
n2

)
≥ ρs− s3

2n
+O

(
1
n2

)
.

By symmetry it is also true that

E [|St+1||St] ≥ ρ|St| −
|St|3

2n
+O

(
1
n2

)
. (4.82)

De�ne
t∗ := tn −

αn

(1− β)
. (4.83)

We need the following lemma:

Lemma 4.18. Take S0 = s0 = s0(β). If s0 <
1−β

3 and n is big enough, then

Es0 [|St∗ |] ≥ B :=
s0e

α

2
√
n
. (4.84)
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Proof: Let Zt := |St|ρ−t, with Z0 = s0. Since ρ−1 ≤ 2, by (4.82) it
follows that, for n big enough,

Es0 [Zt+1|Zt] ≥ Zt − ρ−t
|St|3 +O

(
1
n

)
n

and therefore (remembering that |St| ≤ 1)

Es0 [Zt − Zt+1|Zt] ≤ ρ−t
|St|2 +O

(
1
n

)
n

. (4.85)

By Lemma 4.8 we deduce, setting A = V , that

Es0 [|St|] ≤ |s0|ρt + c1
1√
n
.

This and Proposition 4.7 give

Es0
[
S2
t

]
= (Es0 [St])

2 + V ar(St) ≤ s2
0ρ

2t + 2c1
|s0|ρt√
n

+
c3

n
. (4.86)

Taking the expectation in both sides of (4.85) and applying (4.86) yields

Es0 [Zt − Zt+1] ≤ 1
n

[
ρts2

0 + 2c1
|s0|√
n

+ c3
ρ−t

n

]
+O

(
1
n2

)
.

Adding the increments Es0 [Zk]− Es0 [Zk+1] for k = 0, 1, ..., t∗ − 1 we obtain

s0 − Es0 [Zt∗ ] =
t∗∑
k=0

Es0 [Zk − Zk+1]

≤ s2
0

n(1− ρ)
+

2c1|s0|t∗

n
3
2

+ c3
ρ−t

∗

n2(1− ρ)
+O

(
t∗

n2

)
.

Since ρ−t
∗ ≤
√
n we have

s0 − Es0 [Zt∗ ] ≤
s2

0

1− β
+

2c2 log n√
n

+
c4√
n
≤ s0

2

as long as s0 ≤ 1−β
3 and n is big enough. Therefore

Es0 [|St∗ |] ≥
s0ρ

t∗

2
≥ s0e

α

2
√
n

= B.

�
By Proposition 4.7 we know that max {V ars0(St), V arµ(St)} ≤ c5

n and
hence

B

2
≤ Es0 [St∗ ]−

s0e
α

4c5

√
V ars0(St∗) (4.87)

B

2
≥ Eµ [St] +

s0e
α

4c5

√
V arµ(St). (4.88)
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Letting D :=
[
−B

2 ,
B
2

]
,

‖Ps0 (St∗ ∈ ·)− πS‖TV ≥πS(D)− Ps0 (|St∗ | ∈ D)

≥PπS

(
|S| ≤ Eµ [St] +

s0e
α

4c5

√
V arµ(St)

)
− Ps0

(
|St∗ | ≤ Es0 [St∗ ]−

s0e
α

4c5

√
V ars0(St∗)

)
≥1− 16c2

5

s2
0e

2α
− Ps0

(
|Es0 [St∗ ]− St∗ | ≥

s0e
α

4c5

√
V ars0(St∗)

)
≥1− 32c2

5

s2
0e

2α
(4.89)

where we have applied Chebychev inequality twice.
Since the last quantity in (4.89) tends to 1 as α goes to in�nity, equation

(4.81) is proved. �

4.4 Near the critical point

4.4.1 Mixing time and cut-o� in the critical case and in the

low-temperature regime

Till now we have analyzed only the high temperature regime, that is the case
β < 1, where the spins don't in�uence too much one another. What happens
when we take β to be equal to 1 or greater? Is the order of the mixing time
still n log n? What happens to the cut-o� point n logn

2(1−β)? Does a cut-o� still
appear?

The articles [16] and [9] give again a complete answer to these questions.
For the critical case β = 1, the order of tmix changes suddenly. In fact

in the �rst article is shown that

Theorem 4.19. If β = 1, then there are constants c1, c2 > 0 independent of
n, such that

c1n
3
2 ≤ t(n)

mix ≤ c2n
3
2 . (4.90)

The proof of this theorem uses the same techniques of the previous sec-
tions. In particular for the upper bound it is possible to show a coupling that
makes the magnetizations of the two copies of the Glauber dynamics coalesce
after n

3
2 steps; after that, it is possible to make agree the two con�gurations

themselves in only other O(n log n) steps with another coupling. The second

part of the proof shows a lower bound of order n
3
2 for the mixing time of the

magnetization chain, which straight implies the same lower bound for the
original dynamics.
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The order of mixing time in the low-temperature regime, β > 1, was
already known to be exponential in n (see e.g. [13]). The reason for this
drastic slowing down is that the birth-and-death chain of the magnetization
has no longer, after the critical β, the gaussian shape that will be described
in the last chapter. In fact, as soon as β is greater than 1, two symmetric
(with respect to 0) centers of mass appear and they drift further and further
apart as the temperature decreases. The time to go from one center to the
other is exponential and this implies the new order of tmix.

Finally, in the second article ([9]), it is shown that in none of the two
regimes β = 1 and β > 1 there is a cut-o�. In the �rst instance the analysis
of the spectral gap ensures that gap = O(n

3
2 ) and hence the non-existence of

the cut-o� follows from Proposition 2.2. Analogously in the low temperature
case it results that gap · tmix = O(1), and this again excludes the possibility
of the cut-o�.

4.4.2 Phase transition

Another natural question is how the phase transition between these states
occurs around the critical value βc = 1. Again [9] gives a satisfactory de-
scription of this phenomenon. Theorem 4.11 can in fact be re�ned this way:

Theorem 4.20. Let δ = δ(n) > 0 be such that δ2n
n→∞−−−→ ∞. The Glauber

dynamics for the mean-�eld Ising model with parameter β = 1 − δ exhibits
cut-o� at time n

2δ log(δ2n) with window size n
δ .

Analogously the mixing time order of the critical point β = 1 can be
extended to a little `critical window':

Theorem 4.21. Let δ = δ(n) satisfy δ = O( 1√
n

). The mixing time of the

Glauber dynamics for the mean-�eld Ising model with parameter β = 1 ± δ
has order n

3
2 .

Finally, for the supercritical regime we have

Theorem 4.22. Let δ = δ(n) > 0 such that δ2n
n→∞−−−→ ∞. The mixing

time of the Glauber dynamics for the mean-�eld Ising model with parameter
β = 1 + δ has order

texp(n) :=
n

δ

(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

)
,

where g(x) := tanh(βx)−x
1−x tanh(βx) and ζ is the only positive root of g. In particular,

if δ → 0, the order of the mixing time is n
δ e

( 3
4

+o(1))δ2n, where the o(1) tends
to 0 as n→∞.
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Figure 4.2: (from [9], pag.2) Mixing time behaviour as a function of the
inverse of the temperature β, with n �xed. Here δ = |1 − β| and ζ is the

unique positive roof of g(x) := tanh(βx)−x
1−x tanh(βx) .

The meaning of these theorems is perfectly illustrated in Figure 4.2:
�xing n, if the inverse of the temperature β is in an interval around 1 of
order 1√

n
, then tmix has order n

3
2 , if β takes a value before this critical

interval, then tmix has order n log n, while if β is after the interval, then tmix
assumes the exponential behaviour.



Chapter 5

An analytic attempt

The aim of this last chapter is to try to bound the spectral gap and the log-
Sobolev constant (to be de�ned) of the continuous-time Glauber dynamics
for the Ising model on the complete graph with a particular method. As we
will see, this technique will turn to be completely successful in the �rst case
but rather di�cult to apply in the second.

5.1 Continuous-time chains

5.1.1 Discrete versus continuous time

A continuous-time chain (Xt)t≥0 on a state space Ω is described by a
matrix Q, called the in�nitesimal generator, whose elements q(x, y) are
called transition rates and have the following properties:

(i) −∞ < q(x, x) ≤ 0 for all x ∈ Ω;

(ii) q(x, y) ≥ 0 for all x 6= y;

(iii)
∑

y q(x, y) = 0 for all x ∈ Ω.

Clearly q(x) := −q(x, x) =
∑

y 6=x q(x, y); it can be thought as "the rate of
leaving x".

The heat kernel Ht of the process is the object that speci�es the actual
probability of going from a state x to a state y after a time t: Ht(x, y) =
Px (Xt = y). It is de�ned as

Ht(x, y) := etQ. (5.1)

We can give a very clear interpretation of the process. De�ne the |Ω|×|Ω|
matrix J as: J(x, y) = q(x,y)

q(x) for y 6= x and J(x, x) = 0. Generate a path

x0, x1, ... of the discrete-time chain J . Then (Xt) visits this sequence of
states remaining in each state xi a time distributed as an exponential random
variable of parameter q(xi).

82
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Given a Markov chain P we can associate to it a Markov process (Xt),
setting, for example, Q = P − Id. The random times between transitions
are i.i.d. exponential random variables of unit rate, while the moves at these
transition times are made according to P . In this case the heat kernel can
be written as

Ht(x, y) = et(P−Id) =
∞∑
k=0

e−ttk

k!
P k(x, y). (5.2)

If up to time t we had k successes of exponentials of rate 1, the probability
of staying in y starting in x is P k(x, y). Summing over all possible number
of �jumps�, that is exponential successes, we have the e�ective probability of
going from x to y after a time t. The Markov property is transmitted from
P to the new process (Xt) in the sense that, for s ≤ t,

Px (Xt = y|{all the history up to time s}) = Px (Xt = y|Xs) .

It is easy to see that if P has a stationary distribution π, then also (Xt)
does. But one of the advantages of continuous-time chains is that they avoid
the problem of periodicity. In fact, the Ergodic theorem 1.2 has the following
equivalent:

Theorem 5.1. Let P be an irreducible transition matrix, and let Ht be the
corresponding heat kernel. Then there exists a unique probability distribution
π such that πHt = π for all t ≥ 0 and

max
x∈Ω
‖Ht(x, ·)− π‖TV

t→∞−−−→ 0.

5.1.2 Spectral gap and log-Sobolev constant for continuous

time chains

Given a transition matrix P and the Markov process (Xt) associated to it
with heat kernel Ht, we can de�ne its Dirichlet form as

D(f, f) =
∑
x,y∈Ω

(f(y)− f(x))2π(x)q(x, y).

If P is the reversible transition matrix that generates this process, and λ2 is
its greatest eigenvalue di�erent from 1, we know from (1.29) that the spectral
gap γ veri�es

γ = 1− λ2 = min
f∈RΩ

V arπ(f) 6=0

{
D(f, f)
V arπ(f)

}
.

The utility of the spectral gap is shown by the following results, continuous-
time versions of (1.31) and (1.32).
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Lemma 5.2. Let P be a reversible and irreducible transition matrix with
spectral gap γ. Then for f ∈ RΩ,

‖Htf − Eπ [f ] ‖22 ≤ e−2γtV arπ(f). (5.3)

Lemma 5.3. Let P be an irreducible transition matrix with spectral gap γ.
Then, for the continuous-time chain associated to P , we have

tcontmix

(
1
2e

)
≤ 1

2γ

(
2 + log

( 1
πmin

))
(5.4)

where tcontmix (·) is the obviously de�ned continuous equivalent of tmix(·) and
πmin = min

x∈Ω
π(x).

The de�nition of the logarithmic Sobolev constant α is similar to
that of the spectral gap where the variance of f has been replaced by the
entropy of f2, where the entropy is

Entπ(f) = Eπ [f log (f)] for f ≥ 0, π(f) = 1. (5.5)

Therefore

α := inf
f∈RΩ

π(f2)=1

{
D(f, f)

Entπ(f2)

}
. (5.6)

The power of log-Sobolev constant is underlined by the upper bound of the
next lemma, to be compared with the upper bound of (5.4).

Lemma 5.4. Let P be a reversible and irreducible Markov chain. Then, for
the continuous-time chain associated to P , we have

1
2α
≤ tcontmix

(
1
2e

)
≤ 1

4α

(
4 + log+ log

1
πmin

)
. (5.7)

The proofs of these lemmas can be found, e.g., in [21].

5.1.3 Continuous time Glauber dynamics

Let's describe the continuous-time version of the Glauber dynamics for the
Ising model on the complete graph examined in Chapter 4. We imagine to
assign to each of the n sites a `random clock' that rings at random times,
distributed as independent exponential random variables of parameter 1.
When the clock of site j rings, if the present con�guration is σ, we try to
update the spin in that place according to the Glauber dynamics, that is we
put there a "+"-spin with probability p+(S(σ) − σ(j)

n ), where p+ is de�ned
in (4.5), and a "−"-spin else. This is equivalent to say that we have only a
giant super-fast clock that rings every exponential time of parameter n, and
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when it rings we perform a step of the discrete-time Glauber dynamics. So
the process is somehow accelerated, in the sense that in a unit of time we
have tried on average to update all the spins.

Therefore the in�nitesimal generator of the process is, for all f ∈ RΩ,

Lf(σ) =
∑
i

∑
x=±1

P (σi = x|{σj}j 6=i)
(
f(σi,x)− f(σ)

)
, (5.8)

and its Dirichlet form

D(f, f) :=
∑
σ∈Ω

i=1,2,...,n

(f(σi)− f(σ))2L(σ, σi)π(σ). (5.9)

Let
µσi (f) := µ(f |{σj}j 6=i) (5.10)

be the expectation of f under the measure µ (the stationary distribution)
once we have �xed all the spins except σi and analogously let

V arσi (f) := V ar(f |{σj}j 6=i) (5.11)

be the variance of f under the same measure.

Lemma 5.5.

D(f, f) = µ(f(−Lf)) =
∑

i=1,2,...,n

µ(V ari(f)) (5.12)

Proof:

µ(f(−Lf)) =
∑
σ

µ(σ)f(σ)
∑
i

(f(σ)− µi(f)) =

=
∑
i

[∑
σ

µ(σ)f2(σ)−
∑
σ

µ(σ)f(σ)µi(f)

]
;

the second summatory in the square brackets is equal to

µ(fµi(f)) = µ(µ(fµi(f)|{σj}j 6=i)) = µ(µi(f)µ(f |{σj}j 6=i)) = µ(µ2
i (f))

where we used very well know properties of the µ-expectation. Therefore

µ(f(−Lf)) =
∑
i

[
µ(f2(σ)− µ2

i (f))
]

=

=
∑
i

µ
(
µ(f2(σ)− µ2

i (f))|{σj}j 6=i
)

=
∑
i

µ (V ari(f)) .

�
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Corollary 5.6. There exists c > 0, not depending on n, such that∑
i,σ

µ(σ)(f(σi)− f(σ))2 ≤ cD(f, f) (5.13)

Proof: First note that V arσi (f) (suppose σ(i) = +) is the variance of a
Bernoulli variable that takes value f(σ) with probability

pσi = µ(σ(i) = +|{σj}j 6=i)

and value f(σi) with probability 1− p. Therefore

V arσi (f) = pσi (1− pσi )(f(σi)− f(σ))2.

But for any σ and any i, we have

pσi =
µ(σ)

µ({σj}j 6=i)
=

µ(σ)
µ(σ) + µ(σi)

=

=
e
β
n

∑
j 6=i σj

e
β
n

∑
j 6=i σj + e−

β
n

∑
j 6=i σj

=
1

1 + e−2 β
n

∑
j 6=i σj

≥ 1
1 + e2β

,

and analogously

1− pσi ≥
1

1 + e2β
.

Hence∑
i,σ

µ(σ)(f(σi)− f(σ))2 ≤ c
∑
i,σ

µ(σ)(f(σi)− f(σ))2pσi (1− pσi )

= c
∑
i,σ

µ(σ)V arσi (f) = c
∑
i

µ(V ari(f))

= cD(f, f).

by Lemma (5.5). �

5.1.4 The continuous-time magnetization chain

Remind that we can see the stationary distribution µ as a measure on the
space ΩS := {−n,−n+ 2, ..., n− 2, n} de�ning

µ(s) :=
∑

σ:S(σ)=s

µ(σ).

We'd like to construct a continuous-time Birth and death process on Ωs that
has µ as stationary distribution. One possible choice of the rates of jump is
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the following: if the present state of the chain is s > 0, then the chain moves
to the right with rate b(s) := µ(s+2)

µ(s) and to the left with rate d(s) := 1; if
s < 0, then the chain goes to the right with rate b(s) := 1 and to the left

with rate d(s) := µ(s−2)
µ(s) ; when in 0, the chain goes to the right or to the

left both with rate 1. Obviously this chain is reversible for the measure µ.
Observe that the chain has always a drift towards the central value 0 and
that this drift becomes stronger as we go far away from 0.

Let's study the behaviour of µ(s). Remind that the number of con�gu-
rations that have a certain magnetization s is

(
n
n+s

2

)
. For large values of n

and small values of s and calling m := s
n the normalized magnetization we

have (
n
n+s

2

)
'

√
2πe−nnn+ 1

2

√
2π
(
n+s

2

)n+s
2

+ 1
2 e−

n+s
2

√
2π
(
n−s

2

)n−s
2

+ 1
2 e−

n−s
2

=

=
nn+ 1

2 2n+1

√
2π(n+ s)

n+s+1
2 (n− s)

n−s+1
2

=

=
(

2n+1

√
n
√

2π

)
1

(1 +m)
n+nm+1

2 (1−m)
n−nm+1

2

'

' c(n)

[(
1−m
1 +m

)m
2 1

(1−m2)
1
2

]n
, (5.14)

where we have just used Stirling's approximation for the binomial coe�cient.
Therefore

µ(s) =

(
n
n+s

2

)
e
β
2n
s2

Z

' c(n)
Z

e−n[−βm
2

2
+ 1

2
log (1−m2)−m

2
log ( 1−m

1+m )] '

' c(n)
Z

e−n(
1+β

2
m2) =

c(n)
Z

e−
1+β
2n

s2 .

From this expression we can see that µ(s) has the shape of a �discrete gaus-
sian measure� centered in 0 and with variance ∼ 2n

1+β .

Lemma 5.7. For the magnetization chain, there exist a constant c̃ > 0 not
depending on n such that

1
gap′

≤ c̃ n, (5.15)

where gap′ is the spectral gap of the process.

Proof: For continuous time birth-and-death chains we have a powerful
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tool to estimate quite precisely the spectral gap: the Miclo's formulas. De�ne

B+(i) := sup
x>i

 x∑
y=i+1

1
µ(y)b(y)

∑
y≥x

µ(y)

 , (5.16)

B−(i) := sup
x<i

 i−1∑
y=x

1
µ(y)b(y)

∑
y≤x

µ(y)

 , (5.17)

and
B := inf

i∈Ωs
(B+(i) ∨B−(i)) . (5.18)

Then we know (see e.g. [3]) that the inverse of the spectral gap of the process
is bounded by

B

2
≤ 1

gap′
≤ 4B. (5.19)

Let's start by evaluating B+(i) for a generical i ≥ 0. Setting k :=
2/(1 + β), for any x > i we have

Z

c(n)

∑
y≥x

µ(y) '
∫ ∞
x

e−
s2

knds

= e−
x2

kn

∫ ∞
x

e−
(s−x)(s+x)

kn ds

≤ e−
x2

kn

∫ ∞
x

e−
2x(s−x)
kn ds

= e−
x2

kn
kn

2x

Then observe that for our dynamics

Z

c(n)

x∑
y=i+1

1
µ(y)b(y)

=
x∑

y=i+1

1
µ(y + 1)

'
∫ x

i
e
s2

knds

≤ e
x2

kn (x− i).

So, for i ≥ 0 (note that the constants simplify)

B+(i) ≤ sup
x>i

(
e−

x2

kn
kn

2x

)(
e
x2

kn (x− i)
)

= sup
x>i

(
k
x− i
2x

)
n. (5.20)

Now analyze B−(i) for i ≤ 0. Following the same steps as above we obtain

Z

c(n)

∑
y≤x

µ(y) ≤ −e−
x2

kn
kn

2x
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and

Z

c(n)

i−1∑
y=x

1
µ(y)b(y)

=
Z

c(n)

i−1∑
y=x

1
µ(y)

≤ e
x2

kn (i− x).

So

B−(i) ≤ sup
x<i

(
−k i− x

2x

)
n. (5.21)

From equations (5.18),(5.21) and (5.20)

B ≤ (B+(0) ∨B−(0)) ≤ k

2
n (5.22)

Using the bounds (5.19) and (5.22) we have that there exists c̃ independent
from n such that

1
gap′

≤ c̃ n.

�
Finally we exhibit the Dirichlet form for this process:

Dmag(f, f) =
1
2

∑
s∈Ωs

(f(s+ 2)− f(s))2[b(s)µ(s) + d(s+ 2)µ(s+ 2)].

Considering separately the cases s < 0 and s ≥ 0, writing explicitly the birth
and death rates and putting all together again, we can write it in the shorter
form

Dmag(f, f) =
∑
s∈Ωs

(f(s+ 2)− f(s))2(µ(s) ∧ µ(s+ 2)). (5.23)

5.2 Bound of the spectral gap

5.2.1 Conditioning on the magnetization

We want to bound the spectral gap of the Glauber dynamics on the n-
complete graph in high temperature regime with a little trick: conditioning
on a speci�c value of the magnetization, we will be able to bound the variance
of any function on the space of the con�gurations and therefore show that
the gap of the process doesn't depend on n, the size of the graph. Let's state
this in a theorem.

Theorem 5.8. For β < 1, the spectral gap of the Glauber dynamics for the
Ising model on the complete graph is bigger than a constant not depending
on the number of the vertices of the graph.
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Using once more the `total variance formula' we know that for any s ∈
{−n,−n+ 2/n, ..., n− 2/n, n} we can write the variance of any function f
as

V ar(f) = E [V ar(f |s)] + V ar (E [f |s]) (5.24)

where with V ar(·|s) and E [·|s] we mean the variance and the expectation
made on the con�gurations σ such that S(σ) = s.

Since the proof of the theorem is pretty long, we are going to bound
separately the addends of (5.24) in the two next sections.

5.2.2 First bound via Bernoulli-Laplace model

The Bernoulli-Laplace model consists in n sites where we have to arrange r
particles, or balls, with r < n. In each site there can be at most one ball.
We assign to each particle a Poisson clock of rate 1 (this means that we have
to wait an exponential time of rate 1 to have a �ring�). When the clock of
ith-particle rings, we choose at random one of the n sites and if that position
is vacant we move the ith-particle there. The stationary distribution π of
this process is the uniform measure over all possible con�gurations of the r
balls in the n sites. It is also well known (see e.g. [8]) that the spectral gap
of the Bernoulli-Laplace model, gapBLn,r , is a constant not depending on n (in

fact, its exact value is 1
2 !). Finally call

DBLn,r (f, f) =
1

2n
Eπ
[∑
i,j

(f(ξij)− f(ξ))2
]

(5.25)

the Dirichlet form for this process (where we are taking the mean over the
possible con�gurations ξ).

Lemma 5.9. There exists a constant k > 0 not depending on n such that
the �rst part of equation (5.24) is bounded by

E [V ar(f |s)] ≤ k · D(f, f). (5.26)

Proof: If the magnetization of a certain con�guration σ ∈ Ω is s, then
we know that

n+ :=
n+ s

2
, n− :=

n− s
2

are respectively the number of the "+" and "−"-spins of σ (clearly n++n− =
n).

Note that, once we have �xed the magnetization, if we think to the
positive spins as particles and the negative spins as holes, we can see every
σ con�guration as a Bernoulli-Laplace-model con�guration with n sites and
r = n+ particles. Reminding that also the stationary distribution of the
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Glauber dynamics on the complete graph is uniform over the states with a
�xed magnetization, from the Poincarè inequality for the B-L model we have

V ar(f |s) = V arBLn,n+
(f) ≤ 1

(gapBLn,n+
)
DBLn,n+

(f, f)

≤ c
∑
i

1
2n

∑
j

Eπ
[
(f(σij)− f(σ))2|s

]
(5.27)

where π(σ) = 1/
(
n
n+

)
for all σ with S(σ) = s. Note that, ∀g : Ω→ R,

E [Eπ [g|s]] =
∑
s∈ΩS

Eπ [g|s] P (S = s)

=
∑
s∈ΩS

∑
σ:

S(σ)=s

P (S = s)
1(
n
n+

)g(σ)

=
∑
σ∈Ω

µ(σ)g(σ) = µ(g),

so that taking the expectation on both sides of (5.27) we obtain

E [V ar(f |s)] ≤ c 1
2n

∑
i,j

µ((f(σij)− f(σ))2)

= c
1

2n

∑
i,j

µ((f(σij)− f(σj) + f(σj)− f(σ))2)

≤

(A)︷ ︸︸ ︷
c

1
n

∑
i,j

µ((f(σij)− f(σj))2) +

(B)︷ ︸︸ ︷
c

1
n

∑
i,j

µ((f(σj)− f(σ))2) .

(5.28)

where in the last inequality we used the fact that for any numbers a and b
it is true that (a+ b)2 ≤ 2(a2 + b2).

In part (B) the factor 1
n and the summation over the i's delete each other,

so that (B) ≤ c′D(f, f) by Corollary 5.6.
For part (A) we need just a little bit more of work:

c
1
n

∑
σ∈Ω
i,j

µ(σ)(f(σij)− f(σj))2 (σj=η)
= c

1
n

∑
i,j

∑
η∈Ω

µ(ηj)
µ(η)

µ(η)(f(ηi)− f(η))2

≤ sup
σ∈Ω

x=1,...,n

(
µ(σx)
µ(σ)

)
c
∑
i

∑
η∈Ω

µ(η)(f(ηi)− f(η))2 ≤ c′′D(f, f)

by Corollary 5.6 and because the sup can be easily bounded with a constant
not depending on n.
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Putting all together yields

E [V ar(f |s)] ≤ (c′ + c′′)D(f, f).

�

5.2.3 Second bound via magnetization chain

Lemma 5.10. There exists a constant k′ > 0 not depending on n such that
the second part of equation (5.24) is bounded by

V ar (E [f |s]) ≤ k′ · D(f, f). (5.29)

Proof: First of all note that E [f |s] is a function of the only magnetization.
By Lemma 5.7 and equation (5.23) we can bound the variance of any function
g of the magnetization with

V ar(g(s)) ≤ 1
gap′
Dmag(g, g) ≤ c̃ n

∑
s∈Ωs

(p(s) ∧ p(s+ 2))(g(s+ 2)− g(s))2.

(5.30)
Of course we want to take g(s) = E [f |s], so that

V ar(E [f |s]) ≤ c̃ n
∑
s∈Ωs

(p(s) ∧ p(s+ 2))(E [f |s+ 2]− E [f |s])2. (5.31)

Let's study the di�erence E [f |s+ 2]−E [f |s]. For s > 0 rewrite the �rst
addend

E [f |s+ 2] =
∑
σ:

S(σ)=s+2

µ(σ)
µ(s+ 2)

f(σ)

(=1)︷ ︸︸ ︷(∑
i χ{σi=+1}
s+n+2

2

)

=
1

s+n+2
2

∑
i

∑
σ:

S(σ)=s+2

µ(σ)
µ(s+ 2)

f(σ)χ{σi=+1}

(η=σi)
=

1
s+n+2

2

∑
i

∑
η:

S(η)=s

µ(η)
µ(s)

µ(ηi)
µ(η)

µ(s)
µ(s+ 2)

f(ηi)χ{ηi=−1}. (5.32)

Writing f(ηi) = [f(ηi)− f(η)] + f(η) we can split the above summation into
two parts:

(I) =
1

s+n+2
2

∑
i

∑
η:

S(η)=s

µ(η)
µ(s)

µ(ηi)
µ(η)

µ(s)
µ(s+ 2)

[f(ηi)− f(η)]χ{ηi=−1}, (5.33)

(II) =
1

s+n+2
2

∑
i

∑
η:

S(η)=s

µ(η)
µ(s)

µ(ηi)
µ(η)

µ(s)
µ(s+ 2)

f(η)χ{ηi=−1}. (5.34)
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Since
µ(ηi)
µ(η)

=: K(s)

depends only on the magnetization s, and since∑
i

χ{ηi=−1} =
n− s

2

for the η's with magnetization s, we have that part (II) is equal to

(II) =
(

µ(s)
µ(s+ 2)

K(s)
n− s

n+ s+ 2

) ∑
η:

S(η)=s

µ(η)
µ(s)

f(η) = c(s, n)E [f |s] ;

now, taking the test function f ≡ 1, we have that

E [f |s+ 2] = 1 = (I) + (II) = 0 + c(s, n)E [f |s] = c(s, n),

and hence c(s, n) ≡ 1. It follows that

E [f |s+ 2]− E [f |s] = (I).

Looking at (I) we understand that we are just doing the expectation of
[f(ηi)− f(η)] with a particular probability distribution; in fact

∑
i

∑
η∈Ω:

S(η)=s

µ(ηi)
µ(s+ 2)

χ{ηi=−1}
s+n+2

2

=
∑
σ∈Ω:

S(σ)=s+2

µ(σ)
µ(s+ 2)

(=1)︷ ︸︸ ︷(∑
i

χ{σi=+1}
s+n+2

2

)
= 1.

Because of this fact we can use Schwartz inequality to bound our di�erence
(E [f |s+ 2]− E [f |s])2 = (I)2:

(I)2
(Sch.)

≤ 1
s+n+2

2

∑
i

∑
η:

S(η)=s

µ(η)
µ(s)

(≤cost.)︷ ︸︸ ︷
µ(ηi)
µ(η)

µ(s)
µ(s+ 2)

χ{ηi=−1}[f(ηi)− f(η)]2

≤ 2 c
s+ n+ 2

E
[∑

i

(4if)2
∣∣∣s] (5.35)

where 4if(σ) = f(σi)− f(σ).
For s < 0 we can do the very same kind of calculations but rewriting this

time E [f |s] in function of E [f |s+ 2] (changing a "−"-spin in a "+"-spin) to
obtain

(E [f |s+ 2]− E [f |s])2 ≤ 2 c′

n− s
E

[∑
i

(4if)2
∣∣∣s] . (5.36)
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Finally, putting together (5.31), (5.35) and (5.36), we have

V ar(E [f |s]) ≤ 2cc̃
∑
s≥0

µ(s)
n

s+ n+ 2
E

[∑
i

(4if)2
∣∣∣s]+

+ 2c′c̃
∑
s<0

µ(s+ 2)
n

n− s
E

[∑
i

(4if)2
∣∣∣s+ 2

]

≤ k′ E

[∑
i

(f(σi)− f(σ))2

]
≤ k′D(f, f) (5.37)

where last inequality is by Corollary 5.6 again. �

The last thing to do is to put equations (5.26) and (5.37) in equation
(5.24). In conclusion we can �nd a constant K independent from n such
that for any function f on the state space Ω we have

V ar(f) ≤ KD(f, f). (5.38)

Therefore, by the variational representation (1.29), the spectral gap of the
Glauber dynamics for the Ising model on the complete graph with n vertices
and β < 1 is bigger than a constant which doesn't depend on the size of the
graph, proving Theorem 5.8.

5.3 Bound of the log-Sobolev constant

The result of the last section is not actually a novelty. The fact that the
spectral gap of the Glauber dynamics for the Ising model on the complete
graph is a constant was already know, but it served us as a testing ground for
the conditioning-on-the-magnetization method. The really interesting thing
to do is to try to bound the log-Sobolev constant with the same method.

5.3.1 Conditioning on the magnetization, again

Recall the de�nition of the log-Sobolev for the Glauber dynamics:

α := inf
f∈RΩ

µ(f2)=1

{
D(f, f)

Entµ(f2)

}
.

where the entropy is, for any positive function with µ(f) = 1,

Entµ(f) =
∑
σ∈Ω

f(σ) log(f(σ))µ(σ). (5.39)
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In order to bound α, we are going to use the very same method of the
last sections, that is conditioning on a speci�c value of the magnetization in
order to divide the entropy of any function f ≥ 0, µ(f) = 1, as the sum of
two parts, and estimate these parts separately. Write

Entµ(f) = E [Eµ [f log(f)|s]]

= E
[
Eµ
[

f

Eµ [f |s]
Eµ [f |s] log

(
f

Eµ [f |s]
Eµ [f |s]

) ∣∣∣s]]
= E

[
Eµ [f |s] · Entµ

(
f

Eµ [f |s]

∣∣∣s)]+ Entπ(Eµ [f |s]). (5.40)

5.3.2 Bound via magnetization chain, again

First we prove the equivalent of Lemma 5.7 for the log-Sobolev constant of
the magnetization chain.

Lemma 5.11. For the magnetization chain, there exists a constant c > 0
not depending on n such that

1
αS
≤ c n, (5.41)

where αS is the log-Sobolev constant of the process.

Proof: Once again we use Miclo's formulas, this time to estimate α′.
De�ne

A+(i) := sup
x>i

( x∑
y=i+1

1
µ(y)b(y)

)
log
( 1∑

y≥x µ(y)

)∑
y≥x

µ(y), (5.42)

A−(i) := sup
x<i

( i−1∑
y=x

1
µ(y)b(y)

)
log
( 1∑

y≤x µ(y)

)∑
y≤x

µ(y)), (5.43)

and
A := inf

i∈Ωs
(A+(i) ∨A−(i)) . (5.44)

Then we know (see e.g. [3]) that the inverse of the log-Sobolev constant of
the process is bounded by

A

20
≤ 1
αS
≤ 20A. (5.45)

Remember that µ(s) has the shape of a �discrete gaussian measure� cen-
tered in 0 and with variance ∼ 2n

1+β . Since we are going to take i = 0, by
symmetry it will be su�cient to bound A+(0). Let's bound the factors of
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A+(0) separately (from now, c will be a constant not depending on n that
will take, if necessary, di�erent values along the proof):∑

y≥x
µ(y) '

∫ n

x

c√
n
e−

s2

knds ≤ c
√
n

x
e−

x2

kn ,

as in Lemma 5.7. Then we improve a bit the second bound:

x∑
y=i+1

1
µ(y)b(y)

' c
√
n

∫ x

i
e
s2

knds = c
√
ne

x2

n

∫ x

i
e−

(x−s)(x+s)
kn ds

≤ c
√
ne

x2

n

∫ x

i
e−

(x+i)
kn

(x−s)ds

= c
√
ne

x2

n

∫ x−i

0
e−

(x+i)
kn

yds

= c
n
√
n

x+ i
e
x2

kn

(
1− e−

x2−i2
kn

)
.

To bound the logarithm we consider separately two cases: when x = o(
√
n),∑

y≥x µ(y) is greater than the mass of a gaussian after a standard deviation
(which is greater than a constant), so that

log
( 1∑

y≥x µ(y)

)
≤ cost. (5.46)

When x ≥ c
√
n, we have

∑
y≥x

µ(y) '
∫ n

x

c√
n
e−

s2

knds
(y= s√

n
)

= c

∫ √n
x√
n

e−
y2

k dy

≥ c
∫ 2 x√

n

x√
n

e−
y2

k dy ≥ c x√
n
e−4 x

2

kn

≥ c e−4 x
2

kn ,

and thus

log
( 1∑

y≥x µ(y)

)
≤ cx

2

n
. (5.47)

Putting all together we obtain, in the case x = o(n),

A+(0) ≤ sup
x>0

c · n
2

x2

(
1− e−

x2

kn

)
' sup

x>0
c · n

2

x2

(
1−

(
1− x2

kn
+ o
(x2

n

))
≤ c n
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by Taylor's formula. On the other hand, if x ≥ c n,

A+(0) ≤ sup
x>0

c
n2

x2

(
1− e−

x2

kn

)x2

n
≤ cn.

Hence A ≤ cost., and by (5.45) we �nally have the desired bound. �

Lemma 5.12. There exists a constant k > 0 not depending on n such that
the second part of equation (5.40) is bounded by

Ent (Eµ [f |s]) ≤ k · D(f, f). (5.48)

Proof: The proof is exactly the same as that of Lemma 5.10. By Lemma
5.11 the log-Sobolev constant αS for the magnetization chain veri�es

1
αS
≤ c n, (5.49)

so that, for any function g on Ωs, we have

Ent(g(s)) ≤ 1
αS
Dmag(g, g) ≤ c n

∑
s∈Ωs

(p(s) ∧ p(s+ 2))(g(s+ 2)− g(s))2.

From this point to the end, taking g(s) = Eµ [f |s], the calculations are iden-
tical to those of Lemma 5.10. �

5.3.3 Bound via Bernoulli-Laplace model, again

Lemma 5.13. There exists a constant k > 0 not depending on n such that
the �rst part of equation (5.40) is bounded by

E
[
Eµ [f |s] · Entµ

(
f

Eµ [f |s]

∣∣∣s)] ≤ k log(n) · D(f, f). (5.50)

Proof: Also for this lemma we would like to apply the same method used
for the bound of the spectral gap. Unfortunately some `problems' arise in
this case. In fact, in paper [15], T. Lee and H. Yau provided the following
bounds for the log-Sobolev constant αBLn,r of the Bernoulli-Laplace model
with n sites and r particles:

ε log
n2

n− r
≤ 1
αBLn,r

≤ 2
log 2

log
n2

n− r
, (5.51)

where ε is a strictly positive constant independent of n and r. Hence, for very
big or very small values of r (equivalently, for con�gurations with a very big
or a very small number of "+"-spins) we cannot bound the log-Sobolev with
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a constant. Anyway, let's follow the path of the other proof, bounding the
Bernoulli-Laplace log-Sobolev constant with its worst-case for all the values
of the magnetization. Call

g :=
f

Eµ [f |s]
;

there exists a constant c > 0 not depending on n and r = n+, such that

Entµ (g|s) = EntBLn,n+
(g) ≤ 1

αBLn,n+

DBLn,n+
(
√
g) ≤ (c log n)DBLn,n+

(
√
g)

≤ (c log n)
1

2n

∑
i,j

Eπ

( √
f(σij)√
Eµ [f |s]

−
√
f(σ)√

Eµ [f |s]

)2 ∣∣∣∣∣s


where π(σ) = 1/
(
n
n+

)
for all σ with S(σ) = s. Therefore

Eµ [f |s] · Entµ

(
f

Eµ [f |s]

∣∣∣s) ≤ (c log n)
1

2n

∑
i,j

Eπ
[(
f(σij)

1
2 − f(σ)

1
2

)2∣∣∣s] .
After that, we can take the expectation on both sides and then proceed
exactly as in the proof of Lemma 5.9. We �nally get

E
[
Eµ [f |s] · Entµ

(
f

Eµ [f |s]

∣∣∣s)] ≤ k log(n) · D(f, f)

as requested. �

5.3.4 Conclusions

Plugging Lemma 5.12 and Lemma 5.13 in equation (5.40) we have a bound
for the entropy of any function f > 0 such that µ(f) = 1. The theorem
follows at once.

Theorem 5.14. For β < 1, there exists a constant c > 0 such that the
log-Sobolev constant of the Glauber dynamics for the Ising model on the n-
complete graph veri�es

α ≥ c · 1
log n

. (5.52)

Anyway, this result doesn't give a satisfactory answer for the actual order
of the log-Sobolev constant. Is (log n)−1 the correct behaviour? We couldn't
�nd a test-function that con�rms this hypothesis.

Most likely the result of Lemma 5.13 is not sharp. In its proof we took
the worst case of the inverse of the log-Sobolev constant for the Bernoulli-
Laplace model even when n+ or n− were not comparable with n, that is
the most of the cases. Possibly we lost precision in that passage. Since
an intermediate order between O((log n)−1) and O(1) is hardly believable,
it seems reasonable that α is just a constant not depending on n, as the
spectral gap was. But this, of course, has to be veri�ed.
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