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The first part of the course (5*3 hours) is devoted to the study of convergence
of probability measures on general (that is not necessarily R or Rn) metric
spaces or, equivalently, to the convergence in law of random variables taking
values in general metric spaces. If this study has its own interest it is also
useful to prove convergence of random objects in various random models that
appear in probability theory. The main example we have to keep in mind
is Donsker theorem that states that the path of a simple random walk on Z
converges after proper renormalization to a brownian motion. We will start
this course with some properties of probability measures on metric spaces and
in particular on C ([0, 1]), the space of real continuous function on [0, 1]. We
will then study convergence of probability measures, having for aim Prohorov
theorem that provides a useful characterization of relative compatctness via
tightness. Finally we will gather everything to study convergence in law on
C ([0, 1]) and prove Donsker therorem. If there is still time we will consider
other examples of convergence of random objects.

The main reference for this course is Billingsley [1]. I also used to write
these notes many courses especially those by Jean Bertoin, Gilles Pages, Gre-
gory Miermont and Zhan Shi. You should find easily corresponding lecture
notes online. I have not been rigorous to cite them precisely each time I used
their notes. I will try to fix this rapidly in future versions.
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1 Introduction

A first but central example : Donsker invariance principle. For simplicity
we consider (ξk)k≥1 an i.i.d. family of random variables with value −1 or 1
with probability 1/2. The sequence defined for n ≥ 1 by

Sn =
n∑
k=1

ξk,

is a simple random walk on Z. For large n, the central limit theorem tells
us that Sn correctly renormalised, that is by

√
n, has law “close” from a

gaussian N (0, 1) :
Sn√
n

(law)→ N (0, 1).

More generally, it is not difficult to derive from this result the convergence
of the finite dimensional distributions: for all k ≥ 1 and all 0 ≤ t0 ≤ · · · ≤
tk ≤ 1,

(
Sbt0nc√

n
, · · · ,

Sbtknc√
n

)
(law)→ (Bt0 , · · · , Btk),

when N goes to +∞ where (Bt)0≤t≤1 is a brownian motion. If you do not
know yet what is a brownian motion, just consider that the random vector
(Bt0 , · · · , Btk) is a centred gaussian vector with variance E(BtiBtj) = ti ∧ tj.
Equivalently (exercise !), the increments variables Bt0 , Bt1 − Bt0 , · · · , Btk −
Btk−1

are gaussian centred independent with variance Var(Bti − Bti−1
) =

ti − ti−1. Of course this implies that for all 0 ≤ i ≤ k, Bti has law N (0, ti).
We now want to go a step further and describe the asymptotic law

of the whole random function, that is for large N the process,

S
(N)
t =

1√
N
SbNtc + (Nt− bNtc) 1√

N
ξbNtc+1 0 ≤ t ≤ 1.

The process (S
(N)
t )0≤t≤1 is just the renormalised path of the random walk

(that is the linear interpolation of the Sn, n ≥ 1).
[Add a picture] Our goal is to derive the convergence in law for this

sequence of processes, when N goes to infinity, to the Wiener law that is the
law of the Brownian motion. This is the aim of Donsker theorem that we
will proof in the last section of this course:

Theorem 1 (Donsker Theorem). Assume that (ξk)k≥1 is an i.i.d. family of
square integrable real random variables with mean 0 and variance 1. Then

(S
(N)
t )0≤t≤1

(law)→ (Bt)0≤t≤1 as n→ +∞,
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where (Bt)0≤t≤1 is a standard brownian motion and the convergence is relative
to the uniform topology on C ([0, 1]).

On our way to prove this theorem we will have to study probability mea-
sures on metric spaces and characterizes weak convergence. We will finally
apply our study to the space (C ([0, 1]), || · ||∞) of continuous fonctions on
[0, 1] endowed with the uniform topology.

[COMPLETE] You may see during the second semester similar study in
the more delicate context of càdlàg functions space (see Julien Poisat’s course
about Levy processes), or also more convergence to nice continuum proba-
bilist objects (see Jan Swart’s course about Brownian continuum objects). I
hope this course give you a good preparation for this forthcoming lectures !
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2 Probabilty measures on metric spaces

2.1 Regularity and thigtness

The goal of this first section is to provide a description of probability measures
on metric spaces. In the whole section we consider a metric space (E, d). We
remind that a metric d is an application

d : E × E → R+

that satisfies for all x, y, z ∈ E

1. Symmetry : d(x, y) = d(y, x)

2. Identity of indiscernibles : d(x, y) = 0⇔ x = y

3. Triangle inequality : d(x, z) ≤ d(x, y) + d(y, z).

A topology on E is a collection T of subsets of E that satisfies

1. ∅ ∈ T

2. Any union of elements of T is still an element of T

3. Any intersection of a finite numbers of elements of T is still an element
of T .

In this course we will focus on the case where the topology is produced by
the metric d. Any metric d defines indeed a topology T that is the collection
of sets O satisfying,

for all x ∈ O there exists ε > 0 such that B(x, ε) ⊂ O,

where
B(x, ε) = {y ∈ E, d(x, y) < δ}

is the open ball centered in x and with radius ε. As usual elements of T are
called open sets.

Exercice 1. Check that the collection of subsets that satisfy the above prop-
erty is indeed a topology.

We denote by F the sigma-algebra generated by the topology T ,

F = σ(O, O ∈ T ).
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Often this sigma-algebra is called the Borel sigma-algebra. The space (E,F)
is our general framework for this course. This is a nice, and sometimes cer-
tainly difficult, chalenge to see what remains true if we work with a topologi-
cal space instead of a metric space (still considering the Borel sigma-algebra).

We first prove that probability measures on (E,F) are regular in the sense
that the probability of any event A can be approximated correctly by the
probability of open, closed or sometimes even compact sets.

Theorem 2. Every probability measure P on (E,F) is regular, that is: for
every A ∈ F and every ε > 0 there exist a closed set F and an open one O
such that

F ⊂ A ⊂ O and P(O \ F ) < ε.

Remark 1. One can easily check that an equivalent definition for “ P is
regular” is: For all A ∈ F

P(A) = sup{P(F ), F closed set included in A}
= inf{P(O), O open set that contains A}.

Proof of Theorem 2. Consider the collection G of sets A ∈ F that satisfy the
property : For every ε > 0 there exist a closed set F and an open one O such
that

F ⊂ A ⊂ O and P(O \ F ) < ε.

The collection G is a sigma algebra :

1. ∅ ∈ G. This is trivial as ∅ is open and close.

2. If A ∈ G then Ac ∈ G. Fix ε > 0 and a closed set F and an open one
O such that F ⊂ A ⊂ O and P(O \ F ) < ε. Then Oc is closed, F c is
open, Oc ⊂ Ac ⊂ F c and P(F c \Oc) = P(O \ F ) < ε.

3. If (An)n≥1 is a sequence in G then ∪n≥1An ∈ G. For all n ≥ 1, we con-
sider a closed set Fn and an open one On such that Fn ⊂ An ⊂ On and
P(On \ Fn) < ε

2n+1 . Set O = ∪n≥1On and F = ∪1≤n≤n0Fn where n0 is
large enough so that P(∪n≥1Fn\F ) < ε/2. We obtain F ⊂ ∪n≥1An ⊂ O
and

P(O\F ) ≤ P(O\(∪n≥1Fn))+P((∪n≥1Fn)\F ) ≤
∑
n≥1

P(On\Fn)+ε/2 ≤ ε,

as ∪n≥1On \ ∪n≥1Fn ⊂ ∪n≥1On \ Fn.
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Moreover T ⊂ G. Indeed, fix A a closed and ε > 0. One defines for δ > 0,
the open δ-neighborhood of A,

Aδ = {x ∈ E, d(x,A) < ε}.

As A is closed ∩δ>0A
δ = A and one can choose δ small enough so that

P(Aδ) < P(A) + ε (see Exercise 5 for basic properties of the distance to
some subset of E). We set F = A and O = Aδ so that F ⊂ A ⊂ O and
P(O \ F ) < ε.

Finally G is a sigma algebra and contains T thus it contains F .

Exercice 2. Prove that in general the role of “open” and “closed” can not
be reversed in the definition of regular. When is it the case ?

We have proved that on a metric space, any probability P on the borel
sigma algebra is regular. This implies that it is completely determined
by its values on closed sets or, on open sets.

Exercice 3. Is it still the case on a topological space (not necessarily induced
by a metric) ?

Another usefull way to characterise probability measures on metric spaces
is to make use of integrals of a large enough class of functions:

Proposition 1. Let P and Q be two probability measures on (E,F). They
coincide if and only if for all bounded and uniformly continuous real
functions f , EP(f) = EQ(f).

Remark 2. One can safely replace “uniformly continuous” by “Lipschitz”
in the above result.

Proof. The key point is to approximate the indicator of a closed set by a
sequence of bounded and uniformly continuous real functions.

Lemma 1. 1. Let F be a closed set. The sequence of Lipschitz bounded
functions

x ∈ E → (1− kd(x, F ))+ k ≥ 1

decreases to 1F when k goes to infinity.

2. Let O be an open set. The sequence of Lipschitz bounded functions

x ∈ E → min(kd(x,Oc), 1), k ≥ 1

increases to 1O when k goes to infinity.

8
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For all ε > 0, choosing k large enough, this proves that there exists a
Lipschitz bounded function f that approximates 1F in the sense that

1F ≤ f ≤ 1F ε , (1)

where F ε is the ε-open neighbourhood of F , that is F ε = {x ∈ E, d(x, F ) <
ε}. This implies that

P(F ) ≤ EP(f) = EQ(f) ≤ Q(F ε).

As F is closed F = ∩ε>0 ↓ F ε and we obtain limε→0 Q(F ε) = Q(F ). It leads
to P(F ) ≤ Q(F ) and by symmetry this concludes the proof.

A key notion in the following is the notion of tightness :

Définition 1. A probability measure P on (E,F) is said to be tight if for all
ε > 0 the exists a compact set K such that P(K) > 1− ε.

We remind that a polish space is a metrisable complete separable topo-
logical space ([référence ?]). This definition is useful as we will see throughout
the course that polish spaces are the good framework for many properties in
probability theory. Here is a first example:

Theorem 3 (Ulam Theorem). We suppose that (E, d) is a polish space.
Then any probability measure on (E,F) is tight.

Proof. We consider a dense countable family (xn)n≥1. For all k ≥ 1, E =

∪nB(xn, 1/k) so that there exists nk such that P(∪n≤nkB(xn, 1/k)) ≥ 1 −
ε/2k. We consider the set

K =
⋂
k≥1

⋃
n≤nk

B(xn, 1/k).

The set K is closed in the complete space E so that it is complete. Moreover
K is clearly totally bounded (that is for all ε > 0 one can cover K with a
finite union of ball of radius ε). The set K is thus compact (see Exercise 6)
and

P(Kc) ≤
∑
k≥1

P

(( ⋃
n≤nk

B(xn, 1/k)

)c)
≤ ε.

Exercice 4 (An example of a non tight probability measure). Consider T
the lower limit topology on R that is the topology generated by the basis of
all half-open intervals [a, b) where a and b are real numbers.
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1. Prove that T is finer than the usual topology. One can actually prove
that however σ(T ) = B(R) (this is quite difficult but you will easily
find help online ! The key is to prove that any open set (for T ) is a
countable union of basic open subsets [a, b) even if T has no countable
base. We say that (R, T ) is hereditarily Lindelöf).

2. Prove that sets that writes [a, b), ] −∞, a) or [a,+∞) are both closed
and open sets.

3. Prove that any compact set (for T ) is a countable set.

4. Deduce from the previous questions that any probability measure on
(R,B(R)) that has a density is non tight (relatively to the topology T
considered in this exercise of course !).

This topology is not metrisable. If one wants to construct a non regular
probability measure on a metric space (that could not be a polish space !) it
is a much more challenging exercise !

From Theorem 2 and Remark 1, we know that any probability measure
P on (E,F) satisfies for all event A

P(A) = sup{P(F ), F closed set included in A}.

When we assume moreover that E is a polish space, one can improve this
approximation by restraining the supremum over compact sets

Proposition 2. Assume that E is a polish space. Then for all A ∈ F

P(A) = sup{P(K), K compact set included in A}.

Proof. Fix ε > 0. From Theorem 2 there exists a closed set F ⊂ A such that
P(F ) ≥ P(A) − ε. From Theorem 3 there exists a compact set L such that
P(L) > 1− ε. The set K = F ∩ L is compact (because F is closed and L is
compact) and satisfies K ⊂ F ⊂ A and

P(K) ≥ P(A)− 2ε,

as
P(A) ≤ P(A ∩K) + P(A ∩ F c) + P(A ∩ Lc)

≤ P(K) + P(A \ F ) + P(Lc)

≤ P(K) + 2ε.
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2.2 An important example : C ([0, 1])

. We start here the study of C ([0, 1]) viewed as a metric space once endowed
with the uniform metric that is the metric induced by the uniform norm :

||f ||∞ = sup{|f(x)|, x ∈ [0, 1]}.

Theorem 4. The set (C ([0, 1]), || · ||∞) is a polish space.

It is a particular case of the more general

Theorem 5. If (E, d) is a compact set then (C (E), || · ||∞), the space of
continuous function on E endowed with the uniform norm, is a complete
separable normed vector space (viewed as metric space it is a Polish space).

Proof. First observe that E is separable. Indeed for all n ≥ 1, using the
Borel property, one can extract a finite family of open balls (B(xnp , 1/n))p∈Ip
that covers E. The family (xpn)p≥1,n∈Ip is a countable dense family. For
convenience, we rename it (yn)n≥1 and introduce for all n ≥ 1

fn : x ∈ E → d(x, yn).

We also set f0 = 1. We consider A to be all linear combinaison with rational
coefficients of fn, n ≥ 0. It is a subalgebra of C (E) and satisfies hypothesis
of Stone-Weierstrass theorem :

1. A contains a non zero constant function.

2. A separates points of E. Indeed if u 6= v, consider a subsequence
(yφ(n))n≥1 that converges to u. Then (fφ(n)(u))n≥1 converges to 0 while
this is not the case for (fφ(n)(v))n≥1. This implies that for some n,
fφ(n)(u) 6= fφ(n)(v).

Using Stone-Weierstrass theorem we obtain that A is dense in C (E). As it
is also countable this achieves the proof.

The fact that C (E) is complete is a classical result. Consider (fn)n≥1 a
Cauchy sequence in (C (E), || · ||∞). Clearly for all x ∈ E, (fn(x))n≥1 is a
cauchy sequence in R so that it converges to some f(x) ∈ R. Let us prove
that the convergence to f is actually uniform. Fix ε > 0 and N ≥ 1 large
enough so that for all n, p ≥ N , ||fn − fp||∞ < ε. With p = N and letting n
going to infinity, this implies that for all x ∈ E, |f(x)− fN(x)| < ε. Finally
for n ≥ N ,

||fn − f ||∞ ≤ ||fn − fN ||∞ + ||fN − f ||∞ < 2ε.

11
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It remains to prove that f is continuous. Fix x ∈ E. As fN is continuous
there exists δ > 0 so that for all y ∈ B(x, δ), |f(y) − f(x)| < ε. We obtain
that for all y ∈ B(x, δ)

|f(y)− f(x)| ≤ |f(y)− fN(y)|+ |fN(y)− fN(x)|+ |fN(x)− f(x)|
≤ 2||fN − f ||∞ + ε

≤ 3ε.

There are two natural sigma algebras one may consider on the C ([0, 1]).

Définition 2 (Cylinder σ-algebra). We call cylinder set any subset of C ([0, 1])
that writes

{f ∈ C ([0, 1],R) such that f(t1) ∈ B1, · · · , f(tn) ∈ Bn}

where n ≥ 1 is an integer, t1, · · · , tn are in [0, 1] and B1, · · · , Bn are in B(R).
We call cylinder sigma algebra, and note E, the sigma algebra generated by
the cylinder sets :

E = σ(C, Ccylinder set of C ([0, 1])),

that is the smallest sigma algebra containing all cylinder sets.

One can check that we define actually the same sigma algebra by replacing
the borelian sets in the definition of cylinder by open intervals. There is also
another useful definition of E

Proposition 3. The sigma algebra E is also the smallest sigma algebra that
makes all the coordinate applications measurable.

We remind that the coordinate applications are the functions πt, t ≥ 0,
defined by :

πt : C ([0, 1]) → R
f 7→ f(t).

Proof that both definitions are equivalent. For all t ≥ 0, πt is E − B(R)-
measurable as for all B ∈ B(R),

{πt ∈ B} = {f ∈ C ([0, 1]), f(t) ∈ B}

is a cylinder set and thus in E .

12
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For the other inclusion, we consider Ẽ a sigma algebra that makes all
coordinate applications measurable. We have to check that it contains all
cylinder set. We consider such a set

C = {f s.t. f(t1) ∈ B1, · · · , f(tn) ∈ Bn}.

We can rewrite

C =
n⋂
i=1

{πti ∈ Bi}

and this implies that C ∈ Ẽ . We have proven that E ⊂ Ẽ .

Another natural way to build a sigma algebra on C ([0, 1]) is to consider
this space as a metric space for the distance induced by the norm || · ||∞ and
then consider the Borel sigma algebra F on C ([0, 1],R) that is the smallest
sigma algebra that contains all open sets of the topology of uniform conver-
gence.

Proposition 4. The cylinder sigma algebra and the borel sigma algebra co-
incide:

F = E .
Proof. F ⊃ E . For all t ≥ 0,

πt : (C (R+,R), || · ||∞)→ (R, | · |)

is continuous and thus measurable. This implies that F makes all coordinate
applications measurable and this enough for this first inclusion.
F ⊂ E . From Theorem 4, we know that C ([0, 1]) is separable. This

implies that F is also generated by open (or closed) balls (see Exercice 8)
and we are reduced to prove that F contains all closed balls. Let f be in
C ([0, 1]) and ε > 0. Using that f is continuous we obtain

B(f, ε) = {g ∈ C ([0, 1],R) such that ||g − f ||∞ ≤ ε}
= ∩t∈[0,1] {g ∈ C ([0, 1],R) such that g(t) ∈ [f(t)− ε, f(t) + ε]}
= ∩t∈[0,1]∩Q{πt ∈ [f(t)− ε, f(t) + ε]}.

From this we deduce that B(f, ε) ∈ E and this concludes the proof.

Proposition 5. A probability measure on (C ([0, 1]),F) is characterised by
its finite dimensional marginals that is if P and Q are two probability mea-
sures on (C ([0, 1]),F) such that for all cylinder sets C it holds that P(C) =
Q(C) then P = Q.

Proof. Indeed, F = E = σ(C, C cylinder of C ([0, 1])) and moreover the class
of cylinder sets is stable by finite intersection. The result comes next from
the monotone class lemma.

13
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2.3 More exercices

(including topolgy stuffs quite far from the topic !)

Exercice 5. Let A ⊂ E. We remind that for all x ∈ E, d(x,A) = inf{d(x, y), y ∈
A}. Prove that the function x ∈ E → d(x,A) is 1-Lipschitz and that
Ā = {x ∈ E tel que d(x,A) = 0}.

Exercice 6. Prove that the three following properties are equivalent :

1. (E, d) satisfies the Borel property

2. (E, d) is sequentially compact

3. (E, d) is a totally bounded and complete metric space

“totally bounded” = “precompact” in french.

Exercice 7. Prove that the two following definitions of “(E, T ) is separable”
(where E is a metric space) are equivalent

1. it exists a countable dense subset in E,

2. T is generated by a countable family of open sets;

Note that this is not the case anymore if (E, T ) is not a metric space, see
Exercise 11.

Exercice 8. Compare the sigma-algebra generated by open balls and F .
Prove that they coincide when E is a separable set and that it is however
not the case in the general setting.

Exercice 9. Prove that a sequence (xn)n≥1 with values in E converges to
x ∈ E if and only if for any subsequence of (xn)n≥1 one can extract a further
subsequence (a “subsubsequence”) converging to x.

Exercice 10. Let A be a collection of subsets of E. Prove that the topology
generated by A (that is the smallest topology that contains A) is the collection
of sets that are union of sets B that writes

B = ∩i∈IAi,

where I is finite and Ai, i ∈ I are in A. The collection of sets of this form
is called a base of the topology. Prove that a sequence (xn)n≥1 converges to x
if and only if for all B in the base all xn are in B for n large enough.

14
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Exercice 11. Any topology generated by a metric is clearly separated and this
simple observation provides easy to find examples of topologies that are not
metrizable (in the sense that it does not coincide with any topology associated
to a metric on E). In this exercise we prove that the topology of the pointwise
convergence on the space A([0, 1]) of applications from [0, 1] in R is separated
but not metrizable.

1. We consider the topology T generated by the sets

U ε
x,z = {f ∈ A([0, 1]), |f(x)− z| < ε}, x ∈ [0, 1], z ∈ R, ε > 0.

Prove that a sequence of function converges pointwise if and only if it
converges for the topology T .

2. Prove that T is separated.

3. A function is said to be simple if it takes value 0 except for a finite
number of points. Check that the set of simple functions is dense in
A([0, 1]).

4. Check that the function identically equals to 1 is not limit for the point-
wise convergence of a sequence of simple functions.

5. Deduce that there exists no metric that generates the topology T .

Exercice 12. We consider the set E = [0, 1] endowed with the topology

T = {A ⊂ E s.t. Ac is a countable set} ∪ {∅}.

1. Prove that T is a topology and that it is not separated and thus non
metrizable.

2. Describe F = σ(T ).

3. We consider the restriction of the uniform probability to F . Prove that
it is not regular.
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3 Weak convergence

3.1 Definition and Portmanteau Theorem

We consider in this section a metric space (E, d) and the probability space
(E,F) where F is the borelian sigma algebra generated by the topology T
associated to d.

Définition 3. A sequence of probability measures (Pn)n≥1 is said to converge
weakly to a probability measure P if for all continuous and bounded real
function f , the sequence (

∫
fdPn)n≥1 converges to

∫
fdP.

When such convergence holds we use the notation Pn =⇒ P. Note
that the limit is unique because if Pn =⇒ P and Pn =⇒ P′, this implies
that

∫
fdP =

∫
fdP′ for all continuous bounded functions and thus, from

Proposition 1, P = P′.

Définition 4. A sequence of random variables (Xn)n≥1 built on a probability
space (Ω,G,Q) with value in (E,F) is said to converge in law to some variable
X if for all continuous and bounded real function f , the sequence
(E(f(Xn)))n≥1 converges to E(f(X)).

Denoting by Pn the law of Xn and P the law of X, we can reformulate
this last definition: (Xn)n≥1 is said to converge in law to some variable X if
(Pn)n≥1 converges weakly to P on (E,F). This is just due to the definition of
the law of a random variable that implies that for all continuous and bounded
real function f , and all n ≥ 1

EQ(f(Xn)) = EPn(f) and EQ(f(X)) = EP(f).

The notion of convergence in law depends thus of the random variables only
through their laws.

Let see some examples to make this definition more familiar.

1. If (xn)n≥1 is a sequence with values in E that converges to some x ∈ E
then δxn =⇒ δx.

2. The sequence 1/n
∑n

i=1 δi/n converges weakly on ([0, 1],B([0, 1])) to the
uniform probability measure. Indeed for all bounded continuous func-
tion ∫

f d(
1

n

n∑
i=1

δi/n) =
1

n

n∑
i=1

f(i/n) =

∫
[0,1]

fn(x) dx,

where fn is the piecewise constant function fn =
∑n

i=1 f(i/n)1[(i−1)/n,i/n[.
We conclude easily using Lebesgue convergence theorem. This proves
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that a sequence of discrete probability measures may converge to a
diffusive one.

3. The sequence (N (0, 1/n))n≥1 converges weakly to δ0 on (R,B(R)).

4. Central Limit Theorem. Consider a sequence (ξn)n≥1 of i.i.d. cen-
tred square integrable random variables such that E(ξ2) = 1. Then∑n

k=1 ξk/
√
n =⇒ N (0, 1).

The proof of this well-known result is postponed to the section relative
to characteristic function.

5.

Exercice 13. Scheffé Lemma. Consider (Pn)n≥1 a sequence of prob-
ability measures on (E,F) defined by their densities (fn)n≥1 with re-
spect to a reference measure measure Q. We assume moreover that
(fn)n≥1 converges Q−almost surely to some density function f . Then
the convergence holds in L1(Q) and moreover

Pn =⇒ f Q.

The following theorem, known as Portmanteau’s theorem (even if no Port-
manteau seems to have ever existed !) gives a useful characterisation of weak
convergence :

Theorem 6 (Portmanteau). The following properties are equivalent

1. (Pn)n≥1 converges weakly to P

2. (EPn(f))n≥1 converges to EP(f) for all Lipschitz and bounded real func-
tion

3. lim sup Pn(F ) ≤ P(F ) for all closed set F

4. lim inf Pn(O) ≥ P(O) for all open set O

5. lim Pn(A) = P(A) for all event A ∈ F such that P(∂A) = 0.

Proof. 1→ 2. This is a straightforward consequence of the definition.

2→ 3. Fix ε > 0 and consider the Lipschitz bounded function f that
appears in (1). It holds that

lim sup Pn(F ) = lim sup EPn(1F ) ≤ lim sup EPn(f)
(2.)
= EP(f) ≤ P(F ε).

As F is closed, F = ∩n≥1 ↓ F 1/n and we obtain 3.
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3↔ 4. This is just matter of complementation !

3 & 4→ 5. Let A be an event in F such that P(∂A) = 0. Using points
3 and 4,

P(A◦) ≤ lim inf Pn(A◦) ≤ lim inf Pn(A) ≤ lim sup Pn(A) ≤ lim sup Pn(Ā) ≤ P(Ā).

As P(∂A) = 0, P(A◦) = P(Ā) = P(A) and one can deduce that
lim inf Pn(A) = lim sup Pn(A) = P(A).

5→ 1. Consider f a bounded continuous function. Let say that M
is a bound (sup |f | ≤ M). Considering f + M instead of f , one can
consider that f is non negative so that by Fubini theorem

EP(f) =

∫ +∞

0

P(f > t) dt =

∫ M

0

P(f > t) dt,

and the same holds if we replace P by Pn for n ≥ 1. As f is continuous
∂{f > t} ⊂ {f = t} (as {f > t} ⊂ {f ≥ t} and ({f > t}◦)c = {f ≤ t}).
If P(f = t) = 0, one can thus use 5. and Pn(f = t)→ P(f = t). As the
set of t such that P(f = t) > 0 is at most countable (for all k ≥ 1 there
are only a finite number of t such that P(f = t) > 1/k) it is negligible
and we use the dominated convergence theorem to conclude.

The Portmanteau theorem has obviously a counterpart characterising
convergence in law of a sequence of random variables :

Theorem 7 (Portmanteau again). Let (Xn)n≥1 and X be random variables
on (Ω,G,Q). The following properties are equivalent

1. (Xn)n≥1 converges in law to X

2. (E(f(Xn)))n≥1 converges to E(f(X)) for all Lipschitz and bounded real
function

3. lim sup Q(Xn ∈ F ) ≤ Q(X ∈ F ) for all closed set F

4. lim inf Q(Xn ∈ O) ≥ Q(X ∈ O) for all open set O

5. lim Q(Xn ∈ A) = Q(X ∈ A) for all event A ∈ F such that Q(X ∈
∂A) = 0.

Note that weak convergence is at the lowest place in the hierarchy of
random variables convergence.
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Exercice 14. Prove that

1. for all 1 ≤ p ≤ q ≤ ∞, convergence in Lq implies convergence in Lp,

2. convergence in L1 implies convergence in probability,

3. almost sure convergence implies convergence in probability,

4. convergence in probability implies convergence almost surely for a sub-
sequence,

5. convergence in probability implies convergence in law.

The Portmanteau theorem has the nice and useful following consequence

Theorem 8 (Mapping Theorem). Consider (E, d) and (E ′, d′) two metric
spaces and (Pn)n≥1 a sequence of probability measures on (E, d) weakly con-
verging to some probability measure P. Consider also f : E 7→ E ′ a mesurable
function such that Disc(f), the set of all discontinuity points of f , satisfies
Disc(f) ∈ F and P(Disc(f)) = 0. Then

Pn f
−1 =⇒ P f−1.

Proof. First remark that when f is continuous everywhere the result is easy
to prove as for any bounded continuous function φ, using that φ ◦ f is also
bounded and continuous,∫

φd(Pn f
−1) =

∫
φ ◦ fdPn

(n→+∞)→
∫
φ ◦ fdP =

∫
φd(P f−1).

For the general case, we use the third condition of Theorem 6. We consider
F a closed set of E ′. We have to check that

lim sup Pn(f ∈ F ) ≤ P(f ∈ F ).

Note that this is straightforward if f is continuous as in this case {f ∈ F}
is a closed set and this provides another proof in this easy case. To manage
with the general case we deal with the closure of {f ∈ F} and use that
P(Disc(f)c) = 1,

lim sup Pn(f ∈ F ) ≤ lim sup Pn(f ∈ F ) ≤ P(f ∈ F ) = P(f ∈ F ,Disc(f)c).

If x ∈ {f ∈ F}, there exists a sequence (xn)n≥1 with value in {f ∈ F}
converging to x. If moreover x ∈ Disc(f)c, as F is closed, f(x) ∈ F . This
implies that {f ∈ F}∩Disc(f)c ⊂ {f ∈ F} and this concludes the proof.
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3.2 A metric for the weak convergence ?

In this section we study if the weak convergence can also be defined via
a metric ρ on the space M of all probability measures on (E,F). When
this is the case, what kind of properties of (M, ρ) can we deduced from the
properties of (E, d) ?

Définition 5 (Prohorov metric). For P and Q in M, one defines

ρ(P,Q) = inf{ε > 0, P(A) ≤ Q(Aε)+ε and Q(A) ≤ P(Aε)+ε, for all A ∈ F}.

We first have to prove that the function ρ defines just above is indeed a
metric on M. It is clear from the definition that it is symmetric. Consider
now P and Q such ρ(P,Q) = 0. We obtain that for all ε > 0 and all closed
set F ,

P(F ) ≤ Q(F ε) + ε.

As F is closed F = ∩ε>0F
ε so that letting ε going to 0 we obtain P(F ) ≤

Q(F ). By symmetry the reverse inequality holds and we deduce that P = Q.
It remains to prove the triangle inequality. Let P,Q and R be probability
measures in M such that ρ(P,Q) < ε1 and ρ(Q,R) < ε2. It holds that for
all A ∈ F

P(A) ≤ Q(Aε1) + ε1 ≤ R((Aε1)ε2) + ε1 + ε2 ≤ R(Aε1+ε2) + ε1 + ε2.

This implies that ρ(P,R) ≤ ε1 + ε2 and leads to the triangle inequality.
Before studying the properties of ρ and in particular it links with the weak

convergence, we formulate the useful simplified version of its expression:

Lemma 2. One could equivalently define ρ by: For P and Q in M,

ρ(P,Q) = inf{ε > 0, P(A) ≤ Q(Aε) + ε, for all A ∈ F}.

Proof. Suppose that for some ε > 0 it holds that for all A ∈ F , P(A) ≤
Q(Aε) + ε. We have to prove that for all A ∈ F , Q(A) ≤ P(Aε) + ε. For this
we apply the first inequality to B = (Aε)c. This easy to check that A = (Bε)c

as both equalities are actually equivalent to

d(x, y) ≥ ε for all x ∈ B, y ∈ A.

We thus obtain

1− P(Aε) = P(B) ≤ Q(Bε) + ε = 1−Q(A) + ε.
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Proposition 6. Let (Pn)n≥1 and P be probability measures.

1. If (Pn)n≥1 converges for the metric ρ to P (that is if (ρ(Pn,P))n≥1
converges to 0) then (Pn)n≥1 converges weakly to P.

2. Assume moreover that (E, d) is separable. If (Pn)n≥1 converges weakly
to P then (ρ(Pn,P))n≥1 converges to 0

Proof. 1. Let F be a closed subset of E. We consider a sequence (εn)n≥1
converging to 0 and such that for all n ≥ 1 εn > ρ(Pn,P) (for example
εn = 2ρ(Pn,P) ∨ 1

n
. By definition of ρ,

lim sup Pn(F ) ≤ lim sup P(F εn) + εn.

As F is closed, F = ∩n≥1 ↓ F εn and P(F εn) + εn goes to P(F ) when n
goes to infinity. We conclude with the Portmanteau theorem (Theorem
6).

2. We now assume that (E, d) is separable. Consider (xn)n≥1 a dense
countable subset of (E, d). Fix ε > 0. Set D1 = B(x1, ε), D2 =
B(x1, ε) \ D1 and for k ≥ 3, Dk = B(xk, ε) \ ∪i≤k−1Di. The sets
Di, i ≥ 1 provides a countable partition of E such that each element
has diameter at most ε. We fix K large enough so that P(∪i≥K+1Di) <
ε. We consider G the family of ε-neighbourhood of finite union of
Di, i ≤ K, that is the sets D that write

D = (
⋃

i1,··· ,ij≤K

Dij)
ε.

For each D ∈ G, as it is an open set we can use Theorem 6 that provides
n0 such that for all n ≥ n0,

Pn(D) ≥ P(D)− ε.

As G is finite one can actually find n0 such that this inequality holds
for all D ∈ G. For A ∈ F we define I to be the set of indexes i ≤ K
such that Di intersects A and consider the set Ã =

⋃
i∈I Di. As Ãε

belongs to G, for n larger than n0,

P(A) ≤ P(Ã)+P(
⋃

i≥K+1

Di) ≤ P(Ãε)+ε ≤ Pn(Ãε)+2ε+ ≤ Pn(A2ε)+2ε,

as Ãε ⊂ A2ε.
This is enough to conclude using Lemma 2.
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Theorem 9. If (E, d) is compact then (M, ρ) is also compact.

Remind Theorem 5 and also the famous

Theorem 10 (Riesz representation theorem). Let E be a compact set and
` : C (E) 7→ R be a linear form that is positive and satisfies `(1) = 1.
Then there exists a unique probability measure on (E,F) such that for all
f ∈ C (E),

`(f) =

∫
f dP.

For a proof of this well-known result, see for example [Rudin ? Brezis ?]

Proof of Theorem 9. We consider a sequence (Pn)n≥1 of probability measures
on (E, d). We have to prove that there exists a converging subsequence in
the sense of the metric ρ. From Proposition 6, this is equivalent to prove
that there is a weakly converging subsequence. This proves that (Pn)n≥1 is
sequentially compact and, as (M, ρ) is a metric space (see Proposition 6),
this proves that it is compact.

We consider again the algebra A = {gk, k ≥ 1} introduced in Theorem
5. It is dense in (C (E), || · ||∞). We also define g0 = 1. For all k ≥ 0,
(
∫
gk dPn)n≥1 is a bounded sequence of real numbers so that we can extract

from it a converging subsequence. Using a diagonal extraction procedure
[Details ?] one can actually build a subsequence (Pψ(n))n≥1 so that all these
sequences converge together : for k ≥ 0,∫

gk dPψn → `(gk) when n goes to infinity.

It is easy to check that ` is 1−Lipschitz on A and we can thus consider the
continuous continuation of ` to (C (E), || · ||∞). We now prove that ` is linear
and positive. Consider gi, gj in (gk)k≥1 and a, b two positive rational numbers.
As (gk)k≥1 is an algebra, there exists gm in A such that agi + bgj = gm. We
then easily obtain

`(gm) = lim
n→+∞

∫
gmdPψ(n) = a`(gi) + b`(gj).

As ` is continuous, it is actually linear on C (E). We now prove that it
is positive. Let g ∈ C (E) such that g ≥ 0. As (gk)k≥1 is dense one can
extract a subsequence (gφ(k))k≥1 that converges uniformly to g. For all ε > 0,
gφ(k) ≥ −ε for k large enough so that `(gφ(k)) ≥ −ε. As ` is continuous
this is enough to conclude that `(g) ≥ −ε, and, as ε is arbitrary small, that
`(g) ≥ 0. Finally note that `(1) = 1.
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From Riesz representation theorem, there existe a probability measure
P ∈M(E) such that for all g ∈ C (E),

l(g) =

∫
g dP.

It remains to prove that P is the weak limit of (Pψn)n≥1. For that consider
again g ∈ C (E) and (gφ(k))k≥1 that converges uniformly to g. It holds that∣∣∣∣∫ g dPψ(n) −

∫
g dP

∣∣∣∣
≤
∣∣∣∣∫ g dPψ(n) −

∫
gφ(k) dPψ(n)

∣∣∣∣+

∣∣∣∣∫ gφ(k) dPψ(n) −
∫
gφ(k) dP

∣∣∣∣+

∣∣∣∣∫ gφ(k) dP−
∫
g dP

∣∣∣∣ .
Both first and last term are smaller than ||g − gφ(k)||∞ (that can be made
arbitrary small choosing k large enough) while the second term goes to 0 with
n going to infinity by definition of ` and P. [Try to find a more probabilistic
proof]

We present now a last result as it is easy to memorise together with
the previous one but we postpone the proof to the next section as it uses
Prohorov Theorem. This result is interesting specially when one wants to
study random mesures that are random variables with values in a space of
measures. It guarantees then that we are in the confortable framework of
Polish spaces.

Theorem 11. If (E, d) is a polish space then (M, ρ) is also a polish space.

Exercice 15. Let us turn back to Exercise 9. Prove that the result is still
valid if we consider the weak convergence of a sequence of probability measure
instead of convergence in a metric space. Of course the results are completely
equivalent by Proposition 6 when (E, d) is separable.

3.3 Tightness and Prohorov Theorem

Prohorov Theorem is a decisive tool to prove some convergences in law on
the space C ([0, 1]) as we will see later. It provides a characterisation of
compactness via the notion of tightness. We first make precise what we mean
by these two notions.

By (relatively) compact, we mean here, sequentially compact: that is a
set Π of probability measures on (E, d) is compact if from any sequence
(Pn)n≥1 of elements of Π one can extract a weakly convergent subsequence.
Of course when weak convergence can be defined by a metric (see 3.2 for a
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discussion about this point) one can use equivalently any other definition of
compactness using Borel Theorem (see Exercise 6).

We turn to the definition of tight that can be viewed as an extension of
Definition 1 .

Définition 6. A family (Pn)n≥0 of probability measures on (E, d) is said to
be tight if for every ε > 0 there exists a compact set K such that for all n ≥ 0

Pn(K) > 1− ε.

To understand better this definition let us check if the following family
are tight or not :

1. Due to Theorem 3, if (E, d) is a polish space then any singleton {P} is
tight.

Exercice 16. Prove that any finite family of probability measures is
tight.

2. Consider the sequence of probability measures δn, n ≥ 1 on (R,B(R))
then it is easy to check that it is not tight. This a first example to keep
in mind : the mass escapes to infinity.

3. Consider the sequence of probability measures Pn, n ≥ 1 defined on
(R,B(R)) by

dPn =
1√
2πn

e−x
2/2n dx.

Here again it is easy to check that this family is not tight and this a
second example to keep in mind : the mass spreads on R.

Exercice 17. Let f be a continuous function from (E, d) with values in
(E ′, d′) and Π ⊂M(E) be a tight family of probability measures. Prove that
the pushforward probability measures of elements of Π by f are also a tight
family of probability measures on E ′.

Theorem 12 (Prohorov). Let Π be a familly of probability measures on
(E, d).

1. If Π is tight then it is relatively compact that is: From any sequence
with values in Π one can extract a weakly converging subsequence (not
necessarily in Π).

2. Assume moreover that (E, d) is a Polish space. Then the converse is
true that is: If Π is relatively compact then it is tight.
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Proof. For applications, we are actually mainly interested by the direct part
of the theorem that is however the more difficult to prove. We thus start
with the direct sense.

Step 1. Let see first how we build the extraction. As (Pn)n≥0 is tight,
for all p ≥ 1 there exists a compact set Kp such that for all n ≥ 1, Pn(Kc

p) <
1/p. We may suppose that (Kp)p≥1 is an increasing sequence just replacing
(without changing the name !) Kp by K1 ∪ · · · ∪ Kp. For all p ≥ 1 we

consider the restriction P
(p)
n of Pn to Kp that is P

(p)
n (A) = Pn(A ∩ Kp) for

all A ∈ B(Kp). Note that P
(p)
n is not a probability measure as its total mass

may be less than 1. As M≤1(Kp), the set of measures on Kp with mass less
than 1 is compact (this is an improvement of Theorem 9) one can extract a

weakly converging subsequence form (P
(p)
n )n≥0. Using a diagonal extraction

procedure, one can actually consider an extraction φ that works for all p ≥ 1
that is

P
(p)
φ(n) =⇒ Q̄p,

where Q̄p is a measure in M≤1(Kp). We extend Q̄p to a measure Qp on E
setting for all A ∈ F ,

Qp(A) := Q̄p(A ∩Kp),

that makes sense as A ∩Kp ∈ B(Kp).
Step 2. We are now ready to define the limit. For this we prove that

for all A ∈ F , (Qp(A))p≥1 is non decreasing. We fix p ≥ 1 and first consider
the case where A = F is a closed set in Kp. We define, for δ > 0, Fδ to be
the closed δ-neighborhood of F in Kp :

Fδ = {x ∈ Kp, d(x, F ) ≤ δ}.

Remark that F ⊂ Fδ ⊂ Kp ⊂ Kp+1. From the Portmanteau theorem we get
for all δ > 0

Qp+1(Fδ)
(def.)
= Q̄p+1(Fδ ∩Kp+1) = Q̄p+1(Fδ) ≥ lim sup

n
P
(p+1)
φ(n) (Fδ). (2)

As Fδ ⊂ Kp, P
(p+1)
φ(n) (Fδ) = P

(p)
φ(n)(Fδ). Moreover as Q̄p is a finite measure

the set of δ such that the boundary of Fδ is of non zero Q̄p measure is at
most countable (for all i ≥ 1, there are at most i distincts δ such that
Q̄p(∂Fδ) ≥ 1/i) and one can define a sequence (δk)k≥1 decreasing to 0 such
that for all k ≥ 1, Q̄p(∂Fδk) = 0. Using the Portemanteau theorem we obtain

limn≥1 P
(p)
φ(n)(Fδk) = Q̄p(Fδk) and thus from (2),

Qp+1(Fδk) ≥ Q̄p(Fδk) ≥ Q̄p(F ) = Qp(F ).
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As F = ∩k ≥ 1 ↓ Fδk one deduce from this last inequality that

Qp+1(F ) ≥ Qp(F ). (3)

Using Theorem 2, for all A ∈ F ,

Qp+1(A ∩Kp) = sup{Qp+1(F ), F closed in E and F ⊂ A ∩Kp}.

If F ⊂ A ∩Kp is closed in E then F is closed in Kp and one can use (3) so
that

Qp+1(A ∩Kp)
(3)

≥ sup{Qp(F ), F closed in E and F ⊂ A ∩Kp}
= Qp(A ∩Kp).

From this we deduce that Qp+1(A) ≥ Qp+1(A∩Kp) ≥ Qp(A∩Kp) = Qp(A).
And one can finally define for all A ∈ F ,

Q(A) = lim
p≥1
↑ Qp(A).

Step 3. We now prove that Q is a probability measure. We use
the following lemma that is a non difficult exercise let to the reader.

Lemma 3. Suppose that m : F → R+ satisfies

1. for all A,B ∈ F such that A ∩B = ∅,

m(A ∪B) = m(A) +m(B);

2. For all increasing sequence (An)n≥1 of events in F ,

m(∪n≥1An) = lim
n≥1
↑ m(An).

Then m is a measure on (E,F).

We prove now that Q satisfies both assumption of Lemma 3. For the first
point, just note that for all A,B ∈ F such that A ∩B = ∅,

Q(A ∪B) = lim
p≥1
↑ Qp(A ∪B) = lim

p≥1
↑ [Qp(A) + Qp(B)] = Q(A) + Q(B).

While for the seconde one,

Q(∪n≥1 ↑ An) = lim
p≥1
↑ Qp(∪n≥1 ↑ An) = sup

p≥1
sup
n≥1

Qp(An) = sup
n≥1

sup
p≥1

Qp(An) = sup
n≥1

Q(An).
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We stress that this last argument turns wrong if we do not suppose the
sequence (An)n≥1 to be increasing and that is why we use Lemma 3. Moreover

Q(E) = lim
p≥1
↑ Qp(E) = sup

p≥1
Q̄p(Kp) = sup

p≥1
lim
n≥1

P
(p)
φ(n)(Kp) = sup

p≥1
lim
n≥1

Pφ(n)(Kp) = 1

so that Q is a probability measure.
Step 4. Finally we prove that Q is the weak limit of (Pφ(n))n≥1 using

once again the Portmanteau theorem. For any open set O, as O ∩Kp is an
open set of Kp,

Q(O) = lim
p≥1

Qp(O) = lim
p≥1

Q̄p(O ∩Kp) ≤ lim
p≥1

lim inf
n

Pφ(n)(O ∩Kp).

For all p ≥ 1, Pφ(n)(O ∩Kp) ≤ Pφ(n)(O) so that the last inequality rewrites

Q(O) ≤ lim inf
n

Pφ(n)(O).

This implies that (Pφ(n))n≥1 converges weakly to Q.
We turn to the converse proposition.
Step 1. We prove here the following result: If (On)n≥1 is an increasing

sequence of open sets such that ∪n≥1On = E then for all ε > 0 there exists
n such that for all P ∈ Π, P(On) > 1− ε. Suppose indeed that it is not the
case: then one can build a sequence (Pn)n≥1 with values in Π such that for
all n ≥ 1, Pn(On) ≤ 1 − ε. As Π is relatively compact one can extract a
weakly converging subsequence (Pφ(n))n≥1. We denote by Q its limit. This
implies that for all k ≥ 1

Q(Ok) ≤ lim inf
n

Pφ(n)(Ok).

For n large enough φ(n) is of course larger than k so that Ok ⊂ Oφ(n) and
finally

Q(Ok) ≤ lim inf
n

Pφ(n)(Oφ(n)) ≤ 1− ε.

This is of course a contradiction as Q(Ok) increases to 1 when k goes to
infinity.

Step 2. As E is separable there exists a countable family (xi)i≥1 that is
dense. Fix k ≥ 1 and consider Ok

n = ∪i≤nB(xi, 1/k). Using the first step,
there exists nk so that for all P ∈ Π

P(Ok
nk

) > 1− ε

2k
.

We finally define
K = ∩k≥1Ok

nk
.
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Clearly K is totally bounded (K ⊂ ∩k≥1Ok
nk

so that for all k ≥ 1, K ⊂
∪i≤nkB(xi, 1/k) ⊂ ∪i≤nkB(xi, 2/k))and complete (it is closed in a complete
space) so that it is compact. Moreover for all P ∈ Π

P(Kc) ≤
∑
k≥1

P
(
(Ok

nk
)c
)
≤ ε.

As a first nice consequence of Prohorov theorem we can now prove The-
orem 11.

Proof of Theorem 11. In view of Proposition 6, it is clear that the weak con-
vergence is metrizable. It remains to prove that (M, ρ) is separable and
complete.

1. We prove first that if (E, d) is separable (and this is of course the case
when (E, d) is a polish space), then it is the same for (M, ρ). Fix
ε > 0 and consider again the partition that we introduce in the proof
of Proposition 6. For each i ≥ 1 if Di is non empty, consider a point
yi ∈ Di (note that one can not always choose xi !). Define Πε the set
of probability measures on E that writes

k∑
i=1

riδyi ,

where k ≥ 1 is a natural integer and the ri, i ≥ 1 are positive rational
numbers. Clearly Πε is countable. Let us prove that it intersects any
open ball of radius 2ε: Fix P ∈ M and prove that B(P, 2ε) ∩M 6= ∅
(the ball here is with respect to the metric ρ). Consider K large enough
so that P(

⋃
i>K Di) < ε. Consider also a family of rational numbers ri,

i ≤ K that approximates correctly P(Di), i ≤ K in the sense that

K∑
i=1

ri = 1 and
K∑
i=1

|ri − P(Di)| < ε.

This is possible as
∑K

i=1 P(Di) > 1 − ε. It remains to check that

Q :=
∑K

i=1 riδyi belongs to B(P, ε). Consider A ∈ F and Ã =
⋃
i∈I Di

as in the proof of Proposition 6. One obtains

P(A) ≤ P(Ã)+ε =
∑
i∈I

P(Di)+ε ≤
∑
i∈I

ri+2ε = Q(Ã)+2ε ≤ Q(Aε)+2ε.

Using Lemma 2, this proves that Q ∈ B(P, 2ε). The set
⋃
n≥1 Π1/n is

thus countable and dense in (M, ρ).
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2. Our last point is that if (E, d) is separable and complete then
(M, ρ) is also complete. We consider a Cauchy sequence (Pn)n≥1.
To prove that it converges we only need to prove that it is relatively
compact. For this, using Prohorov Theorem, we prove that it is tight.

Step 1. We prove that for all ε, δ > 0 there exists finitely many δ−balls
(Bi)1≤i≤M such that for all n ≥ 1,

Pn(∪1≤i≤MBi) ≥ 1− ε.

For this we choose η such that 0 < η < ε
2
∧ δ. As (Pn)n≥1 is a Cauchy

sequence one can fix N such that for all n ≥ N , ρ(Pn,PN) < η. We
consider a dense sequence (xi)i≥1 so that the balls B(xi, η), i ≥ 1
cover E. For all n ≤ N one can thus find M large enough so that
Pn(∪n≤MB(xi, η)) ≥ 1 − η. As (Pn)n≤N is a finite family one can
actually choose M that works simultaneously for all n ≤ N . Set for
i ≥ 1, Bi = B(xi, 2η). If n ≥ N , from the definition of ρ,

Pn(∪i≤MBi) ≥ Pn((∪i≤MB(xi, η))η) ≥ PN(∪i≤MB(xi, η))− η ≥ 1− 2η.

If instead n ≤ N ,

Pn(∪i≤MBi) ≥ Pn(∪i≤MB(xi, η)) ≥ 1− η.

Step 2. In order to conclude we mimic the argument used in Step 2
in the proof of the converse half of Theorem 12. We fix ε > 0. For all
k ≥ 1, using the first step, one can find finitly many 1/k-balls (Bk

i )i≤Mk

such that for all n ≥ 1

Pn(∪1≤i≤Mk
Bk
i ) ≥ 1− ε

2k
.

We finally define
K = ∩k≥1 ∪1≤i≤Mk

Bk
i .

The set K is compact (because totally bounded and complete) and for
all n ≥ 1

Pn(Kc) ≤
∑
k≥1

P
(
(∪1≤i≤Mk

Bk
i )c
)
≤ ε.
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3.4 Characteristic functions

We consider a probability measure P on Rd and define its characteristic
function P̂ by

P̂(ξ) =

∫
Rd
ei x·u P(du) ξ ∈ Rd.

It is well-known (see [2] for example) that the characteristic function char-
acterises the law in the sense that if P̂ = Q̂ it implies that P = Q.

The following theorem makes a deep link between weak convergence and
convergence of the characteristic functions :

Theorem 13. Consider (Pn)n≥1 and P probability measures on Rd. The two
following assertions are equivalent:

1. Pn =⇒ P

2. for all ξ ∈ Rd, limn→+∞ P̂n(ξ) = P̂(ξ).

However when one wants to use this theorem we have to check that the
pointwise limit (P̂n(·))n≥1 is indeed the characteristic function of some prob-
ability measure P. That is why next result is stronger and useful

Theorem 14. Assume that (Pn)n≥1 is a sequence of probability measures on
Rd such that

1. (P̂n(·))n≥1 converges pointwise to some φ,

2. φ is continuous at 0.

Then there exists a probability measure P such that

1. P̂ = φ,

2. Pn =⇒ P.

Proof. We only manage with the case d = 1.
We first prove that for all probability measure P on R and all ε > 0,

P(|u| > 2/ε) ≤ 1

ε

∫ +ε

−ε
(1− P̂(ξ)) dξ. (4)

Indeed, from Fubini theorem

1

ε

∫ +ε

−ε
(1− P̂(ξ)) dξ = 2

∫ (
1− sin(εu)

εu

)
P(du).
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As u → 1 − sin(εu)
εu

is non negative and larger that 1/2 when |εu| > 2 we
obtain

2

∫ (
1− sin(εu)

εu

)
P(du) ≥ 2

∫
|εu|>2

(
1− sin(εu)

εu

)
P(du) ≥ P(|εu| > 2).

This inequality provides a control on the tail of the distribution considering
how fast its characteristic function converges to 1 at 0.

We now use (4) to prove that (Pn)n≥1 is tight. We fix η > 0 and prove
that there exists K large enough so that for all n larger than some n0 (see
Exercice 22),

Pn(|x| > K) < η. (5)

As φ is continuous at 0 we can choose ε > 0 small enough so that

1

ε

∫ +ε

−ε
(1− φ(ξ)) dξ < η.

As (P̂n)n≥1 converges pointwise to φ one deduces from Lebesgue theorem
that for n larger that some n0∣∣∣∣1ε

∫ +ε

−ε
(1− P̂n(ξ)) dξ − 1

ε

∫ +ε

−ε
(1− φ(ξ)) dξ

∣∣∣∣ < η.

Thus for n ≥ n0 ∣∣∣∣1ε
∫ +ε

−ε
(1− P̂n(ξ)) dξ

∣∣∣∣ < 2η.

One can thus choose K = 2/ε to establish (5).
From Prohorov theorem one deduces that any subsequence of (Pn)n≥1

admits a subsequence converging to a probability measure. All limits are
however the same has they admit φ for characteristic function. Wee call P
this limit and it clearly satisfies the conclusion of the theorem.

Exercice 18. Central limit theorem. Consider a family of i.i.d. centred
and square integrable random variables (ξi)i≥1 such that E(ξ2) = 1. Define
for all n ≥ 1, the variable Sn =

∑n
i=1 ξi. Then (Sn/

√
n) converges weakly to

a N (0, 1).

3.5 Skorohod’s Representation Theorem

Theorem 15. Let (E, d) be a polish space and (Pn)n≥1 be a sequence of prob-
ability measure converging to P. Then there exist andom variables (Xn)n≥1
and X all defined on the same probability space (Ω,G, P ) such that
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1. Xn
P−p.s.→ X when n goes to infinity

2. for all n ≥ 1, Xn has law Pn and X has law P.

Proof. (See [3]) You should first do Exercise 21 that takes care of the case
E = R.

First step. Let us first build a single random variable on (]0, 1],B(]0, 1]), Leb)
with law P. We consider for that a sequence of even finer partitions of
E. We consider thus a collection Ami of elements in F , where m ≥ 1 and
i = (i1, · · · , im) ∈ Nm is a multi-index that is very convenient to work with
as each new coordinate index (that is when we go from m to m+ 1) encodes
a partition of the previous cell :

• A0
∅ = E,

• for all m ≥ 0 and i, (Am+1
i,j )j≥1 is a partition of Ami ,

• for all m ≥ 1 and i, diam(Ami ) ≤ 2−m.

We let the reader check that, as (E, d) is a polish space it is possible to
construct such a sequence of partition. In each cell Ami we fix a point xmi .

For each m ≥ 1, we define a corresponding partition of ]0, 1] denoted by
(Bm

i ) where i = (i1, · · · , im) is again a multi-indexes. Each Bm
i is defined as

an interval ]αmi , β
m
i ] with

αmi =
∑
j<i

P(Amj ) and βmi =
∑
j≤i

P(Amj ),

where the order here is the lexicographic order. This implies (check again !)
that

• for all m ≥ 0 and i, Leb(Bm
i ) = P(Ami ),

• for all m ≥ 0 and i, Bm+1
i,j ⊂ Bm

i .

We now define for all m ≥ 1, the random variable Zm on (]0, 1],B(]0, 1]))
with values in E by

Zm : u ∈]0, 1]→ Zm(u) =
∑
i

xmi 1Bmi .

One can easily check that for all u ∈]0, 1], (Zm(u))m≥1 is a Cauchy sequence
in E so that it converges to some Z(u). Note that the convergence is actually
uniform on ]0, 1] as for all u ∈]0, 1]

d(Zm(u), Z(u)) < 2−m. (6)
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Let us check now that Z has law P. For any f that is 1−Lipschitz and
m ≥ 1,∣∣∣∣∫

]0,1]

f(Z(u)) du−
∫
f(x) P(dx)

∣∣∣∣
≤
∣∣∣∣∫

]0,1]

f(Z(u)) du−
∫
]0,1]

f(Zm(u)) du

∣∣∣∣+

∣∣∣∣∫
]0,1]

f(Zm(u)) du−
∫
f(z) P(dx)

∣∣∣∣
Using that (Zm)m≥1 converges uniformly to Z, one easily conclude that the
first term goes to 0 with m going to infinity. The second one rewrites (check
again) ∑

i

∫
Ami

(f(x)− f(xmi )) P(dx).

so that, as f is 1-Lipschitz and diam(Ami ) ≤ 2−m, it is bounded by∑
i

P(Ami )2−m = 2−m,

and goes to 0 when m goes to infinity.
Second step. Let us see now how to use this to manage with a family

of law. We define the sequence of partition exactly in the same way except
that we ask for the following additional condition :

• for all m ≥ 1 and i, P(∂Ami ) = 0.

Once again we let the reader check why we can add this constraint. For all
n ≥ 1 we consider the partition (Bm,n

i ) induced by the intervals ]αm,ni , βm,ni ]
defined analogously to αm,ni and βm,ni but with Pn instead of P. We then con-
struct exactly in the same way a random variable Zn on on (]0, 1],B(]0, 1]), Leb)

with law Pn. It remains to prove that Zn
p.s.→ Z.

Let us first admit that for all m ≥ 1 and i

lim
n→+∞

αm,ni = αmi and lim
n→+∞

βm,ni = βmi . (7)

We prove now the convergence on the set

D =]0, 1] \ {αmi , βmi ,m ≥ 1, i ∈ Nm}

that is of Lebesgue measure 1. We fix u ∈ D and ε > 0 and m such that
2−m < ε. For all n ≥ 1,

d(Zn(u), Z(u)) ≤ d(Zn(u), Zm
n (u)) + d(Zm

n (u), Z(u)).
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For the first term: there exists i such that u ∈]αmi , β
m
i [ and, using (7) this

implies that for n large enough u ∈]αm,ni , βm,ni [ and, in consequence, Zm
n (u) =

Zm(u). The first term coincides with d(Zn(u), Zm(u)) that is less than 2−m

(thus less than ε/2) due to (6) with Zn instead of Z. For the second term,
we use again (6).

The proof will be complete once (7) proven via an iteration. Suppose
that it is true for some m ≥ 0 and consider a m + 1-multi index (i, k). We
observe that for all n ≥ 1,

αm+1,n
i,k = αm,ni +

∑
j≤k

Pn(Am+1
i,j ).

As P(∂Am+1
i,j ) = 0 for all j ≤ k, using Theorem 6, we obtain that Pn(Am+1

i,j )

converges to P(Am+1
i,j ) when n goes to infinity. Moreover by iteration hy-

pothesis, αm,ni goes to αmi when n goes to infinity. This gives the desired
convergence for αm+1,n

i,k .

3.6 More exercices

Exercice 19. Consider probability measure (Pn)n≥1 and P on (E,F) such
that for all continuous function f with bounded support∫

f dPn
n→+∞→

∫
f dP.

Prove that Pn =⇒ P. One could first prove for x ∈ E and r > 0, φrPn =⇒
φrP where φr is a non negative continuous with bounded support function
such that φr(x) = 1 if d(y, x) ≤ r. Use Portmanteau theorem to conclude.

Exercice 20. True or False ?

1. If Pn =⇒ P and P is atomic then Pn is also atomic for n large enough.

2. If Pn =⇒ P (where they are probability measures on Rd, d ≥ 1) and
P is absolutely continuous with respect to Lebesgue measure, then it is
the same for Pn for n large enough.

3. Same context as prévious question : we suppose this time that Pn is
absolutely continuous with respect to Lebesgue measure. Does it imply
that P is also absolutely continuous ?
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Exercice 21 (Proof of Skorohod’s theorem when E = R). Let P be a prob-
ability measure on R and F be its cumulative distribution function. As it is
non decreasing on can consider it generalised inverse

F−1 : u ∈]0, 1[→ inf{x ∈ R, F (x) ≥ u}.

1. Prove that F−1 is also a càdlàg non decreasing function.

2. Prove that if U is an uniform on [0, 1] random variable then F−1(U)
has law as P.

3. We now turn to the proof of Skorohod’s Representation Theorem in the
case E = R. With same notation as in Theorem 15, we denote by Fn
the cumulative distribution function of Pn. Prove that for all u ∈]0, 1[,

F−1(u) ≤ lim inf F−1n (u) ≤ lim supF−1n (u) ≤ F−1(u+).

4. Conclude.

Exercice 22. 1. Prove that any finite family of probability measures on
a polish space (E, d) is tight.

2. Prove that a family of probability measures (Pn)n≥1 on a polish space
(E, d) is tight if and only if for some n0 ≥ 1 the family (Pn)n≥n0 is
tight.

Exercice 23. Let (E, d) be a complete metric space.

1. Consider a sequence (xn)n≥1 that converges to x. Prove that

δxn =⇒ δx.

2. Assume now that (δxn)n≥1 converges weakly to some probability measure
P. Prove that P is a Dirac probability measure at some point x ∈ E
and that (xn)n≥1 converges to x.

Exercice 24. We consider (Xn)n≥1, (Yn)n≥1, X, Y random variables that
take values in a polish space (E, d). We assume that Xn =⇒ X and
Yn =⇒ Y . We assume moreover that for all n ≥ 1, Xn and Yn are
independent. Prove that

(Xn, Yn) =⇒ (X, Y ).

Exercice 25. (Slutzky theorem) We consider (Xn)n≥1 and (Yn)n≥1 two se-
quences of random variables that take values in a polish space (E, d).
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1. Prove that if (Xn)n≥1 converges in probability, it also converges in law.

2. Prove that if (Xn)n≥1 converges in law to some constant c, it also con-
verges in probability to c. Prove also that this property is wrong if we
do not suppose anymore the limit to be a constant random variable.

3. Prove Slutzky theorem: We consider (Xn)n≥1, (Yn)n≥1, X random vari-
ables that take values in a polish space (E, d) and c ∈ E. We assume
that

(a) Xn =⇒ X,

(b) (Yn)n≥1 converges in probability to c.

Then
(Xn, Yn) =⇒ (X, c).

Theorem 16.

Theorem 17. Let (Pn)n≥1 and P be probability measures on R and (Fn)n≥1
and F be their cumulative distribution function. Then the two following
assertions are equivalent.

1. Pn =⇒ P

2. For all x that is a continuity point of F , limn→+∞ Fn(x) = F (x).

Proof. 1 =⇒ 2 . If x is continuity point of F the P(∂(−∞, x]) = P({x}) = 0
so that Fn(x) = Pn((−∞, x])→ P((−∞, x]) = F (x) when n goes to infinity.

2 =⇒ 1 . One can complete Exercise 21 or alternatively prove that (Pn)n≥1
is tight. Indeed for all ε > 0, one can fix K large enough so that F (K) −
F (−K) ≥ 1−ε and neither K neither−K are discontinuity point of F . Using
that (Fn(K))n≥1 converges to F (K) and (Fn(−K))n≥1 converges to F (−K)
we obtain that for all n larger than some n0, |Fn(K) − Fn(−K)| ≥ 1 − 2ε.
From Prohorov theorem we know that any subsequence of (Pn)n≥1 admits a
weakly converging subsequence. Moreover the limit is unique as it is admits,
using the direct implication of the theorem, F as cumulative distribution
function.
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4 Weak convergence on C ([0, 1])

4.1 Processes as random functions

A process is a collection (Xt)t∈[0,1] of real random variables built on the same
probability space (Ω,G,Q). For ω ∈ Ω, the process defines a function :

X(ω) : R+ → R
t 7→ Xt(ω).

We say that the process (Xt)t∈[0,1] is a continuous process if for all ω ∈ Ω
the function X(ω) is continuous (that is lies in C ([0, 1])). We wonder if a
process can be viewed as a random variable that is if one can find a sigma
algebra F such that

X : (Ω,G,Q)→ C ([0, 1]),F)

is measurable. This is actually the case if one choose F = B the Borel (for
the uniform norm) sigma algebra. Indeed, from Proposition 4, we know that
B coincides with E the sigma fiel generated by cylinder sets. We consider

C =
n⋂
i=1

{πti ∈ Bi}

a cylinder set and check that

{X ∈ C} = {ω s.t.
(
t 7→ Xt(ω)

)
∈ C} =

n⋂
i=1

{Xti ∈ Bi}

that clearly belongs to G.
The process (Xt)t∈[0,1] can thus be viewed as random function that takes

values in (C ([0, 1]), || · ||∞) endowed with its Borel sigma algebra. Its law is
a probability measure on this space and we are in the confortable framework
of Polish spaces that we have studied in the previous chapters.

4.2 Convergence of finite dimensional marginals

Définition 7. The finite dimensional distribution of a sequence of processes
(X(N))n≥1 converges to X if for all n ≥ 1 and all 0 ≤ t0 ≤ · · · ≤ tn ≤ 1,

(X
(N)
t0 , · · · , X(N)

tn ) converges weakly in Rn to (Xt0 , · · · , Xtn) when N goes to
+∞. When this is the case we denote this convergence by

X(N) (Df )
=⇒ X.
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We note that weak convergence of a sequence (Pn)n≥0 implies the con-
vergence of the finite dimensional marginal. Indeed, for all n ≥ 1 and all
0 ≤ t0 ≤ · · · ≤ tn ≤ 1, the application

f ∈ (C ([0, 1]), || · ||∞)→ (f(t0), · · · , f(tn)) ∈ Rn

is continuous and we conclude easily with Theorem 8.
However, the converse is false in general as we can see from the following

easy example : consider for N ≥ 1 the process (X(N))0≤t≤1 with law the
Dirac measure on

fN : t ∈ [0, 1]→ Nt1[0,1/N ] −N(2/N − t)1(1/N,2/N ],

that is just a tent function. For all n ≥ 1 and 0 ≤ t0 ≤ · · · ≤ tn, the laws of
(X

(N)
t0 , · · · , X(N)

tn ) are the same for N large enough so that

X(N) (Df )
=⇒ X,

where X has law δ0. However (fN)n≥1 does not converge for the uniform
norm to the zero function and this implies, see Exercise 23, that

X(N);X,

for the uniform topolgy. Thus, to establish weak convergence in C ([0, 1]) we
need another ingredient that is tightness.

4.3 A general strategy to prove convergence in law of
continuous processes

We have now all the ingredients we need to study the weak convergence on
the functional space C ([0, 1]). The reader may reread, if necessary, Theorem
12 (Prohorov), Exercise 15 and Proposition 5. Here is a general strategy
to establish that a sequence (Pn)n≥0 of probability measures on C ([0, 1])
converges weakly to P :

1. We first prove convergence of the finite dimensional marginals
of (Pn)n≥0 to those of P. We recall the reader that this is not enough
to conclude as explained at the end of the previous section.

2. We the prove that the sequence (Pn)n≥0 is tight.
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This is enough to conclude: Using Exercice 15 we just have to prove that from
any subsequence of (Pn)n≥0 one can extract a further subsequence weakly
converging to P. Let us thus consider a subsequence (Pφ(n))n≥0. As a sub-
sequence of (Pn)n≥0 it is also tight and using Theorem 12 one deduce that
it is relatively compact, that is it admits a converging further subsequence.
Using the first ingredient, the limit has same finite dimensional marginals
as P. From Proposition 5 this implies that the limit is actually P. This
concludes the proof.

We sumarize what we have just proven in

Theorem 18. Let (Pn)n≥0 and P be probability measures on (C ([0, 1]),F).
Assume that

• finite-dimensional marginals of (Pn)n≥0 converges to those of P

• (Pn)n≥0 is tight.

Then (Pn)n≥0 converges weakly to P.

In consequence we have to give criteria for tightness in C ([0, 1]).

Remark 3. The converse proposition of Theorem 18 is also true as con-
vergence in law on C ([0, 1]) implies both finite dimensional marginals con-
vergence (see the remark after Definition 7) and tightness via Prohorov’s
theorem.

4.4 Tightness in C ([0, 1])

We first recall Ascoli theorem that provides a characterisation of compact
sets in C ([0, 1]). From Heine theorem, any continuous function in C ([0, 1]) is
actually uniformly continuous. For f ∈ C ([0, 1]) one can define the modulus
of continuity by

w(f, δ) = sup{|f(x)− f(y)|, x, y ∈ [0, 1], |x− y| < δ}, δ > 0.

Uniform continuity for a function f defined on [0, 1] is equivalent to limδ→0w(f, δ) =
0.

Theorem 19 (Ascoli). Let A be a subset of C ([0, 1]). Then A is relatively
compact if and only if

1. supf∈A |f(0)| < +∞

2. limδ→0 supf∈Aw(f, δ) = 0.
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Remark 4. We formulate here Ascoli’s theorem on C ([0, 1]) but it can be
generalised with the same ideas to the space C (K) of continuous functions
defined on some compact K.

Proof. Direct implication. We suppose first that A is relatively compact. It
implies that it is bounded as subset of the norm vector space (C ([0, 1]), ||·||∞)
and in particular supf∈A f(0) < +∞. As K is a compact set, from Heine
Theorem, any continuous function f on K is uniformly continuous that is
w(f, δ) converges to 0 when δ goes to 0. Moreover w(f, δ) seen as a function
of f is continuous and w(f, δ) seen as a function of δ is non decreasing. Dini
Theorem thus implies that the pointwise convergence is actually uniform.
Indeed for any sequence (δk)k≥1 decreasing to 0 and ε > 0 we introduce the
sets

V (δk) = {f ∈ A, w(f, δk) < ε}.

These sets are open because of the continuity of w in f . Moreover due to the
pointwise convergence A = ∪k≥1V (δk). As A is relatively compact we can
extract from this covering a finite covering :

A = ∪k≤KV (δk) = V (δK),

using for the last equality the monotonicity with δ. This is enough to conclude
as for k ≥ K and any f ∈ A

w(f, δk) ≤ w(f, δK) < ε.

We turn to the converse implication. We have to prove that Ā is totally
bounded and complete. Actually as C ([0, 1]) is a polish space (see Theorem
4) it is complete and as Ā is closed it implies that it is complete. We thus
just have to prove that Ā is totally bounded.

We first prove thatA is bounded. Fix k large enough so that supf∈Aw(f, 1/k) ≤
1. This implies that for all f ∈ A and x ∈ [0, 1]

|f(x)| ≤ |f(0)|+
k∑
i=1

|f(ix/k)− f((i− 1)x/k)| ≤ sup
f∈A
|f(0)|+ k < +∞.

This implies that A is bounded for the uniform norm by some M .
We now prove that A is totally bounded. Fix ε > 0. We consider in

[−M,M ], N = d2M/εe points Y = {yi, i = 1, · · · , N} such that any t ∈
[−M,M ] is at distance at most ε of Y . We choose now k large enough so that
supf∈Aw(f, 1/k) < ε. We define the set G of functions g in C ([0, 1]) that are
linear on each interval [j/k, (j + 1)/k] and such g(j/k) ∈ Y , j = 0, · · · k − 1.
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We prove now that the open balls of radius 2ε and centred in the finite set
G cover A.

Fix f ∈ A. By definition of Y there exists for all j = 0, · · · k − 1 a
point y(j) ∈ Y such that |f(j/k) − y(j)| < ε. One can thus consider the
function g in G such that for all j = 0, · · · k − 1, g(j/k) = y(j). This
implies of course that for all j = 0, · · · k−1, |f(j/k)−g(j/k)| < ε. If t lies in
[j/k, (j+1)/k] for some j then |f(t)−f(j/k)| < ε and |f(t)−f((j+1)/k)| < ε
because supf∈Aw(f, 1/k) < ε. It also holds that |g(j/k) − f(j/k)| < ε and
|g((j+1)/k)−f((j+1)/k)| < ε by definition of g. As g(t) lies between g(j/k)
and g((j + 1)/k) whatever how they are ordered, this implies |f(t)− g(t)| <
2ε.

With this theorem in hands one can now formulate a characterization of
tightness. In the next theorem we consider a sequence of continuous processes
that have to be thought as random continuous functions. Each of them de-
fines thus a law on (C ([0, 1]),F) and our goal is to provide a characterisation
for tightness of this sequence.

Theorem 20. Let (XN)N≥1 be a sequence of continuous processes. The three
following assertions are equivalent.

1. The family of laws on C ([0, 1]), (L(XN))N≥1 is tight

2. (a) The family of laws on R, (L(XN
0 ))N≥1 is tight

(b) For all η > 0, limδ→0 supN P(w(XN , δ) > η) = 0

3. (a) The family of laws on R, (L(XN
0 ))N≥1 is tight

(b) For all η > 0, limδ→0 lim supN P(w(XN , δ) > η) = 0

Proof. 1. =⇒ 2. To prove (a), we use that the coordinate application in 0:
π0 : f ∈ C ([0, 1]) → f(0) ∈ R is continuous. This implies (see Exercise 17)
that if (L(XN))N≥1 is tight then its image by π0, (L(XN

0 ))N≥1 is also tight.
We turn to (b). Fix η, ε > 0. As the sequence (L(XN))N≥1 is tight there

exists a compact set Kε ⊂ C ([0, 1]) such that for all N ≥ 1,

P(XN ∈ Kε) ≥ 1− ε.

From Ascoli theorem, limδ→0 supf∈Kε w(f, δ) = 0 so that there exists δ0 such
that for δ ≤ δ0, supf∈Kε w(f, δ) ≤ η. This implies that for δ ≤ δ0 and for all
N ≥ 1

P(w(XN , δ) > η) ≤ P(XN /∈ Kε) < ε.

2. =⇒ 3. There is here nothing to prove !
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3. =⇒ 2. We only have to prove that 3.(b) implies 2.(b). Fix η, ε > 0.
From 3.(b) there exists δ0 so that for δ ≤ δ0 there exists N0(δ) so that for
N ≥ N0(δ), P(w(XN , δ) > η) < ε. Actually as δ → w(f, δ) is non decreasing
one can use N0(δ0) for all δ ≤ δ0. For i ≤ N0(δ0), L(X i) is tight using
Theorem 3 so that the finite family (L(X i))i≤N0(δ0) is also tight. Arguing as
in the proof of “1. =⇒ 2.” there exists δ1 > 0 so that for δ < δ1

sup
i≤N0(δ0)

P(w(X i, δ) > η) < ε.

We define δ̄ = min(δ0, δ1) so that for δ < δ̄, agains as δ → w(f, δ) is non
decreasing, it holds that for all N ≥ 1, P(w(XN , δ) > η) < ε.

2. =⇒ 1. We use here again Ascoli theorem. Fix ε > 0. From 2.(a)
there exists a compact K̄ ⊂ R such that for all N ≥ 1

P(XN
0 /∈ K̄) < ε.

This K̄ is included in [−M,M ] for some lare enough M . From 2.(b), for all
k ≥ 1 there exists δk such that for all N ≥ 1,

P(w(XN , δk) >
1

k
) <

ε

2k+1
.

With a basic union bound we obtain for all N ≥ 1

P(XN
0 ∈ [−M,M ],∩k≥1w(XN , δk) ≤

1

k
) ≥ 1− 2ε. (8)

We set

Kε = {f ∈ C ([0, 1]) such that |f(0)| ≤M, ∩k≥1w(f, δk) ≤
1

k
}.

Using Ascoli theorem this a compact set and (8) rewrites

P(XN ∈ Kε) ≥ 1− 2ε.

This last theorem is actually a simple reformulation of the definition of
tightness using Ascoli theorem as can be seen from the proof. It is how-
ever difficult to establish criterium 2.(b) and 3.(b). We now see two (only)
sufficient conditions that are more convenient to work with.

Proposition 7. Let (XN)N≥1 be a sequence of continuous processes. Suppose
that
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1. The family of laws on R, (L(XN
0 ))N≥1 is tight

2. For all η, ε > 0, there exists δ ∈]0, 1[ such that

lim sup
N→∞

sup
t∈[0,1]

1

δ
P( sup

s∈[t,t+δ]
|XN

s −XN
t | > η) ≤ ε.

Then the family of laws on C ([0, 1]), (L(XN))N≥1 is tight.

Proof. We prove that condition 2 above implies condition 3.(b) in Theorem
20. Of course condition 2 rewrites: for all η > 0

lim
δ→0

lim sup
N→∞

sup
t∈[0,1]

1

δ
P( sup

s∈[t,t+δ]
|XN

s −XN
t | > η) = 0,

so that the question is how we can enter the “sup” in the probability.
We first observe that for all f ∈ C ([0, 1]), all δ > 0 (let us admit that 1/δ

is an integer) and all 0 ≤ s, t ≤ 1 such that |t− s| ≤ δ

|f(s)− f(t)| ≤ 3 max
k≤1/δ

sup
s∈[kδ,(k+1)δ]

|f(s)− f(kδ)|.

Indeed if s and t are in the same interval [kδ, (k + 1)δ] for some k ≥ 0
then |f(s) − f(t)| ≤ |f(s) − f(kδ)| + |f(t) − f(kδ)|. If they are not in
the same interval they are in neighbour intervals that is for some k ≥ 0,
kδ ≤ s ≤ (k + 1)δ ≤ t ≤ (k + 2)δ and this time

|f(s)− f(t)| ≤ |f(s)− f(kδ)|+ |f(kδ)− f((k + 1)δ)|+ |f(t)− f((k + 2)δ)|.

This implies that

{w(XN , δ) > η} ⊂
⋃

k=0··· ,1/δ

{
sup

s∈[kδ,(k+1)δ]

|XN
s −XN

kδ| ≥
η

3

}

and with an union bound

P(w(XN , δ) > η) ≤
1/δ∑
k=0

P( sup
s∈[kδ,(k+1)δ]

|XN
s −XN

kδ| ≥
η

3
)

≤ 1

δ
sup
t

P( sup
s∈[t,t+δ]

|XN
s −XN

t | >
η

3
),

and this concludes the proof.
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Another classic characterisation of tightness is provided by this criterium
due to Kolmogorov

Proposition 8. Let (XN)N≥1 be a sequence of continuous processes. Suppose
that

1. The family of laws on R, (L(XN
0 ))n≥1 is tight

2. There exists α, β, C > 0 such that for all 0 ≤ s, t ≤ 1 and all N ≥ 1

E(|XN
s −XN

t |α) ≤ C|t− s|1+β.

Then the family of laws on C ([0, 1]), (L(XN))N≥1 is tight.

Proof. TBW

4.5 Brownian motion and Wiener measure

We remind three classical, and of course equivalent, definitions of the brow-
nian motion:

Définition 8 (B1). We call Brownian motion any continuous process
(Bt)t≥0 with stationary and independent increments and such that
B0 = 0 a.s. and for all 0 ≤ s ≤ t

Bt −Bs  N (0, t− s).

Définition 9 (B2). We call Brownian motion any continuous process
(Bt)t≥0 that is gaussian centred with variance defined for all 0 ≤ s ≤ t by

R(s, t) = s ∧ t.

Définition 10 (B3). We call Brownian motion any continuous process
(Bt)t≥0 such that B0 = 0 a.s. and for all 0 ≤ s ≤ t

Bt −Bs ⊥⊥ σ(Br; 0 ≤ r ≤ s),

Bt −Bs  N (0, t− s).

[Canonical process and Wiener measure]
[Discussion about the existence of the Wiener measure]
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4.6 Donsker Theorem

[Motivation. Example of continuous function on C ([0, 1]) : sup,...]
The goal of Donsker theorem is to provide a description of the rescaled

sum of i.i.d. square integrable variables viewed as a random function. Let us
consider (ξk)k≥1 an i.i.d. family of square integrable real random variables
with mean 0 and variance 1 (of course if the mean is not 0 or the variance
not 1 one can still work with a renormalised version of ξ). We consider for
n ≥ 1,

Sn =
n∑
k=1

ξk,

and for all N ≥ 1, we the define the random function, that is the process,

SNt =
1√
N
SbNtc + (Nt− bNtc) 1√

N
ξbNtc+1 0 ≤ t ≤ 1.

[Add a picture]

Theorem 21 (Donsker Theorem). Assume that (ξk)k≥1 is an i.i.d. family
of square integrable real random variables with mean 0 and variance 1. Then

(SNt )0≤t≤1
(law)→ (Bt)0≤t≤1,

where (Bt)0≤t≤1 is a standard brownian motion and the convergence is relative
to the uniform topology on C ([0, 1]).

Proof. From Theorem 18 we have to prove that

1. For all n ≥ 1 and all 0 ≤ t0 ≤ · · · ≤ tn ≤ 1, (SNt0 , · · · , S
N
tn) converges

weakly in Rn to (Bt0 , · · · , Btn) when N goes to +∞.

2. The family of laws (L(SN))N≥1 on C ([0, 1]) is tight.

Proof of 1. This is mainly an application of the central limit theorem.
Fix n ≥ 1 and 0 ≤ t0 ≤ · · · ≤ tn ≤ 1. For all 1 ≤ i ≤ n

SbNti+1c − SbNtic√
N

=
SbNti+1c − SbNtic√
bNti+1c − bNtic

√
bNti+1c − bNtic√

N
.

Using the central limit theorem, the first part converges in law to a gaussian
N (0, 1) while the deterministic second one converges to

√
ti+1 − ti. From

Slutsky theorem one deduces that (
SbNti+1c−SbNtic√

N
)N≥1 converges to a gaussian

N (0, ti+1 − ti) that is also the law of Bti+1
−Bti . One can say actually more
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as for all N ≥ 1 the variables
SbNti+1c−SbNtic√

N
, i = 0, · · ·n are independent.

This implies that(
SbNt0c√
N

,
SbNt1c − SbNt0c√

N
, · · · ,

SbNtnc − SbNtn−1c√
N

)
N→+∞
=⇒ (Bt0 , Bt1−Bt0 · · · , Btn−Btn−1),

as, from the definition of the brownian motion this last vector has law
N (0, K) with

K =


t0

. . .

ti+1 − ti
. . .

tn − tn−1

 .

From this one can easily prove that(
SbNt0c√
N

, · · · ,
SbNtnc√
N

)
N→+∞
=⇒ (Bt0 , · · · , Btn).

Moreover for all t ∈ [0, 1] and ε > 0

P

(∣∣∣∣(Nt− bNtc) 1√
N
ξbNtc+1

∣∣∣∣ > ε

)
= P

(
ξ > ε

√
N

Nt− bNtc

)
goes to 0 with N and more generally(

(Nt0 − bNt0c)
1√
N
ξbNt0c+1, · · · , (Ntn − bNtnc)

1√
N
ξbNtnc+1

)
Proba.−→ 0.

Using again Slutsky theorem we obtain that (SNt0 , · · · , S
N
tn) converges weakly

in Rn to (Bt0 , · · · , Btn). We turn to the proof of tightness that is more
intricated.

Proof of 2. We use for that the criterium stated in Proposition 7. The
first point is obviously verified and we are left to prove the second one. Fix
ε, η > 0. We want to prove that there exists δ > 0 such that

lim sup
N→∞

sup
t∈[0,1]

1

δ
P( sup

s∈[t,t+δ]
|SNs − SNt | > η) ≤ ε.

For all 0 ≤ t ≤ 1 and δ > 0, for all t ≤ s ≤ t+ δ,

|SNs − SNt | ≤
1√
N

∣∣∣∣∣∣
bNsc∑

k=bNtc+1

ξk

∣∣∣∣∣∣+ |ξbNtc+1|+ sup
t≤s≤t+δ

|ξbNsc+1|


≤

∣∣∣∣∣∣
bNsc∑

k=bNtc+1

ξk

∣∣∣∣∣∣+
2√
N

sup
t≤s≤t+δ

|ξbNsc+1|
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so that

1

δ
P( sup

s∈[t,t+δ]
|SNs − SNt | > η)

≤ 1

δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣∣
bNsc∑

k=bNtc+1

ξk

∣∣∣∣∣∣ > η
√
N

2

+
1

δ
P

(
sup

t≤s≤t+δ
|ξbNsc+1| >

η
√
N

4

)
.

We start with the second term and observe that for all N ≥ 1 and t ∈ [0, 1]
with the notation I = {bNsc + 1, t ≤ s ≤ t + δ} (that satisfies Card(I) ≤
bNδc+ 2)

P

(
sup

t≤s≤t+δ
|ξbNsc+1| >

η
√
N

4

)
≤ P

(
∃i ∈ I s.t. |ξi| >

η
√
N

4

)

≤ (bNδc+ 2)P

(
|ξ1| >

η
√
N

4

)
≤ (bNδc+ 2)

16

Nη2
E
(
ξ211|ξ1|> η

√
N

4

)
,

and this last inequality is uniform in t ∈ [0, 1]. The second term is thus
bounded, for all δ > 0, by

bNδc+ 2

δ

16

Nη2
E
(
ξ211|ξ1|> η

√
N

4

)
that goes to 0 when N goes to infinity because ξ is square integrable.

To manage with the first one we need the following lemma

Lemma 4. For all λ > 0 and all N ≥ 1,

P(max
n≤N
|Sn| > λ

√
N) ≤ 2P(|SN | > (λ−

√
2)
√
N).

Proof. Note that it is not an usual version of reflexion principle as our vari-
ables (ξk)k≥1 are not supposed to be symmetric. We call (F ξn)n≥1 the filtration
generated by the process (ξk)k≥1 (that is for all n ≥ 1, F ξn = σ(ξ1, · · · , ξn))
and τ the hitting time of λ

√
N by (|Sn|)n≥1,

τ = inf{n ≥ 1, |Sn| ≥ λ
√
N}.

Note that τ is a hitting time for the filtration F ξ and that

{max
n≤N
|Sn| ≥ λ

√
N} = {τ ≤ N} (9)
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so that,

P(max
n≤N
|Sn| ≥ λ

√
N) = P(τ ≤ N)

= P(|SN | ≥ (λ−
√

2)
√
N) +

N∑
k=1

P(|SN | < (λ−
√

2)
√
N, τ = k).

We easily observe that for all k ≤ 1, {|SN | < (λ −
√

2)
√
N, τ = k} ⊂

{|SN − Sk| ≥
√

2N} so that for all 1 ≤ k ≤ n

P(|SN | < (λ−
√

2)
√
N, τ = k) ≤ P(|SN − Sk| ≥

√
2N, τ = k)

= P(|SN − Sk| ≥
√

2N)P(τ = k),

as {|SN − Sk| ≥
√

2N} is independent from F ξk while {τ = k} ∈ F ξk . Using
that

P(|SN | < (λ−
√

2)
√
N, τ = k) ≤ E(|SN − Sk|2)

2N
P(τ = k) =

N − k
2N

P(τ = k) ≤ 1

2
P(τ = k),

and we finally obtain

P(max
n≤N
|Sn| ≥ λ

√
N) ≤ P(|SN | ≥ (λ−

√
2)
√
N) +

1

2
P(τ ≤ N).

This enough to conclude using (9). Note that
√

2 is somehow arbitrary in
this lemma and one could write an analogous version with

√
θ instead.

Using Lemma 4, the fact that bN(t + δ)c − bNtc ≤ dNδe and also that
(ξk)k≥1 are i.i.d. we obtain

1

δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣∣
bNsc∑

k=bNtc+1

ξk

∣∣∣∣∣∣ > η
√
N

2

 ≤ 1

δ
P

(
max
i≤dNδe

∣∣∣∣∣
i∑

k=1

ξk

∣∣∣∣∣ > η
√
N

2

)

≤ 2

δ
P

(∣∣∣∣∣ SdNδe√
dNδe

∣∣∣∣∣ > η
√
N

2
√
dNδe

−
√

2

)

≤ 2

δ
P

(∣∣∣∣∣ SdNδe√
dNδe

∣∣∣∣∣ > η

2
√
δ + 1/N

−
√

2

)

≤ 2

δ
P

(∣∣∣∣∣ SdNδe√
dNδe

∣∣∣∣∣ > η

4
√
δ
−
√

2

)
,

for N large enough.
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From the central limit theorem
SdNδe√
dNδe

converges to a gaussian N (0, 1)

and we obtain for Z a N (0, 1) random variable

lim sup
N→∞

sup
t∈[0,1]

1

δ
P

 sup
s∈[t,t+δ]

∣∣∣∣∣∣
bNsc∑

k=bNtc+1

ξk

∣∣∣∣∣∣ > η
√
N

2


≤ lim sup

N→∞

2

δ
P

(∣∣∣∣∣ SdNδe√
dNδe

∣∣∣∣∣ > η

4
√
δ
−
√

2

)

≤ 2

δ
P

(
|Z| > η

4
√
δ
−
√

2

)
≤ 2

δ( η

4
√
δ
−
√

2)3
E
(
|Z|3

)
and this last quantity goes to 0 with δ going to 0. This concludes the proof.

4.7 More exercises

Exercice 26. Which of the following functional are continuous on (C ([0, 1]), ||·
||∞) ? In the case where they are not continuous everywhere precise where
their continiuty point.

1. φ : f ∈ C ([0, 1])→ ||f ||∞

2. φ : f ∈ C ([0, 1])→
∫
[0,1]

f(t) dt

3. For a ≥ 0, φ : f ∈ C ([0, 1])→ Ta(f) = inf{t ≥ 0, |f(t)− f(0)| ≥ a}.

Exercice 27. We use the same notations as for Donsker theorem. Prove
that

1√
n

max
k≤n

Sk =⇒ sup
t∈[0,1]

Bt.

Prove that supt∈[0,1]Bt
(law)
= |Z| where Z has law N (0, 1).
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