Dauphine | PSL 😿

MIDO - L3 Math. Appliquées 2022–2023

Statistical modelling

Examen final du 11 Janvier 2023

DURÉE 2H00 – DOCUMENTS ET CALCULATRICE NON Autorisés

French – English Lexicon

- *i.i.d.* : independent and identically distributed
- échantillon : sample
- fonction de répartition : cumulative distribution function
- fonction de densité : probability distribution function
- fonction génératrice des moments : *moment-generating function*
- famille exponentielle : exponential family
- espace naturel des paramètres : natural parameter space

/9

- vraisemblance : *likelihood*
- statistique exhaustive : sufficient statistic
- statistique libre : *ancillary statistic*
- statistique complète : complete statistic

Exercise 1

For the following statements, give the correct answer(s). Incorrect answers and missing justification return zero point while incomplete answers gain partial points.

1. Let $(X_n)_{n \in \mathbb{N}^*}$ be a sequence of independent discrete random variables such that

$$\mathbb{P}[X_n=0] = \frac{n-1}{n}$$
 and $\mathbb{P}[X_n=\sqrt{n}] = \frac{1}{n}$.

Then, when *n* goes to $+\infty$,

- (a) the sequence converges in L^1 (convergence in mean),
- (b) the sequence converges in L^2 (convergence in quadratic mean), (d) the sequence in quadratic mean), (e) the sequence converges in L^2 (convergence in quadratic mean), (e) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the sequence converges in L^2 (convergence in quadratic mean), (f) the
- (c) for any continuous function g, $\mathbb{E}[g(X_n)]$ converges to 0,
 - (d) the sequence converges in distribution,
 - (e) the sequence does not converge at all.
- (a, d) For any continuous and bounded function g, we have

$$\mathbb{E}\left[g(X_n)\right] = \frac{n-1}{n}g(0) + \frac{1}{n}g(\sqrt{n})$$

Since g is bounded, the second term in the above sum converges to 0 when n goes to $+\infty$ and thus

$$\mathbb{E}\left[g(X_n)\right] \xrightarrow[n \to +\infty]{\text{a.s.}} g(0).$$

Then, (X_n) converges in distribution to 0. Moreover, if it converges in L^p , $p \in \mathbb{N}^*$, it is necessarily to 0. We have $\mathbb{E}[X_n] = 1/\sqrt{n}$ and $\mathbb{E}[X_n^2] = 1$. Thus, X_n converges in L^1 to 0, but not in L^2 .

2. Consider the exponential family associated to the Bernoulli distribution with unknwon parameter $p \in (0, 1)$. The moment generating function of natural statistic T(x) = x of the family is defined for $t \in \Theta \subseteq \mathbb{R}$ by

(a) (1-p)/(1-p-t) (b) $1+p(\exp(t)-1)$ (c) (1-p-t)/(1-p) (d) $1/[1+p(\exp(t)-1)]$

(b) To get the canonical form we set $\theta = \log(p) - \log(1 - p)$. The canonical form is then

$$f(x \mid \theta) = \frac{1}{1 + \exp(\theta)} \exp(\theta x), \quad \theta \in \mathbb{R}.$$

Then the moment generating function is defined for any $t \in \mathbb{R}$ by

$$M(t) = \frac{1 + \exp(\theta + t)}{1 + \exp(\theta)} = \frac{1 + \exp[\log(p) - \log(1 - p) + t]}{1 + \exp[\log(p) - \log(1 - p)]} = 1 + p(\exp(t) - 1).$$

3. Consider the density (with respect to the Lebesgue measure on \mathbb{R}^*_+) parametrised by an **unknown** $(k, \lambda) \in \mathbb{N}^* \times \mathbb{R}^*_+$ and defined by

$$f(x \mid k, \lambda) = \frac{\lambda^k x^{k-1} \exp(-\lambda x)}{(k-1)!} \mathbb{1}_{x > 0}$$

(a) It constitutes a minimal and canonical exponential family.

- (b) It constitutes a minimal exponential family but is not in a canonical form.
- (c) It constitutes an exponential family that is neither minimal nor canonical.
- (d) None of the other answers.

(a) The density writes as

$$f(x \mid k, \lambda) = \frac{\lambda^k}{(k-1)!} \frac{1}{x} \mathbb{1}_{x \ge 0} \exp\left[k \log(x) - \lambda x\right].$$

Then it constitutes a canonical exponential family with natural parameter (k, λ) and natural statistic $T(x) = (\log(x), -x)$. Moreover for $(\alpha_1, \alpha_2) \in \mathbb{R}^* \times \mathbb{R}^*$ and $c \in \mathbb{R}$, the set $\{x \in \mathbb{R}_+; \alpha_1 \log(x) - \alpha_2 x - c = 0\}$ contains at most 2 elements (maximal number of intersections between an affine function and $x \mapsto \log(x)$) and hence has measure zero (null set) for the Lebesgue measure. The family is minimal.

4. We run an experiment where we measure how much time *n* different customers spend on a specific page of a website. Our observations x_1, \ldots, x_n are stored in a vector x. We assume that the underlying statistical model is a Gamma distribution with parameter (α , β). Which one among the following R command lines does return the first quartile of the sample?

```
(a) rgamma(0.25, 1, 2)
(b) pgamma(0.25, 1, 2)
(c) dgamma(0.25, 1, 2)
(d) qgamma(0.25, 1, 2)
(e) quantile(0.25, 1, 2)
(f) quantile(x, 0.25)
```

(f) In order to get the empirical quantiles of a sample we use the function quantile. The first argument is the sample, followed by the order of the quantiles we are interested in.

5. Let *X* be a random variable with density, parametrised by $\lambda \in \mathbb{R}^*_+$, with respect to the composition of the counting measure on \mathbb{N} and the Lebesgue measure on \mathbb{R}^*_+ :

$$f_X(x) = \begin{cases} \frac{\lambda^x \exp(-\lambda)}{2(x!)}, & \text{if } x \in \mathbb{N}, \\ \frac{\lambda}{2} \exp(-\lambda x), & \text{otherwise.} \end{cases}$$

The likelihood for the sample $(1, 1, 2, 2, 2, x_1, \dots, x_n)$, with $x_1, \dots, x_n \notin \mathbb{N}$ is

(a)
$$\frac{\lambda^{n}}{2^{n+5}} \exp\left(-\lambda \sum_{i=1}^{n} x_{i}\right)$$

(b)
$$\frac{\lambda^{n+8}}{2^{n+8}} \exp\left[-\lambda \left(\sum_{i=1}^{n} x_{i}+5\right)\right]$$

(c)
$$\frac{\lambda^{8} \exp(-5\lambda)}{2^{n+8}}$$

(d)
$$\frac{\lambda^{n+3}}{2^{n+6}} \exp\left[-\lambda \left(\sum_{i=1}^{n} x_{i}+2\right)\right]$$

(b) The likelihood is given by

$$\left[\frac{\lambda}{2}\exp(-\lambda)\right]^2 \left[\frac{\lambda^2\exp(-\lambda)}{4}\right]^3 \prod_{i=1}^n \frac{\lambda}{2}\exp(-\lambda x_i) = \frac{\lambda^{n+8}}{2^{n+8}}\exp\left[-\lambda\left(\sum_{i=1}^n x_i+5\right)\right].$$

6. Consider *X* distributed according to the Binomial distribution $\mathscr{B}(n, p)$, $n \in \mathbb{N}^*$ **known** and $p \in (0, 1)$ **unknown**. If we denote θ the parameter of the canonical form of this exponential family, I(p) and $I(\theta)$ the Fisher information contained in *X* for *p* and θ respectively, we have

(a)
$$I(p) = n/[p(1-p)]$$
 (b) $I(p) = 1/[p(1-p)]$ (c) $I(\theta) = ne^{-\theta} (1+e^{\theta})^2$ (d) $I(\theta) = ne^{\theta} / (1+e^{\theta})^2$

(a, d) The density $f(\cdot | n, p)$ of the Binomial distribution is twice differentiable with respect to p on (0, 1) and

$$\frac{d}{dp}f(x \mid n, p) = \frac{x}{p} - \frac{n-x}{1-p} \text{ and } \frac{d^2}{dp^2}f(x \mid n, p) = -\frac{x}{p^2} - \frac{n-x}{(1-p)^2}$$

Using that $\mathbb{E}_p[X] = np$, we then have

$$I(p) = -\mathbb{E}_p\left[\frac{d^2}{dp^2}f(X \mid n, p)\right] = \frac{np}{p^2} - \frac{n - np}{(1 - p)^2} = \frac{n}{p(1 - p)}$$

The parameter of the canonical form is $\theta = \log(p) - \log(1-p)$, that is $p = \exp(\theta) / [1 + \exp(\theta)] := \psi(\theta)$. We then have

$$I(\theta) = \left(\frac{\mathrm{d}}{\mathrm{d}\theta}\psi(\theta)\right)^2 I(p) = \frac{\exp(2\theta)}{[1+\exp(\theta)]^4} \frac{n[1+\exp(\theta)]^2}{\exp(\theta)} = \frac{n\exp(\theta)}{[1+\exp(\theta)]^2}$$

7. Consider a regular and minimal exponential family with natural statistic $T(\cdot)$ and density $f(\cdot | \theta), \theta \in \Theta \subseteq \mathbb{R}$. For X_1, \ldots, X_n *i.i.d.* random variables distributed according to $f(\cdot | \theta)$, we set $S = \sum_{i=1}^n T(X_i)$.

- (a) Any bijective transform of *S* is sufficient for θ .
- (b) S is minimal sufficient for θ .

- (c) Any sufficient statistic for θ that is a function of *S* is minimal sufficient for θ .
- (d) None of the other answers.

(**a**, **b**, **c**) *S* is a sufficient statistic for θ . Thus any bijective transform of *S* is sufficient for θ . For a minimal representation, *S* is minimal sufficient. Thus *S* is a function of any other sufficient statistic. Therefore any sufficient statistic *R* that is a function of *S* is also a function of any other sufficient statistic. Hence *R* is also minimal sufficient.

8. Let X_1, \ldots, X_n be *i.i.d.* random variables distributed according to the normal distribution $\mathcal{N}(\mu, 1)$ and denote

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad X_{(1)} = \min(X_1, \dots, X_n) \text{ and } X_{(n)} = \max(X_1, \dots, X_n).$$

(a) $X_{(n)} - X_{(1)}$ is independent of \overline{X}_n .

(d) $\left(X_1 - \overline{X}_n, \dots, X_n - \overline{X}_n\right)$ is independent of \overline{X}_n .

12

- (b) $(X_{(1)}, X_{(n)})$ is not a complete statistic.
- (e) None of the other answers.
- (c) $(X_{(1)}, X_{(n)})$ is a sufficient statistic for μ .

(**a**, **b**, **d**) $X_{(n)} - X_{(1)}$ and $(X_1 - \overline{X}_n, ..., X_n - \overline{X}_n)$ are ancillarly statistic. Moreover \overline{X}_n is a complete and sufficient statistic for μ (result on natural statistic associated to an exeponential family). It follows from Basu's theorem that both $X_{(n)} - X_{(1)}$ and $(X_1 - \overline{X}_n, ..., X_n - \overline{X}_n)$ are independent from \overline{X}_n .

 $X_{(n)} - X_{(1)}$ is an ancillary statistic that is not constant almost surely and such that $\mathbb{E}_{\mu}[X_{(n)} - X_{(1)}] = c < \infty$ is independent of μ . Thus, for the function $\phi : (x, y) \mapsto y - x - c$, we have

 $\mathbb{E}_{\mu}[\phi(X_{(1)}, X_{(n)})] = 0, \quad \forall \mu \in \mathbb{R}.$

But $\mathbb{P}_{\mu}[\phi(X_{(1)}, X_{(n)}) = 0] = \mathbb{P}_{\mu}[X_{(n)} - X_{(1)} = c] \neq 1$ since $X_{(n)} - X_{(1)}$ is not constant almost surely. Therefore $(X_{(1)}, X_{(n)})$ is not a complete statistic.

Exercise 2

Given $a \in \mathbb{R}$, the Lévy distribution of scale parameter $b \in \Theta_0 \subseteq \mathbb{R}^*_+$ admits a density with respect to the Lebesgue measure on $(a, +\infty)$

$$f(x \mid b) = \frac{1}{x-a} \sqrt{\frac{b}{2\pi(x-a)}} \exp\left(-\frac{b}{2x-2a}\right) \mathbb{1}_{x>a}.$$

In this exercise we consider $X_1, ..., X_n$, n > 2, *i.i.d.* random variables distributed according to $f(\cdot | b)$ for a **known** parameter *a* and an **unknown** scale parameter *b*.

1. Show that $f(\cdot | b)$ can define an exponential family with a natural statistic $T(\cdot)$. Precise its canonical form and its natural parameter space. Is the family regular and minimal?

The density writes as

$$f(x \mid b) = c(b)h(x)\exp(\eta(b)T(x)), \quad \text{where} \quad \begin{cases} c(b) = \sqrt{\frac{b}{2\pi}}, & h(x) = \frac{1}{(x-a)\sqrt{x-a}} \mathbb{1}_{x \ge a}, \\ \eta(b) = b, & T(x) = -\frac{1}{2x-2a}. \end{cases}$$

The family is already in its canonical form and its natural parameter space is

 $\Theta = \{b \in \mathbb{R} \mid c(b) > 0\} = \mathbb{R} *_+.$

The family is regular since Θ is an open set, and minimal, since it is a one dimensional family.

2. Show that there is a **unique** maximum likelihood estimator of *b* defined as

$$\widehat{b}_n = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{X_i - a}\right)^{-1}$$

The log-likelihood writes as

$$\ell(b \mid x_1, \dots, x_n) = \sum_{i=1}^n \log f(x_i \mid b) = \frac{n}{2} \log(b) - b \sum_{i=1}^n \frac{1}{2(x_i - a)} - n \log(2\pi) - \frac{3}{2} \sum_{i=1}^n \log(x_i - a).$$

It is differentiable on $\Theta = \mathbb{R}^*_+$ and

$$\frac{\partial}{\partial b}\ell(b\mid x_1,\ldots,x_n) = \frac{n}{2b} - \sum_{i=1}^n \frac{1}{2(x_i-a)}.$$

The log-likelihood has a unique critical point in Θ given by

$$\widehat{b}_n = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i - a}\right)^{-1}$$

Since $f(\cdot | b)$ defines a regular exponential family, the critical point is the unique maximum likelihood estimator of *b*.

3. Show that
$$\widehat{b}_n \xrightarrow[n \to +\infty]{\mathbb{P}} b$$
.

We have

$$\widehat{b}_n = \left(-\frac{2}{n}\sum_{i=1}^n T(X_i)\right)^{-1}.$$

 $T(X_1), \ldots, T(X_n)$ is a sequence of *i.i.d.* (as measurable transform of *i.i.d.* random variables) and integrable (comparative growth in *a* and Riemann criterion in $+\infty$) random variables. The Law of Large Numbers gives

$$\frac{1}{n}\sum_{i=1}^{n}T(X_{i})\xrightarrow[n\to+\infty]{\mathbb{P}}\mathbb{E}[T(X_{1})].$$

The first moment of the natural statistic $T(X_1)$ is given by

$$\mathbb{E}[T(X_1)] = -\frac{\mathrm{d}}{\mathrm{d}b}\log c(b) = -\frac{1}{2b}.$$

The continuity of $g: x \mapsto (-2x)^{-1}$ on \mathbb{R}^*_+ gives that

$$\widehat{b}_n = g\left(\frac{1}{n}\sum_{i=1}^n T(X_i)\right) \xrightarrow[n \to +\infty]{\mathbb{P}} g\left(\mathbb{E}[T(X_1)]\right) = b.$$

4. Show that

$$\sqrt{\frac{n}{2}} \left(\frac{\widehat{b}_n - b}{\widehat{b}_n} \right) \stackrel{d}{\xrightarrow{n \to \infty}} \mathcal{N}(0, 1).$$

Since the exponential family defined by $f(\cdot | b)$ is regular, the fundamental theorem of statistic gives

$$\sqrt{n}(\widehat{b}_n-b) \xrightarrow[n\to\infty]{d} \mathcal{N}(0, I_{X_1}(b)^{-1}).$$

(1)

The log-likelihood is twice differentiable and

$$\frac{\partial^2}{\partial b^2}\ell(b \mid x_1) = -\frac{1}{2b^2}$$

The Fisher information contained in X_1 on b is then

$$I_{X_1}(b) = -\mathbb{E}_b\left[-\frac{1}{2b^2}\right] = \frac{1}{2b^2}$$

We thus have

$$\sqrt{n}(\widehat{b}_n-b) \xrightarrow[n\to\infty]{d} \mathcal{N}(0,2b^2).$$

Using the previous question and the continuity of $x \mapsto x^{-1}$ at b > 0, we get

$$\frac{1}{\sqrt{2}\widehat{b}_n} \xrightarrow[n \to +\infty]{\mathbb{P}} \frac{1}{\sqrt{2}b}.$$

It follows from Slutsky's theorem that

$$\frac{\sqrt{n}}{\sqrt{2}\hat{b}_n}\left(\hat{b}_n-b\right)\underset{n\to+\infty}{\overset{d}{\longrightarrow}}\frac{1}{\sqrt{2}b}\mathcal{N}(0,2b^2)\equiv\mathcal{N}(0,1).$$

5. Prove that the bias of the estimator \hat{b}_n is strictly positive.

Since the function $x \mapsto 1/x$ is strictly convex, the Jensen inequality and equation (1) from question 2. lead to

$$\mathbb{E}[\widehat{b}_n] > \frac{1}{\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^n \frac{1}{x_i - a}\right]} = \frac{1}{-2\mathbb{E}[T(X_1)]} = b.$$

The bias is then strictly positive.

6. Given a vector of observations x, write a R code that computes a non-parametric bootstrap estimation of the bias for *k* bootstrap samples.

```
b_ref <- 1 / mean(1/(x - a))
# --- Solution with a for loop
b_star <- rep(0, k)
for (i in seq_len(k)) {
    b_star[i] <- 1 / mean(1/(sample(x, length(x), TRUE) - a))
}
bias <- mean(b_star) - b_ref
# --- Solution with apply function
mean(apply(matrix(sample(x, k * length(x), TRUE), length(x)), 2,
    function(x, a) {1 / mean(1/(x - a))}, a = a)) - b_ref</pre>
```

7. Denote b_1^*, \ldots, b_k^* the estimations of *b* we got with the previous bootstrap procedure. Give the definition of the empirical boostrap confidence interval on *b* with $1 - \alpha$ confidence level, $\alpha \in (0, 1)$. Choose the R code that computes this interval for a 90% confidence level, where $b_ref = \hat{b}_n$ and $b_star = (b_1^*, \ldots, b_k^*)$.

- (a) quantile(b_star, c(.05, .95))
- (b) b_ref quantile(b_star b_ref, c(.95, .05))
- (c) quantile(b_star, c(.025, .975))
- (d) b_ref quantile(b_star b_ref, c(.975, .025))

The empirical boostrap confidence interval on *b* with $1 - \alpha$ confidence level is the interval $[\hat{b}_n - q_{1-\alpha/2}, \hat{b}_n - q_{\alpha/2}]$ where q_β denotes the quantile of order $\beta \in (0, 1)$ of $(\beta_1^* - \hat{b}_n, \dots, \beta_k^* - \hat{b}_n)$. For $\alpha = 10\%$ the corresponding code is then (b).

8. Show that if X_1 is distributed according to $f(\cdot | b)$ then $Y_1 = (2X_1 - 2a)^{-1}$ admits a density $g(\cdot | b)$ with respect to the Lebesgue measure on \mathbb{R}^*_+ given by

$$g(y \mid b) = \frac{\sqrt{b}}{\sqrt{\pi y}} \exp(-by) \mathbb{1}_{y > 0}$$

 $\phi: x \mapsto (2x-2a)^{-1}$ is a \mathscr{C}^1 -diffeomorphism between $(a, +\infty)$ and \mathbb{R}^*_+ . The density of Y_1 is then

$$g(y \mid b) = f(\phi^{-1}(y) \mid b) \left| \frac{\mathrm{d}}{\mathrm{d}y} \phi^{-1}(y) \right| = f\left(\frac{1}{2y} + a \mid b\right) \times \frac{1}{2y^2} = \sqrt{\frac{b}{\pi}} \frac{1}{\sqrt{y}} \exp\left(-by\right) \mathbb{1}_{y>0}.$$

9. Admit the following result : if Y_1, \ldots, Y_n are *i.i.d.* random variables distributed according $g(\cdot | b)$ then $n/(Y_1 + \ldots + Y_n)$ has a density $d(\cdot | b)$ with respect to the Lebesgue measure on \mathbb{R}^*_+ given by

$$d(x \mid b) = \frac{(nb)^{n/2}}{\Gamma(n/2)} x^{-\frac{n}{2}-1} \exp\left(-\frac{nb}{x}\right) \mathbb{1}_{x>0}.$$

Show that the following estimator is an unbiased estimator of *b* :

$$\widehat{\beta}_n = \frac{n-2}{n} \widehat{b}_n.$$

Hint. You can use without justification that for all $\alpha > 1$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ and

$$\int_{0}^{+\infty} \frac{(nb)^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} \exp\left(-\frac{nb}{x}\right) dx = 1.$$

We have

$$\mathbb{E}_{b}[\widehat{\beta}_{n}] = \frac{n-2}{n} \mathbb{E}_{b}[\widehat{b}_{n}] = \frac{n-2}{n} \mathbb{E}_{b}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{X_{i}-a}\right)^{-1}\right] = \frac{n-2}{2n} \mathbb{E}_{b}\left[\frac{n}{\sum_{i=1}^{n}Y_{i}}\right].$$

Using the density of $n/(Y_1 + ... + Y_n)$, we have

$$\mathbb{E}_{b}\left[\frac{n}{\sum_{i=1}^{n}Y_{i}}\right] = \int_{0}^{\infty} x d(x \mid b) dx = \int_{0}^{\infty} \frac{\sqrt{nb}^{n}}{\Gamma(n/2)} x^{-\frac{n}{2}} \exp\left(-\frac{nb}{x}\right) dx = \frac{nb\Gamma(n/2-1)}{\Gamma(n/2)} \int_{0}^{\infty} \frac{(nb)^{\frac{n}{2}-1}}{\Gamma(n/2-1)} x^{-\frac{n}{2}} \exp\left(-\frac{nb}{x}\right) dx$$

Using the hint (n/2 > 1 for n > 2), we get that the integral is equal to one and $\Gamma(n/2) = (n/2 - 1)\Gamma(n/2 - 1)$. Thus,

$$\mathbb{E}_b\left[\frac{n}{\sum_{i=1}^n Y_i}\right] = \frac{2nb}{n-2},$$

and the result follows.

10. Show that

 $\mathbb{V}\mathrm{ar}_{b}[\widehat{b}_{n}] \geq 2\left(\frac{nb}{n-2}\right)^{2}.$

We deduce from the previous question that the bias of \hat{b}_n is

$$\mathbb{E}_b[\hat{b}_n] - b = \frac{2}{n-2}b.$$

The Cramér-Rao bound is then

$$\operatorname{Var}_{b}\left[\widehat{b}_{n}\right] \geq \left(1 + \frac{2}{n-2}\right)^{2} \frac{1}{I_{X_{1}}(b)} = \left(\frac{n}{n-2}\right)^{2} 2b^{2}.$$

11. Show that $\hat{\beta}_n$ is the unique uniformly minimum variance unbiased estimator.

 $\hat{\beta}_n$ is an unbiased estimator of *b*. Moreover, we have

$$\widehat{b}_n = \left(-\frac{2}{n}\sum_{i=1}^n T(X_i)\right)^{-1}.$$

However T(X) is the natural statistic associated to a regular exponential family. Then $S(X_1, ..., X_n) = \sum_{i=1}^n T(X_i)$ is a complete and sufficient statistic for *b*. Since \hat{b}_n is a bijective transform of $S(X_1, ..., X_n)$, it is also a complete and sufficient statistic for *b*. The Lehmann-Scheffé theorem then states that $\mathbb{E}[\hat{\beta}_n | \hat{b}_n]$ is the unique uniformly minimum variance unbiased estimator. But $\hat{\beta}_n$ is a measurable function of \hat{b}_n . Then $\mathbb{E}[\hat{\beta}_n | \hat{b}_n] = \hat{\beta}_n$.