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French – English Lexicon

• i.i.d. : independent and identically distributed

• échantillon : sample

• fonction de répartition : cumulative distribution function

• fonction de densité : probability distribution function

• fonction génératrice des moments : moment-generating
function

• famille exponentielle : exponential family

• espace naturel des paramètres : natural parameter space

• vraisemblance : likelihood

• statistique exhaustive : sufficient statistic

• statistique libre : ancillary statistic

• statistique complète : complete statistic

Exercise 1 ......

/
9

For the following statements, give the correct answer(s). Incorrect answers and missing justification return zero
point while incomplete answers gain partial points.

1. Let (Xn)n∈N∗ be a sequence of independent discrete random variables such that

P[Xn = 0] = n −1

n
and P[Xn =p

n] = 1

n
.

Then, when n goes to +∞,

(a) the sequence converges in L1 (convergence in
mean),

(b) the sequence converges in L2 (convergence in qua-
dratic mean),

(c) for any continuous function g , E[g (Xn)] converges
to 0,

(d) the sequence converges in distribution,

(e) the sequence does not converge at all.

(a, d) For any continuous and bounded function g , we have

E
[
g (Xn)

]= n −1

n
g (0)+ 1

n
g (
p

n).

Since g is bounded, the second term in the above sum converges to 0 when n goes to +∞ and thus

E
[
g (Xn)

] a.s.−→
n→+∞ g (0).

Then, (Xn) converges in distribution to 0. Moreover, if it converges in Lp , p ∈ N∗, it is necessarily to 0. We have
E[Xn] = 1/

p
n and E

[
X 2

n

]= 1. Thus, Xn converges in L1 to 0, but not in L2.

2. Consider the exponential family associated to the Bernoulli distribution with unknwon parameter p ∈ (0,1).
The moment generating function of natural statistic T (x) = x of the family is defined for t ∈Θ⊆R by

(a) (1−p)
/

(1−p − t ) (b) 1+p(exp(t )−1) (c) (1−p − t )
/

(1−p) (d) 1
/

[1+p(exp(t )−1)]

(b) To get the canonical form we set θ = log(p)− log(1−p). The canonical form is then

f (x | θ) = 1

1+exp(θ)
exp(θx) , θ ∈R.
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Then the moment generating function is defined for any t ∈R by

M(t ) = 1+exp(θ+ t )

1+exp(θ)
= 1+exp[log(p)− log(1−p)+ t ]

1+exp[log(p)− log(1−p)]
= 1+p(exp(t )−1).

3. Consider the density (with respect to the Lebesgue measure on R∗+) parametrised by an unknown (k,λ) ∈
N∗×R∗+ and defined by

f (x | k,λ) = λk xk−1 exp(−λx)

(k −1)!
1x>0.

(a) It constitutes a minimal and canonical exponential family.

(b) It constitutes a minimal exponential family but is not in a canonical form.

(c) It constitutes an exponential family that is neither minimal nor canonical.

(d) None of the other answers.

(a) The density writes as

f (x | k,λ) = λk

(k −1)!

1

x
1x≥0 exp

[
k log(x)−λx

]
.

Then it constitutes a canonical exponential family with natural parameter (k,λ) and natural statistic T (x) =
(log(x),−x). Moreover for (α1,α2) ∈ R∗×R∗ and c ∈ R, the set {x ∈ R+ ; α1 log(x)−α2x − c = 0} contains at most
2 elements (maximal number of intersections between an affine function and x 7→ log(x)) and hence has measure
zero (null set) for the Lebesgue measure. The family is minimal.

4. We run an experiment where we measure how much time n different customers spend on a specific page of
a website. Our observations x1, . . . , xn are stored in a vector x. We assume that the underlying statistical model is
a Gamma distribution with parameter (α,β). Which one among the following R command lines does return the
first quartile of the sample ?

(a) rgamma(0.25, 1, 2)

(b) pgamma(0.25, 1, 2)

(c) dgamma(0.25, 1, 2)

(d) qgamma(0.25, 1, 2)

(e) quantile(0.25, 1, 2)

(f) quantile(x, 0.25)

(f ) In order to get the empirical quantiles of a sample we use the function quantile. The first argument is the
sample, followed by the order of the quantiles we are interested in.
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5. Let X be a random variable with density, parametrised by λ ∈ R∗+, with respect to the composition of the
counting measure onN and the Lebesgue measure on R∗+ :

fX (x) =
{
λx exp(−λ)

2(x!) , if x ∈N,
λ
2 exp(−λx), otherwise.

The likelihood for the sample (1,1,2,2,2, x1, . . . , xn), with x1, . . . , xn ∉N is

(a)
λn

2n+5 exp

(
−λ

n∑
i=1

xi

)

(b)
λn+8

2n+8 exp

[
−λ

(
n∑

i=1
xi +5

)]
(c)

λ8 exp(−5λ)

2n+8

(d)
λn+3

2n+6 exp

[
−λ

(
n∑

i=1
xi +2

)]

(b) The likelihood is given by[
λ

2
exp(−λ)

]2 [
λ2 exp(−λ)

4

]3 n∏
i=1

λ

2
exp(−λxi ) = λn+8

2n+8 exp

[
−λ

(
n∑

i=1
xi +5

)]
.

6. Consider X distributed according to the Binomial distribution B(n, p), n ∈N∗ known and p ∈ (0,1) unknown.
If we denote θ the parameter of the canonical form of this exponential family, I (p) and I (θ) the Fisher information
contained in X for p and θ respectively, we have

(a) I (p) = n
/

[p(1−p)] (b) I (p) = 1
/

[p(1−p)] (c) I (θ) = ne−θ
(
1+eθ

)2
(d) I (θ) = neθ

/(
1+eθ

)2

(a, d) The density f (· | n, p) of the Binomial distribution is twice differentiable with respect to p on (0,1) and

d

dp
f (x | n, p) = x

p
− n −x

1−p
and

d2

dp2 f (x | n, p) =− x

p2 − n −x

(1−p)2 .

Using that Ep [X ] = np, we then have

I (p) =−Ep

[
d2

dp2 f (X | n, p)

]
= np

p2 − n −np

(1−p)2 = n

p(1−p)
.

The parameter of the canonical form is θ = log(p)−log(1−p), that is p = exp(θ)/[1+exp(θ)] :=ψ(θ). We then have

I (θ) =
(

d

dθ
ψ(θ

)2

I (p) = exp(2θ)

[1+exp(θ)]4

n[1+exp(θ)]2

exp(θ)
= n exp(θ)

[1+exp(θ)]2 .

7. Consider a regular and minimal exponential family with natural statistic T (·) and density f (· | θ), θ ∈ Θ ⊆ R.
For X1, . . . , Xn i.i.d. random variables distributed according to f (· | θ), we set S =∑n

i=1 T (Xi ).

(a) Any bijective transform of S is sufficient for θ.

(b) S is minimal sufficient for θ.

(c) Any sufficient statistic for θ that is a function of S
is minimal sufficient for θ.

(d) None of the other answers.

(a, b, c) S is a sufficient statistic for θ. Thus any bijective transform of S is sufficient for θ. For a minimal repre-
sentation, S is minimal sufficient. Thus S is a function of any other sufficient statistic. Therefore any sufficient
statistic R that is a function of S is also a function of any other sufficient statistic. Hence R is also minimal suffi-
cient.
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8. Let X1, . . . , Xn be i.i.d. random variables distributed according to the normal distribution N (µ,1) and denote

X n = 1

n

n∑
i=1

Xi , X(1) = min(X1, . . . , Xn) and X(n) = max(X1, . . . , Xn).

(a) X(n) - X(1) is independent of X n .

(b)
(
X(1), X(n)

)
is not a complete statistic.

(c)
(
X(1), X(n)

)
is a sufficient statistic for µ.

(d)
(

X1 −X n , . . . , Xn −X n

)
is independent of X n .

(e) None of the other answers.

(a, b, d) X(n) - X(1) and (X1 − X n , . . . , Xn − X n) are ancillary statistic. Moreover X n is a complete and sufficient
statistic for µ (result on natural statistic associated to an exeponential family). It follows from Basu’s theorem that
both X(n) - X(1) and (X1 −X n , . . . , Xn −X n) are independent from X n .

X(n) - X(1) is an ancillary statistic that is not constant almost surely and such that Eµ
[

X(n) −X(1)
]= c <∞ is inde-

pendent of µ. Thus, for the function φ : (x, y) 7→ y −x − c, we have

Eµ
[
φ

(
X(1), X(n)

)]= 0, ∀µ ∈R.

But Pµ
[
φ

(
X(1), X(n)

)= 0
] = Pµ

[
X(n) −X(1) = c

] ̸= 1 since X(n) - X(1) is not constant almost surely. Therefore(
X(1), X(n)

)
is not a complete statistic.

Exercise 2 ......

/
12

Given a ∈ R, the Lévy distribution of scale parameter b ∈Θ0 ⊆ R∗+ admits a density with respect to the Lebesgue
measure on (a,+∞)

f (x | b) = 1

x −a

√
b

2π(x −a)
exp

(
− b

2x −2a

)
1x>a .

In this exercise we consider X1, . . . , Xn , n > 2, i.i.d. random variables distributed according to f (· | b) for a known
parameter a and an unknown scale parameter b.

1. Show that f (· | b) can define an exponential family with a natural statistic T (·). Precise its canonical form and
its natural parameter space. Is the family regular and minimal ?

The density writes as

f (x | b) = c(b)h(x)exp(η(b)T (x)), where

c(b) =
√

b
2π , h(x) = 1

(x−a)
p

x−a
1x≥a ,

η(b) = b, T (x) =− 1
2x−2a .

The family is already in its canonical form and its natural parameter space is

Θ= {b ∈R | c(b) > 0} =R∗+ .

The family is regular since Θ is an open set, and minimal, since it is a one dimensional family.
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2. Show that there is a unique maximum likelihood estimator of b defined as

b̂n =
(

1

n

n∑
i=1

1

Xi −a

)−1

The log-likelihood writes as

ℓ(b | x1, . . . , xn) =
n∑

i=1
log f (xi | b) = n

2
log(b)−b

n∑
i=1

1

2(xi −a)
−n log(2π)− 3

2

n∑
i=1

log(xi −a).

It is differentiable on Θ=R∗+ and

∂

∂b
ℓ(b | x1, . . . , xn) = n

2b
−

n∑
i=1

1

2(xi −a)
.

The log-likelihood has a unique critical point in Θ given by

b̂n =
(

1

n

n∑
i=1

1

xi −a

)−1

Since f (· | b) defines a regular exponential family, the critical point is the unique maximum likelihood estimator
of b.

3. Show that b̂n
P−→

n→+∞ b.

We have

b̂n =
(
− 2

n

n∑
i=1

T (Xi )

)−1

.

T (X1), . . . ,T (Xn) is a sequence of i.i.d. (as measurable transform of i.i.d. random variables) and integrable (com-
parative growth in a and Riemann criterion in +∞) random variables. The Law of Large Numbers gives

1

n

n∑
i=1

T (Xi )
P−→

n→+∞ E[T (X1)].

The first moment of the natural statistic T (X1) is given by

E[T (X1)] =− d

db
logc(b) =− 1

2b
. (1)

The continuity of g : x 7→ (−2x)−1 on R∗+ gives that

b̂n = g

(
1

n

n∑
i=1

T (Xi )

)
P−→

n→+∞ g (E[T (X1)]) = b.

4. Show that√
n

2

(
b̂n −b

b̂n

)
d−→

n→∞ N (0,1).

Since the exponential family defined by f (· | b) is regular, the fundamental theorem of statistic gives

p
n(b̂n −b)

d−→
n→∞ N

(
0, IX1 (b)−1) .
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The log-likelihood is twice differentiable and

∂2

∂b2ℓ(b | x1) =− 1

2b2

The Fisher information contained in X1 on b is then

IX1 (b) =−Eb

[
− 1

2b2

]
= 1

2b2 .

We thus have

p
n(b̂n −b)

d−→
n→∞ N

(
0,2b2) .

Using the previous question and the continuity of x 7→ x−1 at b > 0, we get

1p
2b̂n

P−→
n→+∞

1p
2b

.

It follows from Slutsky’s theorem that

p
np

2b̂n

(
b̂n −b

) d−→
n→+∞

1p
2b

N (0,2b2) ≡N (0,1).

5. Prove that the bias of the estimator b̂n is strictly positive.

Since the function x 7→ 1/x is strictly convex, the Jensen inequality and equation (1) from question 2. lead to

E
[
b̂n

]> 1

E
[

1
n

∑n
i=1

1
xi−a

] = 1

−2E[T (X1)]
= b.

The bias is then strictly positive.

6. Given a vector of observations x, write a R code that computes a non-parametric bootstrap estimation of the
bias for k bootstrap samples.

b_ref <- 1 / mean(1/(x - a))
# --- Solution with a for loop
b_star <- rep(0, k)
for (i in seq_len(k)) {

b_star[i] <- 1 / mean(1/(sample(x, length(x), TRUE) - a))
}
bias <- mean(b_star) - b_ref
# --- Solution with apply function
mean(apply(matrix(sample(x, k * length(x), TRUE), length(x)), 2,

function(x, a) {1 / mean(1/(x - a))}, a = a)) - b_ref
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7. Denote b⋆1 , . . . ,b⋆k the estimations of b we got with the previous bootstrap procedure. Give the definition of
the empirical boostrap confidence interval on b with 1−α confidence level, α ∈ (0,1). Choose the R code that
computes this interval for a 90% confidence level, where b_ref= b̂n and b_star= (b⋆1 , . . . ,b⋆k ).
(a) quantile(b_star, c(.05, .95))

(b) b_ref - quantile(b_star - b_ref, c(.95, .05))

(c) quantile(b_star, c(.025, .975))

(d) b_ref - quantile(b_star - b_ref, c(.975, .025))

The empirical boostrap confidence interval on b with 1−α confidence level is the interval [b̂n −q1−α/2, b̂n −qα/2]
where qβ denotes the quantile of order β ∈ (0,1) of (β⋆1 − b̂n , . . . ,β⋆k − b̂n). For α= 10% the corresponding code is
then (b).

8. Show that if X1 is distributed according to f (· | b) then Y1 = (2X1 −2a)−1 admits a density g (· | b) with respect
to the Lebesgue measure on R∗+ given by

g (y | b) =
p

bp
πy

exp(−by)1y>0.

φ : x 7→ (2x −2a)−1 is a C 1-diffeomorphism between (a,+∞) and R∗+. The density of Y1 is then

g (y | b) = f
(
φ−1(y)

∣∣ b
)∣∣∣∣ d

dy
φ−1(y)

∣∣∣∣= f

(
1

2y
+a

∣∣∣∣ b

)
× 1

2y2 =
√

b

π

1p
y

exp
(−by

)
1y>0.

9. Admit the following result : if Y1, . . . ,Yn are i.i.d. random variables distributed according g (· | b) then n
/

(Y1 +
. . .+Yn) has a density d(· | b) with respect to the Lebesgue measure on R∗+ given by

d(x | b) = (nb)n/2

Γ(n/2)
x− n

2 −1 exp

(
−nb

x

)
1x>0.

Show that the following estimator is an unbiased estimator of b :

β̂n = n −2

n
b̂n .

Hint. You can use without justification that for all α> 1, Γ(α+1) =αΓ(α) and∫ +∞

0

(nb)α

Γ(α)
x−α−1 exp

(
−nb

x

)
dx = 1.

We have

Eb
[
β̂n

]= n −2

n
Eb

[
b̂n

]= n −2

n
Eb

[(
1

n

n∑
i=1

1

Xi −a

)−1]
= n −2

2n
Eb

[
n∑n

i=1 Yi

]
.

Using the density of n
/

(Y1 + . . .+Yn), we have

Eb

[
n∑n

i=1 Yi

]
=

∫ ∞

0
xd(x | b)dx =

∫ ∞

0

p
nb

n

Γ(n/2)
x− n

2 exp

(
−nb

x

)
dx = nbΓ(n/2−1)

Γ(n/2)

∫ ∞

0

(nb)
n
2 −1

Γ(n/2−1)
x− n

2 exp

(
−nb

x

)
dx

Using the hint (n/2 > 1 for n > 2), we get that the integral is equal to one and Γ(n/2) = (n/2−1)Γ(n/2−1). Thus,

Eb

[
n∑n

i=1 Yi

]
= 2nb

n −2
,

and the result follows.
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10. Show that

Varb
[
b̂n

]≥ 2

(
nb

n −2

)2

.

We deduce from the previous question that the bias of b̂n is

Eb
[
b̂n

]−b = 2

n −2
b.

The Cramér-Rao bound is then

Varb
[
b̂n

]≥ (
1+ 2

n −2

)2 1

IX1 (b)
=

( n

n −2

)2
2b2.

11. Show that β̂n is the unique uniformly minimum variance unbiased estimator.

β̂n is an unbiased estimator of b. Moreover, we have

b̂n =
(
− 2

n

n∑
i=1

T (Xi )

)−1

.

However T (X ) is the natural statistic associated to a regular exponential family.Then S(X1, . . . , Xn) = ∑n
i=1 T (Xi )

is a complete and sufficient statistic for b. Since b̂n is a bijective transform of S(X1, . . . , Xn), it is also a complete
and sufficient statistic for b. The Lehmann-Scheffé theorem then states that E[β̂n | b̂n] is the unique uniformly
minimum variance unbiased estimator. But β̂n is a measurable function of b̂n . Then E[β̂n | b̂n] = β̂n .
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