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French – English Lexicon

• i.i.d. : independent and identically distributed

• échantillon : sample

• fonction de répartition : cumulative distribution function

• fonction de densité : probability distribution function

• fonction génératrice des moments : moment-generating
function

• famille exponentielle : exponential family

• espace naturel des paramètres : natural parameter space

Exercise 1 ......

/
7

For the following statements, give the correct answer(s). There is no negative point but any incorrect/missing
answer or incorrect/missing justification give no point.

1. Consider the function f defined, for x ∈R, by f (x) = (x2 −x −2)1{x∈]−1,2[}. For the Lebesgue measure

(a) x 7→ 9 f (x)/2 is a density,

(b) x 7→ 2 f (x)/9 is a density,

(c) x 7→ −2 f (x)/9 is a density,

(d) None of the other answers.

(c) The function f is a convex polynomial function such that f (−1) = f (2) = 0. Thus f is negative on ]− 1,2[,
which excludes (a) and (b). Moreover∫

R
f (x)dx =

[
x3

3
− x2

2
−2x

]2

−1
=−9

2
.

2. Given X a random variable with density on R (with respect to the Lebesgue measure) proportional to

g (x) = exp(−b|x|) , b ∈R∗
+.

The characteristic function of X at point t ∈R is given by

(a) 2b
/

(b2 + t 2),

(b) 4
/

(b2 + t 2),

(c) b2
/

(b2 + t 2),

(d) None of the other answers.

Hint. for any t ∈R, exp(−bx ± i t x) −→
x→+∞ 0.

(c) g is a positive function such that∫
R

g (x)dx = 2
∫ +∞

0
exp(−bx)dx = 2

b
.

Then the density of X is f (x) = bg (x)/2, for all x ∈R. The characteristic function of X at point t ∈R is

φX (t ) =
∫ 0

−∞
b

2
exp(i t x +bx)dx +

∫ +∞

0

b

2
exp(i t x −bx)dx = b

2

[
exp(i t x +bx)

i t +b

]0

−∞
+ b

2

[
exp(i t x −bx)

i t −b

]+∞
0

.

Using the Hint, we get

φX (t ) = b

2

1

i t +b
− b

2

1

i t −b
= b2

b2 + t 2 .
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3. A sequence (Yn)n∈N∗ of random variables is said to c-converge to a random variable Y if, for any ε> 0,

∞∑
n=1

P{|Yn −Y |> ε} <∞.

(a) c-convergence implies convergence in distribu-
tion.

(b) almost sure convergence implies c-convergence.

(c) convergence in probability implies c-convergence

(d) c-convergence implies convergence in probability.

(e) c-convergence implies almost sure convergence.

(f) none of the other answers holds in full generality

(a, d, e) If Xn c-converges, the Borel Cantelli lemma shows that Xn converges almost surely. Then we use the
result that almost sure convergence implies convergence in probability and in distribution.

4. Let (Xn)n∈N∗ be a sequence of i.i.d. discrete random variables such that

P[Xn = 0] = n −1

n
and P[Xn =p

n] = 1

n
.

Then, when n goes to +∞,

(a) the sequence converges in L1 (convergence in
mean),

(b) the sequence converges in L2 (convergence in qua-
dratic mean),

(c) for any continuous function g , we have E[g (Xn)]
converges to 0,

(d) converges in distribution,

(e) does not converge at all.

(a, d) For any continuous and bounded function g , we have

E
[
g (Xn)

]= n −1

n
g (0)+ 1

n
g (
p

n).

Since g is bounded, the second term in the above sum converges to 0 when n goes to +∞ and thus

E
[
g (Xn)

] a.s.−→
n→+∞ g (0).

Then, (Xn) converges in distribution to 0. Moreover, if it converges in Lp , p ∈ N∗, it is necessarily to 0. We have
E[Xn] = 1/

p
n and E

[
X 2

n

]= 1. Thus, Xn converges in L1 to 0, but not in L2.

5. Given a vector x = (x1, . . . , xn), which of the following codes compute a vector u = (u1, . . . ,un) such that for
i ∈ {1, . . . ,n},

ui =
i∑

k=1

xk

i
?

(a) mean(x)

(b) cumsum(x)/cumsum(rep(1, length(x)))

(c) cumsum(x)/seq_len(length(x))

(d) cumsum(x)/(1:length(x))

(e) sum(x)/length(x)

(f) sum(x)/sum(length(x))

(b, c, d) We have

(u1, . . . ,un) := (x1, x1 +x2, . . . , x1 + . . .+xn)

(1,2, . . . ,n)
.

The function cumsum(x) returns (x1, x1+x2, . . . , x1+. . .+xn). Functions 1:length(x), seq_len(length(x)) and
cumsum(rep(1, length(x))) return (1,2, . . . ,n).
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6. Consider an exponential family defined by f (x | θ) = c(θ)h(x)exp[η(θ)T (x)], for x ∈ R and θ ∈ R. Assume that
η is a bijective function from R to R, and denote τ 7→ η−1(τ) its inverse. If X has density f (· | θ), the moment
generating function of T (X ) is defined for t ∈R by

(a) c(θ)
/

c(θ+ t )

(b) c
(
η−1(τ)

)/
c
(
η−1(τ+ t )

) (c) c
(
η−1(τ)

)/
c
(
η−1(τ)+ t

)
(d) c(θ)

/
c
(
η−1(η(θ)+ t )

)
(b, d) The canonical form of the family corresponds to the parametrisation τ= η(θ), that is

f (x | τ) = c
(
η−1(τ)

)
h(x)exp[τT (x)].

The moment generating function of T (X ) is then defined for t ∈R by

c
(
η−1(τ)

)
c
(
η−1(τ+ t )

) = c(θ)

c
(
η−1(η(θ)+ t )

) .

7. Consider the density (with respect to the Lebesgue measure on R) parametrised by an unknown (k,λ) ∈N∗×
R∗+ and defined by

f (x | k,λ) = λk xk−1 exp(−λx)

(k −1)!
1x≥0.

(a) It constitutes a minimal and canonical exponential family.

(b) It constitutes a minimal exponential family but is not in a canonical form.

(c) It constitutes an exponential family that is weither minimal nor canonical.

(d) None of the other answers.

(a) The density writes as

f (x | k,λ) = λk

(k −1)!

1

x
1x≥0 exp

[
k log(x)−λx

]
.

Then it constitutes a canonical exponential family with natural parameter (k,λ) and natural statistic T (x) =
(log(x),−x). Moreover for (α1,α2) ∈ R∗×R∗ and c ∈ R, the set {x ∈ R+ ; α1 log(x)−α2x − c = 0} contains at most
2 elements (maximal number of intersections between an affine function and x 7→ log(x)) and hence has measure
zero (null set) for the Lebesgue measure. The family is minimal.

8. We run an experiment where we measure how much time n different customers spend on a specific page of a
website. Our observations x1, . . . , xn are stored in a vector x. We assume that the underlying statistical model is a
Gamma distribution with parameter (α,β). Which one among the following command lines does return the first
quartile of the Gamma model with parameter (1,2) ?

(a) rgamma(0.25, 1, 2)

(b) pgamma(0.25, 1, 2)

(c) dgamma(0.25, 1, 2)

(d) qgamma(0.25, 1, 2)

(e) quantile(x, 0.25, 1, 2)

(f) quantile(0.25, 1, 2)

(d) In order to get the theoretical quantiles of a distribution we use the prefix q and the name of the distribution.
The function quantile is only for computing empirical quantiles of a sample.
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9. When given a sample x of size n from F and considering the median med(X ) as the quantity of interest, a
bootstrap approximation of a 95% interval of variability of the empirical median is given by

(a) quantile(median(matrix(sample(x,n*m,rep=TRUE),m)),c(.025,.975))

(b) quantile(apply(matrix(sample(x,n*m,rep=TRUE),m),1,median),c(.025,.975))

(c) quantile(matrix(sample(median(x),n*m,rep=TRUE),m),c(.035,.985))

(d) median(apply(matrix(sample(x,n*m,rep=TRUE),m),1,sum),prob=.95)

(e) quantile(0.25, 1, 2)

(b) In order to that interval we need to
1. generate m bootstrap samples of length n by sampling uniformly with replacement in x (done with function

sample and stored in a matrix),

2. compute the median of each bootstrap sample using the function median (apply is used to apply the median
to each row of the matrix),

3. taking the quantiles of order 2.5% and 97.5% of that sample of medians.

Exercise 2 ......

/
7.5

Suppose that Z1 and Z2 are i.i.d. random variables distributed according to the standard normal distribution
N (0,1). We define the general Rayleigh distribution with unknown scale parameter b ∈ R∗+ as the density of the

random variable X = b
√

Z 2
1 +Z 2

2 .

Reminder. The probability density function of the normal N (0,1) distribution is

φ(x) = 1p
2π

exp

(
−x2

2

)
.

1. Show that the cumulative distribution function of X is defined for all t ∈R∗+ by

F (t ) = 1−exp

(
− t 2

2b2

)
.

Since Z1 and Z2 are independent the joint distribution of (Z1, Z2) is the product of the marginal distributions of
Z1 and Z2 and we have

F (t ) =P[X ≤ t ] =P
[

Z 2
1 +Z 2

2 ≤ t 2

b2

]
=

∫
R2

1

2π
exp

(
−z2

1 + z2
2

2

)
1{z2

1+z2
2≤t 2/b2}dz1dz2.

Using the change of variables in polar coordinates, which is a C 1-diffeormorphism between R+ ∗×]−π,π[ and
R2\]−∞,0], we get

F (t ) = 1

2π

∫ π

−π

∫
R+∗

exp

(
−r 2

2

)
1{r 2≤t 2/b2}r dr dθ =

∫ t
b

0
exp

(
−r 2

2

)
1{r 2≤t 2/b2}r dr = 1−exp

(
− t 2

2b2

)
.
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2. Compute the density f (· | b) of X and show that it can define an exponential family with a natural statistic
T (·) that is positive. Precise its canonical form and its natural parameter space. Is the family regular and minimal ?

The density is given by

f (x | b) = F ′(x) = x

b2 exp

(
− x2

2b2

)
1{R+}(x) = c(b)h(x)exp(η(b)T (x)), where

{
c(b) = 1

b2 , h(x) = x1{R+}(x),

η(b) =− 1
2b2 , T (x) = x2.

The associated canonical form is obtained with parameter θ = η(b) and partition function a(θ) =−2θ, that is

f (x | θ) =−2θx1{R+}(x)exp
(
θx2) .

The natural parameter space isΘ= {θ ∈R ; a(θ) > 0} =R∗−. Alternatively, we can say that

Θ=
{
θ ∈R ;

∫ +∞

0
x exp(θx2)dx <∞

}
=R∗

−,

since the integrand is integrable in +∞ solely for θ < 0. The family is regular since Θ is an open set, and minimal,
since it is a one dimensional family.

3. Show that the moment generating function of X 2 is defined by

MX 2 (t ) = 1

1−2b2t
, for t ∈

(
−∞,

1

2b2

)
.

The moment generating function is defined for t ∈R such that θ+ t ∈Θ, that is for t ∈]−∞,−θ[ or equivalently for
t ∈]−∞,1/(2b2)[. Using the canonical form, it is then given by

MX 2 (t ) = a(θ)

a(θ+ t )
= θ

θ+ t
= 1

1−2b2t
, using that θ = −1

2b2 .

4. Given a sequence (Xn)n∈N∗ of i.i.d. random variables distributed according to f (· | b), show that

b̂2
n = 1

2n

n∑
k=1

X 2
k

P−→
n→+∞ b2.

The first moment of the natural statistic T (X ) = X 2 is given by

E
[

X 2
1

]=− d

dθ
log a(θ) =−1

θ
= 2b2.

(X 2
n

/
2)n∈N∗ is a sequence of i.i.d. random variables (as a measurable transform of i.i.d. random variables) that are

integrable. The Law of Large Numbers gives

1

2n

n∑
k=1

X 2
k

P−→
n→+∞ E

[
1

2
X 2

1

]
= b2.
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5. Show that
p

n

b̂2
n

(
b̂2

n −b2) d−→
n→+∞ N (0,1).

The second moment of the natural statistic T (X ) = X 2 is given by

Var
[

X 2
1

]=− d2

dθ2 log a(θ) = 1

θ2 = 4b4.

X 2
1

/
2 has then a finite variance and the Central Limit theorem applies to (X 2

n

/
2)n∈N∗ :

p
n

(
b̂2

n −b2) d−→
n→+∞ N (0,Var

[
0.5X 2

1

]
) ≡N (0,b4). (1)

Using the previous question and the continuity of x 7→ x−1 at b2 > 0, we get

1

b̂2
n

P−→
n→+∞

1

b2 . (2)

It follows from Slutsky’s theorem that

p
n

b̂2
n

(
b̂2

n −b2) d−→
n→+∞

1

b2 N (0,b4) ≡N (0,1).

6. Show that there exists a sequence cn , whose expression depends on known constants and b̂2
n , such that

cn

(√
b̂2

n −b

)
d−→

n→+∞ N (0,1).

Starting from (1) and using the delta method with the function g : x 7→p
x that is differentiable in b2 > 0 : g ′(b2) =

1/(2b), we have

p
n

(√
b̂2

n −b

)
d−→

n→+∞ N

(
0,

b2

4

)
. (3)

(2), (3) and Slutsky’s theorem give

2

√
n

b̂2
n

(√
b̂2

n −b

)
d−→

n→+∞ N (0,1) .

7. Find a function g such that

p
n

[
g

(√
2

π
X n

)
− g (b)

]
d−→

n→+∞ N (0,1), where X n = 1

n

n∑
k=1

Xk .

Since X 2
1 is integrable, we have that X1 is integrable and

E[X1] =
∫ +∞

0

x2

b2 exp(− x2

2b2 )dx =
p

2π

2b

∫ +∞

−∞
1p
2πb

x2 exp(− x2

2b2 )dx = b

√
π

2
.

Applying the Central Limit theorem to (Xn)n∈N∗ yields that

p
n

(√
2

π
X n −b

)
d−→

n→+∞ N

(
0,

2

π
Var[X1]

)
, where Var[X1] = E[

X 2
1

]−E[X1]2 = b2
(
2− π

2

)
. (4)
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Then using the delta method for a function g , differentiable at b, leads to

p
n

[
g

(√
2

π
X n

)
− g (b)

]
d−→

n→+∞ N

(
0,b2

(
4

π
−1

)
[g ′(b)]2

)
.

The function g is then solution of

g ′(x) =
p
π

x
p

4−π .

We can take for instance

g : x 7→
p
πp

4−π log(x).

8. In order to approximate b, is it better to use an approximation based on X n or an approximation based on
b̂2

n ?

Hint. 4/π≈ 1.27.

The asymptotic variance from (4) is larger than the asymptotic variance from (3). It is better to use b̂2
n .

Exercise 3 ......

/
7.5

Let f be a probability density function on R such that

f (x) = c f̃ (x), ∀x ∈R,

where the positive function f̃ is known and computable (for instance, by an R function df(x)), and the constant
c is unknown. This setting is called a missing normalising constant problem.

1. Show that that the constant c is uniquely defined by f̃ .

Since f is a density, its integral on R is equal to 1 and thus

c =
(∫
R

f̃ (x)dx

)−1

.

Until further notice, consider the special case of an interval ]a,b[ such that

∀x ∉]a,b[, f̃ (x) = 0 and sup
x∈R

f̃ (x) = M <∞.

2.a. Defining the rectangle R =]a,b[×]0, M [ and the subset of R

S = {x = (x1, x2) ∈R ; x2 ≤ f̃ (x1)},

give the ratio of the surfaces of S and of R.

The surface of S is∫
R2
1x2≤ f̃ (x1)dx2dx1 =

∫ b

a

∫ f̃ (x1)

0
dx2dx1 =

∫ b

a
f̃ (x1)dx1 = 1

c
.

The ratio of the surfaces of S and of R is then [cM(b −a)]−1.
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2.b. Considering U = (U1,U2) a Uniform random point on R, compute the probability P[U2 ≤ f̃ (U1)].

We have

P[U2 ≤ f̃ (U1)] = 1

M(b −a)

∫ b

a

∫ f̃ (u1)

0
du2du1 = 1

M(b −a)

∫ b

a
f̃ (u1)du1 = 1

cM(b −a)
.

2.c. Given an i.i.d. sequence U 1, . . . ,U n of Uniform random points on R, and exploiting the Law of Large Num-
bers, construct a converging (with n) approximation of c−1.

For k ∈N∗, let set

Xk = M(b −a)1U k
2 ≤ f̃ (U k

1 ).

X1, . . . , Xn is a sequence of i.i.d. random variables (as a measurable transform of i.i.d. random variables) and
integrable (they are bounded). The Law of Large Numbers then gives that

X n = 1

n

n∑
k=1

Xk = M(b −a)

n

n∑
k=1

1U k
2 ≤ f̃ (U k

1 )
P−→

n→+∞ E[X1] = M(b −a)P [U 1
2 ≤ f̃ (U 1

1 )] = 1

c
.

2.d. Derive a converging estimator of c.

The function x 7→ x−1 is continuous on R∗+. Then

1

X n
= n

M(b −a)
∑n

k=11U k
2 ≤ f̃ (U k

1 )

P−→
n→+∞ c.

2.e. Write an R code calling df() that produces this estimator of c.

1/(M * (b - a) * mean(runif(n, 0, M) <= df(runif(n, a, b))))

From now and till the end of the Exercise, consider two simultaneous missing normalising constant densities

f1(x) = c1 f̃1(x) and f2(x) = c2 f̃2(x),

where c1, c2 are unknown and f̃1, f̃2 are known (with associated R functions df1 and df2).

3.a. Let X1 be a random variable with density f1(x). Show that

E

[
f̃2(X1)

f̃1(X1)

]
= c1

c2
.

We have

E

[
f̃2(X1)

f̃1(X1)

]
=

∫
f̃2(x)

f̃1(x)
f1(x)dx =

∫
f̃2(x)

���f̃1(x)
c1�

��f̃1(x)dx = c1

∫
f̃2(x)dx = c1

c2
(using question 2.a.). (5)
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3.b. Given an i.i.d. sequence X11, . . . , X1n of random variable with density f1, deduce from question 3.a. an ap-
proximation of c1

/
c2 that is converging with n.

The Law of Large Numbers applied to the sequence of i.i.d. random variables ( f̃2(X1k )
/

f̃1(X1k )) shows that

1

n

n∑
k=1

f̃2(X1k )

f̃1(X1k )

P−→
n→+∞ E

[
f̃2(X1)

f̃1(X1)

]
= c1

c2
.

3.c. Let α(·) be a positive function such that∫
α(x) f̃1(x) f̃2(x)dx <+∞.

Show that, if X1 is a random variable with density f1 and X2 is a random variable with density f2,

E
[
α(X1) f̃2(X1)

]
E
[
α(X2) f̃1(X2)

] = c1

c2
.

We have

E
[
α(X1) f̃2(X1)

]= ∫
α(x) f̃2(x) f1(x)dx = 1

c2

∫
α(x) f2(x) f1(x)dx.

In the same way,

E
[
α(X2) f̃1(X2)

]= 1

c1

∫
α(x) f1(x) f2(x)dx.

The result directly follows.

3.d. Deduce from question 3.c. a converging approximation of c1
/

c2 based on two sequences X11, . . . , X1n and
X21, . . . , X2n of i.i.d. random variables with density f1 and f2 respectively.

The Law of Large Numbers applied to (α(X1k ) f̃2(X1k )) and (α(X2k ) f̃1(X2k )) gives that

1

n

n∑
k=1

α(X1k ) f̃2(X1k )
P−→

n→+∞ E
[
α(X1) f̃2(X1)

]
and

1

n

n∑
k=1

α(X2k ) f̃1(X2k )
P−→

n→+∞ E
[
α(X2) f̃1(X2)

]
.

Thus, ∑n
k=1α(X1k ) f̃2(X1k )∑n
k=1α(X2k ) f̃1(X2k )

P−→
n→+∞

c1

c2
.

3.e. Assuming there exist simulation functions rf1(n) and rf2(n) to simulate from f1 and f2, write an R code
that produces this estimator of c1/c2.

x_1 <- rf1(n)
x_2 <- rf2(n)
sum(alpha(x_1) * df2(x_1)) / sum(alpha(x_2) * df1(x_2))
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