Tutorial n°1 – Probability Basics

stoehr@ceremade.dauphine.fr

Exercise 1 (*Probability or Statistics?*). Let $X_1, ..., X_n$ be *i.i.d.* random variables and $x_1, ..., x_n$ be realisations or observations of the later random variables. Which of the following quantities are random?

1. $\max\{x_1, \dots, x_n\},$ **3.** $\frac{1}{n} \sum_{i=1}^n X_i,$ **5.** $\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2.$ **2.** the sample size n,**4.** $\min\{X_1, \dots, X_n\},$

Exercise 2 (*True or False*?). Let *X* and *Y* be integrable random variables. Which of the following statements are correct? Justify your answer with a brief proof or a counterexample.

1. If X is symmetric with respect to 0, then $\mathbb{E}[X] = 0.$ 4. $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y].$ 2. $\mathbb{E}[\frac{1}{X}] = \frac{1}{\mathbb{E}[X]}.$ 5. $\mathbb{V}ar[X+Y] = \mathbb{V}ar[X] + \mathbb{V}ar[Y].$ 3. $\mathbb{E}[X]^2 \le \mathbb{E}[X^2].$

Exercise 3. Let *X* be a real random variable with density

$$f_X(x) = \frac{5}{x^2} \mathbb{1}_{\{x > 5\}}$$

Compute the following quantities:

1. $\mathbb{P}[X > 20]$, **2.** $F_X(t)$, for all $t \in \mathbb{R}$, **3.** $\mathbb{E}[X]$.

Exercise 4. Let *X* be a random variable following the uniform distribution on $[-\pi/2, \pi/2]$. Determine the distribution of tan(*X*).

Exercise 5 (*Multinomial distribution*). A population is divided into *K* groups. We denote $p_1, ..., p_K$ the proportions of individuals in each group, with $p_1, ..., p_K \in [0, 1]$ and $\sum_{i=1}^{K} p_i = 1$. We draw in this population *n* individuals with replacement. Let denote N_i the number of individuals belonging to group *i*, *i* = 1,..., *K*, among the *n* individuals drawn.

- **1.** Give, with a justification, the distribution of (N_1, \ldots, N_K) .
- **2.** Give the marginal distribution of N_i , i = 1, ..., K.
- **3.** Give the R command to use to run this experiment.

Exercise 6. We consider a system made of two different machines working in series, that is the system works as long as both machines work. Let denote X_1 and X_2 the lifetime of the two machines and *Z* the lifetime of the system. We assume that the random variables X_1 and X_2 are independent and follow an exponential distribution with respective parameters λ_1 and λ_2 .

- **1.** Compute the probability that the system breaks down after time $t \ge 0$ and deduce the distribution of *Z*.
- 2. Compute the probability that the break down is due to a failure of machine 1.
- **3.** Let *Y* be a random variable such that Y = 1 if the failure is due to machine 1 and Y = 0 otherwise.
 - (a) Compute $\mathbb{P}[Z > t, Y = 1]$ for all $t \ge 0$.
 - (b) Deduce that *Z* and *Y* are independent.

\diamond To do at Home \diamond

Exercise 7 (Characteristic function).

1. Let Y be a real random variable and Z a random variable, independent of Y, such that

$$\mathbb{P}[Z=1] = \mathbb{P}[Z=-1] = \frac{1}{2}.$$

- (a) Show that the law of X = ZY is symmetric.
- (b) Compute the characteristic function of *X* according to the characteristic function of *Y*.
- **2.** Let *X* be a random variable following the standard Laplace law:

 $f_X(x) = 0.5 \exp(-|x|).$

Show that, for every real t, $\Phi_X(t) = (1 + t^2)^{-1}$.

Exercise 8 (*Gamma distribution*). Given $\alpha > 0$ and $\lambda > 0$, the gamma distribution $\gamma(\alpha, \lambda)$ is defined by the density with respect to the Lebesgue measure

$$f(x;\alpha,\lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \exp(-\lambda x) x^{\alpha-1} \mathbb{1}_{\{x \ge 0\}}, \quad \text{where} \quad \Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha-1} dt$$

- **1.** Check that $f(\cdot; \alpha, \lambda)$ is a probability density function.
- **2.** Compute the expectation of the gamma distribution $\gamma(\alpha, \lambda)$.
- **3.** Let X_1, \ldots, X_n be *i.i.d.* random variables with distribution $\mathscr{E}(\lambda)$. Show that $X_1 + \ldots + X_n$ is distributed according to the gamma distribution $\gamma(n, \lambda)$.
- **4.** Let *X* and *Y* be independent random variables with distribution $\gamma(\alpha, \lambda)$.
 - (a) Show that X + Y and X/X+Y are independent random variables.
 - **(b)** Give the distributions of X + Y and X/X+Y.