Tutorial ${ }^{\circ} 2$ - Convergence of random variables

stoehr@ceremade.dauphine.fr

Exercise 1 (True or False?). Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent random variables and X a random variable. Are the following statements correct? Justify your answer.

1. If $\left(X_{n}\right)_{n \geq 1}$ converges in probability to X, then $\left(X_{n}\right)_{n \geq 1}$ converges almost surely to X.
2. If ($\left.X_{n}\right)_{n \geq 1}$ converges in distribution to X, then for any function f

$$
\mathbb{E}\left[f\left(X_{n}\right)\right] \underset{n \rightarrow+\infty}{\longrightarrow} \mathbb{E}[f(X)] .
$$

3. If $\left(X_{n}\right)_{n \geq 1}$ converges almost surely to X, then it converges in the p-th mean to X.

Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables defined by

$$
\mathbb{P}\left[X_{n}=\sqrt{n}\right]=\frac{1}{n} \quad \text { and } \quad \mathbb{P}\left[X_{n}=0\right]=\frac{n-1}{n}
$$

Study the convergence in quadratic mean, in probability and in distribution of $\left(X_{n}\right)_{n \geq 1}$.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real random variables, such that for $n \geq 1, X_{n}$ is distributed according to an exponential distribution with parameter $\lambda=n$. Let define

$$
Y_{n}=\sin \left(\left\lfloor X_{n}\right\rfloor \frac{\pi}{2}\right), \quad \text { where }\lfloor\cdot\rfloor \text { is the floor function. }
$$

1. (a) Find the distribution of the random variable Y_{n}.
(b) Compute $\mathbb{E}\left[Y_{n}\right]$ and $\mathbb{V} \operatorname{ar}\left[Y_{n}\right]$.
2. Show that the sequence $\left(Y_{n}\right)_{n \geq 1}$ converges in distribution to a constant random variable Y.
3. Show that the sequence $\left(Y_{n}\right)_{n \geq 1}$ also converges in probability to Y.

Exercise 4 (CLT and asymptotic variance). Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with distribution \mathbb{P} such that $\mathbb{E}\left[X_{1}^{2}\right]<\infty$. Denote $\mu=\mathbb{E}\left[X_{1}\right]$ and $\sigma^{2}=\mathbb{V a r}\left[X_{1}\right]$.

1. Suppose σ^{2} is unknown. Derive a sequence $\left(a_{n}\right)_{n \geq 1}$ of random variables independent of σ^{2} such that

$$
\sqrt{\frac{n}{a_{n}}}\left(\bar{X}_{n}-\mu\right) \underset{n \rightarrow+\infty}{\longrightarrow} \mathscr{N}(0,1) .
$$

2. Suppose that σ^{2} is a function of μ, i.e. it can be written as $\sigma^{2}(\mu)$. Find a differentiable function g such that $g^{\prime}(\mu) \neq 0$ and

$$
\sqrt{n}\left[g\left(\bar{X}_{n}\right)-g(\mu)\right] \underset{n \rightarrow+\infty}{\xrightarrow{d}} \mathscr{N}(0,1) .
$$

3. Find $\left(a_{n}\right)_{n \geq 1}$ and g in the following particular cases
(a) $\mathscr{P}=\{\mathscr{B}(p), 0<p<1 / 2\}$.
(b) $\mathscr{P}=\{\mathscr{E}(\lambda), \lambda>0\}$.

\diamond To do at Home \diamond

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of mutually independent random variables defined by

$$
\mathbb{P}\left[X_{n}=\frac{1}{2^{n}}\right]=\mathbb{P}\left[X_{n}=\frac{-1}{2^{n}}\right]=\frac{1}{2} .
$$

Denote for all integer $n \geq 1, S_{n}=\sum_{i=1}^{n} X_{i}$.

1. Compute the characteristic function of the uniform distribution on $[-1,1]$.
2. Show that $\left(S_{n}\right)_{n \geq 1}$ converges in distribution to a random variable S with a distribution you will precise.

Exercise 6. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables distributed according to a Bernoulli distribution with parameter $p \in] 0,1\left[\right.$. For all integer $n \geq 1$, denote $Y_{n}=X_{n} X_{n+1}$ and $S_{n}=\sum_{i=1}^{n} Y_{i}$.

1. What is the distribution of $Y_{n}, n \geq 1$.
2. Given integers $1 \leq n<m$, under what conditions on n and m are random variables Y_{n} and Y_{m} independent?
3. Compute $\mathbb{E}\left[Y_{n} Y_{m}\right]$ and $\mathbb{E}\left[S_{n} / n\right]$ for all integers n and m such that $1 \leq n<m$.
4. Show that there exists a real constant C such that $\mathbb{V} \operatorname{ar}\left[S_{n}\right] \leq C n$.
5. Show that $\left(S_{n} / n\right)_{n \geq 1}$ converges in probability to a constant you will precise.

Exercise 7. In a desintegration process, electrons are emitted at an angle θ such that $\cos \theta$ is distributed according to the following density

$$
f(x \mid \alpha)=\frac{1}{2}(1+\alpha x) \mathbb{1}_{\{x \in[-1,1]\}}, \quad \text { with } \quad|\alpha|<1 .
$$

1. Compute $\mathbb{E}[X]$ and deduce an estimator $\widehat{\alpha}_{n}$ of α that converges in probability to α.
2. Find a sequence c_{n} independent of α such that

$$
c_{n}\left(\widehat{\alpha}_{n}-\alpha\right) \underset{n \rightarrow+\infty}{d} \mathscr{N}(0,1) .
$$

3. Find a function g invertible on $]-1,1[$ such that

$$
\sqrt{n}\left[g\left(\widehat{\alpha}_{n}\right)-g(\alpha)\right] \underset{n \rightarrow+\infty}{\underset{\rightarrow}{d}} \mathscr{N}(0,1) .
$$

