Tutorial n°2 - Convergence of random variables

stoehr@ceremade.dauphine.fr

Exercise 1 (*True or False*?). Let $(X_n)_{n \ge 1}$ be a sequence of independent random variables and *X* a random variable. Are the following statements correct? Justify your answer.

1. If $(X_n)_{n\geq 1}$ converges in probability to *X*, then $(X_n)_{n\geq 1}$ converges almost surely to *X*.

2. If $(X_n)_{n\geq 1}$ converges in distribution to *X*, then for any function *f*

$$\mathbb{E}[f(X_n)] \underset{n \to +\infty}{\longrightarrow} \mathbb{E}[f(X)].$$

3. If $(X_n)_{n\geq 1}$ converges almost surely to *X*, then it converges in the *p*-th mean to *X*.

Exercise 2. Let $(X_n)_{n \ge 1}$ be a sequence of random variables defined by

$$\mathbb{P}[X_n = \sqrt{n}] = \frac{1}{n}$$
 and $\mathbb{P}[X_n = 0] = \frac{n-1}{n}$

Study the convergence in quadratic mean, in probability and in distribution of $(X_n)_{n\geq 1}$.

Exercise 3. Let $(X_n)_{n\geq 1}$ be a sequence of real random variables, such that for $n \geq 1$, X_n is distributed according to an exponential distribution with parameter $\lambda = n$. Let define

 $Y_n = \sin\left(\lfloor X_n \rfloor \frac{\pi}{2}\right)$, where $\lfloor \cdot \rfloor$ is the floor function.

- **1.** (a) Find the distribution of the random variable Y_n .
 - **(b)** Compute $\mathbb{E}[Y_n]$ and $\mathbb{V}ar[Y_n]$.
- **2.** Show that the sequence $(Y_n)_{n\geq 1}$ converges in distribution to a constant random variable *Y*.
- **3.** Show that the sequence $(Y_n)_{n \ge 1}$ also converges in probability to *Y*.

Exercise 4 (*CLT and asymptotic variance*). Let $(X_n)_{n\geq 1}$ be a sequence of *i.i.d.* random variables with distribution \mathbb{P} such that $\mathbb{E}[X_1^2] < \infty$. Denote $\mu = \mathbb{E}[X_1]$ and $\sigma^2 = \mathbb{V}ar[X_1]$.

1. Suppose σ^2 is unknown. Derive a sequence $(a_n)_{n\geq 1}$ of random variables independent of σ^2 such that

$$\sqrt{\frac{n}{a_n}} \Big(\overline{X}_n - \mu \Big) \underset{n \to +\infty}{\longrightarrow} \mathcal{N}(0, 1).$$

2. Suppose that σ^2 is a function of μ , *i.e.* it can be written as $\sigma^2(\mu)$. Find a differentiable function g such that $g'(\mu) \neq 0$ and

$$\sqrt{n}\left[g(\overline{X}_n)-g(\mu)\right]\underset{n\to+\infty}{\overset{d}{\longrightarrow}}\mathcal{N}(0,1).$$

- **3.** Find $(a_n)_{n \ge 1}$ and g in the following particular cases
 - (a) $\mathscr{P} = \{\mathscr{B}(p), 0 (b) <math>\mathscr{P} = \{\mathscr{E}(\lambda), \lambda > 0\}.$

\diamond To do at Home \diamond

Exercise 5. Let $(X_n)_{n \ge 1}$ be a sequence of mutually independent random variables defined by

$$\mathbb{P}\left[X_n = \frac{1}{2^n}\right] = \mathbb{P}\left[X_n = \frac{-1}{2^n}\right] = \frac{1}{2}.$$

Denote for all integer $n \ge 1$, $S_n = \sum_{i=1}^n X_i$.

- **1.** Compute the characteristic function of the uniform distribution on [-1,1].
- **2.** Show that $(S_n)_{n\geq 1}$ converges in distribution to a random variable *S* with a distribution you will precise.

Exercise 6. Let $(X_n)_{n\geq 1}$ be a sequence of *i.i.d.* random variables distributed according to a Bernoulli distribution with parameter $p \in [0, 1[$. For all integer $n \geq 1$, denote $Y_n = X_n X_{n+1}$ and $S_n = \sum_{i=1}^n Y_i$.

- **1.** What is the distribution of Y_n , $n \ge 1$.
- **2.** Given integers $1 \le n < m$, under what conditions on *n* and *m* are random variables Y_n and Y_m independent?
- **3.** Compute $\mathbb{E}[Y_n Y_m]$ and $\mathbb{E}[S_n/n]$ for all integers *n* and *m* such that $1 \le n < m$.
- **4.** Show that there exists a real constant *C* such that $Var[S_n] \leq Cn$.
- **5.** Show that $(S_n/n)_{n\geq 1}$ converges in probability to a constant you will precise.

Exercise 7. In a desintegration process, electrons are emitted at an angle θ such that $\cos \theta$ is distributed according to the following density

$$f(x \mid \alpha) = \frac{1}{2}(1 + \alpha x) \mathbb{1}_{\{x \in [-1,1]\}}, \text{ with } |\alpha| < 1.$$

- **1.** Compute $\mathbb{E}[X]$ and deduce an estimator $\hat{\alpha}_n$ of α that converges in probability to α .
- **2.** Find a sequence c_n independent of α such that

$$c_n(\widehat{\alpha}_n - \alpha) \xrightarrow[n \to +\infty]{d} \mathcal{N}(0, 1).$$

3. Find a function g invertible on]-1, 1[such that

$$\sqrt{n}[g(\widehat{\alpha}_n) - g(\alpha)] \xrightarrow[n \to +\infty]{d} \mathcal{N}(0, 1).$$