Tutorial n°4 – Information, Sufficiency and Ancillarity

stoehr@ceremade.dauphine.fr

Exercise 1. Let *X* be a random variable admitting the following probability density:

$$f_X(x \mid \theta) = \frac{\theta}{x^{\theta+1}} \mathbb{1}_{\{x \ge 1\}}, \text{ where } \theta > 0.$$

- 1. Show that the model is a regular exponential family.
- **2.** Compute the Fisher information $\mathscr{I}_X(\theta)$ contained in *X* for the parameter θ . Deduce the information contained in a *n*-sample.

Instead of observing directly *X*, we observe a random variable *Y* defined by:

$$Y = \begin{cases} 1 & \text{if } X \ge \exp(1) \\ 0 & \text{otherwise.} \end{cases}$$

3. Compute the Fisher information $\mathscr{I}_Y(\theta)$ brought by *Y* for the parameter θ and show that $\mathscr{I}_X(\theta) > \mathscr{I}_Y(\theta)$.

Exercise 2. Consider the statistical model

$$\mathscr{P} = \left\{ f(x \mid b) = \exp\left[-\frac{|x-\mu|}{b} - \log(2b)\right], \ b \in \mathbb{R}^*_+ \right\},\$$

where $\mu \in \mathbb{R}$ is a known location parameter. Assuming *X* is distributed according to $f(\cdot \mid b)$, let set $T(X) = |X - \mu|$. Compute the Fisher information contained in T(X) for the parameter *b*.

Exercise 3. We consider the statistical model $\mathscr{P} = \{\mathscr{B}(p) \mid p \in [0, 1[\}\}$.

- **1.** Give the likelihood function associated with an observed sample x_1, \ldots, x_n .
- **2.** (a) Compute the Fisher information contained in a random variable *X* following the Bernoulli distribution $\mathscr{B}(p)$. Deduce the information contained in the *n*-sample.
 - (b) What is the Fisher information for the natural parameter corresponding to the canonical form of this exponential family?
- **3.** (a) Using the definition, show that $T = \sum_{i=1}^{n} x_i$ is a sufficient statistic for *p*.
 - (b) Derive the same result, using the factorisation theorem.
 - (c) Let set *n* = 3. Are the following statistics sufficient?

 $R = \exp(x_1 + x_2 + x_3)$ and $S = 2x_1 + x_2 + 3x_3$.

Exercise 4. Let consider $X_1, ..., X_n$ a sample from the Cauchy distribution with location parameter $\theta \in \mathbb{R}$, *i.e.* whose density is given by

$$f_X(x \mid \theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}$$

1. Write the likelihood function associated with a *n*-sample x_1, \ldots, x_n .

2. Show that the order statistics is minimal sufficient.

Exercise 5. Let consider the discrete distribution \mathbb{P}_{θ} defined by

$$\mathbb{P}_{\theta}[X=1] = \frac{1-\theta}{6}, \quad \mathbb{P}_{\theta}[X=2] = \frac{1+\theta}{6}, \quad \mathbb{P}_{\theta}[X=3] = \frac{2-\theta}{6} \quad \text{and} \quad \mathbb{P}_{\theta}[X=4] = \frac{2+\theta}{6}$$

with $\theta \in [-1, 1]$. Let X_1, \ldots, X_n be a sample from \mathbb{P}_{θ} and denote N_k , for $k \in \{1, 2, 3, 4\}$, the number of times k appears in the sequence.

- **1.** Show that $T = (N_1, N_2, N_3, N_4)$ is a sufficient statistic.
- **2.** Show that $S = (N_1 + N_2, N_3 + N_4)$ is an ancillary statistic. Is this ancillary statistic unique?

\diamond To do at Home \diamond

Exercise 6. Let consider X_1, \ldots, X_4 distributed according to a Poisson distribution of parameter $\lambda \in \mathbb{R}^*_+$. One set

$$T(X_1,...,X_4) = \log\left(1 + \sum_{i=1}^4 X_i\right)$$
 and $R(X_1,...,X_4) = \log\left[\exp\left(-\frac{X_1 + X_2}{2}\right) + \frac{1}{2}\exp(X_4 - X_3)\right]$.

Show that $T(X_1, ..., X_4)$ is a sufficient statistic for λ whereas $R(X_1, ..., X_4)$ is not.

Exercise 7. Consider *S* and *T* that are minimal sufficient statistics for θ . Show the two following properties:

- **1.** There exists a bijective transform between *S* and *T*.
- **2.** Any sufficient statistic *R* for θ such that R = g(S) is also minimal sufficient for θ .

Exercise 8. Given $\theta \in \mathbb{R}^*_+$, consider the random variables U_1, \ldots, U_n *i.i.d.* according to the uniform distribution on $[\theta, \theta + 1]$ and V_1, \ldots, V_n *i.i.d.* according to the uniform distribution on $[\theta, 2\theta]$. Show that the following statistics are ancillary

$$R = \max(U_1, \dots, U_n) - \min(U_1, \dots, U_n)$$
 and $S = \frac{V_2}{\max(V_1, \dots, V_n) - \min(V_1, \dots, V_n)}$