Tutorial n°5 – Estimation

stoehr@ceremade.dauphine.fr

Exercise 1. Let consider the statistical model $\mathscr{P} = \{\mathscr{N}(a, a^2\sigma^2) \mid a \in \mathbb{R}^*_+\}.$

- **1.** Write the likelihood $L(a | x_1, ..., x_n)$ associated to a *n*-sample $(x_1, ..., x_n)$ from this model.
- **2.** Compute \hat{a}_n the maximum of $\log L(a \mid x_1, \dots, x_n)$ and show that \hat{a}_n converges in probability to *a*.

Exercise 2. Let *X* be a real random variable taking values in [-0.5, 0.5] whose density parametrised by $\theta \in [-1, 1]$ is given by

$$f(x \mid \theta) = (1 - \theta)^{\mathbb{1}\{-0.5 \le x < 0\}} (1 + \theta)^{\mathbb{1}\{0 \le x < 0.5\}} = \begin{cases} 1 - \theta, & \text{if } x \in [-0.5, 0[\\ 1 + \theta, & \text{if } x \in [0, 0.5[.]] \end{cases}$$

Let X_1, \ldots, X_n be a *n*-sample from *X*.

- **1.** Find $\hat{\theta}_n$ the maximum likelihood estimator for θ .
- **2.** (a) Show that $\hat{\theta}_n$ is unbiased.
 - (b) Show that $T(x_1, ..., x_n) = \sum_{i=1}^n \mathbb{1}_{\{x_i \in [0,0.5]\}}$, for $x_1, ..., x_n \in [-0.5, 0.5]$, is sufficient and complete.
 - (c) Deduce that $\hat{\theta}_n$ is the unbiased estimator with uniformly minimum variance.
- **3.** (a) Compute the Fisher information contained in X_1 for θ and deduce a sequence c_n independent of θ such that

$$c_n(\widehat{\theta}_n - \theta) \xrightarrow[n \to +\infty]{d} \mathcal{N}(0, 1).$$

(b) Given $\alpha \in [0, 1[$, build an asymptotic confidence interval for θ with $(1 - \alpha)$ confidence level.

Exercise 3. Let consider the statistical model $\mathscr{P} = \{\mathscr{U}([-\theta, \theta]), \theta > 0\}$ and a *n*-sample X_1, \ldots, X_n from this model.

- **1.** Find $\hat{\theta}_n$ the maximum likelihood estimator for θ .
- **2.** (a) Show that $\hat{\theta}_n$ is biased.
 - (b) Provide a R code to estimate the bias in practice.
- **3.** Justify that $\hat{\theta}_n$ converges in probability to θ

4. (a) Show that
$$n(\theta - \hat{\theta}_n) \xrightarrow[n \to +\infty]{d} \mathscr{E}(1/\theta)$$
.

(b) Given $\alpha \in [0, 1[$, build an asymptotic confidence interval for θ with $(1 - \alpha)$ confidence level.

- **5.** Give $\hat{\theta}_n^{\star}$ the uniformly minimum variance unbiased estimator.
- 6. We assume that $\tilde{\theta}_n = |X|_{(1)} + |X|_{(n)}$, where $|X|_{(1)} = \min(|X_1|, ..., |X_n|)$ and $|X|_{(n)} = \max(|X_1|, ..., |X_n|)$ is an unbiased estimator of θ .
 - (a) Compute the conditional distribution of $|X|_{(1)}$ knowing $|X|_{(n)} = x_n$.
 - (**b**) Deduce that the Rao-Blackwell improved version of $\tilde{\theta}_n$ is $\hat{\theta}_n^{\star}$.

\diamond To do at Home \diamond

Exercise 4. Let consider the statistical model $\mathscr{P} = \{f(\cdot | \theta); \theta \in \Theta \text{ associated to the Weibull distribution } \mathcal{W}(\theta, 1/2) \text{ whose density is given by}$

$$f(x \mid \theta) = \frac{1}{2\theta\sqrt{x}} \exp\left(-\frac{\sqrt{x}}{\theta}\right) \mathbb{1}_{\{x > 0\}}$$

- 1. Show that this density belongs to a minimal and regular exponential family. For which set Θ is this density properly defined?
- **2.** Write the likelihood $L(\theta \mid x_1, ..., x_n)$ associated to a *n*-sample $(x_1, ..., x_n)$ from this model.
- **3.** Compute $\hat{\theta}_n$ the maximum of $\log L(\theta \mid x_1, \dots, x_n)$ and show that $\hat{\theta}_n$ converges in probability to θ .

Exercise 5. Let consider the statistical model $\{\mathscr{P}(\lambda), \lambda > 0\}$ and a *n*-sample X_1, \ldots, X_n from this model. We aim at estimating $\theta = \mathbb{P}[X = 0] = e^{-\lambda}$. We set

$$\widehat{\theta}_n = \frac{1}{n} \sum_{k=1}^n \mathbb{1}_{\{X_k=0\}}.$$

- **1.** Show that $\hat{\theta}_n$ is an unbiased estimator of θ .
- **2.** Justify that $T = \sum_{k=1}^{n} X_k$ is a sufficient statistic.
- **3.** Compute $\mathbb{P}_{\lambda}[X_1 = 0 | T = t]$, for all $t \in \mathbb{N}$.
- **4.** Using the Rao-Blackwell theorem, provide an improved version $\hat{\theta}_n^{\star}$ of $\hat{\theta}_n$.
- 5. Show that $\hat{\theta}_n^{\star}$ is the uniformly minimum variance unbiased estimator.

Exercise 6. Let *X* be a Poisson random variable with parameter $\theta > 0$ and $X_1, ..., X_n$ a *n*-sample from *X*. We consider

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 and $S_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

- **1.** Show that \overline{X}_n and S_{n-1}^2 are unbiased estimators of θ .
- **2.** Show that \overline{X}_n is the uniformly minimum variance unbiased estimator of θ and deduce that $\operatorname{Var}_{\theta}\left[\overline{X}_n\right] \leq \operatorname{Var}_{\theta}\left[S_{n-1}^2\right]$.