Practical n°1

stoehr@ceremade.dauphine.fr

Preliminary step and Objectives.

- Make sure to read the introduction to R and do the exercises before starting here.
- This sheet focuses on the use of probability and statistical functions in R.

About probability functions...

Exercise 1 (Random Generators).

- 1. Explain what is the function set.seed in R. Why would you use it?
- 2. Generate a random sample of size 500 from the following discrete distributions:
 - (a) Bernoulli distribution with parameter p = 0.4. Store it in a vector x1.
 - (b) Binomial distribution with parameters n = 50, p = 0.4. Store it in a vector x2.
 - (c) Poisson distribution with parameter $\lambda = 2$. Store it in a vector x3.
- **3.** Generate a random sample of size 1000 from the following continuous distributions:
 - (a) Uniform distribution on [2,5]. Store it in a vector y1.
 - (b) Exponential distribution with mean $1/\lambda = 0.5$. Store it in a vector y2.
 - (c) Normal distribution with mean $\mu = 1$ and variance $\sigma^2 = 2$. Store it in a vector y3.
- 4. An urn contains 24 balls numbered from 1 to 24. Use R to draw at random 10 balls
 - (a) without replacement, each ball being equiprobable;
 - (b) with replacement, each ball being equiprobable;
 - (c) without replacement, balls with even numbers being twice as likely to be drawn.

Exercise 2 (Probabilities and CDF).

1. Assume *X* is following the exponential distribution $\varepsilon(2)$ (*i.e.*, with mean 0.5) and *Z* the Gaussian distribution $\mathcal{N}(0,2)$ (*i.e.*, with variance 2). Using R, compute the following quantities

(a)	$\mathbb{P}[X > 0.5],$	(c) $\mathbb{P}[1 < X < 10],$	(e)	$\mathbb{P}[Z \leq -0.2],$
(b)	$\mathbb{P}\left[X\leq 5\right],$	(d) $\mathbb{P}[Z > 3],$	(f)	$\mathbb{P}[Z >2].$

2. Represent the cumulative distribution function of the Poisson distribution with mean $\lambda = 4$.

Exercise 3 (Probability distributions).

- **1. Discrete variable.** Represent the mass function of a Poisson distrubtion with mean $\lambda = 2$.
- **2. Continuous variable.** Represent the density function of a Chi-squared distribution with 3 degrees of freedom.

Exercise 4 (*Quantiles*). Consider *X* distributed according to a binomial distribution with parameters n = 50, p = 0.4, *Y* distributed according a Chi-squared distribution with 3 degrees of freedom and *Z* distributed according to the standard Normal distribution $\mathcal{N}(0, 1)$.

1. Using R, find the value of the quantile *q* in what follows

(a) $\mathbb{P}[X \le q] \ge 0.1$, (b) $\mathbb{P}[Y \le q] = 0.95$, (c) $\mathbb{P}[Y \ge q] = 0.65$, (d) $\mathbb{P}[|Z| < q] = 0.95$.

About statistics...

Preliminary step.

- Download "dat.RData" into a folder "TP1" and set the working directory to the download location.
- Import the data from the file "dat.RData".

Exercise 5 (Samples distributions and densities).

- **1. Discrete variable.** Represent the distribution of sample dat1 and compare it to the mass function of a Poisson distrubtion with mean $\lambda = 2$.
- **2. Continuous variable.** Represent the distribution of sample dat2 and compare it to the density function of a Chi-squared distribution with 3 degrees of freedom.

Exercise 6 (Moments and quantiles).

- 1. Compute the deciles of samples dat1 and dat2.
- 2. Compute the mean, the median and the variance of samples dat1 and dat2.
- **3.** Compare the output of the function summary for samples dat1, and dat2 with the summaries for a Poisson distribution with mean $\lambda = 2$ and a Chi-squared distribution with 3 degrees of freedom.