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Notations and Objectives. Let X1, . . . , Xn be a sequence of i.i.d. random variables with an
unknown cumulative distribution function F and denote x1, . . . , xn realisations of these random
variables. The practical focuses on the empirical distribution of data F̂n . The first objective is to
study the properties of F̂n as an estimate of F for a given sample x1, . . . , xn . The second objective
is to sample from it.

Exercise. A marketing brand studies the time spent by customers on its website. The file "time.csv"
contains the duration (in seconds) for n = 100 customers.

1. Download "time.csv" in a folder "TP3" and import the data in R using the command read.table or
read.csv.

The empirical distribution function. We are first interested in getting some information about the
underlying unknown distribution F the data are coming from.

Definition

The empirical distribution function is a random function (as function of the random variables
X1, . . . , Xn) associated to the empirical measure and given for y ∈R by

F̂n(y) = 1

n

n∑
i=1

1{Xi≤y} =
Card

{
Xi

∣∣ Xi ≤ y
}

n
.

Its evaluation on a dataset x1, . . . , xn brings information about the distribution contains in the
data itself.

2. Write a function cdf_hat(y, x) which returns the empirical distribution at point y given a n-sample
x= (x1, . . . , xn).

F̂n is an estimate of the cumulative distribution F that generated the data. The first major result is that
it converges pointwise.

Theorem. Strong Law of Large Numbers (SLLN)

For all y , F̂n(y) converges pointwise to the true cumulative distribution function F (y) as almost
surely (a.s.), i.e.,

F̂n(y) −→
n→+∞ F (y) =P[

X1 ≤ y
]

a.s.
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3. Let assume the brand is interested in the probability that a customer spend less than 50 seconds on
its website.

(a) Compute cdf_hat(50, x).

(b) Write a function cv_cdf_hat(y, x) which returns
(
F̂1(y), F̂2(y), . . . , F̂n(y)

)
for a given point y

and a given sample x= (x1, . . . , xn).

(c) Using a scatterplot, check if F̂n(50) converged or not with our sample size n.

F̂n is a random function and hence has a variability depending on the data it is based on, i.e., F̂n changes
when we use other data. The randomness of F̂n can be asymptoticaly characterised pointwise.

Theorem. Central Limit Theorem (CLT)

For all y ∈ R, F̂n(y) has asymptotically normal distribution with the standard
p

n rate of conver-
gence, i.e.,

p
n

[
F̂n(t )−F (t )

] d−→
n→+∞ N (0 ,F (t ) {1−F (t )})

Remark. This result is a simple application of the Central Limit theorem to the sequence of i.i.d.
random variables

(
1{xn≤t }

)
n≥1, that is a sequence of Bernoulli variables with parameter

equal to F (t ).

4. (a) Show that√
n

F̂n(t )(1− F̂n(t ))

[
F̂n(t )−F (t )

] d−→
n→+∞ N (0 ,1).

(b) Assume that the asymptotic regime is valid. Compute the asymptotic confidence interval for
F (50) for 0.95 confidence level. Comment the result.

We actually have more than the pointwise convergence of the empirical distribution to the true cumu-
lative distribution function.

Theorem. Glivenko-Cantelli theorem

F̂n converges uniformly to F over R, i.e.,∥∥F̂n −F
∥∥∞ −→

n→+∞ 0 a.s.

5. (a) Write a function cdf_hat_vec(y, x) which returns the empirical distribution function at mul-
tiple points y := (y1, . . . , yk ) given a n-sample x= (x1, . . . , xn).

(b) Check if F̂n converges uniformly to the Gamma distribution with shape parameter α = 1.9 and
rate parameter β= 0.04.

We can further characterized the asymptotic behaviour of the sup-norm between F̂n and F . We also
have a rate of convergence of

p
n and the Dvoretzky–Kiefer–Wolfowitz inequality provides bound on the

tail probabilities.
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Theorem. Dvoretzky–Kiefer–Wolfowitz inequality

For all ε≥
√

1
2n log2,

P
[∥∥F̂n −F

∥∥∞ > ε]≤ exp(−2nε2).

As per this inequality, we have another confidence interval for the true cumulative distribution
function value F (y), y ∈R. Given α ∈ ]0 ,1[,

P
[
max

{
0, F̂n(y)−ε}≤ F (y) ≤ min

{
F̂n(y)+ε,1

}]≥ 1−α, where ε=
√

1

2n
log

2

α
.

6. Compute the confidence interval based on the Dvoretzky–Kiefer–Wolfowitz inequality for F (50) and
0.95 confidence level. Comment the result.

Sampling from the empirical distribution function. Another key feature of the empirical distribution
is that it is easy to sample from. The empirical distribution defines a discrete probability distribution
on sample space {x1, . . . , xn}. Put in other words, if X⋆ follows F̂n , then X⋆ is taking values in {x1, . . . , xn}
with probabilities

P
[

X⋆ = xi
]= 1

n
, for i ∈ �1,n�.

Remark. Above we did not take into account possible repetitions of values in x1, . . . , xn . We consider
that observations are ordered elements and that indices for the probability vector match in-
dices of the observation. For instance, if we have observations (x1, x2, x3) = (1,2,1), the prob-
ability vector is (p1, p2, p3) = (1/3,1/3,1.3).

Property

In order to get a m-sample from F̂n , we sample m times from {x1, . . . , xn} with replacement ac-
cording to the vector of probabilities (p1, . . . , pn). The re-sampled sample of size m is denoted
(x⋆1 , . . . , x⋆m) and the associated empirical distribution function F̂⋆n .

7. (a) For each of the following values, m = 10, m = 50 and m = 100, generate 100 samples (x⋆1 , . . . , x⋆m)
from F̂n .

(b) Compute the percentile of each sample.

(c) Why is it important to have a resample of the same size as the original sample?
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