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Notations and Objectives. Consider x1, . . . , xn observations of some phenomenon or exper-
iment. We assume that our observations come from a statistical model P = { fθ,θ ∈ Θ}, i.e. we
assume that x1, . . . , xn are drawn from the distribution fθ for an unknown parameter θ. Under
the assumed statistical model, a goal is to find the value of θ such that fθ has most likely gener-
ated the observed data. Put in other words we want to build an estimator θ̂n = T (X1, . . . , Xn) that
approximate the unknown parameter θ (or more generally a function of θ) and that has some
properties (e.g., unbiased, consistent). In the first part we study an estimator for a statistical
model used in biology.

The practical also deals with the parametric bootstrap method. This method is different than
the bootstrap method seen in Practical n°4 (sometimes referred as empirical or non-parametric
bootstrap) but shares similarities as it is also a resampling method. The difference between those
two methods is the source of the bootstrap sample x?1 , . . . , x?n . While the bootstrap method makes
no assumption about the underlying distribution (x?1 , . . . , x?n are drawn from F̂n), the paramet-
ric bootstrap generates samples x?1 , . . . , x?n from the parametrized distribution fθ̂n

where θ̂n is a
statistic that estimates the unknown parameter θ.

Exercise (Hardy–Weinberg model). The haptoglobine has 3 different possible configurations AA,
aa, aA. Plato, et al. (1964) observed the haptoglobine type on a sample of n = 190 people:

Genotype AA aa aA

Count 10 112 68

When the genes frequencies are at equilibrium, frequency of each configuration only depends on an
unknown parameter θ ∈ ]0 ,1[ and the statistical model, referred to as Hardy–Weinberg model, is given
by

P[X = AA] = (1−θ)2, P[X = aa] = θ2, and P[X = aA] = 2θ(1−θ).

1. (Bonus) Show that the statistical model used satisfies the equilibrium assumptions, that is the gene
configurations frequencies remain constant from generation to generation.

Part 1 – Estimating θ. For X1, . . . , Xn , i.i.d. random variables distributed according the statistical
model, the unknown parameter θ can be estimated using the following estimator

θ̂n = 1− 1

n

n∑
k=1

1{Xk=AA} −
1

2n

n∑
k=1

1{Xk=aA}.

2. (Bonus) Is θ̂n the maximum likelihood estimator?
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3. Compute the value of θ̂n for the observed data.

4. Show that θ̂n is an unbiased estimator of θ that converges in probability to θ.

5. (a) Show that for all t ∈R+

P

[∣∣∣∣∣
√

2n

θ̂n(1− θ̂n)

(
θ̂n −θ

)∣∣∣∣∣≤ t

]
−→

n→+∞P[|Z | ≤ t ], where Z ∼N (0 ,1),

and deduce an asymptotic confidence interval for θ with level 1−α.

(b) Compute the 95% asymptotic confidence interval for θ with the observed data.

6. (a) Determine an asymptotic confidence interval for θ with level 1−α using the delta method.

(b) Compute the 95% asymptotic confidence interval for θ with the observed data.

Part 2 – Parametric bootstrap. We assumed that we have a model parametrized by θ. Since we have
a consistent estimator θ̂n of θ, we can apply the parametric bootstrap. Algorithm are the same than in
Practical n°4, except for the resampling step: x?1 , . . . , x?n are drawn from

P[X = AA] = (1− θ̂n)2, P[X = aa] = θ̂2
n , and P[X = aA] = 2θ̂n(1− θ̂n).

7. Use parametric bootstrap with N = 1000 bootstrap samples to

(a) estimate the bias of θ̂n relative to θ,

(b) give a 95% empirical bootstrap confidence interval for θ,

(c) give a 95% percentile bootstrap confidence interval for θ.

8. Compare the results with the results from Part – 1.

Part 3 – To go further. When we use parametric bootstrap, we trust the statistical model (rightly or
wrongly?). In this part, we do not make assumptions anymore about a specific model and a parametrized
underlying distribution. The parametric bootstrap hence does not apply but the empirical bootstrap
does as it only requires the knowledge of the empirical distribution based on our observed data.

9. Use empirical bootstrap with N = 1000 bootstrap samples to

(a) estimate the bias of θ̂n relative to θ,

(b) give a 95% empirical bootstrap confidence interval for θ,

(c) give a 95% percentile bootstrap confidence interval for θ.

10. Compare the results with the results from Part – 1 and Part – 2.
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