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Exercise 1 (EM algorithm).

Consider (X, Z) € 2 x % random variables such that 2~ corresponds to an observed sample
space and Z to a hidden sample space. The observed/incomplete data likelihood writes as

gx10) = f f(x,2)dz,
4
and is related to the unobserved/complete data likelihood L¢(0 | X, Z) through
logg(x|6) =1og L0 | x,z) —logk(z| x,0).

The EM algorithm [1] is an optimisation algorithm that yields a maximum likelihood estimate by
iterating two steps: consider 0¥ the value of the parameter at iteration ¢

e Estep: compute Q (0;0") = Egw [log L(0 | x,2) | x];

* M step: set 0*V) = argmax, Q(0;0").

A finite mixture model with K € N* components is a convex combination of K densities with unknown
parameter 0y, that is,

K
pr=1 and pi>0, ke [1,K].

K
Y prf(x16r), where
k=1 k=1

Mixture models are a special instance of latent variable model. The information missing regarding the
observed sample is the assignment of the data points to the different component of the model. Mixture
models can hence be reformulated Mixture models incomplete data problems by introducing a random
variable Z = (Z,,..., Zk) distributed according to the multinomial distribution .4 (1, py, ..., px). Denote
v =(0,...,0k,p1,-.., Px), the complete likelihood corresponding to the missing data structure is

L'ylx2) =]

n
i=

pzif(xi | HZ,')-
1

Preliminary work

1. Show that the objective function for a mixture model is

n

K
Qy.y™)=} ICZITE-Q loglpif(x;10)], where 1=

i=1
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2. Show that the update for estimating the mixing probabilities is given by

(1)

(t+1) _ "k (1) _ €3]
P = p where N Zle'

and the update for parameter 6 is solution of

n

Z Ezaelogf(xllek)

i=1k=1

Application: Gaussian mixture models. Let assume that f(- | 8%), k € [1, K], is a normal distribution
with parameter 0 = (ug, 0%).

3. Show that the updates of parameters p; and (T%C are given by
wy_ 1 oo (t+1) _ 0) Y
u > 1.0x; and o E T ( )
k N](ct) — ik k N(r)

4. (a) Write the EM algorithm for Gaussian mixture models.

(b) In order to check the code, run the algorithm on a sample of size n = 1000 that you will simulate
from a two-component normal mixture with p = 0.7, y; = 2.5, u» =0 and Uf = O'g =1

5. Estimate the parameters of a normal mixture for the faithful dataset from R.

Exercise 2 (Metropolis Hastings).

Assume we aim at sampling from a distribution 7 (eventually known up to a constant). Metropo-
lis Hastings algorithm [2] is a simple algorithm that produces a Markov Chain (X};) sen, Whose
stationary distribution is 7 that may otherwise be difficult, if not impossible, to sample from.

To implement the algorithm, we must provide an irreducible transition kernel Q, that is a distri-
bution that describes how to move randomly from one point x of the state space 2~ to another

point y. The kernel of the algorithm is then described as follows : given a current point X, =x at
iteration n e N*

(a) Generatey~ Q(-,x),
(b) Set

. . n(y)Q(x,y)
with probability p =1 A ———,
Xy =4 P VP @)

x otherwise.

Remark. When Q is a gaussian kernel, we refer to it as random walk Metropolis Hastings.

Example 1: sampling from a density function

We aim at sampling from the Wald distribution whose density with respect to the Lebesgue measure on
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R is given by

-1y
2x

1
7T(x) exp

Va3

1. Sample from 7 using a random walk Metropolis Hastings.
Example 2: estimating an allele frequency

The haptoglobine has 3 different possible configurations AA, aa, aA. Plato, et al. (1964) observed the
haptoglobine type on a sample of n = 190 people:

Genotype | AA | aa | aA
Count 10 | 112 | 68

Assuming the population is randomly mating, genes frequencies are following Hardy Weinberg Equilib-
rium. Given 0 € 10, 1[ the frequence of allele a, we have

P[X=AA]=(1-0)°>, P[X=aal=60% and P[X=aA]=20(1-0).

2. Asumming that the prior distribution on 0 is uniform on [0, 1], sample from the posterior distribution
of 0 using a random walk Metropolis Hastings.

3. (a) Show that the posterior distribution for 6 is a Beta distribution B (293, 89).

(b) Compare your sample from the posterior distribution with the theoretical posterior of 6.

Exercise 3 (Sudoku puzzle solver and simulated annealing).

Introduced by [2], it can be used to minimize a function x — h(x) (referred to as loss function) de-
fined on a finite set. Given a current value x¥ and a temperature T, an iteration of the algorithm
starts by proposing a new candidate x drawn from a uniform distribution in the vicinity of x©.
Then the new value x! is generated as follows

. " h®) - h(x?)
x  with probability p =1 Aexp| ——————— |,

@ T

X =

x©  otherwise.

The method iterates the above by decreasing the temperature T at each step.

Simulated annealing algorithm is used to solve a Sudoku grid represented by a 9 x9 matrix where missing
values are coded by 0. Entries of the matrix are numbered from top to bottom and left to right.

1. (a) Give three possible functions & whose minimum corresponds to the solution of the puzzle and
specify how to propose a new candidate (i.e. a complete grid) for each.

(b) In what follows, a candidate is drawn by randomly selecting a sub-block and then randomly
flipping two of the entries that where originally empty. Write a code for the corresponding loss
function.
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2. Explain the function empty_cells and missing_values from the file source_sudoku.R.

3. In order to initialize the algorithm, we need a complete grid. Write a function init_puzzle (x,
empty, missing) that randomly fills the grid consistently with the proposal mechanism.

4. Write a function candidate(x, missing) that provides a candidate accordingly to the aformen-
tioned proposal mechanism.

5. Write the simulated annealing algorithm to solve a puzzle, with a temperature T = 0.5 that geomet-
rically decreases at each step with common ratio 0.99999.

6. Use your program to solve the following Sudoku:

3 5|2
1 5 6
6|7
6 4 2
1 7 8
8 3 7
213
8 5 4
9|2 1
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