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Exercise 1 (Gibbs Sampler).

The Gibbs sampler, first introduced by Geman and Geman [1984] and generalised by Gelfand and
Smith [1990], is an essential element in Markov chain Monte Carlo methods [Robert and Casella,
2004]. It produces a Markov chain associated with a given target joint distribution, denoted π, by
alternatively sampling from each of its conditionals.

The Ising model is a well known model used in various applications such as electromagnetism or image
processing. It corresponds to a discrete random process X defined on an undirected graph G which
induces a topology on a set of sites S = {1, . . . ,n} and taking values in X = {−1,1}n .

In this exercise, we look at the model defined on a regular grid h × w for the four closest neighbours
graph. X = (Xi , j ) can be represented by a matrix with h rows and w columns and the density writes as

f (x | θ) ∝ exp

[
θ

(
w∑

j=1

h−1∑
i=1

xi , j xi+1, j +
w−1∑
j=1

h∑
i=1

xi , j xi , j+1

)]
.

1. Compute P
[

Xi , j = xi , j
∣∣ X−i ,− j = x−i ,− j ,θ

]
, i ∈ �1,h�, j ∈ �1, w�.

2. Write a function gibbs_sampling(n_iter, theta) which samples from the Ising model with pa-
rameter theta using the Gibbs sampler. The sampler can be initialised using x = (1, . . . ,1).

3. Sample a realisation from an Ising model defined on a 30×30 grid with parameter θ = 1 and θ = 0.4
(n_iter= 100 iterations). What do you observe?

Exercise 2 (ABC).

ABC algorithm is a computational method which stemmed from population genetics to deal
with intractable likelihoods, that is models whose likelihood cannot be easily computed, or
cannot be computed at all,but which can be simulated from [Tavaré et al., 1997, Beaumont
et al., 2002]. Consider a likelihood f (· | θ), θ ∈ Θ, and a prior distribution π(·) on Θ. Given
an observed data set xobs, the principle of the method to get a sample (approximately) from
π(xobs | θ) ∝ f (xobs | θ)π(θ) is
(a) to simulate pairs of parameters and pseudo-data from the prior predictive, i.e. θ ∼ π(·) and

x ∼ f (· | θ),

(b) to keep only the parameters that bring the pseudo-data x close enough to the observed data
xobs, i.e., given ε > 0, a distance d and a projection S of the data, called summary statistic,
keep {θ ; d(S(xobs),S(x)) < ε}.
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Let consider the Hardy Weinberg model introduced in the previous practicle with the three different
possible configurations of the haptoglobine: AA, aa, aA. Given θ ∈ ]0 ,1[ the frequence of allele a, we
have

P[X = AA] = (1−θ)2, P[X = aa] = θ2, and P[X = aA] = 2θ(1−θ).

We use the observation from Plato, et al. (1964) on a sample of n = 190 people:

Genotype AA aa aA

Count 10 112 68

1. (a) Asumming that the prior distribution on θ is uniform on [0,1], sample from the posterior distri-
bution of θ using ABC.

(b) Compare your result with the theoretical posterior distribution.

(c) Compare the empirical posterior mean you got with Metropolis-Hastings and with ABC.

2. Asumming that the prior distribution on θ is a Beta distribution, sample from the posterior distribu-
tion of θ using ABC.

Exercise 3 (ABC model choice). We are interested in the Ising model for two adjacency structure
represented below: the four closest neighbours graph (a) and the eight closest neighbours graph (b) –
neighbours of the vertex in black are represented by vertices in gray.

(a) (b)

Given a parameter β ∈R, the joint distribution of the model is given by

f (x |β) = 1

Z (β)
exp

(
β

∑
i∼ j

xi x j

)
,

where i ∼ j means that (i , j ) ∈S are neighbors (i.e., linked by an edge) in G .

A question of interest when dealing with the Ising model is to select the dependency structure G that
best fits an observed dataset xobs, i.e., we aim at finding the maximum a posteriori

m̂ = argmax
m∈M

π(m | xobs) ∝π(m)
∫
Θm

fm(xobs | θm)πm(θm)dθm ,

M = {m : 1, . . . , M } is a set of model, π(·) a prior on the model space M , πm a prior on parameter space
Θm associated to model m and fm(· | θm) the likelihood of model m.

2



Practical n°2 2022–2023

To approximate m̂, ABC model choice starts by simulating numerous triplets (m,βm ,x) from the
joint Bayesian model. Afterwards, it approximates the posterior probabilities by the frequency
of each model number associated with simulated x’s in a neighbourhood of xobs, that is defined
as simulations whose distances to the observation measured in terms of summary statistics, i.e.
d

(
S(x),S(xobs)

)
, fall below a threshold ε.

In this example, we set the prior on model index π(·) to the uniform distribution on {1,2}, the prior on
parameter space for model m = 1 to the uniform distribution on [0,1] and the one for model m = 2 to
the uniform distribution on [0,0.5]. The distance d is chosen to be the L2-standardised distance. Finally
we use the vector of summary statistics composed of the summary statistic S(x) =∑

i∼ j xi x j under each
model which is sufficient for the model choice problem Grelaud et al. [2009], and that can be computed
using the function sum_stat(x) (c.f., source_Ising.R)

1. Write a function abc_ref_table(n, m, h, w) which draws n particles from the joint Bayesian
model using m iterations of the Gibbs sampler and returns a table containing model indices, param-
eter values and summaries of the generated data.

2. We set to 100 the number of iterations of the Gibbs sampler.

(a) Draw a pseudo-observation xobs from an Ising model defined on a 20×20 grid with a four closest
neighborhood structure at β= 0.5.

(b) Perform ABC model choice for the pseudo-observation xobs by keeping the 100 closest simula-
tions with respect to the L2-standardised distance on a reference table of size 10000.
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