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Abstract

We suggest a numerical approximation for an optimization problem, motivated

by its applications in finance to find the model-free no-arbitrage bound of variance

options given the marginal distributions of the underlying asset. A first approximation

restricts the computation to a bounded domain. Then we propose a gradient projection

algorithm together with the finite difference scheme to solve the optimization problem.

We prove the general convergence, and derive some convergence rate estimates. Finally,

we give some numerical examples to test the efficiency of the algorithm.

Key words. Variance option, model-free price bound, gradient projection algo-

rithm.

AMS 2000 subject classifications. 60G40, 60H10.

1 Introduction

In financial mathematics, an underlying security is usually modeled as a one-dimensional

continuous process, and a derivative option is defined by a payoff function on the un-

derlying security’s path. In a model where the underlying security is a continuous

martingale, by the the fundamental theorem of pricing, the expectation value of the

derivative option is a no-arbitrage price of the option. In the absence of other infor-

mation on the underlying security, the no-arbitrage bound is then the supremum (or

infimum) of the expectation value of the derivative option among all models where the

security is a continuous martingale. An equivalent way is to model the underlying as

canonical process in the canonical space, and then consider the collection of all mar-

tingale measures (i.e. the probability measures under which the canonical process is a

∗INRIA-Saclay and CMAP, Ecole Polytechnique, Paris, frederic.bonnans@inria.fr.
†CMAP, Ecole Polytechnique, Paris, xiaolu.tan@polytechnique.edu. Research supported by the Chair

Financial Risks of the Risk Foundation sponsored by Société Générale, the Chair Derivatives of the Fu-
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martingale). Now, if we consider a market where the vanilla options (European call or

put) are liquid, which can be used to hedge the path-dependent exotic options, then

the no-arbitrage bound of the latter will change. A framework for this new bound was

proposed recently by Galichon, Henry-Labordère and Touzi [12].

More precisely, let Ω0 := C([0, T ],R) be the canonical space with canonical process

X (Xt(ω) := ωt, ∀ω ∈ Ω0) and canonical filtration F0 = (F0
t )0≤t≤T , S0 a constant.

We denote by P(δS0) the collection of all probability measures P on (Ω0,F0
T ) under

which X is a F0−martingale and X0 = S0, P−a.s. The canonical process X is a

candidate of underlying security price process. Let the derivative options G be defined

by G(Xt, 0 ≤ t ≤ T ) ∈ F0
T . Then an upper bound of model-free no-arbitrage price of

G is

sup
P∈P(δS0

)
EP[G]. (1.1)

Suppose in addition that in the financial market, the vanilla options of maturity T

and of all strike are liquid, so that the investor can identify the marginal distribution

µ of XT . In other words, let φ ∈ L1(µ), the T−maturity European option with payoff

φ(XT ) has a unique no-arbitrage price µ(φ) :=
∫
Rd φ(x)µ(dx). We may use the vanilla

option portfolio to hedge G. By buying a portfolio φ(XT ), we spend µ(φ) and so the

payoff at maturity T becomes G − φ(XT ). Therefore, we get a new upper bound for

G given by supP∈P(δS0
) EP[G − φ(XT )

]
+ µ(φ). Following [12], by minimizing on the

vanilla option portfolio φ, a new no-arbitrage upper bound of the option G is then

given by

inf
φ∈L1(µ)

sup
P∈P(δS0

)

{
EP[G− φ(XT )

]
+ µ(φ)

}
. (1.2)

The above bound is stronger than the one in (1.1), since φ := 0 ∈ L1(µ). In [12], the

authors gave a duality result, showing that the above no-arbitrage upper bound (1.2)

is equivalent to the minimum super-hedging cost for derivative option G. Moreover,

they derived an explicit solution for this no-arbitrage bound when G is a lookback

option.

For another specific class of payoff function G, Tan and Touzi [24] established

another duality result, where the dual formulation can be viewed as a stochastic mass

transportation problem. Namely, by exchanging the infimum and supremum, and

observing that

inf
φ∈L1(µ)

{
EP[G− φ(XT )

]
+ µ(φ)

}
=

{
EP[G], if XT ∼P µ,

−∞, otherwise,

it follows that a dual formulation of (1.2) is given by

sup
P∈P(δS0

)
inf

φ∈L1(µ)

{
EP[G− φ(XT )

]
+ µ(φ)

}
= sup

P∈P(δS0
,µ)

EP[G], (1.3)

where P(δS0 , µ) denotes the collection of all martingale probability measures P ∈
P(δS0) such that XT ∼P µ. Then under P ∈ P(δS0 , µ), the martingale X can be

viewed as a transportation plan from the distribution δS0 to the distribution µ.
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The no-arbitrage bound problem of exotic options given marginals has been largely

studied by the Skorohold Embedding Problem (SEP) approach. Given a Brownian

motion W and a distribution µ, the SEP is to find a stopping time τ such that Wτ ∼ µ
and (Wt∧τ )t≥0 is uniformly integrable. By Dubins-Schwartz’s time change theorem,

a martingale can be represented as a time changed Brownian motion and T turns to

be a stopping time w.r.t. the time-changed filtration. Then the problem (1.3) can be

formally written as

sup
τ∈T (µ)

E
[
G̃(Wt, 0 ≤ t ≤ τ)

]
, (1.4)

for another corresponding payoff function G̃, where T (µ) denotes the collection of all

stopping times τ such that Wτ ∼ µ. The connection between the SEP and no-arbitrage

bound of exotic options was first observed in the seminal paper of Hobson [13]. Further,

several solutions of SEP have been proved to have the optimality property, so that

they induce optimal bounds for some exotic options. We also refer to Hobson [14] for

a review of the SEP with applications in finance. However, the SEP approach to find

the no-arbitrage bound is generally studied case by case.

In this paper, we are interested in particular in the no-arbitrage bound problem

for a general class of variance options, whose payoff are given by G = g(〈X〉T , XT )

for some function g : R+ × R → R, where 〈X〉T denotes the quadratic variation of X

between 0 and T . As observed in Soner, Touzi and Zhang [21], we remark that there

is a progressively measurable process (〈X〉t)0≤t≤T which is pathwisely defined on Ω0

and coincides with the P-quadratic variation of X, P-a.s. for every P ∈ P(δS0). Then

the no-arbitrage bound (1.2) turns to be

inf
φ∈L1(µ)

sup
P∈P(δS0

)

{
EP[g(〈X〉T , XT )− φ(XT )

]
+ µ(φ)

}
. (1.5)

The main contribution of this paper is to provide a complete approximation for an

optimization problem similar to (1.5), motivated by its application in finance to find

the no-arbitrage bound. In a first part, we will convert the supremum part of (1.5) from

an optimal control problem to an optimal stopping problem, using Dubins-Schwartz’s

time change theorem. Next, we explore the properties of the optimal stopping problem

and restrict the computation to a bounded domain. Finally, we suggest a finite dif-

ference method to solve the optimal stopping problem as well as a gradient projection

algorithm to solve the infimum part, where the gradient is also computed by a finite

difference scheme.

The rest of the paper is organized as follows: In Section 2, we formulate a no-

arbitrage upper bound for a general class of variance options with given marginals,

which is the main problem of the paper. We then reformulate the problem as an

optimal Brownian stopping problem and give an approximation optimization problem.

In Section 3, we propose a numerical algorithm for the approximation problem, which

combines the gradient projection algorithm and the finite difference method. We next

provide some numerical examples in Section 4. Finally, we complete in Section 5 the

proof of the convergence for the approximation problem.
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Notations: We denote by Q the collection of all continuous functions of quadratic

growth, i.e.

Q :=
{
φ : R→ R be continuous and such that sup

x∈R

|φ(x)|
1 + |x|2

<∞
}
. (1.6)

Let µ be a probability measure on (R,B(R)), denote

µ(φ) :=

∫
R
φ(x)µ(dx), for every φ ∈ L1(µ).

2 Main problem

We shall first formulate a no-arbitrage bound for a class of variance options, given

two marginal distributions of the underlying at time T0 and T1. This provides the

motivation of the main problem of the paper, which is then reformulated in Section

2.2 using the time change theorem. In Section 2.3, we give a first approximation which

restrict the computation on a bounded domain.

2.1 A no-arbitrage bound for a class of variance options

We recall, as defined in the introduction section, that Ω0 := C([0, T ],R) is the canonical

space with canonical filtration F0 and canonical process X. A progressive process

〈X〉 is defined on Ω0 which coincides with the quadratic variation of X under every

martingale measure P. Then X is the candidate process of the underlying security.

Let 0 ≤ T0 ≤ T1 ≤ T , denote 〈X〉T0,T1 := 〈X〉T1 − 〈X〉T0 , we shall consider in this

paper the forward variance option with payoff

G := g
(
〈X〉T0,T1 , XT1

)
at maturity T1 for a Lipschitz function g : R+ × R→ R.

Example 2.1. The most popular variance option is the “variance swap”, whose payoff

function is g(t, x) = t. There are also “volatility swap” with payoff function g(t, x) =√
t, and calls (puts) on variance or volatility, where the payoff functions are (t−K)+

((K − t)+) or (
√
t −K)+ ((K −

√
t)+). Another example is the “call sharpe” option

with payoff function g(t, x) = (x−K)+

t .

We shall suppose that the vanilla options of maturities T0, T1 are liquid so that

we can identify the marginal distributions µ0 (resp. µ1) for XT0 (resp. XT1). Suppose

in addition that the underlying process is a martingale, and the quadratic variation

〈X〉T0,T1 conditioning on XT0 is integrable. Equivalently, we shall only consider, for

every x ∈ R, the collection P2(δx) of probability measures P such that P(XT0 = x) = 1

and EP[〈X〉T0,T1] <∞. Given a function φ : R→ R, define

λ̄φ0 (x) := sup
P∈P2(δx)

EP[g(〈X〉T0,T1 , XT1)− φ(XT1)
]
.

Then following Galichon, Henry-Labordère and Touzi [12], we define a no-arbitrage

upper bound of variance option G = g(〈X〉T0,T1 , XT1) by

U := inf
φ∈Q

(
µ0(λ̄φ0 ) + µ1(φ)

)
, (2.1)
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where Q is the collection of all continuous functions of quadratic growth defined by

(1.6).

Remark 2.2. In contrast to the static strategies set L1(µ) used in formulation (1.5),

we restrict our admissible strategies set to Q. Then U may not be the optimal no-

arbitrage bound, but only a sub-optimal bound. The main reason to choose Q is, by

the observation of Dupire [10], that variance swap (i.e. g(t,x) = t) is equivalent to a

European option option with payoff X2
T , see also Proposition 2.7 and Remark 2.9.

Remark 2.3. Here we only give the upper bound formulation. By the symmetry of

the set Q defined in (1.6), if we reverse the payoff function to −g(t, x), then with the

upper bound U(−g) associated to payoff −g, the value −U(−g) is the lower bound for

the payoff g.

The problem of no-arbitrage bound for variance options given marginal distribu-

tions has also been studied by the SEP approach in a dual formulation of the form

(1.4). Suppose that g(t, x) = f(t) for some function f : R+ → R, it is proved that

the optimal upper bound can be induced by Root’s embedding when f is concave and

by Röst’s embedding when f is convex (see Root [19] and Röst [20] and also Cox and

Wang [9]). However, for general payoff functions g : R+ × R→ R, there is no system-

atic approach to find the optimal no-arbitrage bound. When g(t, x) = (t −K)+, i.e.

the option is the variance call, Dupire [10], Carr and Lee [8] proposed a method to find

a sub-optimal bound as well as the associated strategy φ in a similar context. In their

implemented examples, they showed that their bounds are quite closed to the optimal

bounds induced by Root’s embedding solution. In our paper, we shall consider a gen-

eral payoff function and provide a complete approximation of the bound U in (2.1) as

well as the optimal static strategy φ.

2.2 A reformulation by optimal stopping problem

We would like reformulate the upper bound problem (2.1) on a probability space

(Ω,F ,P), equipped with a standard one-dimensional Brownian motion B = (Bt)t≥0

such that B0 = 0. Let F = (Ft)t≥0 be the natural Brownian filtration, we define a set

of F−stopping times by

T ∞ :=
{
F− stopping times τ such that E(τ) <∞

}
. (2.2)

Then for every function φ ∈ Q, we denote

gφ(t, x) := g(t, x) − φ(x), (2.3)

and define λφ : R+ × R→ R and λφ0 : R→ R by

λφ(t, x) := sup
τ∈T∞

E
[
gφ(t+ τ, x+Bτ )

]
and λφ0 (·) := λφ(0, ·), (2.4)

and an optimization problem by

U := inf
φ∈Q

u(φ), with u(φ) := µ0(λφ0 ) + µ1(φ). (2.5)
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Applying the time-change martingale theorem, it follows that U is an equivalent

reformulation of the no-arbitrage bound U in (2.1).

Theorem 2.4. For every φ ∈ Q, we have λ̄φ0 (x) = λφ0 (x). And therefore, U = U .

Proof. Let us fix an arbitrary φ ∈ Q and x ∈ R. First, given a stopping time τ ∈ T ∞,

we define a process Y by Yt := x + B
τ∧ t−T0

T1−t

if t ∈ [T0, T1], Yt := x if t ∈ [0, T0) and

Yt := YT1 if t ∈ [T1, T ]. Then clearly Y is a continuous martingale between 0 and T

such that 〈Y 〉T0,T1 = τ , and Y induces a probability measure in P2(δx). This implies

that λφ0 (x) ≤ λ̄φ0 (x).

Next, suppose that P ∈ P2(δx), then the canonical process X is a continuous mar-

tingale under P. It follows by the time-change martingale theorem (see e.g. Theorem

3.4.6 of Karatzas and Shreve [15]) that Xt = x + W〈X〉t , where W is a standard

Brownian motion and 〈X〉t is a stopping time w.r.t. the time-changed filtration. It

is well-known that the supremum on stopping times w.r.t. the time-changed filtration

is equivalent to the supremum on the stopping times w.r.t. the natural Brownian fil-

tration (see Lemma 5.4). It follows that λ̄φ0 (x) ≤ λφ0 (x), and we hence conclude the

proof.

To make the upper bound problem be wellposed, we now impose some assumptions

on the marginal distributions µ0 and µ1.

Assumption 2.5. The marginal distributions µ0 and µ1 have both finite second mo-

ment, i.e. µ0(φ0) + µ1(φ0) <∞ with φ0(x) := x2; and µ0 ≤ µ1 in the convex order,

i.e.

µ0(φ) ≤ µ1(φ), for every convex function φ ∈ L1(µ0) ∩ L1(µ1). (2.6)

Remark 2.6. (i) It is shown in Strassen [22] that the convex order inequality (2.6) is

a necessary and sufficient condition for the existence of a martingale X with marginal

distributions µ0 and µ1 at time T0 and T1 such that T0 < T1.

(ii) Since the identity function I (where I(x) := x) and its opposite −I are both convex,

it follows from (2.6) that µ0 and µ1 have the same first moment, i.e. µ0(I) = µ1(I).

Proposition 2.7. Let Assumption 2.5 hold true.

(i) Suppose that ψ ∈ Q, K ∈ R and g is a Lipschitz payoff function. We define

another payoff function gK,ψ by gK,ψ(t, x) := g(t, x) + Kt + ψ(x). Denote by U(g)

(resp. U(gK,ψ)) the no-arbitrage price upper bound defined in (2.5) associated with the

payoff function g (resp. gK,ψ). Then

U(gK,ψ) = U(g) + KC0 + µ1(ψ), (2.7)

where

C0 := µ1(φ0)− µ0(φ0), with φ0(x) := x2. (2.8)

(ii) For every Lipschitz payoff function g, the upper bound value is finite, i.e. |U | <∞.
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The proof will be provided in Section 5.2 after some technical lemmas. We notice

that, as a direct consequence, and the upper bound of a European option with payoff

function ψ(x) is given by µ1(ψ), and the bound of “variance swap” option (g(t, x) = t)

is C0, which is consistent to Dupire’s [10] observation that variance swap is equivalent

to a European option with payoff function g(x) = x2.

2.3 An approximation problem

The main purpose of the paper is to provide a complete approximation to the op-

timization problem (2.5), which needs further a numerical approximation. For this

purpose, we shall introduce an approximation problem which restrict the computation

to a bounded domain. Let us make some further assumptions on the payoff function.

Assumption 2.8. (i) The payoff function g : R+ × R → R is L0−Lipschitz with

constant L0 ∈ R+.

(ii) For every x ∈ R, t 7→ g(t, x) is increasing; and for every t ∈ R+, x 7→ g(t, x) is

convex with minimum at x = 0.

(iii) There is some constant M0 ∈ R+ such that for every t ∈ R, x 7→ g(t, x) is affine

on [M0,∞) and (−∞,−M0].

Remark 2.9. Let g be an arbitrary Lipschitz payoff function. By Proposition 2.7, it

is equivalent to consider the transformed function gK,ψ(t, x) := g(t, x) +Kt+ψ(x) for

some constant K ∈ R and function ψ, for which Assumption 2.8 may hold true.

Example 2.10. Let g(t, x) = (K− t)+, we can consider ĝ(t, x) := t+ (K− t)+, which

satisfies Assumption 2.8. When g(t, x) = (K −
√
t)+ which is not Lipschitz, we need

to truncate the payoff function to gε(t, x) = (K −
√
t ∨ ε)+ to obtain the Lipschitz

payoff function. For the “call sharpe” option g(t, x) = (x−K)+

t , we also need truncate

the denominator and consider ĝ(t, x) = (x−K)+

t∨ε .

Let K, M , R and T are all positive constants, we denote

Q0 :=
{
φ ∈ Q non negative, convex, such that φ(0) = 0,

φ(x) ≤ K(|x| ∨ x2) and φ(x) = Kx2 for |x| ≥ 2M
}

(2.9)

and λφ,00 (x) = λφ,0(0, x) with

λφ,0(t, x) := sup
τ∈T∞, τ≤τRx ∧(T−t)

E
[
gφ(t+ τ, x+Bτ )

]
, (2.10)

where τRx := inf{s : x+Bs /∈ (−R,R)}. Clearly, τRx = 0 and λφ,0(t, x) = g(t, x)−φ(x)

whenever |x| ≥ R. We then introduce the approximation optimization value U0 by

U0 := inf
φ∈Q0

u0(φ) with u0(φ) := µ0

(
λφ,00

)
+ µ1(φ). (2.11)

For good choices of constants K, M , R and T , U0 provides an approximation of the

upper bound value U . Denote

φK,M (x) := 4KM
(
|x| −M

)
1M≤|x|≤2M + Kx21|x|>2M (2.12)
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and

δ := − log(q(R)) > 0, where q(R) :=
1√
2π

∫ 2R

−2R
e−x

2/2 dx.

Clearly, for every fixed K > 0, µ1(φK,M ) → 0 as M → ∞ since µ1 has finite second

order moment by Assumption 2.5.

Theorem 2.11. Suppose that Assumptions 2.5 and 2.8 hold true. Let K, M , R

and T turn to ∞ in such a way that µ1(φK,M ) → 0, R ≥
(
1 +

√
K

K−L0

)
M and

2(K + 2L0)(R2 ∨ 1)e−δ(T−1) → 0. Then U0 → U .

The proof of the above theorem will be completed in Section 5.

The computation of U0 is now restricted to a bounded domain, which permits

further a numerical approximation in the next section. We finish this section by

characterizing λφ,0 as the unique viscosity solution of a variational inequality (see e.g.

Theorem 6.7 of Touzi [25]).

Proposition 2.12. The function λφ,0 defined in (2.10) is the unique viscosity solution

of variational inequality

min
(
λ− gφ, − 1

2

∂2λ

∂x2
− ∂λ

∂t

)
(t, x) = 0, on [0, T )× (−R,R), (2.13)

with boundary condition

λ(t, x) = gφ(t, x), on
(
[0, T ]× {±R}

)
∪
(
{T} × [−R,R]

)
.

3 Numerical approximation

We shall propose a numerical method to approximate U0 in (2.11). It is easy to observe

that φ 7→ λφ,0 is convex since it is represented as the supremum of a family of linear

mapping in (2.10). Thus φ 7→ u0(φ) is a convex function and the problem of computing

U0 turns out to be a minimization problem of a convex function.

Our main idea is to compute λφ,0 with a finite difference numerical scheme, and

then to solve the minimization problem (2.11) with an iterative algorithm. Concretely,

we shall first provide a discrete grid characterized by h = (∆t,∆x), on which there is

a discrete optimization problem with value Uh close to U0. Then we use the gradient

projection algorithm to solve the discrete optimization problem of Uh. Throughout

the section, we fix the constants K, M , R and T , and suppose that R ≥ 2M .

3.1 A finite difference approximation

Let (l,m) ∈ N2, h = (∆x,∆t) ∈ (R+)2 such that l∆t = T and m∆x = M . Without

loss of generality, we suppose that there is r ∈ N such that r∆x = R. Denote xi := i∆x

and tk := k∆t and we define the discrete grid:

N := {xi : i ∈ Z} , NR := N ∩ [−R,R],
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M :=
{

(tk, xi) : (k, i) ∈ Z+ × Z
}
∩
(
[0, T ]× [−R,R]

)
,

The terminal set, boundary set as well as interior set of M are denoted by

∂TM :=
{

(T, xi) : −r ≤ i ≤ r
}
, ∂RM :=

{
(tk,±R) : 0 ≤ k ≤ l

}
,

M̊ := M\
(
∂RM∪ ∂TM

)
.

Let w(t, x) be a function defined on M, denote wki := w(tk, xi), we introduce the

discrete derivative of w by

D2w(tk, xi) :=
wki+1 − 2wki + wki−1

∆x2
.

Let θ ∈ [0, 1], ϕ be a function defined on NR, denote

gϕ(tk, xi) := g(tk, xi) − ϕ(xi). (3.1)

Following Barles, Daher and Romano [1], we define λϕh as the solution of the finite

difference scheme of variational inequality (2.13) on M:

λh(tk+1, xi) − λ̃h(tk, xi)

+ 1
2∆t

(
θ D2λ̃h(tk, xi) + (1− θ) D2λh(tk+1, xi)

)
= 0,

λh(tk, xi) = max
(
gϕ(tk, xi) , λ̃h(tk, xi)

)
, (tk, xi) ∈ M̊,

λh(tk, xi) = gϕ(tk, xi), (tk, xi) ∈ ∂TM∪ ∂RM.

(3.2)

The above θ−scheme has a unique solution, and is a consistent approximation for

(2.13) in sense of Barles and Souganidis [3]. Indeed, since the second equation of (3.2)

is equivalent to min( λh−gϕ, λh−λ̃h
∆t )(tk, xi) = 0, it follows with the first equation

in (3.2) that

min
(
λh − gϕ,

λh(tk, xi)− λh(tk+1, xi)

∆t
+ 1

2

(
θ D2λ̃h(tk, xi) + (1− θ) D2λh(tk+1, xi)

) )
= 0.

We shall assume in addition that the discretization parameters h = (∆t,∆x) satisfy

the CFL condition

(1− θ) ∆t

∆x2
≤ 1. (3.3)

Then the finite difference scheme (3.2) is consistent and monotone in sense of the

monotone convergence scheme in [3], and the numerical solution λϕh converges to λφ,0

given ϕ := φ|N by the results of [3] (see also Barles, Daher and Romano [1]).

Remark 3.1. The discrete system (3.2) is the θ-scheme for variational inequality

(2.13) with Dirichlet boundary condition g(x, t)−ϕ(x) on ∂TM∪∂RM. It is well-known

that when the finite difference scheme is explicit (i.e. θ = 0) and the CFL condition
∆t

∆x2
≤ 1 holds, it can be interpreted as the dynamic programming principle for a system

on a Markov chain Λ (see e.g. Kushner and Dupuis [17]). This interpretation holds

also true for general θ-scheme under the monotone condition, as we shall show later

in the proof of Proposition 3.5.
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We next introduce a natural approximation of u0(φ) in (2.11):

uh(ϕ) := µ0

(
linR[λϕh,0]

)
+ µ1

(
linR[ϕ]

)
, (3.4)

where λϕh,0(·) := λϕh(0, ·), and linR[ϕ] denotes the linear interpolation of ϕ extended by

zero outside [−R,R] for every function ϕ defined on NR.

Assumption 3.2. There are constants (ρ1, ρ2, LK,M,T ) ∈ (R+)3 which are independent

of h = (∆t,∆x) such that

µ0

( ∣∣∣λφ,00 1[−R,R] − linR[λϕh,0]
∣∣∣ ) ≤ LK,M,T

(
∆xρ1 + ∆tρ2

)
, (3.5)

for every φ ∈ Q0 and ϕ = φ|NR
.

Remark 3.3. (i)When θ = 1, (3.2) is the implicit scheme for (2.13), then Assumption

3.2 holds true with ρ1 = 1
2 and ρ2 = 1

4 in spirit of the analysis of Krylov [16].

(ii) When θ = 0 and the CFL condition (3.3) holds, (3.2) is a monotone explicit

scheme, then in spirit of Barles and Jakobsen [2], Assumption 3.2 holds with ρ1 = 1
10

and ρ2 = 1
5 .

Let Qh be the collection of all functions on the grid NR defined as restrictions of

functions in Q0 given by (2.9), i.e.

Qh :=
{
ϕ := φ|NR

for some φ ∈ Q0

}
, (3.6)

we can then provide a discrete approximation for U0 in (2.11):

Uh := inf
ϕ∈Qh

uh(ϕ). (3.7)

We notice further that

Qh =
{
ϕ ∈ B(NR) nonnegative, convex satisfying ϕ(0) = 0, ϕ(xi) = Kx2

i ,

for all 2m ≤ |i| ≤ r, and |ϕ(xi+1)− ϕ(xi)| ≤ 4KM∆x, − 2m < i ≤ 2m
}
, (3.8)

where B(NR) denote the set of all functions defined on the grid NR.

Proposition 3.4. Let Assumption 3.2 hold. Then we have, with the same constants

LK,M,T , ρ1, ρ2 introduced in Assumption 3.2,

|U0 − Uh| ≤ LK,M,T

(
∆xρ1 + ∆tρ2

)
+ 4KR∆x+ (µ0 + µ1)(φRK), (3.9)

where φRK(x) := Kx21|x|>R.

Proof. First, given φ ∈ Q0 which is 4KR−Lipschitz, we introduce ϕ := φ|NR
∈ Qh

so that
∣∣linR[ϕ] − φ

∣∣
L∞([−R,R])

≤ 4KR∆x. Then it follows by Assumption 3.2 that

|u0(φ)− uh(ϕ)| ≤ LK,M,T (∆xρ1 + ∆tρ2) + 4KR∆x+ (µ0 + µ1)(φRK), and hence

U0 − Uh ≤ LK,M,T

(
∆xρ1 + ∆tρ2

)
+ 4KR∆x+ (µ0 + µ1)(φRK).

Next, given ϕ ∈ Qh, we define φ := linR[ϕ] + φRK ∈ Q0. It follows by Assumption

3.2 that |u0(φ)− uh(ϕ)| ≤ LK,M,T (∆xρ1 + ∆tρ2) + (µ0 + µ1)(φRK), and therefore,

Uh − U0 ≤ LK,M,T

(
∆xρ1 + ∆tρ2

)
+ (µ0 + µ1)(φRK).

We hence conclude the proof.
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3.2 Gradient projection algorithm

As we can easily observe from its definition in (2.5) that φ 7→ u0(φ) is convex since

it can be represented as the supremum of a family of linear maps, we shall show

that ϕ 7→ uh(ϕ) is also convex for uh defined in (3.4). Then a natural candidate for

the resolution of Uh = infϕ∈Qh
uh(ϕ) in (3.7) is the gradient projection algorithm.

The gradient projection algorithm is a classical iterative method for solving convex

optimization problems. We would like to refer to Ben-Tal and Nemirovski [4], Bertsekas

[5] for detailed presentations. We recall that B(NR) denotes the collection of all

functions on NR.

Proposition 3.5. Under the CFL condition (3.3), the function ϕ 7→ uh(ϕ) is convex.

Proof. Let us first rewrite the finite differences scheme (3.2) into a vector system.

Denote α := ∆t
2∆x2

, λk :=
(
λϕh(tk, xi)

)
−r≤i≤r, λ̃k :=

(
λ̃ϕh(tk, xi)

)
−r≤i≤r and qk :=(

gϕ(tk, xi)
)
−r≤i≤r ∈ R2r+1. Let I2r+1 denote the (2r + 1) × (2r + 1) identity matrix,

Π and bk ∈ R2r+1 be defined by

Π :=



0 0 0 0 0

1 −2 1 0

0 1 −2 1
. . .

. . .
. . .

1 −2 1 0

0 1 −2 1

0 0 0 0 0


, bk :=


qk(−r)− λk+1(−r)

0
...

0

qk(r)− λk+1(r)

 ,

and Θ :=
[
I2r+1 − θαΠ

]−1[
I2r+1 + (1− θ)αΠ

]
, then scheme (3.2) can be rewritten as

λ̃k = Θλk+1 + bk, and λk = λ̃k ∨ qk. (3.10)

Under CFL condition (3.3), one can verify that the above scheme is monotone,

i.e. every element of Θ is positive, and moreover, Θ1 = 1, where 1 := (1, · · · , 1)T ∈
R2r+1. It follows that Θ can be the probability transition matrix of some Markov

chain Λ, whose state space is the grid NR with absorbing boundary. Let T Rh denote

the collection of all stopping times τh on Λ, then λϕh can be represented as solutions of

an optimal stopping problem on Λ:

λϕh(tk, xi) = sup
τh∈T R

h , τh≥tk
E
[
gϕ(Λτh , τh)

∣∣ Λtk = xi
]
.

Now given a stopping time τh ∈ T Rh , we introduce the function λϕ,T,R,τhh,0 defined on

NR:

λϕ,τhh,0 (xi) := E
[
gϕ(Λτh , τh)

∣∣ Λ0 = xi
]
.

Then uh has an equivalent representation:

uh(ϕ) = sup
τh∈T R

h

ūτhh (ϕ) := sup
τh∈T R

h

µ0

(
linR[λϕ,τhh,0 ]

)
+ µ1

(
linR[ϕ]

)
. (3.11)

Clearly, for every τh, the map ϕ 7→ ūτhh (ϕ) is linear. It follows by (3.11) that ϕ 7→ uh(ϕ)

is convex.
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Remark 3.6. In the above Markov chain system (3.11), given ϕ ∈ B(NR), one can

define a stopping time τh(ϕ) by

τh(ϕ) := inf
{
tk : λϕ,τhh (tk,Λtk) = gϕ(tk,Λtk)

}
, (3.12)

which is clearly an optimal stopping time, i.e.

uh(ϕ) = sup
τh∈T h

R

ūτhh (ϕ) = ū
τh(ϕ)
h (ϕ). (3.13)

Now we are ready to give the gradient projection algorithm for Uh in (3.7). Given

ϕ ∈ B(NR), we denote by PQh

[
ϕ
]

its projection on Qh. Of course, such a projection

depends on the norm equipped on B(NR), which is an important issue to be discussed

later.

Let γ = (γn)n≥0 be a sequence of positive real numbers, we propose the following

algorithm:

Algorithm 3.7. For optimization problem (3.7):

• 1, Let ϕ0 := φK,M |NR
, where φK,M is defined in (2.12).

• 2, Given ϕn, compute uh(ϕn) and a sub-gradient ∇uh(ϕn).

• 3, Let ϕn+1 := PQh

[
ϕn − γn∇uh(ϕn)

]
.

• 4, Go back to step 2.

In the following, we shall discuss mainly three issues: the computation of sub-

gradient ∇uh(ϕ), the projection from B(NR) to Qh and the convergence of the above

gradient projection algorithm.

3.2.1 Computation of sub-gradient

We notice that uh can be represented as the supremum of a family functions in (3.13),

and hence is convex. A natural method to obtain its sub-gradient is then first to

identify the optimal stopping time which gives the supremum value in (3.13), and then

to compute the gradient of the linear map associated with this optimal stopping time.

Let us fix ϕ ∈ B(NR), we then denote by (pj , p̃j) the unique solution of the following

linear system on M:
pj(tk, xi) = − δi,j , (tk, xi) ∈ ∂TM∪ ∂RM,

pj(tk+1, xi)− p̃j(tk, xi) + 1
2∆t

(
θD2p̃j(tk, xi) + (1− θ)D2pj(tk+1, xi)

)
= 0,

pj(tk, xi) =

{
p̃j(tk, xi), if λϕ,T,Rh (tk, xi) > gϕ(tk, xi),

− ej(xi), otherwise.
(tk, xi) ∈ M̊.

(3.14)

where ej ∈ B(NR) is defined by ej(xi) := δi,j =

{
1, if i = j,

0, otherwise.
Denote pj0 :=

pj(0, ·).
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Proposition 3.8. Let CFL condition (3.3) hold true, then the vector

∇uh(ϕ) :=
(
µ0(linR[pj0]) + µ1(linR[ej ])

)
−2m≤j≤2m

(3.15)

is a sub-gradient of map ϕ 7→ uh(ϕ).

Proof. Consider the Markov chain Λ introduced in the proof of Proposition 3.5. By

(3.13), we have for every perturbation ∆ϕ ∈ B(NR),

uh(ϕ+ ∆ϕ) = ū
τh(ϕ+∆ϕ)
h (ϕ+ ∆ϕ) ≥ ū

τh(ϕ)
h (ϕ+ ∆ϕ),

where τh(ϕ) and τh(ϕ+ ∆ϕ) are defined in (3.12). It follows still by (3.13) that

uh(ϕ+ ∆ϕ) − uh(ϕ) ≥ ū
τh(ϕ)
h (ϕ+ ∆ϕ) − ū

τh(ϕ)
h (ϕ),

which implies that (
ū
τh(ϕ)
h (ϕ+ ej) − ū

τh(ϕ)
h (ϕ)

)
−r≤j≤r

(3.16)

is a sub-gradient of uh at ϕ since ψ 7→ ū
τ(ϕ)
h (ψ) is linear by its definition in (3.11).

Finally, by the definition of τh(ϕ) in (3.12) as well as (3.2) and (3.14), it follows

that

pj(tk, xi) = − E
[
ej
(
Λτh(ϕ)

) ∣∣ Λtk = xi
]
.

And hence the sub-gradient (3.16) coincides with ∇uh(ϕ) defined in (3.15).

3.2.2 Projection

To compute the projection PQh
from B(NR) to Qh, we still need to specify the norm

equipped on B(NR). The simplest norm can be the common one defined by |ϕ|2 :=∑r
i=−r ϕ

2
i . However, the computation of the projection may be too complicated. In

order to make the projection algorithm simpler, we shall introduce an invertible linear

map LR from B(NR) to R2r+1, then equip on B(NR) the norm | · |R induced by the

classical L2−norm on R2r+1. Let LR : B(NR)→ R2r+1 be defined by

ξi =


ϕ(xi) − ϕ(xi−1), for 0 < i ≤ r,
ϕ(x0), for i = 0,

ϕ(xi) − ϕ(xi+1), for − r ≤ i < 0.

(3.17)

We define the norm | · |R on B(NR) (easily be verified) by

|ϕ|R :=
∣∣ξ∣∣L2(R2r+1)

, with ξ := LR(ϕ), ∀ϕ ∈ B(NR).

Denote

E0 :=
{
LRϕ : ϕ ∈ Q0

}
=

{
ξ ∈ R2r+1 : 0 = ξ0 ≤ ξ±1 ≤ · · · ≤ ξ±2m ≤ 4KM∆x,

ξ±i = K(x2
i+1 − x2

i ), ∀2m < i ≤ r and

2m∑
i=1

ξi =

−2m∑
i=−1

ξi = 4KM2
}
.
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Then the projection PQh
from B(NR) to Qh under norm | · |R is equivalent to the

projection from R2r+1 to E0 under the L2−norm, which consists in solving a quadratic

minimization problem:

ξz := arg min
ξ∈E0

r∑
i=−r

(zi − ξi)2, for a given z ∈ R2r+1. (3.18)

Clearly, for every z ∈ R2r+1, ξz0 = 0 and the above optimization problem (3.18) can be

decomposed into two optimization problems:

min
ξ∈E0,+

2m∑
i=1

(zi − ξi)2 and min
ξ∈E0,−

−2m∑
i=−1

(zi − ξi)2, (3.19)

where

E0,± :=
{
ξ = (ξ±i)1≤i≤2m : 0 ≤ ξ±1 ≤ · · · ≤ ξ±2m ≤ 4KM∆x,

2m∑
i=1

ξ±i = 4KM2
}
,

The optimization problem (3.19) can be solved, and we propose an algorithm in Ap-

pendix.

3.2.3 Convergence rate

We shall provide a convergence rate for the gradient projection algorithm. In prepa-

ration, let us first give an estimate on the norm of the sub-gradients ∇uh.

Lemma 3.9. Let ϕ1, ϕ2 ∈ B(NR), then under the CFL condition (3.3),∣∣ uh(ϕ1) − uh(ϕ2)
∣∣ ≤ 2 |ϕ1 − ϕ2|∞, (3.20)

and it follows that

∣∣∇uh(ϕ)
∣∣
R
≤ 2

√
2m+ 1 = 2

√
2M

∆x
+ 1, ∀ϕ ∈ B(NR). (3.21)

Proof. Under the CFL condition (3.3), the θ−scheme is monotone, which implies

that |λϕ1

h − λ
ϕ2

h |∞ ≤ |ϕ1 − ϕ2|∞. Hence by the definition of uh in (3.4), the inequality

(3.20) holds true.

Next, denote ξi := LR(ϕi), i = 1, 2, then by Cauchy-Schwarz inequality,

|ϕ1 − ϕ2|∞ ≤ max
( 2m∑
i=0

∣∣ξ1
i − ξ2

i

∣∣ ,−2m∑
i=0

∣∣ξ1
i − ξ2

i

∣∣ ) ≤ √2m+ 1 ·
∥∥ξ1 − ξ2

∥∥
L2 ,

which implies immediately (3.21).

Finally, let us finish this section by providing a convergence rate of the proposed

gradient projection algorithm (Algorithm 3.7). Denote

Φ := max
ϕ1,ϕ2∈Qh

|ϕ1 − ϕ2|2R ≤ 4m (4KM∆x)2 ≤ 64K2M3∆x,
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it follows from Section 5.3.1 of Ben-Tal and Nemirovski [4] that one has the convergence

rate:

min
n≤N

uh(ϕn) − Uh ≤
Φ +

∑N
i=n γ

2
n

∣∣∇uh(ϕn)
∣∣2
R

2
∑N

n=1 γn

=
32K2M3∆x +

(
4 M

∆x + 2
) ∑N

i=n γ
2
n∑N

n=1 γn
. (3.22)

There are several choices for the sequence γ = (γn)n≥1:

• Divergent Series: γn ≥ 0,
∑∞

n=1 γn = +∞ and
∑∞

n=1 γ
2
n < +∞. Clearly, (3.22)

converges to 0 as N →∞.

• Optimal stepsizes: γn =
√

Φ∣∣∇uh(ϕn)
∣∣
R

√
n

, we have by [4] that

min
n≤N

uh(ϕn) − Uh ≤ O(1)
16KM

√
2M2 +M∆x√
N

.

4 Numerical example

Finally, we implement the above algorithm and test it on several options, including

the variance swap, call on variance. In all examples, we suppose that µ0 and µ1 are

of log-normal distribution given as follows. Let St := S0 exp(−1
2σ

2t+ σWt) with some

constants S0, σ and a standard Brownian motion (Wt)t≥0, we suppose that µ0 ∼ S 1
2

and µ1 ∼ S1. Clearly, for all constants σ, µ0 and µ1 satisfies Assumption 2.5.

4.1 Variance swap

We first test the algorithm on “variance swap”, whose payoff function is given by

g(t, x) = t. It follows by Proposition 2.7 that the model-free price upper bound of

variance swap is given by C0 in (2.8), i.e.

C0 =

∫
R
x2µ1(dx)−

∫
R
x2µ0(dx) = E

(
S2

1 − S2
1
2

)
= S2

0

(
eσ

2 − eσ2/2
)
.

In our implemented example, we set σ = 0.25, S0 = 1, hence C0 ≈ 0.0327511. For

the approximation and discretization parameters, we set T = 0.15, K = 1, M = 2.5,

R = 2.6, ∆t = 0.003, ∆x = 0.1 and γn =
√
n.

With a 2.40GHz CPU computer, it takes 84.89 seconds to finish 4× 104 iterations,

and we get the numerical upper bound 0.0328511, i.e. the relative error is less than

1%, see also Figure 1.
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Figure 1: Numerical result for variance swap with approximation parameters: T = 0.15,

K = 1, M = 1, R = 2.6, ∆t = 0.003, ∆x = 0.1 and γn =
√
n.

4.2 Call on variance

We next give some numerical tests on the option “call on variance”, whose payoff

function is g(t, x) = (t − Kv)
+ for some positive constant Kv. In our implemented

examples, we set σ = 0.2, S0 = 1. In a first example, we fix K = 1 and obtain the

numerical solutions with different approximation parameters T . The result illustrated

in Figure 2 is consistent to the convergence result in Theorem 2.11 as well as that in

Proposition 5.8 below, i.e. when T →∞, the convergence is of exponential order.

In a second example, we fix T = 0.5 and test the numerical algorithm with different

approximation parameters K. We notice that for both options, the minimum upper

bounds are given by the case K ≈ 1. When K is too small, the approximation strategy

class Q0 defined by (2.9) is not rich enough, and hence the approximated upper bound

is greater than the real bound. When K is too large, another error term given by

µ1(φK,M ) in Theorem 2.11 (see also Proposition 5.6 below) becomes too important.

Therefore, for those calls on variance, the optimal approximation parameter K to

choose is around 1. (see Figure 3).
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Figure 2: Numerical result for call on variance with approximation parameters: K = 1,

M = 1, R = 2.2, ∆t = 0.001, ∆x = 0.1 and γn =
√
n.

Figure 3: Numerical result for call on variance with approximation parameters: T = 0.5,

M = 1, R = 2.2, ∆t = 0.001, ∆x = 0.1 and γn =
√
n.
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5 Proof of the approximation result

In this section, we shall complete the proof of Proposition 2.7 as well as the convergence

result in Theorem 2.11. We first give some technical lemmas about the stopping times

on a Brownian motion in Section 5.1. Then we complete the proof of Proposition 2.7

in Section 5.2, and the proof of Theorem 2.11 in Section 5.3.

5.1 Technical lemmas

We recall that B = (Bt)t≥0 is a standard Brownian motion in probability space

(Ω,F ,P), with natural Brownian filtration F = (Ft)t≥0, and T ∞ denotes the col-

lection of all F−stopping times τ such that E[τ ] < ∞. Let T > 0, we also denote by

T T the collection of all F−stopping times taking value in [0, T ], i.e.

T T :=
{
τ ∧ T : τ ∈ T ∞

}
. (5.1)

Lemma 5.1. Let ψ : (t, x) ∈ R+ × R 7→ ψ(t, x) ∈ R be a function Lipschitz in t,

satisfying sup(t,x)∈R+×R
|ψ(t,x)|
1+x2

<∞. Then for every τ ∈ T ∞,

E
[
ψ(τ,Bτ )

]
= lim

t→∞
E
[
ψ(τ ∧ t, Bτ∧t)

]
. (5.2)

In particular,

E[B2
τ ] = lim

t→∞
E[B2

τ∧t] = lim
t→∞

E[τ ∧ t] = E[τ ] and E[Bτ ] = 0. (5.3)

Proof. Given a stopping time τ ∈ T ∞, let Yt := Bτ∧t. Then by assumptions on ψ,

there is a constant C > 0 such that

ψ(Bτ∧t, τ ∧ t) ≤ C
(
1 + Y 2

t + τ
)
≤ C

(
1 + sup

s≥0
Y 2
s + τ

)
, ∀t ≥ 0.

We notice that (Yt)t≥0 is a continuous uniformly integrable martingale by its definition,

and E
[

sups≥0 Y
2
s

]
≤ 4E[τ ] < ∞ by Doob’s inequality. And hence it follows by the

dominated convergence theorem that (5.2) holds true.

Lemma 5.2. Let ψ ∈ Q and denote by ψconv its convex envelope, then

inf
τ∈T T

E ψ(Bτ ) → inf
τ∈T∞

E ψ(Bτ ) = ψconv(0), as T →∞.

Proof. Let a ≤ 0 ≤ b be two constants and τa,b := inf
{
t : Bt /∈ (a, b)

}
. We first notice

that τa,b ∈ T ∞ since E[τa,b] = limt→∞ E[τa,b ∧ t] = limt→∞ E[B2
τa,b∧t] ≤ (a2 + b2) <∞.

Hence by (5.3), E[Bτa,b ] = 0, which implies that P(Bτa,b = a) = b
b−a and P(Bτa,b =

b) = −a
b−a . Therefore,

inf
τ∈T∞

Eψ(Bτ ) ≤ inf
a<0<b

Eψ(Bτa,b) = inf
a<0<b

( b

b− a
ψ(a) +

−a
b− a

ψ(b)
)

= ψconv(0).

On the other hand, for every τ ∈ T ∞, it follows by Jensen’s inequality and E[Bτ ] =

0 from (5.3) that ψconv(x) ≤ E[ψconv(x+Bτ )] ≤ E[ψ(x+Bτ )]. Therefore,

inf
τ∈T∞

Eψ(Bτ ) = ψconv(0).
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Finally, the convergence of infτ∈T T Eψ(Bτ ) to infτ∈T∞ Eψ(Bτ ) as T → ∞ is a

direct consequence of (5.2).

Corollary 5.3. Let φ ∈ Q and (a, b) ∈ R2. Then for function u defined in (2.5), we

have u(φ) = u(φa,b), where φa,b is given by φa,b(x) := φ(x) + ax+ b.

Proof. By the definition of λφ0 in (2.4) together with Lemma 5.1, it follows that

λ
φa,b
0 (x) = λφ0 (x) + ax + b. Moreover, as discussed in Remark 2.6, µ0(I) = µ1(I) for

the identity function I. Then we get u(φ) = u(φa,b) by the definition of u in (2.5).

It is also interesting to consider the stopping time w.r.t. a larger filtration. Let F̃
be another filtration in (Ω,F ,P) w.r.t which B is still a standard Brownian motion,

denote

T̃ ∞ :=
{
F̃− stopping times τ such that E(τ) <∞

}
.

Lemma 5.4. For all φ ∈ Q, we have

λφ(t, x) := sup
τ∈T∞

E
[
gφ(t+ τ, x+Bτ )

]
= sup

τ∈T̃∞
E
[
gφ(t+ τ, x+Bτ )

]
. (5.4)

Proof. By the same arguments as in Lemma 5.1, (5.2) holds still true for every

τ ∈ T̃ ∞. Then, to prove (5.4), it is enough to prove that for every T > 0,

sup
τ∈T∞,τ≤T

E
[
gφ(t+ τ, x+Bτ )

]
= sup

τ∈T̃∞,τ≤T
E
[
gφ(t+ τ, x+Bτ )

]
.

Since the family of random variables (gφ(t+ τ, x+Bτ ))τ∈T̃∞,τ≤T is clearly of class D,

we then conclude the proof by Theorem 5 of Szpirglas and Mazziotto [23].

5.2 Proof of Proposition 2.7

(i) Given φ ∈ Q, we denote φK,ψ(x) := φ(x) + Kx2 + ψ(x) which also belongs to Q.

Then by (5.3), for all τ ∈ T ∞,

E
[
gK,ψ(τ, x+Bτ )− φK,ψ(x+Bτ )

]
= E

[
gφ(τ, x+Bτ )

]
−Kx2.

It follows by the definition of U in (2.5) that U(gK,ψ) ≥ U(g) + KC0 + µ1(ψ). And

moreover, by the arbitrariness of K ∈ R, ψ ∈ Q and symmetric relationship between

g and gK,ψ, we conclude the proof of (2.7).

(ii) For the second assertion, we first claim that u(g0) = 0 for g0 ≡ 0. Indeed, with

the payoff function g0 ≡ 0, we get immediately from (2.4) as well as Lemma 5.2 that

u(φ) = − µ0(φconv) + µ1(φ) ≥ µ1(φconv)− µ0(φconv) ≥ 0.

where the last inequality follows from Assumption 2.5. It follows that that U(g0) = 0.

Let us take the positive constant L0 given in Assumption 2.8, then

g(0, x) ≤ g(t, x) ≤ g(0, x) + L0t.

Further, it is clear that U is monotone w.r.t. the payoff function g by its definition in

(2.5). Then it follows that

µ1(g(0, ·)) ≤ U ≤ µ1(g(0, ·)) + L0C0, with C0 defined in (2.8).

Hence we conclude the proof.
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5.3 The proof of Theorem 2.11

We shall decompose the proof of Theorem 2.11 intro four steps.

In a first step, we show that in optimization problem (2.5), it is equivalent to

minimize among all non negative convex functions. Denote

Q0 :=
{
φ ∈ Q non negative, convex, such that φ(0) = 0

}
.

Proposition 5.5. Let Assumptions 2.5 and 2.8 hold true, then

U = inf
φ∈Q0

u(φ).

Proof. Let T ∈ R+, τ0 ∈ T T and φ ∈ Q. By the dominated convergence theorem,

it is clear that x 7→ infτ∈T T Eφ(x + Bτ ) is continuous. This, together with the weak

dynamic programming in Theorem 4.1 of Bouchard and Touzi [6], implies the dynamic

programming principle:

inf
τ0≤τ≤T

Eφ(x+Bτ ) = E
[
ess inf

τ0≤τ≤T
E
[
φ(x+Bτ )

∣∣Fτ0]].
Then for every constant T̂ > T ,

λφ0 (x) = sup
τ∈T∞

E
[
gφ(τ, x+Bτ )

]
≥ sup

τ0≤τ≤T̂
E
[
g(τ, x+Bτ )− φ(x+Bτ )

]
.

Since g increases in t and is convex in x from Assumption 2.8, we have

E
[
g(τ, x+Bτ )

∣∣Fτ0] ≥ E
[
g(τ0, x+Bτ )

∣∣Fτ0] ≥ g(τ0, x+Bτ0),

and hence

λφ0 (x) ≥ E
[
g(τ0, x+Bτ0)

]
− E

[
inf

τ0≤τ≤T̂
E
[
φ(x+Bτ )

∣∣Fτ0]].
Sending T̂ to +∞, it follows by Lemma 5.2 that

λφ0 (x) ≥ E
[
g(τ0, x+Bτ0) − φconv(x+Bτ0)

]
.

Thus, by arbitrariness of τ0 in T T as well as that of T ∈ R+, we get

λφ0 (x) ≥ lim
T→∞

sup
τ0∈T T

E
[
g(τ0, x+Bτ0) − φconv(x+Bτ0)

]
,

= sup
τ0∈T∞

E
[
g(τ0, x+Bτ0) − φconv(x+Bτ0)

]
,

where the last equality is a direct consequence of Lemma 5.1 since φconv is either of

quadratic growth or equals to −∞.

Finally, since φ ≥ φconv, by the definitions of u and U in (2.5), it is clear that

the infimum in (2.5) can be taken over the collection of all convex functions in Q.

Moreover, by the property of u(φ) in Corollary 5.3, the infimum can be then taken

over the collection of all positive convex functions φ in Q such that φ(0) = 0, i.e.

U = inf{u(φ) : φ ∈ Q0}. We then conclude the proof.
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Our second step is on the growth coefficient of φ in Q0. Let K be a positive

constant, we denote

UK := inf
φ∈Q0,K

u(φ) with Q0,K :=
{
φ ∈ Q0 : φ(x) ≤ K(|x| ∨ x2)

}
.

By the convexity of functions in Q0, we see that every φ ∈ Q0 is in fact locally Lipschitz

continuous, and hence one can easily deduce that Q0 = ∪K>0Q0,K . Then it follows

immediately that

UK ↘ U as K −→ ∞. (5.5)

The third step of the approximation is to fix the tail of functions in Q0,K . Given a

constant M ≥M0, where M0 is given in Assumption 2.8, we denote

Q0,K,M :=
{
φ ∈ Q0,K such that φ(x) = Kx2 for |x| ≥ 2M

}
(5.6)

and the approximation value

UK,M := inf
φ∈Q0,K,M

u(φ).

Proposition 5.6. Suppose that Assumptions 2.5 and 2.8 hold true. Then

0 ≤ UK,M − UK ≤ µ1(φK,M ), (5.7)

where φK,M is defined by (2.12).

Proof. Let us first recall that every function φ ∈ Q0,K is nonnegative, convex such

that φ(0) = 0 and φ(x) ≤ K(|x| ∨ x2). Given φ ∈ Q0,K , we denote φM := φ ∨ φK,M
with φK,M defined in (2.12). Clearly, φM lies in Q0,K,M and λφM ≤ λφ since φM ≥ φ.

It follows from the definition of u(φ) in (2.5) and the positivity of φ that

u(φM ) − u(φ) ≤ µ1(φM ) − µ1(φ) ≤ µ1(φK,M ).

This, together with the arbitrariness of φ ∈ Q0,K and the fact that φM ∈ Q0,K,M ,

concludes the proof for (5.7).

For the fourth step of the analytic approximation, we first introduce for every T ,

R > 0,

λφ,T (t, x) := sup
τ∈T∞, τ≤T−t

E
[
gφ(t+ τ, x+Bτ )

]
, λφ,T0 (·) := λφ,T (0, ·),

λφ,τR(t, x) := sup
τ∈T∞, τ≤τRx

E
[
gφ(t+ τ, x+Bτ )

]
, (5.8)

and

λφ,T,R(t, x) := sup
τ∈T∞, τ≤τRx ∧(T−t)

E
[
gφ(t+ τ, x+Bτ )

]
, (5.9)

where τRx := inf{s : x+Bs /∈ (−R,R)}.
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Proposition 5.7. Let Assumption 2.8 hold true with constants L0, M0. Suppose that

K > L0, M ≥M0 and R ≥
(
1 +

√
K

K−L0

)
M . Then for every φ ∈ Q0,K,M , we have

λφ(t, x) = λφ,τR(t, x) and λφ,T (t, x) = λφ,T,R(t, x), ∀(t, x) ∈ [0, T ]× R.

With the equivalence between λφ (λφ,T ) and λφ,τR (λφ,T,R), we can now make an

approximation on coefficient T . Let

UK,M,T := inf
φ∈Q0,K,M

uT (φ) with uT (φ) := µ0(λφ,T0 ) + µ1(φ). (5.10)

Proposition 5.8. Let Assumptions 2.5 and 2.8 hold, M0 and L0 be constants given

in Assumption 2.8. Let K > L0, M ≥ M0, R =
(
1 +

√
K

K−L0

)
M and L = 2(K +

2L0)(R2 ∨ 1), we denote

δ := − log(q(R)) > 0, where q(R) :=
1√
2π

∫ 2R

−2R
e−x

2/2 dx.

Then

0 ≤ UK,M − UK,M,T ≤ Le−δ(T−1). (5.11)

In preparation of the proof for Propositions 5.7 and 5.8, we first give a property

for functions in Q0,K,M defined by (5.6).

Lemma 5.9. Let Assumption 2.8 hold true with constants L0 and M0, K > L0,

M ≥M0 and R =
(
1 +

√
K

K−L0

)
M . Given fixed t ∈ R+ and φ ∈ Q0,K,M , we denote

ψ(x) := − gφ(t, x) − L0x
2 = φ(x) − g(t, x) − L0x

2.

Then ψconv(x) = ψ(x) when x /∈ [−R,R].

Proof. By Assumption 2.8, we know that there are constants C1, C2 such that

x 7→ g(t, x) is affine with derivative C1 when x ≥ M , and affine with derivative C2

when x ≤ −M . For fixed t ∈ R+, let χ be a continuous function defined on R by the

following: χ is affine on intervals [−2M,−M ], [−M, 0], [0,M ], [M, 2M ] and

χ(0) := − g(t, 0),

χ(±M) := − L0M
2 − g(t,±M),

χ(±2M) := 4(K − L0)M2 − g(t,±2M),

χ(x) := (K − L0)x2 − g(t, 2M) − C1(x− 2M), x ≥ 2M,

χ(x) := (K − L0)x2 − g(t,−2M)− C2(x+ 2M), x ≤ −2M.

By Assumption 2.8, we can verify that for every φ ∈ Q0,K,M and the corresponding

ψ defined in the statement of the lemma,

ψ(x)

{
≥ χ(x), when x ∈ [−2M, 2M ],

= χ(x), when x /∈ [−2M, 2M ].
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Figure 4: An example of functions χ and ψ, where g ≡ 0, φ = φK,M with constants K = 1,

M = 1 and L0 = 0.8.

Then given x /∈ [−R,R], it follows by a simple computation that χ(y) ≥ χ(x) +

χ′(x)(y − x) for every y ∈ R, which implies that χconv(x) = χ(x). And hence ψ(x) ≥
ψconv(x) ≥ χconv(x) = χ(x) = ψ(x) for x /∈ [−R,R].

Now, we can complete the proofs of Propositions 5.7 and 5.8.

Proof of Proposition 5.7. We shall only show that λφ = λφ,τR since the other

equality λφ,T = λφ,T,R can be proved by the same arguments. Moreover, to prove

λφ = λφ,τR , it is enough to show that λφ ≤ λφ,τR since its inverse inequality is obvious

from the definition of λφ,τR in (5.8).

First, let us fix t ∈ R+ and x /∈ (−R,R), we denote ψx(y) := −gφ(t, y)−L0y
2+L0x

2.

Then by Lemma 5.9, we have ψconvx (x) = ψx(x) = −gφ(t, x). Then for every τ ∈ T ∞,

E
[
gφ(t+ τ, x+Bτ )

]
≤ E

[
gφ(t, x+Bτ ) + L0τ

]
= E

[
gφ(t, x+Bτ ) + L0(x+Bτ )2 − L0x

2
]

= − E ψx(x+Bτ ) ≤ − ψconvx (x) = gφ(t, x). (5.12)

It follows that λφ(t, x) ≤ λφ,τR(t, x) for every x /∈ (−R,R) since in this case τRx = 0.

Next, for every τ ∈ T ∞ and x ∈ [−R,R], we have according to (5.12) that

E
[
gφ(t+ τ, x+Bτ )

]
= E

[
gφ(t+ τ, x+Bτ )1τ≤τRx

]
+ E

[
E
[
gφ(t+ τ, x+Bτ )1τ>τRx

∣∣ Fτ∧τRx ] ]
≤ E

[
gφ(t+ τ ∧ τRx , x+Bτ∧τRx )

]
,
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which implies that λφ(t, x) ≤ λφ,τR(t, x) for all x ∈ [−R,R].

Proof of Proposition 5.8. We first derive an estimate on stopping times inferior to

τRx , borrowed from Carlier and Galichon’s [7] Lemma 5.2. Let x ∈ [−R,R], then for

every stopping time τ ≤ τRx , we have

P(τ ≥ T ) ≤ P
(
τRx ≥ T

)
≤ Π1≤n≤TP

(
|Bn −Bn−1| ≤ 2R

)
≤ e−δ(T−1). (5.13)

Recall that E
[
(x+Bτ )2

]
= x2 +E[τ ], ∀τ ≤ τRx from (5.3). Then by the definitions

of λφ,τR and λφ,T,R in (5.9), for every φ ∈ Q0,K,M ,

λφ,τR(0, x)− λφ,T,R(0, x) ≤ sup
τ≤τRx

E
[
gφ(τ, x+Bτ ) − gφ(τ ∧ T, x+Bτ∧T )

]
= sup

τ≤τRx
E
[
ψ(τ ∧ T, x+Bτ∧T )− ψ(x+Bτ , τ)

]
,

where ψ(t, x) := −gφ(t, x) − L0x
2 + L0t. Clearly, ψ increases in t and |ψ(t, x1) −

ψ(t, x2)| ≤ 2(K + 2L0)(R2 ∨ 1), ∀x1, x2 ∈ [−R,R] by Assumption 2.8. Therefore,

λφ,τR(0, x)− λφ,T,R(0, x) ≤ sup
τ≤τRx

E
[ ∣∣ψ(τ ∧ T, x+Bτ∧T ) − ψ(τ ∧ T, x+Bτ )

∣∣ ]
= sup

τ≤τRx
E
[ ∣∣ψ(T, x+BT ) − ψ(T, x+Bτ )

∣∣1τ≥T ]
≤ sup

τ≤τRx
2 (K + 2L0) (R2 ∨ 1) P(τ ≥ T )

≤ Le−δ(T−1),

where the last inequality is from (5.13). Finally, by the arbitrariness of φ ∈ Q0,K,M

together with Proposition 5.7, we prove (5.11).

Finally, we complete the proof for Theorem 2.11.

Proof of Theorem 2.11. We notice that for fixed constants K, M , R and T , the

functions set Q0 and function λ0,φ defined in Section 2.3 is exactly Q0,K,M and λφ,T,R

defined above. We can then conclude the proof by Propositions 5.5, 5.6, 5.7 and 5.8

as well as (5.5).

A A projection algorithm

We would like to propose an algorithm for the optimization problem (3.19) associated

with the projection PQh
. In place of the problem (3.19), let us consider a more general

problem.

Let a = (ai)1≤i≤m ∈ Nm and A ∈ R+ such that 0 < A < |a|, where |a| :=
∑m

i=1 ai.

We define a cone of nondecreasing vectors in Rn by

Kam :=
{
ξ = (ξi)1≤i≤m ∈ Rm : ξ1 ≤ · · · ≤ ξm

}
,

KAm :=
{
ξ = (ξi)1≤i≤m ∈ [0, 1]m :

m∑
i=1

aiξi = A
}
, and Ka,Am := Kam ∩ KAm.
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The projection PKa,A
m

(z) of z ∈ Rm to Ka,Am is to solve the optimization problem

ξa,A,zm := arg min
ξ∈Ka,A

m

m∑
i=1

ai(zi − ξi)2. (A.1)

Similarly, one can also define the projection PKa
m

( resp. PKA
m

) by the optimization

problem (A.1), where Ka,Am in the formula is replaced by Kam (resp. KAm), and the

projected element ξa,A,zm is replaced by ξa,zm (resp. ξA,zm ).

In the following, we shall show that

PKa,A
m

= PKa,A
m
◦ PKa

m
= PKA

m
◦ PKa

m
,

and give the algorithms for both PKa
m

and PKA
m

. With these algorithms, one can

deduce easily an algorithm for the projections PE+
K,M

and PE−K,M
in (3.19). We just

remark that similar algorithms are discussed in Edelsbrunner [11, P. 143-145] in order

to compute the convex envelope of functions defined on a discrete grid.

Given a ∈ Nm and z ∈ Rm, we define Sa,z ∈ R|a| by Sa,zk := zj for
∑j−1

i=1 ai < k ≤∑j
i=1 ai, and define the function F a,z on the grid N ∩ [0, 1 + |a|] by

F a,z(0) := 0 and F a,z(k) :=

k∑
i=1

Sa,zi for k = 1, · · · , |a|. (A.2)

Lemma A.1. Suppose that we are given z ∈ Rm such that zk ≥ zk+1, denote ξa,zm :=

PKa
m

(z) and ξa,A,zm := PKa,A
m

(z). Then (ξa,zm )k = (ξa,zm )k+1 and (ξa,A,zm )k = (ξa,A,zm )k+1.

In particular, the projections PKa
m

(z) and PKa,A
m

(z) are equivalent to PKã
m−1

(z̃) and

PKã,A
m−1

(z̃) for

ãi =


ai, 1 ≤ i ≤ k − 1,

ak + ak+1, i = k,

ai+1, k + 1 ≤ i ≤ m− 1,

and z̃i =


zi, 1 ≤ i ≤ k − 1,
akzk+ak+1zk+1

ak+ak+1
, i = k,

zi+1, k + 1 ≤ i ≤ m− 1,

(A.3)

in sense that Sa,ξ
a,z
m = Sã,ξ

ã,z̃
m−1 and Sa,ξ

a,A,z
m = Sã,ξ

ã,A,z̃
m−1 , where ξã,z̃m−1 := PKã

m−1
(z̃) and

ξã,A,z̃m−1 := PKã,A
m−1

(z̃).

Proof. Given an arbitrary ξ ∈ Rm such that ξk+1 > ξk, then there is ε > 0 satisfying

that ξk+1 = ξk + (1 + ak
ak+1

)ε. Define ξ̂ ∈ Rm by ξ̂i =

{
ξ̂k + ε, i = k, k + 1,

ξi, otherwise,
one can

show that

m∑
i=1

ai(ξ̂i − zi)2 <
m∑
i=1

ai(ξi − zi)2. (A.4)

Thus ξ cannot be the projection of z since ξ ∈ Kam (resp. Ka,Am ) implies that ξ̂ ∈ Kam
(resp. Ka,Am ), and hence (A.4) contradicts the definition of the projection in (A.1). It

follows that (ξa,zm )k = (ξa,zm )k+1 and (ξa,A,zm )k = (ξa,A,zm )k+1.
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To show the inequality (A.4), it is enough to verify that

m∑
i=1

ai (ξi − zi)2 −
m∑
i=1

ai (ξ̂i − zi)2

= ak (ξk − zk)2 + ak+1

(
ξk + (1 +

ak
ak+1

)ε− zk+1

)2
− ak (ξk + ε− zk)2 − ak+1 (ξk + ε− zk+1)2

=
ak
ak+1

(ak + ak+1) ε2 + 2 ak ε (zk − zk+1) > 0.

Finally, the equivalence between PKa
m

(z) (resp. PKa,A
m

(z)) and PKã
m−1

(z̃) (resp.

PKã,A
m−1

(z̃)) is from the fact that for every ξ such that ξk = ξk+1, one has the decompo-

sition

m∑
i=1

ai(zi − ξi)2 =
m−1∑
i=1

ãi(z̃i − ξ̃i)2 + akz
2
k + ak+1z

2
k+1 − (ak + ak+1)

(zk + zk+1)2

4
,

where ξ̃i =


ξi, i ≤ k − 1,

ξk, i = k, k + 1,

ξi−1, k + 2 ≤ i ≤ m− 1.

Lemma A.1 gives an algorithm for projection PKa
m

which finishes within less than

m steps. The algorithm also simplifies the projection PKa,A
m

, as we can see later in

Proposition A.3.

Algorithm A.2. For projection PKa
m

(z):

• 1, Given system parameters (m, a, z), stop if m = 1.

• 2, Find k such that zk ≥ zk+1, stop if it does not exist.

• 3, With the found k in step 2, reduce parameters (m, a, z) to (m − 1, ã, z̃) as in

equation (A.3).

• 4, Go to 1.

Proposition A.3. PKa,A
m

= PKa,A
m
◦PKa

m
, and for every z ∈ Rm. Moreover, F a,ξ (with

ξ := PKa
m

(z)) is the convex envelope of F a,z, where the functions F a,ξ and F a,z are

define in (A.2)

Proof. Suppose that the entrance data of Algorithm A.2 is (m1, a1, z1) and the

exit data is (m2, a2, z2), then clearly PKa2
m2

(z2) = z2. And by Lemma A.1, we have

Sa1,ξ1 = Sa2,z2 (with ξ1 := PKa1
m1

(z1) ) and Sa1,ξ
A
1 = Sa2,ξ

A
2 ( with ξA1 := PKa1,A

m1

(z1) and

ξA2 := PKa2,A
m2

(z2) ), from which we deduce that PKa,A
m

= PKa,A
m
◦ PKa

m
.

To see that F a,ξ (with ξ := PKa
m

(z) ) is the convex envelope of F a,z, it is enough

to verify that at every step in Algorithm A.2, F ã,z̃ is greater than the convex envelope

of F a,z. And at the exit, F a,ξ is a convex function.

Now, we shall prove that PKa,A
m
◦ PKa

m
= PKA

m
◦ PKa

m
, for this purpose, it is enough

to show that for every z ∈ Kam, PKa,A
m

(z) = PKA
m

(z). In fact, we shall give an algorithm

of projection PKA
m

(z) for z ∈ Kam, and then verify that PKA
m

(z) ∈ Ka,Am .
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Given ν ∈ R and x ∈ Rm, denote by z − ν the sequence (zi − ν)1≤i≤m, and by zν

the sequence (zνi )1≤i≤m := (0 ∨ (zi − ν) ∧ 1)1≤i≤m.

Lemma A.4. Given ν ∈ R and z ∈ Rm, we have PKa,A
m

(z) = PKa,A
m

(z − ν) and

PKA
m

(z) = PKA
m

(z−ν). If in addition z ∈ Kam, then there is ν̂ ∈ R such that
∑m

i=1 aiz
ν̂
i =

A and PKA
m

(z) = PKa,A
m

(z) = zν̂ . And it follows that PKa,A
m

= PKa,A
m
◦PKa

m
= PKA

m
◦PKa

m
.

Proof. To prove that PKa,A
m

(z) = PKa,A
m

(z− ν) or PKA
m

(z) = PKA
m

(z− ν), we note that

for every ξ ∈ Rm satisfying
∑m

i=1 aiξi = A,

m∑
i=1

ai(zi − ν − ξi)2 =
m∑
i=1

ai(zi − ξi)2 + ν2
m∑
i=1

ai − 2ν
( m∑
i=1

aizi −A
)
.

Then for the existence of ν̂, it is enough to see that ν 7→
∑m

i=1 aiz
ν
i is continuous,

and that 0 < A <
∑m

i=1 ai is supposed at the beginning of the section. Clearly, by

its definition, zν is the projected element of z − ν to [0, 1]m in sense that ξ0 = zν

minimizes
∑m

i=1 ai(zi − ν − ξi)2 among all ξ ∈ [0, 1]m. Then for z ∈ Kam, it is easy

to verify that zν̂ ∈ Ka,Am ⊂ KAm ⊂ [0, 1]m with the found ν̂. Therefore PKA
m

(z) =

PKa,A
m

(z) = PKA
m

(z − ν̂) = PKa,A
m

(z − ν̂) = zν̂ .

Algorithm A.5. To find ν̂ such that
∑m

i=1 aiz
ν̂
i = A:

• 1, Set z0 = −∞ and zm+1 =∞.

• 2, Find k such that
∑m

i=1 aiz
zk−1

i ≥ A and
∑m

i=1 aiz
zk
i < A, then zk−1 ≤ ν̂ < zk.

• 3, Find j such that
∑m

i=1 aiz
zj+1−1
i < A and

∑m
i=1 aiz

zj−1
i ≥ A, then zj − 1 ≤

ν̂ < zj+1 − 1.

• 4, Set ν̂ =
∑m

i=j+1 ai+
∑j

i=k aizi−A∑j
i=k ai

when k ≤ j, or ν̂ = zk−1 when k = j + 1.

By the way how to find k and j, it follows that zk−1 ≤ ν̂ < zj+1 − 1 < zj+1,

hence k ≤ j + 1. Then step 4 of Algorithm A.5 gives the right ν̂ since zν̂i =
0, if i ≤ k − 1,

1, if i ≥ j + 1,

zi − ν̂, otherwise.

for k, j found in step 2 and 3, and hence for k ≤ j,

j∑
i=k

ai(zi − ν̂) +
m∑

i=j+1

ai = A =⇒ ν̂ =

∑m
i=j+1 ai +

∑j
i=k aizi −A∑j

i=k ai
.
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optimal, Séminaires de Probabilités, XIII: 32, 378-384, LNM 721, 1979.

[24] X. Tan and N. Touzi, Optimal Transportation under Controlled Stochastic Dy-

namics, Annals of Probability, to appear.

[25] N. Touzi, Optimal Stochastic Control, Stochastic Target Problem, and Backward

SDEs, Lecture notes at Fields Institute, 2010.

29


