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Abstract

We suggest a numerical approximation for an optimization problem, motivated
by its applications in finance to find the model-free no-arbitrage bound of variance
options given the marginal distributions of the underlying asset. A first approximation
restricts the computation to a bounded domain. Then we propose a gradient projection
algorithm together with the finite difference scheme to solve the optimization problem.
We prove the general convergence, and derive some convergence rate estimates. Finally,
we give some numerical examples to test the efficiency of the algorithm.
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1 Introduction

In financial mathematics, an underlying security is usually modeled as a one-dimensional
continuous process, and a derivative option is defined by a payoff function on the un-
derlying security’s path. In a model where the underlying security is a continuous
martingale, by the the fundamental theorem of pricing, the expectation value of the
derivative option is a no-arbitrage price of the option. In the absence of other infor-
mation on the underlying security, the no-arbitrage bound is then the supremum (or
infimum) of the expectation value of the derivative option among all models where the
security is a continuous martingale. An equivalent way is to model the underlying as
canonical process in the canonical space, and then consider the collection of all mar-
tingale measures (i.e. the probability measures under which the canonical process is a
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martingale). Now, if we consider a market where the vanilla options (European call or
put) are liquid, which can be used to hedge the path-dependent exotic options, then
the no-arbitrage bound of the latter will change. A framework for this new bound was
proposed recently by Galichon, Henry-Labordére and Touzi [12].

More precisely, let QY := C([0, T], R) be the canonical space with canonical process
X (Xt(w) := wy, Yw € Q%) and canonical filtration F* = (F)o<t<, So a constant.
We denote by P(ds,) the collection of all probability measures P on (20, F2) under
which X is a FO—martingale and Xy = Sp, P—a.s. The canonical process X is a
candidate of underlying security price process. Let the derivative options G be defined
by G(Xt,0 <t <T) € F3. Then an upper bound of model-free no-arbitrage price of
G is

sup EF [G]. (1.1)
PEP(5s,)
Suppose in addition that in the financial market, the vanilla options of maturity T'
and of all strike are liquid, so that the investor can identify the marginal distribution
p of X7. In other words, let ¢ € L'(p), the T—maturity European option with payoff
¢(X7) has a unique no-arbitrage price u(¢) = [pa ¢(x)pu(dz). We may use the vanilla
option portfolio to hedge G. By buying a portfolio ¢(X7), we spend u(¢) and so the
payoff at maturity 7" becomes G — ¢(Xp). Therefore, we get a new upper bound for
G given by SUPPep(ss, ) EF[G — ¢(X7)]| + p(¢). Following [12], by minimizing on the
vanilla option portfolio ¢, a new no-arbitrage upper bound of the option G is then
given by
inf  sup {EP [G - 6(Xr)] + ,u(gb)} . (1.2)
¢EL! (1) PeP(85,)
The above bound is stronger than the one in (1.1), since ¢ := 0 € L!(x). In [12], the
authors gave a duality result, showing that the above no-arbitrage upper bound (1.2)
is equivalent to the minimum super-hedging cost for derivative option G. Moreover,
they derived an explicit solution for this no-arbitrage bound when G is a lookback
option.

For another specific class of payoff function G, Tan and Touzi [24] established
another duality result, where the dual formulation can be viewed as a stochastic mass
transportation problem. Namely, by exchanging the infimum and supremum, and
observing that

EP[G], if X7 ~F p,

—00, otherwise,

inf : {EP (G — o(X7)] + M((l))} = {

¢l (p

it follows that a dual formulation of (1.2) is given by

sup  inf {IEP (G — ¢(X1)] + u(¢)} = s E°[G], (1.3)
PeP(6s,) PEL (1) PEP (55 :14)
where P(ds,, ) denotes the collection of all martingale probability measures P &
P(6s,) such that Xy ~F y. Then under P € P(ds,, ), the martingale X can be
viewed as a transportation plan from the distribution dg, to the distribution .



The no-arbitrage bound problem of exotic options given marginals has been largely
studied by the Skorohold Embedding Problem (SEP) approach. Given a Brownian
motion W and a distribution p, the SEP is to find a stopping time 7 such that W, ~ u
and (Winr)e>0 is uniformly integrable. By Dubins-Schwartz’s time change theorem,
a martingale can be represented as a time changed Brownian motion and T turns to
be a stopping time w.r.t. the time-changed filtration. Then the problem (1.3) can be

formally written as

sup E[G(Wt,O <t<7), (1.4)
TET (1)

for another corresponding payoff function G, where T (1) denotes the collection of all
stopping times 7 such that W, ~ p. The connection between the SEP and no-arbitrage
bound of exotic options was first observed in the seminal paper of Hobson [13]. Further,
several solutions of SEP have been proved to have the optimality property, so that
they induce optimal bounds for some exotic options. We also refer to Hobson [14] for
a review of the SEP with applications in finance. However, the SEP approach to find
the no-arbitrage bound is generally studied case by case.

In this paper, we are interested in particular in the no-arbitrage bound problem
for a general class of variance options, whose payoff are given by G = g((X)7, X1)
for some function g : Rt x R — R, where (X )7 denotes the quadratic variation of X
between 0 and T'. As observed in Soner, Touzi and Zhang [21], we remark that there
is a progressively measurable process ({(X);)o<;<7 which is pathwisely defined on Q°
and coincides with the P-quadratic variation of X, P-a.s. for every P € P(ds,). Then
the no-arbitrage bound (1.2) turns to be

inf sup LB [g((X)r, Xr) — 6(X1)] + u(9) } (1.5)
PEL (1) PeP(6s,)

The main contribution of this paper is to provide a complete approximation for an
optimization problem similar to (1.5), motivated by its application in finance to find
the no-arbitrage bound. In a first part, we will convert the supremum part of (1.5) from
an optimal control problem to an optimal stopping problem, using Dubins-Schwartz’s
time change theorem. Next, we explore the properties of the optimal stopping problem
and restrict the computation to a bounded domain. Finally, we suggest a finite dif-
ference method to solve the optimal stopping problem as well as a gradient projection
algorithm to solve the infimum part, where the gradient is also computed by a finite
difference scheme.

The rest of the paper is organized as follows: In Section 2, we formulate a no-
arbitrage upper bound for a general class of variance options with given marginals,
which is the main problem of the paper. We then reformulate the problem as an
optimal Brownian stopping problem and give an approximation optimization problem.
In Section 3, we propose a numerical algorithm for the approximation problem, which
combines the gradient projection algorithm and the finite difference method. We next
provide some numerical examples in Section 4. Finally, we complete in Section 5 the
proof of the convergence for the approximation problem.
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Notations: We denote by @ the collection of all continuous functions of quadratic
growth, i.e.

Q = { ¢ : R — R be continuous and such that sup M

< } 1.6
zeR 1 ‘$|2 > ( )

Let p be a probability measure on (R, B(R)), denote

/ o(z)u(dzx), for every ¢ € L(p).

2 Main problem

We shall first formulate a no-arbitrage bound for a class of variance options, given
two marginal distributions of the underlying at time 7y and 7;. This provides the
motivation of the main problem of the paper, which is then reformulated in Section
2.2 using the time change theorem. In Section 2.3, we give a first approximation which
restrict the computation on a bounded domain.

2.1 A no-arbitrage bound for a class of variance options

We recall, as defined in the introduction section, that Q0 := C(]0, 7], R) is the canonical
space with canonical filtration F® and canonical process X. A progressive process
(X) is defined on Q0 which coincides with the quadratic variation of X under every
martingale measure P. Then X is the candidate process of the underlying security.
Let 0 < Tp < Ty < T, denote (X)r, 7, = (X)1, — (X)7,, we shall consider in this
paper the forward variance option with payoff

G = g((X)r,n,Xr) at maturity Ty for a Lipschitz function g : R x R — R.

Example 2.1. The most popular variance option is the “variance swap”, whose payoff

function is g(t,x) = t. There are also “volatility swap” with payoff function g(t,x) =
, and calls (puts) on variance or volatility, where the payoff functions are (t —

Vt, and call t ‘ latility, where th ff functi t—K)*t

(K —t)T) or (Vt— K)* (K — \)fﬁ) Another example is the “call sharpe” option

with payoff function g(t,x) =

We shall suppose that the vanilla options of maturities Ty, 17 are liquid so that
we can identify the marginal distributions pg (resp. p1) for Xg, (resp. Xr,). Suppose
in addition that the underlying process is a martingale, and the quadratic variation
(X)1, 1, conditioning on X7, is integrable. Equivalently, we shall only consider, for
every = € R, the collection P?(d,) of probability measures P such that P(Xp, = z) =1
and ]EPKX)TO,TJ < 00. Given a function ¢ : R — R, define

S\g(l‘) = sup E" [g(<X>T07T1 ) XTl) - ¢(XT1)} .
PeP2(6s)
Then following Galichon, Henry-Labordeére and Touzi [12], we define a no-arbitrage
upper bound of variance option G = g({(X )7, 1, X1,) by

U= b (10(AD) + pa(9)), (2.1)



where Q is the collection of all continuous functions of quadratic growth defined by
(1.6).

Remark 2.2. In contrast to the static strategies set L'(u) used in formulation (1.5),
we restrict our admissible strategies set to Q. Then U may not be the optimal no-
arbitrage bound, but only a sub-optimal bound. The main reason to choose Q 1is, by
the observation of Dupire [10], that variance swap (i.e. g(t,x) = t) is equivalent to a
European option option with payoff X%, see also Proposition 2.7 and Remark 2.9.

Remark 2.3. Here we only give the upper bound formulation. By the symmetry of
the set Q defined in (1.6), if we reverse the payoff function to —g(t,x), then with the
upper bound U(—g) associated to payoff —g, the value —U(—g) is the lower bound for

the payoff g.

The problem of no-arbitrage bound for variance options given marginal distribu-
tions has also been studied by the SEP approach in a dual formulation of the form
(1.4). Suppose that g(t,z) = f(t) for some function f : R* — R, it is proved that
the optimal upper bound can be induced by Root’s embedding when f is concave and
by Rést’s embedding when f is convex (see Root [19] and Rost [20] and also Cox and
Wang [9]). However, for general payoff functions g : RT™ x R — R, there is no system-

. ie.

atic approach to find the optimal no-arbitrage bound. When g(t,z) = (t — K)
the option is the variance call, Dupire [10], Carr and Lee [8] proposed a method to find
a sub-optimal bound as well as the associated strategy ¢ in a similar context. In their
implemented examples, they showed that their bounds are quite closed to the optimal
bounds induced by Root’s embedding solution. In our paper, we shall consider a gen-
eral payoff function and provide a complete approximation of the bound U in (2.1) as

well as the optimal static strategy ¢.

2.2 A reformulation by optimal stopping problem

We would like reformulate the upper bound problem (2.1) on a probability space
(Q, F,P), equipped with a standard one-dimensional Brownian motion B = (Bi)t>0
such that By = 0. Let F = (F;):>0 be the natural Brownian filtration, we define a set
of F—stopping times by

T := {F — stopping times 7 such that E(7) < co}. (2.2)
Then for every function ¢ € Q, we denote
Pta) = gltx) — o), (2.3)
and define A? : R x R — R and Y : R — R by

X(t,z) = sup E[g°(t+r,z+B;)] and A\() := A9(0,-), (2.4)
TET >

and an optimization problem by

U = inf u(¢), with u(@) = mo(A) + ui(e). (2.5)
¢eQ



Applying the time-change martingale theorem, it follows that U is an equivalent
reformulation of the no-arbitrage bound U in (2.1).

Theorem 2.4. For every ¢ € Q, we have S\g(x) = )\g(az). And therefore, U = U.

Proof. Let us fix an arbitrary ¢ € Q and x € R. First, given a stopping time 7 € T,
we define a process Y by Y; :==x + B_ «n, if t € [To,T1], Vi := z if t € [0,Tp) and
Ti—t

Y; :=Yp if t € [T1,T]. Then clearly Y is a continuous martingale between 0 and T
such that (Y)7, 7y = 7, and Y induces a probability measure in P?(8,). This implies
that AS(z) < AJ(xz).

Next, suppose that P € P?(d,.), then the canonical process X is a continuous mar-
tingale under P. It follows by the time-change martingale theorem (see e.g. Theorem
3.4.6 of Karatzas and Shreve [15]) that X; = = + Wiy,
Brownian motion and (X); is a stopping time w.r.t. the time-changed filtration. It

where W is a standard

is well-known that the supremum on stopping times w.r.t. the time-changed filtration
is equivalent to the supremum on the stopping times w.r.t. the natural Brownian fil-
tration (see Lemma 5.4). It follows that ;\g (x) < )\g(m), and we hence conclude the
proof. O

To make the upper bound problem be wellposed, we now impose some assumptions
on the marginal distributions pg and ;.

Assumption 2.5. The marginal distributions pg and p1 have both finite second mo-
ment, i.e. po(¢o) + p1(do) < oo with ¢o(x) = x2%; and pg < py in the conver order,
i.e.

po(@) < pi(¢), for every convex function ¢ € L (o) NILY (). (2.6)

Remark 2.6. (i) It is shown in Strassen [22] that the convex order inequality (2.6) is
a necessary and sufficient condition for the existence of a martingale X with marginal
distributions pg and p1 at time Ty and Ty such that Ty < T7.

(ii) Since the identity function I (where I(x) := x) and its opposite —I are both convez,
it follows from (2.6) that po and py have the same first moment, i.e. po(l) = pi(I).

Proposition 2.7. Let Assumption 2.5 hold true.

(i) Suppose that v € Q, K € R and g is a Lipschitz payoff function. We define
another payoff function gx . by gr(t,x) == g(t,x) + Kt + ¢ (z). Denote by U(g)
(resp. U(gk,p)) the no-arbitrage price upper bound defined in (2.5) associated with the
payoff function g (resp. gi ). Then

Ulgry) = Ulg) + KCy + m(v), (2.7)
where
Co = pa(do) — po(¢o), with ¢o(z) = z°. (2.8)

(ii) For every Lipschitz payoff function g, the upper bound value is finite, i.e. |U| < oo.



The proof will be provided in Section 5.2 after some technical lemmas. We notice
that, as a direct consequence, and the upper bound of a European option with payoff
function () is given by (%), and the bound of “variance swap” option (g(t,z) = t)
is Cp, which is consistent to Dupire’s [10] observation that variance swap is equivalent

to a European option with payoff function g(z) = 22.

2.3 An approximation problem

The main purpose of the paper is to provide a complete approximation to the op-
timization problem (2.5), which needs further a numerical approximation. For this
purpose, we shall introduce an approximation problem which restrict the computation
to a bounded domain. Let us make some further assumptions on the payoff function.

Assumption 2.8. (i) The payoff function g : R™ x R — R is Lo— Lipschitz with
constant Ly € RT.

(i) For every x € R, t — g(t,z) is increasing; and for every t € R, x — g(t,x) is
convex with minimum at x = 0.

(iii) There is some constant My € RT such that for every t € R, x — g(t,z) is affine
on [Mp, o0) and (—oo, —Mp)].

Remark 2.9. Let g be an arbitrary Lipschitz payoff function. By Proposition 2.7, it
is equivalent to consider the transformed function gg y(t, x) == g(t,x) + Kt + () for
some constant K € R and function v, for which Assumption 2.8 may hold true.

Example 2.10. Let g(t,x) = (K —t)", we can consider §(t,x) :==t+ (K —t)*, which
satisfies Assumption 2.8. When g(t,x) = (K — /t)* which is not Lipschitz, we need

to truncate the payoff function to g.(t,x) = (K —\/t V e)t to obtain the Lipschitz
_ (z=K)*

payoff function. For the “call sharpe” option g(t,x) = ——, we also need truncate
_ +
the denominator and consider §(t,x) = (2 t\fi)

Let K, M, R and T are all positive constants, we denote
Qp = { ¢ € Q non negative, convex, such that ¢(0) =0,
d(z) < K(|z| vV 2?) and ¢(x) = K2? for |z| > 2M }o(2.9)
and )\g’o(az) = \?0(0,z) with

MO0t z) = sup E [g‘b(t + 7,2+ B;)], (2.10)
TET®, 7<TRN(T—t)

where 7t := inf{s : z+ B, ¢ (—R, R)}. Clearly, 7/t = 0 and A\?%(t,z) = g(t,z) — ¢(z)

whenever |z| > R. We then introduce the approximation optimization value Uy by

Up = inf wup(¢) with ug(¢p) = Mo()\g’o) + (o). (2.11)
$€Q,

For good choices of constants K, M, R and T, Uy provides an approximation of the
upper bound value U. Denote

drm(x) = AKM(Jz| = M)1y<p<on + K2?1y500m (2.12)
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and
LR L,
0 := —log(q(R)) >0, where ¢(R) := / e V% dr.
(a(R) )= [

Clearly, for every fixed K > 0, pi(éx,m) — 0 as M — oo since p has finite second
order moment by Assumption 2.5.

Theorem 2.11. Suppose that Assumptions 2.5 and 2.8 hold true. Let K, M, R
and T turn to oo in such a way that pi(¢x ) — 0, R > (1 + 1/%%)M and
2(K +2Lo)(R?V 1)e 9T=1 - 0. Then Uy — U.

The proof of the above theorem will be completed in Section 5.

The computation of Uy is now restricted to a bounded domain, which permits
further a numerical approximation in the next section. We finish this section by
characterizing A?" as the unique viscosity solution of a variational inequality (see e.g.
Theorem 6.7 of Touzi [25]).

Proposition 2.12. The function \*° defined in (2.10) is the unique viscosity solution
of variational inequality
19X O

. ¢ L1OA 0OA _ _
m1n</\ =3 at)(t,:c) 0, on [0,T)x (~R,R), (2.13)

with boundary condition

At,z) = ¢°(t,x), on ([0,T] x {+R}) U ({T} x [~R,R]).

3 Numerical approximation

We shall propose a numerical method to approximate Uy in (2.11). It is easy to observe
that ¢ — A\?0 is convex since it is represented as the supremum of a family of linear
mapping in (2.10). Thus ¢ — up(¢) is a convex function and the problem of computing
Up turns out to be a minimization problem of a convex function.

Our main idea is to compute A?° with a finite difference numerical scheme, and
then to solve the minimization problem (2.11) with an iterative algorithm. Concretely,
we shall first provide a discrete grid characterized by h = (At, Ax), on which there is
a discrete optimization problem with value Uy close to Uy. Then we use the gradient
projection algorithm to solve the discrete optimization problem of Up. Throughout
the section, we fix the constants K, M, R and T', and suppose that R > 2M.

3.1 A finite difference approximation

Let (I,m) € N2, h = (Ax, At) € (RT)? such that [At = T and mAxz = M. Without
loss of generality, we suppose that there is r € N such that rAz = R. Denote z; := iAx
and t; := kAt and we define the discrete grid:

N = {z; : i€Z}, Ngr:= NnN[-R,R],



M = {(ty,z;) : (ki) € Z* x Z} N ([0,T] x [-R, R)),
The terminal set, boundary set as well as interior set of M are denoted by
oM = { (T,z;) :—r<i<r}, OrM = {(t),£R) : 0<k<I},
M = M\ (OpMUITM).

Let w(t,z) be a function defined on M, denote wf := w(tg, z;), we introduce the
discrete derivative of w by

wiy = 2wl +wi
Ax? ’
Let 6 € [0,1], ¢ be a function defined on Ny, denote

D2w(tk, .QZZ) =

9 (ki) = gtk i) — (i) (3.1)
Following Barles, Daher and Romano [1], we define A} as the solution of the finite
difference scheme of variational inequality (2.13) on M:
M(trsrs i) — An(th, )
+ At (9 D2\ (tr, @) + (1—0) D2>\h(tk+1,$z‘)) =0,
Ap(tk, ®;)) = max < g% (tes i) 3 An(te, ;) ), (th,xi) € M,
A (te, i) = g% (tg, x4), (tg, ;) € OpM U OrM.

(3.2)

The above #—scheme has a unique solution, and is a consistent approximation for
(2.13) in sense of Barles and Souganidis [3]. Indeed, since the second equation of (3.2)
is equivalent to min( Ay — g%, AhA_t)‘h )(tk,z;) = 0, it follows with the first equation

in (3.2) that

min ( My — g7 An(tr, ) _A;\h(tk—&-lafi)
+ 3 (0 D2M(tm) + (1-0) Dt ) ) = 0.

We shall assume in addition that the discretization parameters h = (At, Ax) satisfy
the CFL condition

At
Az?

Then the finite difference scheme (3.2) is consistent and monotone in sense of the

(1-6) < 1 (3.3)

monotone convergence scheme in (3], and the numerical solution A} converges to AP0
given ¢ := ¢|x by the results of [3] (see also Barles, Daher and Romano [1]).

Remark 3.1. The discrete system (3.2) is the 0-scheme for variational inequality
(2.13) with Dirichlet boundary condition g(z,t)—¢(x) on OpMUOgM. It is well-known
that when the finite difference scheme is explicit (i.e. 8 = 0) and the CFL condition
AA@Z < 1 holds, it can be interpreted as the dynamic programming principle for a system
on a Markov chain A (see e.g. Kushner and Dupuis [17]). This interpretation holds
also true for general 0-scheme under the monotone condition, as we shall show later
in the proof of Proposition 3.5.



We next introduce a natural approximation of uy(¢) in (2.11):

un(p) = po(n™Nf 1) + i (lin"g]), (3.4)

where Y ,(+) := A£(0, ), and lin®[p] denotes the linear interpolation of ¢ extended by
zero outside [—R, R] for every function ¢ defined on Np.

Assumption 3.2. There are constants (p1, p2, Lx m1) € (R*)3 which are independent
of h = (At, Az) such that
MO( ‘)\g’ol[_RyR} — linR[)\f’O]) ) S LK,M,T (A.%'pl + Atm), (35)
for every ¢ € Qg and ¢ = ¢|nr,-

Remark 3.3. (i) When 6 = 1, (3.2) is the implicit scheme for (2.13), then Assumption

3.2 holds true with p1 = % and ps = i in spirit of the analysis of Krylov [16].

(i) When 0 = 0 and the CFL condition (3.3) holds, (3.2) is a monotone explicit
scheme, then in spirit of Barles and Jakobsen [2], Assumption 3.2 holds with p1 = %
and ps = %

Let Q;, be the collection of all functions on the grid Ny defined as restrictions of
functions in Q given by (2.9), i.e.

Qy = { =0l for some ¢ € Q }, (3.6)

we can then provide a discrete approximation for Up in (2.11):

U, = inf up(p). (3.7)
pe\y,

We notice further that
2

Q= {go € B(Ng) nonnegative, convex satisfying ¢(0) =0, o(x;) = Kz,
for all 2m < |i| <r, and |p(zit1) — @(x;)| <AKMAz, —2m <i< Qm}7 (3.8)
where B(NR) denote the set of all functions defined on the grid NVg.

Proposition 3.4. Let Assumption 3.2 hold. Then we have, with the same constants
L v, p1, p2 introduced in Assumption 3.2,

Uo — Un| < L ar(Azf + AtP2) + 4K RAz + (po + 1) (o5 ), (3.9)
where ¢ft(x) == Ka?1 ;- p.

Proof. First, given ¢ € Qg which is 4K R—Lipschitz, we introduce ¢ := ¢|n, € Qy,
so that }linR[cp] — ¢| Lo (- R.R]) < 4K RAzx. Then it follows by Assumption 3.2 that

luo(@) — un(p)| < Limr(AzPt + AtP?) + AKRAx + (po + ,ul)(qﬁf}), and hence
Uy—Un < Lgur (Awpl + At”) + 4KRAz + (po+ ,ul)(qﬁﬁ)

Next, given ¢ € Qy,, we define ¢ := lin®[p] + ¢% € Qq. It follows by Assumption
3.2 that |uo(¢) — un(p)| < L arr(AzPr + AtP2) + (g + p1) (%), and therefore,

Upo—Uy < Liur (A +A?) + (uo + p1)(S5).

We hence conclude the proof. O
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3.2 Gradient projection algorithm

As we can easily observe from its definition in (2.5) that ¢ — u(¢) is convex since
it can be represented as the supremum of a family of linear maps, we shall show
that ¢ — wup(p) is also convex for wuy, defined in (3.4). Then a natural candidate for
the resolution of U, = infwth up(p) in (3.7) is the gradient projection algorithm.
The gradient projection algorithm is a classical iterative method for solving convex
optimization problems. We would like to refer to Ben-Tal and Nemirovski [4], Bertsekas
[5] for detailed presentations. We recall that B(Ng) denotes the collection of all
functions on Ng.

Proposition 3.5. Under the CFL condition (3.3), the function ¢ — up(p) is conves.

Proof. Let us first rewrite the finite differences scheme (3.2) into a vector system.
Denote « := ﬁ’ A = ()\f(tk7$i))—7‘<i<7‘7 A = (S\}f(tk,l‘i))_r<i<r and ¢ =
(9%(tr, i) se, € RFTL Let Inpgq denote the (2r + 1) x (2r + 1) identity matrix,
II and b, € R7F! be defined by

0 0 0 0 0
1 -2 1 0 Q(—=7) = M1 (—7)
1 -2 1 0
II .= . . 5 bk - : )
1 -2 1 0 0
0o 1 =21 Qe (r) — M1 (7)
0 0 0 0

and © := [IQT+1 — 0041_1] -1 [12r+1 +(1- G)aH], then scheme (3.2) can be rewritten as
:\k = OMg11 + b, and N = S\k V qk- (3.10)

Under CFL condition (3.3), one can verify that the above scheme is monotone,
i.e. every element of O is positive, and moreover, ©1 = 1, where 1 := (1,---,1)T €
R?+1 Tt follows that © can be the probability transition matrix of some Markov
chain A, whose state space is the grid Ny with absorbing boundary. Let 7;LR denote
the collection of all stopping times 75, on A, then /\f can be represented as solutions of
an optimal stopping problem on A:

A (tg, i) = sup E [g‘P(ATh,Th) ‘ Ay, = ]

ThETE, Th>t),

Now given a stopping time 75, € ’7;LR, we introduce the function )\f:g 7 defined on

Nr:

)\f:g)—h (1.1) = E [ g(p(AT}ﬂTh) ‘ AO =Z; :|
Then uy has an equivalent representation:
up(p) = sup 4" (p) = sup po (linR[)\f:g”]) + (linR[go]). (3.11)
ThE'ThR ThGIThR

Clearly, for every 7y, the map ¢ +— ;" (¢) is linear. It follows by (3.11) that ¢ — wus(¢)
is convex. Ul
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Remark 3.6. In the above Markov chain system (3.11), given ¢ € B(NRg), one can
define a stopping time 1p,(¢) by

mh(p) = inf{ tp © A7 (tk,A,) = g% (tk, Ae,) }, (3.12)

which is clearly an optimal stopping time, i.e.

un(p) = sup @(p) = a9 (). (3.13)

Now we are ready to give the gradient projection algorithm for Uy, in (3.7). Given
¢ € B(NR), we denote by PQh [cp] its projection on Q. Of course, such a projection
depends on the norm equipped on B(NRg), which is an important issue to be discussed
later.

Let v = (7n)n>0 be a sequence of positive real numbers, we propose the following
algorithm:

Algorithm 3.7. For optimization problem (3.7):
o 1, Let wo := ¢ MmNy, where ¢x ar is defined in (2.12).
e 2, Given ¢,, compute up(py) and a sub-gradient Vup(pn).

e 3 Let On41 = PQh [(Pn - 'anuh(()on)] .
e /4, Go back to step 2.

In the following, we shall discuss mainly three issues: the computation of sub-
gradient Vuy(p), the projection from B(Ng) to Q;, and the convergence of the above
gradient projection algorithm.

3.2.1 Computation of sub-gradient

We notice that uj, can be represented as the supremum of a family functions in (3.13),
and hence is convex. A natural method to obtain its sub-gradient is then first to
identify the optimal stopping time which gives the supremum value in (3.13), and then
to compute the gradient of the linear map associated with this optimal stopping time.

Let us fix ¢ € B(NR), we then denote by (p/, 5’) the unique solution of the following
linear system on M:

P (tr, i) = —dij, (ty, ;) € OpM U OrM,
pj(tk+1,l'i) — ﬁj(tk,l'i) + %At (QDgﬁj(tk,$i) + (1 — G)szj(tk+1,$i)) = 0,

) 3.14
; {ﬁj(tlmxz‘)? it XD (b, 20) > g% (g, 2), (3.14)

p](tkaxi) = (tk,lbi) c ./\o/l

— ej(x;), otherwise.

i i, '
where e; € B(Ng) is defined by ej(z;) = d;; = s Denote p)) :=
0, otherwise.

12



Proposition 3.8. Let CFL condition (3.3) hold true, then the vector

VUh(SO) = (:U’O(hnR[p(])]) + Ml(hnR[ej]) )72m§j§2m (315)
is a sub-gradient of map ¢ — up(p).

Proof. Consider the Markov chain A introduced in the proof of Proposition 3.5. By
(3.13), we have for every perturbation Ay € B(Ng),

u(p+Ap) = o4 Ap) > @ e+ Ay),
where 73,(¢) and 71,(¢ + Ap) are defined in (3.12). It follows still by (3.13) that

un(e+Ap) — uple) > TP o+ Ap) — aP(y),

which implies that
( i o +ey) — 4 (p) )_KM (3.16)

is a sub-gradient of uy at ¢ since ¢ — a;(‘P) (1) is linear by its definition in (3.11).
Finally, by the definition of 7,(p) in (3.12) as well as (3.2) and (3.14), it follows
that

Ptez) = — E[ej(An) | Ay =i ]
And hence the sub-gradient (3.16) coincides with Vuy(¢) defined in (3.15). O

3.2.2 Projection

To compute the projection PQh from B(NR) to Qy,, we still need to specify the norm
equipped on B(NR). The simplest norm can be the common one defined by |p|? :=
S, ¢?. However, the computation of the projection may be too complicated. In
order to make the projection algorithm simpler, we shall introduce an invertible linear
map Lp from B(Ng) to R?*1 then equip on B(NR) the norm |- |r induced by the
classical L2 —norm on R?"*1. Let Lg : B(Ng) — R?"*! be defined by

e(zi) — e(zi-1), for 0 <i<r,
& = o(xo), for i =0, (3.17)
p(zi) — p(zit1), for —r<i<O.

We define the norm |- | on B(NR) (easily be verified) by

lolr = ‘{‘LQ(R%H), with € := Lr(p), V¢ € B(NR).
Denote
Ey = {Lpp : 0€Q}
= {EeRM L 0=g <eu < < Gunn SAKMAS,

2m —2m

EﬂZK(:c?H—:E?), V2m < i < r and Z{i: Z & = AKM? }

=1 i=—1
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Then the projection PQh from B(NR) to Q, under norm | - | is equivalent to the
projection from R?"*! to Ey under the L2—norm, which consists in solving a quadratic
minimization problem:

T

& = arggngl (2 — 51‘)2a for a given z € R*" . (3.18)
€Lo .
i=—r

Clearly, for every z € R 1 ¢ = 0 and the above optimization problem (3.18) can be
decomposed into two optimization problems:

2m —2m

. 2 . 2
min zi —&; and min zi —&)°, 3.19
Juin. D (i~ ) SICEL (3.19)
where
2m
Eo+ = {§ = (&xi)i<i<om @ 0< &4 <o < Epom <4AKMAx, Zfﬂ = 4KM2},
i=1
The optimization problem (3.19) can be solved, and we propose an algorithm in Ap-
pendix.

3.2.3 Convergence rate

We shall provide a convergence rate for the gradient projection algorithm. In prepa-
ration, let us first give an estimate on the norm of the sub-gradients Vuy,.

Lemma 3.9. Let p1,p2 € B(NR), then under the CFL condition (3.3),

| un(e1) — un(e2) | < 2 @1 — 2l (3.20)

and it follows that

2M
Vun()|, < 2v2m+1 = 2’/5“’ Y € B(Ng). (3.21)

Proof. Under the CFL condition (3.3), the #—scheme is monotone, which implies
that [A\;' — A% |o < |1 — @2]oo. Hence by the definition of uy, in (3.4), the inequality
(3.20) holds true.

Next, denote &' := Lg(y;), i = 1,2, then by Cauchy-Schwarz inequality,

2m —2m
1 = ol < max (D [eh =€, 3 |6 — ) < VoM A T- ¢! - €
i=0 =0
which implies immediately (3.21). O

Finally, let us finish this section by providing a convergence rate of the proposed
gradient projection algorithm (Algorithm 3.7). Denote

® = max_ |p; —wolh < 4m (AKMAz)? < 64K*M3Ax,
<P17<P2€Qh
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it follows from Section 5.3.1 of Ben-Tal and Nemirovski [4] that one has the convergence
rate:

& + YN A2V 2
min up(en) — Up < Zz—nzfn} h(‘Pn)lR
n= 2277,:1 Tn
_ BREIMAT + (442 BEm g
22[21 Tn

There are several choices for the sequence v = (7 )n>1:

e Divergent Series: v, > 0, Y20 | v, = 400 and > oo ;72 < +o0. Clearly, (3.22)
converges to 0 as N — oo.

e Optimal stepsizes: v, = ﬁ, we have by [4] that
un(pn)| pvn

16K M~2M? + MAx
. B _ ‘
min up(en) — U, < O(1) Wi

4 Numerical example

Finally, we implement the above algorithm and test it on several options, including
the variance swap, call on variance. In all examples, we suppose that py and u; are
of log-normal distribution given as follows. Let Sy := Sy exp(—302t + ocW,;) with some
constants Sp, o and a standard Brownian motion (W}):>0, we suppose that pug ~ S 1
and pq ~ S1. Clearly, for all constants o, pug and p; satisfies Assumption 2.5.

4.1 Variance swap

We first test the algorithm on “variance swap”, whose payoff function is given by
g(t,z) = t. It follows by Proposition 2.7 that the model-free price upper bound of
variance swap is given by Cj in (2.8), i.e.

Co = /z‘Q#l(dl')—/xzuo(dl») - E (S%—Si) _ 53(602_602/2)‘
R R 2

In our implemented example, we set ¢ = 0.25, Sp = 1, hence Cy ~ 0.0327511. For
the approximation and discretization parameters, we set 7' = 0.15, K =1, M = 2.5,
R =26, At =0.003, Az = 0.1 and v, = \/n.

With a 2.40GHz CPU computer, it takes 84.89 seconds to finish 4 x 10* iterations,
and we get the numerical upper bound 0.0328511, i.e. the relative error is less than
1%, see also Figure 1.
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Figure 1: Numerical result for variance swap with approximation parameters: 7' = 0.15,

K=1, M =1, R=2.6, At =0.003, Az = 0.1 and ~, = v/n.

4.2 C(Call on variance

We next give some numerical tests on the option “call on variance”, whose payoff
function is g(¢t,z) = (t — K,)" for some positive constant K,. In our implemented
examples, we set 0 = 0.2, Sy = 1. In a first example, we fix K = 1 and obtain the
numerical solutions with different approximation parameters 7. The result illustrated
in Figure 2 is consistent to the convergence result in Theorem 2.11 as well as that in
Proposition 5.8 below, i.e. when T' — 0o, the convergence is of exponential order.

In a second example, we fix T' = 0.5 and test the numerical algorithm with different
approximation parameters K. We notice that for both options, the minimum upper
bounds are given by the case K =~ 1. When K is too small, the approximation strategy
class Qo defined by (2.9) is not rich enough, and hence the approximated upper bound
is greater than the real bound. When K is too large, another error term given by
p1(¢r ) in Theorem 2.11 (see also Proposition 5.6 below) becomes too important.
Therefore, for those calls on variance, the optimal approximation parameter K to
choose is around 1. (see Figure 3).
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Figure 2: Numerical result for call on variance with approximation parameters: K = 1,
M =1, R=2.2, At =0.001, Az = 0.1 and v, = /n.
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Figure 3: Numerical result for call on variance with approximation parameters: 7" = 0.5,

M =1, R=22, At =0.001, Az = 0.1 and ~, = +/n.
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5 Proof of the approximation result

In this section, we shall complete the proof of Proposition 2.7 as well as the convergence
result in Theorem 2.11. We first give some technical lemmas about the stopping times
on a Brownian motion in Section 5.1. Then we complete the proof of Proposition 2.7
in Section 5.2, and the proof of Theorem 2.11 in Section 5.3.

5.1 Technical lemmas

We recall that B = (By)i>0 is a standard Brownian motion in probability space
(Q, F,P), with natural Brownian filtration F = (F;)i>0, and 7 denotes the col-
lection of all F—stopping times 7 such that E[r] < co. Let T' > 0, we also denote by
TT the collection of all F—stopping times taking value in [0, 7], i.e.

T' = {TAT:7eT>}. (5.1)

Lemma 5.1. Let ¢ : (t,z) € RT x R — 9(t,z) € R be a function Lipschitz in t,
satisfying sup(; »)er+ xRk |7’f$fz)| < oco. Then for every T € T,

E [¥(r,B:)] = Jim [W(T At Bra) . (5.2)
In particular,
E[B?] = lim E[B%,] = lim E[rAt] = E[r] and E[B,] = 0. (5.3)
t—o00 t—00

Proof. Given a stopping time 7 € T, let Y; := B;s. Then by assumptions on ),
there is a constant C' > 0 such that
W(Brat, AL £ CL+Y247) < C(14+supY247), Vi20.
s>0
We notice that (Y;):>0 is a continuous uniformly integrable martingale by its definition,

and E[supszo Yf] < 4E[r] < oo by Doob’s inequality. And hence it follows by the
dominated convergence theorem that (5.2) holds true. O

Lemma 5.2. Let ¢ € Q and denote by ™ its convexr envelope, then

inf E(B,) — inf E¢(B,) = ¢"(0), as T — oco.
TeTT TET >
Proof. Let a <0 < bbe two constants and 7, := inf {¢ : B; ¢ (a,b)}. We first notice
that 7o, € T°° since E[rqp] = limy o0 E[a 5 A t] = limy o0 B[BZ , 1] < (a® + %) < 0.
Hence by (5.3), E[B;,,] = 0, which implies that P(B;,, = a) = 3% and P(B,,, =

~ b-a
b) = 5=%. Therefore,

—a

b—a

inf E(B.) < inf E(B, ) = 'f(
A B = BB ) = B

bla) + =—u(b)) = v (0).

b—a

On the other hand, for every 7 € 7°°, it follows by Jensen’s inequality and E[B;] =
0 from (5.3) that ¢ (z) < E[¢°"(z + B;)] < E[¢)(x + B;)]. Therefore,

nf E(B,) = ()

18



Finally, the convergence of inf .77 Et(B;) to inf ey E(B;) as T — oo is a
direct consequence of (5.2). O
Corollary 5.3. Let ¢ € Q and (a,b) € R2. Then for function u defined in (2.5), we
have u(p) = u(payp), where dqp is given by ¢gp(z) == d(x) + ax + b.

Proof. By the definition of )\g" in (2.4) together with Lemma 5.1, it follows that

)\g‘”’(x) = )\g(:v) + ax + b. Moreover, as discussed in Remark 2.6, po(I) = p1(I) for
the identity function I. Then we get u(¢) = u(dq,) by the definition of v in (2.5). O

It is also interesting to consider the stopping time w.r.t. a larger filtration. Let F
be another filtration in (2, F,P) w.r.t which B is still a standard Brownian motion,

denote
T = {IF‘ — stopping times 7 such that E(7) < co}.
Lemma 5.4. For all ¢ € Q, we have
MN(t,z) = sup E[g°(t+m2+B:)] = sup E[g°(t+72+B;)]. (54)
TET® TET™

Proof. By the same arguments as in Lemma 5.1, (5.2) holds still true for every
7 € 7. Then, to prove (5.4), it is enough to prove that for every T > 0,

sup ]E[g¢(t—|—7',x+BT)] = sup E[g¢(t+7,:c+BT)].
TET > 7<T T€7~—°°,T§T

Since the family of random variables (g®(t + 7,z + Br)) cioo r<p is clearly of class D,
we then conclude the proof by Theorem 5 of Szpirglas and Mazziotto [23]. O

5.2 Proof of Proposition 2.7

(i) Given ¢ € Q, we denote ¢ y(z) := ¢(z) + Kz? + )(z) which also belongs to Q.
Then by (5.3), for all 7 € T,
E[QKW(T’ z+ BT) - ¢K7’I/J(':U + BT)] = ]E[gd)(T, T+ B‘r)] - K:UQ'

It follows by the definition of U in (2.5) that U(gk,y) > U(g) + KCo + p1(¢). And
moreover, by the arbitrariness of K € R, ¢ € Q and symmetric relationship between
g and gk y, we conclude the proof of (2.7).

(ii) For the second assertion, we first claim that u(g?) = 0 for ¢ = 0. Indeed, with
the payoff function ¢g° = 0, we get immediately from (2.4) as well as Lemma 5.2 that

w@) = = po(¢™) + (o) = (") — po(6™™) = 0.

where the last inequality follows from Assumption 2.5. It follows that that U(g°) = 0.

Let us take the positive constant Ly given in Assumption 2.8, then

Further, it is clear that U is monotone w.r.t. the payoff function g by its definition in
(2.5). Then it follows that

11(g9(0,4) < U < m(9(0,-)) + LoCp, with Cp defined in (2.8).

Hence we conclude the proof. O
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5.3 The proof of Theorem 2.11

We shall decompose the proof of Theorem 2.11 intro four steps.
In a first step, we show that in optimization problem (2.5), it is equivalent to
minimize among all non negative convex functions. Denote

QY = { ¢ € Q non negative, convex, such that ¢(0) =0 }
Proposition 5.5. Let Assumptions 2.5 and 2.8 hold true, then

U = inf u(e).
9eQ’

Proof. Let T € Rt, 79 € 71 and ¢ € Q. By the dominated convergence theorem,
it is clear that = +— inf_.7r E¢(x + B;) is continuous. This, together with the weak
dynamic programming in Theorem 4.1 of Bouchard and Touzi [6], implies the dynamic
programming principle:

inf E¢(z+ B;) = E[ess inf E[¢($+BT)|]:70H~

To<1<T To<7<T
Then for every constant T° > T,

)\g(:v) = sup E| ¢°(r,z + By) | = sup E[g(r,z+B;)—¢(z+B;) |
TET>® To<r<T

Since ¢ increases in t and is convex in x from Assumption 2.8, we have
Elg(r,z + B:)|Fr] > E[g(ro,x+ Br)|Fr] > g(r0,x+ By,
and hence

(@) > Elglro,z+By)] - E| inf_E[s(e+ By)|F]].

To<r<T
Sending T to 400, it follows by Lemma 5.2 that
X(x) > E[g(r,2+Br) — ¢“(z+ By) |.
Thus, by arbitrariness of 79 in 77 as well as that of T € R, we get

)\g(m) > lim sup E [g(r0,3+ By) — ¢“"(z+ Br) |,

T—=00 17T
= sup E [g(T(],.CE + Br,) — ¢“"(x + By) ],
TOET >
where the last equality is a direct consequence of Lemma 5.1 since ¢“"*" is either of
quadratic growth or equals to —oo.

Finally, since ¢ > ¢“", by the definitions of w and U in (2.5), it is clear that
the infimum in (2.5) can be taken over the collection of all convex functions in Q.
Moreover, by the property of u(¢) in Corollary 5.3, the infimum can be then taken
over the collection of all positive convex functions ¢ in Q such that ¢(0) = 0, i.e.
U =inf{u(¢) : ¢ € Q°}. We then conclude the proof. O
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Our second step is on the growth coefficient of ¢ in Q°. Let K be a positive
constant, we denote

Ut = iégKM@ with Q¥ = {9 € Q" : ¢(x) < K(Jz| v a?)}.
IS

By the convexity of functions in Q°, we see that every ¢ € QU is in fact locally Lipschitz
continuous, and hence one can easily deduce that Q° = Ug-oQ%%. Then it follows
immediately that

UE (U as K — oo. (5.5)

The third step of the approximation is to fix the tail of functions in Q% . Given a
constant M > My, where My is given in Assumption 2.8, we denote

QUMM = [ ¢ € Q" such that ¢(v) = Ka? for |z| > 2M } (5.6)
and the approximation value

UK’M = ¢€C3r(},fK,M 'LL(¢)

Proposition 5.6. Suppose that Assumptions 2.5 and 2.8 hold true. Then
0 < USM_UR < ju(drm), (5.7)
where ¢ nr is defined by (2.12).

Proof. Let us first recall that every function ¢ € Q%X is nonnegative, convex such
that ¢(0) = 0 and ¢(z) < K(|z| vV 22). Given ¢ € Q¥X, we denote ¢y := ¢ V OKM
with ¢x s defined in (2.12). Clearly, ¢y lies in Q¥5M and M < \? since ¢rs > ¢.
It follows from the definition of u(¢) in (2.5) and the positivity of ¢ that

u(dn) — u(d) < pi(onm) — m(e) < (o).

This, together with the arbitrariness of ¢ € Q%% and the fact that ¢y € Q%M
concludes the proof for (5.7). O

For the fourth step of the analytic approximation, we first introduce for every T,
R >0,

AT (t,2) = sup  E[g°(t+rma+Br)], AT = A0,
TET>®, 7<T—t

NOTR(t, x) = sup E[g¢(t + 7,2+ B;)], (5.8)
TET>®, 7<7f
and
MR ) = sup E[¢?(t + 7,2 + B;)], (5.9)
TET>®, 7<TEA(T—1)
where 71! := inf{s : x+ Bs ¢ (—R,R)}.
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Proposition 5.7. Let Assumption 2.8 hold true with constants Lo, My. Suppose that
K>Ly, M>Myand R > (1 + 1/%%)M. Then for every ¢ € QVSM " we have

N(t,z) = X0TR(t, ) and NOT(t,x) = XD Bt 2), V(t,z) €[0,T] x R.

With the equivalence between A? (A*T) and A\*7& (A*T"F)  we can now make an

approximation on coefficient T'. Let

UEE = e u" (@) with u(¢) = o) + (). (5.10)
LIS

Proposition 5.8. Let Assumptions 2.5 and 2.8 hold, My and Lo be constants given
in Assumption 2.8. Let K > Lo, M > My, R = (1 + K%LO)M and L = 2(K +
2L0)(R?V 1), we denote

1 2R
d = —log(¢(R)) >0, where q(R) := —— e 7’12 dg.
2m J 2R
Then
0 < UlM_ gEMT < [e=0(T=1), (5.11)

In preparation of the proof for Propositions 5.7 and 5.8, we first give a property
for functions in Q%M defined by (5.6).

Lemma 5.9. Let Assumption 2.8 hold true with constants Ly and My, K > Ly,

M > My and R = (1 + Ki(Lo )M Given fized t € Rt and ¢ € Q¥EM  we denote

b(z) = — ¢°(tx) — Lea® = ¢(z) — glt,z) — Loz’
Then ™ (x) = ¢ (x) when x ¢ [-R, R].

Proof. By Assumption 2.8, we know that there are constants C7, Cy such that
x — g(t,x) is affine with derivative C; when = > M, and affine with derivative Cy
when x < —M. For fixed t € R, let x be a continuous function defined on R by the
following: x is affine on intervals [-2M, —M], [-M, 0], [0, M], [M,2M] and

x(0) = —g(t,0),

x(EM) = —LoM? — g(t,£M),

X(£2M) = 4(K — Lo)M? — g(t,£2M),

x(z) = (K—Lg)x?> — g(t,2M) — Cy(x —2M), x>2M,
(x(z) = (K—Lo)x? — g(t,—2M) — Co(z +2M), x< —2M.

By Assumption 2.8, we can verify that for every ¢ € Q%**™ and the corresponding
1) defined in the statement of the lemma,

b(z) { > x(z), when x € [-2M,2M],
= x(x), when x ¢ [-2M,2M].
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Function Chi(x)

Xer

Figure 4: An example of functions x and v, where g =0, ¢ = ¢x s With constants K =1,
M =1 and Ly =0.8.

Then given = ¢ [—R, R|, it follows by a simple computation that x(y) > x(z)
X'(z)(y — z) for every y € R, which implies that x“"(z) = x(z). And hence 9 (x)
Y () > " (2) = x(z) = ¢Y(x) for x ¢ [-R, R).

Now, we can complete the proofs of Propositions 5.7 and 5.8.

0w +

Proof of Proposition 5.7. We shall only show that A? = A®"® since the other
equality A>T = A»TR can be proved by the same arguments. Moreover, to prove
A = A\P7R it is enough to show that A? < A®"% since its inverse inequality is obvious
from the definition of A*7% in (5.8).

First, let us fix t € Rt and x ¢ (—R, R), we denote 1, (y) := —g®(t,y)— Loy*+Loz>.
Then by Lemma 5.9, we have %" (x) = 1), (z) = —g®(t, ). Then for every 7 € T,

E [g¢(t+7,$—|—BT) ] < E [g¢(t,:n+BT) + Lot |
= E [¢°(t,x+ B;) + Lo(z + B;)*> — Loz* |
= —E¢u(z+B;) < —¢5(x) = g%t 2). (5.12)
It follows that A?(t,z) < A»"R(t, x) for every = ¢ (—R, R) since in this case 75 = 0.
Next, for every 7 € T°° and x € [—R, R], we have according to (5.12) that
E[g¢*(t+r2+B,) ]
= E [g¢(t+7,:v + Br)l, < r ] + E [IET [gd’(t—i- T, + Br)l, R | FonrR ] }

IN

E | g*(t+7 AT o+ Boap) |
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which implies that \?(¢,z) < A*7&(t,z) for all € [~ R, R]. O

Proof of Proposition 5.8. We first derive an estimate on stopping times inferior to
71 borrowed from Carlier and Galichon’s [7] Lemma 5.2. Let x € [~ R, R], then for
every stopping time 7 < Tf, we have

P(r>T) < P(rf>T) < Mi<cu<rP(|By — Buo1| <2R) < 707D, (5.13)

Recall that E[(z + B;)?] = 22 + E[r], V7 < 7 from (5.3). Then by the definitions
of %78 and A*T"F in (5.9), for every ¢ € QUFM,

ATR(0, ) — ATE0,2) < sup E [ ¢®(r,x+ B;) — ¢®(r AT,z + Brar) ]

T<rR
= sup E [w(T/\T,x—FBTAT) —Y(x+ By, 1) ],
T<rR
where (t,x) := —g®(t,x) — Lox® + Lot. Clearly, ¢ increases in ¢ and |[(t,21) —

P(t, 29)| < 2(K + 2Lo)(R? V 1), Va1, 72 € [~ R, R] by Assumption 2.8. Therefore,

MNTR(0,2) — XTE(0,2) < sup E [|W(r AT, 2+ Bear) — ¥(r AT,z + BT)| ]

T<rR

= sup E [|[¢(T,x+ Br) — (T, x+ B;)|[1>7 |

T<rR

< sup 2 (K +2Lg) (RV1)P(r>T)

T<TR

S Le—ﬁ(T—l)’

where the last inequality is from (5.13). Finally, by the arbitrariness of ¢ € Q%*M
together with Proposition 5.7, we prove (5.11). O

Finally, we complete the proof for Theorem 2.11.
Proof of Theorem 2.11. We notice that for fixed constants K, M, R and T, the
functions set Q, and function A% defined in Section 2.3 is exactly QUM and &R
defined above. We can then conclude the proof by Propositions 5.5, 5.6, 5.7 and 5.8
as well as (5.5). O

A A projection algorithm

We would like to propose an algorithm for the optimization problem (3.19) associated
with the projection PQh' In place of the problem (3.19), let us consider a more general
problem.

Let a = (a;)1<i<m € N™ and A € RT such that 0 < A < |a|, where |a| := >, a;.
We define a cone of nondecreasing vectors in R™ by

K = {fZ(fi)lsiSmGRm &< <6 }
]C;?@ = {52 (gi)lgigm S [0, 1]m : ial& =A }, and ’Cfr{A = IC’?TL N ]C;?l
=1
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The projection Pa(2) of z € R™ to %4 is to solve the optimization problem

m

Az — arg min Zai(zi—&)Z. (A.1)

gekm” i
Similarly, one can also define the projection Pga ( resp. Pga) by the optimization
problem (A.1), where K% in the formula is replaced by K& (resp. K7}), and the

projected element 531"4”2 is replaced by &n;° (resp. 5;,41’2).

In the following, we shall show that

Pean = Praaolrs = PgaoPxg,

and give the algorithms for both Pga and Pya. With these algorithms, one can
+ and Pp- in (3.19). We just
K,M K,M

remark that similar algorithms are discussed in Edelsbrunner [11, P. 143-145] in order

deduce easily an algorithm for the projections Pp,

to compute the convex envelope of functions defined on a discrete grid.
Given a € N™ and z € R™, we define S%* € R4l by Sp% := z; for 2?;11 a; < k <
>7_, a;, and define the function F* on the grid NN [0,1 + [a|] by

k
F%(0) = 0 and F™(k) = > S for k=1,---]a|. (A.2)
=1

Lemma A.1. Suppose that we are given z € R™ such that zj > 241, denote &3 =
Pig, (2) and &7 = Peaa(2). Then (6% = (& )ks1 and (€577)k = (6" s
In particular, the projections Pia (2) and Pia.a(2) are equivalent to Pya 71(2) and
Piaa (2) for

m—1

ag, 1§i§k‘—l, Ziy 1§i§k‘—1,
a; = ai + ap41, 1=k, and ZzZ; = %, i =k, (A3)
ai+1, k+1<i<m-—1, Zitvl, k+1<i<m—1,

. a ga,z a ga,i a gayA,z a £&«A75 @,z -
in sense that S»~m = S%m-1 gnd S%¢m "~ = S%m-1 where " | = Pca (Z) and
’ m—1 ICTVL*l
d,A,Z «— ~ >
Em1 = ;an’fjl(z)-

Proof. Given an arbitrary £ € R such that 11 > &, then there is € > 0 satisfying

: . e, i=k k1,
that &1 = &+ (1+ a:il)e. Define £ € R™ by & = {ik heru one can
i otherwise,
show that
m m
Z az(gz - Zi)2 < Z al(fz — Zi)2. (A4)
i=1 i=1

Thus £ cannot be the projection of z since £ € K¢, (resp. IC?;LA) implies that ¢ € K2,
(resp. IC?,{A), and hence (A.4) contradicts the definition of the projection in (A.1). It

follows that (€47) = (€% ) k1 and (€5)s = (€4™)jtn.
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To show the inequality (A.4), it is enough to verify that

2 G-z — Y i (&i—u)
=1 =1

= ar (& —2)° + aper (Gt ( aai1)€ — 1)’

— ap (Ghte—z)? — apr (& te—zp)?
ay

= (ar + ag+1) 2 + 2ap ¢ (zk — zk+1) > 0.
Ak41

Finally, the equivalence between Pja (2) (resp. PK%{A(Z)) and P,an_l(é) (resp.
P’Canlfl (%)) is from the fact that for every & such that & = &1, one has the decompo-
sition

m—1

> aiz - ai(Z — &)° + anzp + apzigy — (ak + agg)
i=1 i=1

(zk + 2641)?
4 9

57;) { < k— ]-a
where & =< &,  i=k k+1, O
51;1, k:-|-2§z§m—1
Lemma A.1 gives an algorithm for projection Pxa which finishes within less than
m steps. The algorithm also simplifies the projection P a4, as we can see later in
Proposition A.3.
Algorithm A.2. For projection Pya (2):
e 1, Given system parameters (m,a, z), stop if m = 1.
e 2, Find k such that zj, > zxy1, stop if it does not exist.
e 3, With the found k in step 2, reduce parameters (m,a,z) to (m —1,a,2) as in
equation (A.3).
e /, Goto 1.

Proposition A.3. Peaa = PeaaoPyga , and for every z € R™. Moreover, F“¢ (with

§ := Pxa (2)) is the convex envelope of F**, where the functions F%¢ and F%* are

define in (A.2)

Proof. Suppose that the entrance data of Algorithm A.2 is (mj,a1,z1) and the

exit data is (mg,ag, 22), then clearly Pgas (22) = 22. And by Lemma A.1, we have
mo

Sa1,él — Gaz,z2 (with & = p/dn11 (21) ) and Salvﬁf = Sdzf? ( with gi“ =P

ot A (z1) and

&= PK%A (22) ), from which we deduce that Paa = Paa o Pyg,.

To see that F®¢ (with £ := Pga (z) ) is the convex envelope of F?, it is enough
to verify that at every step in Algorithm A.2, F'®* is greater than the convex envelope
of F%*. And at the exit, F'*¢ is a convex function. O

Now, we shall prove that P’C#A o Pxa = Pya o Pyg,, for this purpose, it is enough
to show that for every z € K% | P’C%A(Z) = Pa(z). In fact, we shall give an algorithm
of projection Pia (2) for z € K7, and then verify that Pca (2) € K.

26



Given v € R and = € R™, denote by z — v the sequence (2; — V)1<i<m, and by z”
the sequence (2!)1<i<m == (0V (2i — V) A L)1<i<m.

Lemma A.4. Given v € R and z € R™, we have Piaa(2) = Paa(z — v) and
Pia(2) = Pga(2—v). Ifin addition z € K3, then there is 7 € R such that 3", a2l =

A and Pica(z2) = P

caa(2) = 27, And it follows that Piaa = PiaaoPga = PgaoPya,.

Proof. To prove that Paa(2) = Paa(z —v) or Pga(z) = Pga (2 —v), we note that

for every & € R™ satisfying > | a;& = A,

iai(fzi —v=§)? = iai(zi —-&)? + V2iai - 27/(%%% - A)-
i=1 i=1 i=1 =1

Then for the existence of 7, it is enough to see that v +— > a;z} is continuous,
and that 0 < A < ", a; is supposed at the beginning of the section. Clearly, by
its definition, z¥ is the projected element of z — v to [0,1]™ in sense that {, = 2z
minimizes > 10, a;(2; — v — &)? among all £ € [0,1]™. Then for z € K%, it is easy
to verify that 2’ € K&* ¢ KA c [0,1]™ with the found #. Therefore Pa(z) =

Pia.a (2) = Pa(z —0) = Pia,a (z — D) = 2. O

Algorithm A.5. To find  such that Y_1" a;zl = A:
o [, Set zg = —00 and zp41 = 00.
o 2, Find k such that > a;z,* " > A and S a;z* < A, then zp_1 < D < 2.
e 3, Find j such that > ", aizf”rl < Aand ", aizfjfl > A, then zj — 1 <
U< Zj+1 — 1.
Dot 4 aifo:k aizi—
S kai
By the way how to find k£ and j, it follows that z,—1 < 7 < zj41 — 1 < zj41,
hence k < j + 1. Then step 4 of Algorithm A.5 gives the right 7 since 27 =
0, ifi<k-1,
1, ifi>j5+1, for k, 7 found in step 2 and 3, and hence for k£ < j,

A
o J, Setv= when k < j, or v = zi_1 when k =35+ 1.

z; — D, otherwise.

j m S . J o A
. . 1 QT D iy @i%

E ai(z —v) + E a=A = U = =t 5 i=k .

i=k i=j+1 i=k @i
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