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Abstract

We provide an extension of the martingale version of the Fréchet-Hoeffding coupling to

the infinitely-many marginals constraints setting. In the two-marginal context, this exten-

sion was obtained by Beiglböck & Juillet [7], and further developed by Henry-Labordère &

Touzi [40], see also [6].

Our main result applies to a special class of reward functions and requires some re-

strictions on the marginal distributions. We show that the optimal martingale transference

plan is induced by a pure downward jump local Lévy model. In particular, this provides

a new martingale peacock process (PCOC “Processus Croissant pour l’Ordre Convexe,”

see Hirsch, Profeta, Roynette & Yor [43]), and a new remarkable example of discontinuous

fake Brownian motions. Further, as in [40], we also provide a duality result together with

the corresponding dual optimizer in explicit form.

As an application to financial mathematics, our results give the model-independent

optimal lower and upper bounds for variance swaps.

1 Introduction

The classical optimal transport (OT) problem was initially formulated by Monge in his treatise

“Théorie des déblais et des remblais” as follows. Let µ0, µ1 be two probability measures on Rd,
c : Rd ×Rd → R be a cost function, then the optimal transport problem consists in minimizing

the cost
∫
Rd c(x, T (x))µ0(dx) among all transference plans, i.e. all measurable functions T :

Rd → Rd such that µ1 = µ0 ◦ T−1. The relaxed formulation of the problem, as introduced

by Kantorovich, consists in minimizing the value EP[c(X0, X1)] among all probability measures

P such that P ◦ X−1
0 = µ0 and P ◦ X−1

1 = µ1. Under the so-called Spence-Mirrlees or Twist

condition, the optimal Monge transference plan is characterized by the Brenier Theorem, and

explicitly given by the Fréchet-Hoefding in the one-dimensioanl setting. We refer to Rachev &

Ruschendorf [71] and Villani [75] for a detailed presentation.

The theory has been extended to the multiple marginals case by Gangbo & Świȩch [33], Carlier

[15], Olkin & Rachev [65], Knott & Smith [60], Rüschendorf & Uckelmann [72], Heinich [38],

and Pass [67, 68, 69], etc. We also refer to the full-marginals case addressed by Pass [70].

Recently, a martingale transportation (MT) problem was introduced in Beiglböck, Henry-

Labordère & Penkner [5] and in Galichon, Henry-Labordère & Touzi [32]. Given two proba-

bility measures µ0 and µ1, the problem consists in minimizing some expected cost among all
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sponsored by Société Générale) and Finance and Sustainable Development (IEF sponsored by EDF and CA).
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probability measures P with fixed marginals P ◦ X−1
0 = µ0, P ◦ X−1

1 = µ1, and such that the

canonical process X is a P−martingale.

This new optimal transport problem is motivated by the problem of robust subhedging exotic

options in a frictionless financial market allowing for trading the underlying asset and the corre-

sponding vanilla options for the maturities 0 and 1. As observed by Breeden & Litzenberger [12],

the market values of vanilla options for all strikes allows to recover the marginal distributions of

the underlying asset price. This suggests a dual formulation of the robust superhedging problem

defined as the minimization of the P−expected payoff of the exotic option over all martingale

measures P satisfying the marginal distribution constraint.

Based on the fact that any martingale can be represented as a time-changed Brownian motion,

this problem was initially studied in the seminal paper of Hobson [44] by means of the Skorokhod

Embedding Problem (SEP) approach, which consists in finding a stopping time τ of Brownian

motion B such that Bτ has some given distribution. This methodology generated develop-

ments in many directions, namely for different derivative contracts and/or multiple-marginals

constraints, see e.g. Brown, Hobson & Rogers [13], Madan & Yor [62], Cox, Hobson & Oblój

[18], Cox & Oblój [19, 20], Davis, Oblój & Raval [23], Cox & Wang [22], Gassiat, Oberhauser

& dos Reis [34], Cox, Oblój & Touzi [21], Hobson & Neuberger [51], and Hobson & Klimmek

[47, 48, 49, 50]. We also refer to the survey papers by Oblój [63] and Hobson [45] for more

details.

Recently, a rich literature has emerged around the martingale optimal transport approach

to robust hedging. For models in discrete-time, we refer to Acciaio, Beiglböck, Penkner &

Schachermayer[1], Beiglböck & Nutz [8], Beiglböck, Henry-Labordère & Touzi [6], Bouchard &

Nutz [11], Campi, Laachir & Martini [14], Fahim & Huang [28], De Marco & Henry-Labordère

[24]. For models in continuous-time, we refer to Biagini, Bouchard, Kardaras & Nutz [9], Dolin-

sky & Soner [25, 26, 27], Juillet [56], Henry-Labordère, Obloj, Spoida & Touzi [39], Källblad,

Tan & Touzi [57], Stebegg [73], Bonnans & Tan [10], and Tan & Touzi [74]. We finally mention

the work by Beiglböck, Cox & Huesmann [3] which derives new results on the Skorohod embed-

ding problem by using the martingale transport approach, see also Beiglböck, Cox, Huesmann,

Perkovsky & Promel [4], and Guo, Tan & Touzi [35, 36].

In the context of a one-period and one-dimensional martingale transport problem, Beiglböck

& Juillet [7] introduced the left/right monotone martingale transference plan by formulating a

martingale version of the so-called cyclic monotonicity in optimal transport theory. When the

starting measure µ0 has no atoms, the left/right monotone martingale transference is induced

by a binomial model, called left/right curtain. More importantly, it is proved in [7] that such a

left/right monotone transference plan exists and is unique, see also Beiglböck, Henry-Labordère

& Touzi [6] for an alternative argument.

Under the additional conditions that the measures µ0 and µ1 are atomless, and the correspond-

ing difference of c.d.f. has essentially finitely many local maximizers, Henry-Labordère & Touzi

[40] provided an explicit construction of this left/right-monotone martingale transference plan,

which extends the Fréchet-Hoeffding coupling in standard one-dimensional optimal transport.

Moreover, they obtained an explicit expression of the solution of the dual problem, and hence

by the duality result, they showed the optimality of their constructed transference plan for a

class of cost/reward functions. An immediate extension to the multiple marginals case follows

for a family of cost/reward functions.

In this paper, we are interested in the continuous-time case, as the limit of the multiple

marginals MT problem. Let (µt)0≤t≤1 be a given family of probability measures on R which is

non-decreasing in convex ordering, and assume that any pair (µt, µt+ε) of measures satisfies the

technical conditions in [40]. Then every discretization of the time interval [0, 1] induces a finite

number of marginal constraints. Following the construction in [40], there is a binomial model

calibrated to the corresponding multiple marginal distributions, which is of course optimal for
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a class of cost/reward functions. Two natural questions can then be addressed. The first is

whether the discrete binomial process converges when the time step converges to zero, and the

second is whether such a limiting continuous-time process is optimal for a corresponding MT

problem with full marginals.

Given a continuous family of marginal distributions which is non-decreasing in convex ordering,

a stochastic process calibrated to all the marginals is called a peacock (or PCOC “Processus

Croissant pour l’Ordre Convexe” in French) in Hirsch, Profeta, Roynette & Yor [43]. It follows

by Kellerer’s theorem that a process is a peacock if and only if there is a martingale with the

same marginal distributions at each time, it is then interesting to construct such martingales

associated with a given peacock (or equivalently with a given family of marginal distributions).

In particular, when the marginal distributions are given by those of a Brownian motion, such

a martingale is called a fake Brownian motion. Some examples of martingale peacock (or fake

Brownian motion) have been provided by Albin [2], Fan, Hamza & Klebaner [29], Hamza &

Klebaner [37], Hirsch et al. [42], Hobson [46], Oleszkiewicz [64], Pagès [66].

Our procedure gives a new construction of martingales associated with some peacock processes,

under technical conditions (see Assumption 3.1 below), and in particular a discontinuous fake

Brownian motion. Moreover, assuming that the difference of c.d.f. has exactly one local maxi-

mizer and some additional conditions (see Assumption 3.4 below), our constructed martingale

is optimal among all martingales with given marginal distributions for a class of cost/reward

functions, i.e. it solves a martingale transportation problem.

We would like to observe that our procedure depends on the explicit construction of the

left-monotone martingale transference plan in [40] under restrictive conditions. This is in con-

trast with the recent parallel work of Juillet [56], where the convergence of the left-monotone

martingale transference plan is investigated under general conditions and/or in various specific

situations.

This paper is organized as follows. In Section 2, we recall the discrete-time martingale trans-

port problem under finitely many marginal constraints. Taking the limit as the time step goes

to 0, this leads naturally to a continuous-time MT problem under full marginals constraints.

which is solved in Section 3 under technical conditions. Namely, by taking the limit of the

optimal martingale measure for the multi-marginals MT problem, we obtain a continuous-time

martingale calibrated to the given marginals, or equivalently, a martingale associated with the

corresponding peacock. Under additional conditions, including the unique local maximizer of

the c.d.f. difference, we prove that this limit martingale is a local Lévy process and solves the

infinitely-many marginals MT problem for a class of cost/reward functions. In particular, we

provide an explicit characterization of this optimal solution as well as the dual optimizer. In

Section 4, we discuss some examples of extremal peacock following our construction, including

a discontinuous fake Brownian motion and a self-similar martingale. As an application in fi-

nance, we provide an optimal robust hedging strategy for the variance swap option in Section

5. Finally, we complete the proofs of our main results in Section 6, where the main idea is to

approximate the infinitely-many marginals case by the multi marginals case.

2 A martingale optimal transport problem

We first consider the martingale optimal transport problem in finite discrete time, and recall

some results from [7, 40, 6]. By taking the limit, it leads to a continuous-time martingale

transport problem.
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2.1 Discrete-time martingale transport

Let µ0, µ1 be two atomless Borel probability measures on R with extreme left-point and right-

point of the support −∞ ≤ lµi
< rµi

≤ +∞. We assume that µ0, µ1 have finite first moments

and µ0 � µ1 in the convex order, i.e. µ0(φ) ≤ µ1(φ) for every convex function φ, where

µi(φ) :=
∫
R φ(x)µi(dx) for i = 0, 1.1

Let PR2 be the collection of of all Borel probability measures on R2. The corresponding

canonical process is denoted by (X0, X1), i.e. Xi(x0, x1) = xi for i = 0, 1 and (x0, x1) ∈ R2.

We consider the set

M2(µ0, µ1) :=
{
P ∈ PR2 : X0 ∼P µ0, X1 ∼P µ1 and EP[X1|X0] = X0

}
of all martingale measures with marginals µ0 and µ1.

Let c : R2 → R be a reward function such that c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ0) and

b ∈ L1(µ1), a two-marginals MT problem is defined by

P2(µ0, µ1) := sup
P∈M2(µ0,µ1)

EP[c(X0, X1)
]
. (2.1)

The dual formulation of the MT problem (2.1) turns out to be

D2(µ0, µ1) := inf
(ϕ,ψ,h)∈D2

{µ0(ϕ) + µ1(ψ)}, (2.2)

where the dual variables set is:

D2 :=
{

(ϕ,ψ, h) : ϕ+ ∈ L1(µ0), ψ+ ∈ L1(µ1), h ∈ L0 and ϕ⊕ ψ + h⊗ ≥ c
}
, (2.3)

with notations ϕ+ := ϕ∨0, ψ+ := ψ∨0, (ϕ⊕ψ)(x, y) := ϕ(x)+ψ(y) and h⊗(x, y) := h(x)(y−x).

Under mild conditions, the existence of the optimal martingale as well as the strong duality

(i.e. P2(µ0, µ1) = D2(µ0, µ1)) are proved in Beiglböck, Henry-Labordère & Penkner [5]. More

recently, under additional conditions on the reward function c, the optimal martingale has been

characterized as left-monotone transference map in [7], see more extensions in [40, 6]. Let us

recall it in a simpler context.

Theorem 2.1. Suppose that the partial derivative cxyy exists and cxyy > 0 on (lµ0 , rµ0) ×
(lµ1 , rµ1). Then the optimal martingale measure P∗(dx, dy) of problem (2.1) is unique, and can

be characterized by P∗(dx, dy) = µ0(dx)T∗(x, dy), where the probability kernel T∗ is of the form

T∗(x, dy) := q(x)δTu(x)(dy) + (1− q(x))δTd(x)(dy),

for some functions Tu, Td : R→ R satisfying Td(x) ≤ x ≤ Tu(x) and q(x) ∈ [0, 1].

More precise properties of Td and Tu have been obtained in [7, 40], which will be recalled and

used in Section 6.

The above problem and results can be easily extended to the finitely-many marginals case,

when the cost function is given by
∑n
i=1 c(xi−1, xi). More precisely, with n+1 given probability

measures (µ0, · · · , µn) ∈ (PR)n+1 such that µ0 � · · · � µn in the convex ordering, the problem

consists in maximizing

EP[c(X0, · · · , Xn)
]

= EP
[ n∑
i=1

ci(Xi−1, Xi)
]

(2.4)

among all martingales probability measures on Rn+1 satisfying the marginal distribution con-

straints (Xi ∼P µi, i = 0, · · · , n). Under the same technical condition on c, the optimal mar-

tingale measure is obtained by a Markovian iteration of the above left-monotone transference

map, thus inducing a binomial tree.

1The last integrals are well-defined and valued in R ∪ {∞}, as convex functions are bounded from below by

an affine function, which is integrable w.r.t. µ by the finite first moment condition.
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2.2 Continuous-time martingale transport under full marginals con-

straints

We now introduce a continuous-time martingale transportation (MT) problem under full margi-

nals constraints, as the limit of the multi-marginals MT recalled in Section 2.1 above. Namely,

given a family of probability measures µ = (µt)t∈[0,1], we consider all continuous-time mar-

tingales satisfying the marginal constraints, and optimize w.r.t. a class of reward functions.

To avoid the problem of integration, we define, for every random variable ξ, the expectation

E[ξ] := E[ξ+]− E[ξ−] with the convention ∞−∞ = −∞.

Let Ω := D([0, 1],R) denote the canonical space of all càdlàg paths on [0, 1], X the canonical

process and F = (Ft)0≤t≤1 the canonical filtration generated by X, i.e. Ft := σ{Xs, 0 ≤ s ≤ t}.
We denote by M∞ the collection of all martingale measures on Ω, i.e. the collection of all

probability measures on Ω under which the canonical process X is a martingale. The set

M∞ is equipped with the weak convergence topology throughout the paper. By Karandikar

[58], there is a non-decreasing process ([X]t)t∈[0,1] defined on Ω which coincides with the P-

quadratic variation of X, P-a.s. for every martingale measure P ∈ M∞. Denote also by [X]c·
the continuous part of the non-decreasing process [X].

Given a family of probability measures µ = (µt)0≤t≤1, denote byM∞(µ) ⊂M∞ the collection

of all martingale measures on Ω such that Xt ∼P µt for all t ∈ [0, 1]. In particular, following

Kellerer [59] (see also Hirsch and Roynette [41]), M∞(µ) is nonempty if and only if the family

(µt)0≤t≤1 admits a finite first order moment, is non-decreasing in convex ordering, and t 7→ µt
is right-continuous.

Finally, for all t ∈ [0, 1], we denote by −∞ ≤ lt ≤ rt ≤ ∞ the left and right extreme boundaries

of the support 2 of µt. Similar to Hobson & Klimmek [47], our continuous-time MT problem

is obtained as a continuous-time limit of the multi-marginals MT problem, by considering the

limit of the reward function
∑n
i=1 c(xti−1

,xti) as in (2.4), where (ti)1≤i≤n is a partition of the

interval [0, 1] with mesh size vanishing to zero. For this purpose, we formulate the following

assumption on the reward function.

Assumption 2.2. The reward function c : R2 → R is in C3((l1, r1)× (l1, r1)) and satisfies

c(x, x) = cy(x, x) = 0 and cxyy(x, y) > 0, ∀(x, y) ∈ (l1, r1)× (l1, r1).

In order to obtain the convergence, we need to use the pathwise Itô calculus introduced in

Föllmer [30], which is also used in Hobson & Klimmek [47] and Davis, Oblój & Raval [23] (see

in particular their Appendix B).

Definition 2.3 (Föllmer [30]). Let πn = (0 = tn0 < · · · < tnn = 1), n ≥ 1 be partitions of [0, 1]

with |πn| := max1≤k≤n |tnk − tnk−1| → 0 as n → ∞. A càdlàg path x : [0, 1] → R has a finite

quadratic variation along (πn)n≥1 if the sequence of measures on [0, 1],∑
1≤k≤n

(
xtnk − xtnk−1

)2
δ{tk−1}(dt),

converges weakly to a measure [x]F on [0, 1]. Denote [x]Ft := [x]F ([0, t]), and let [x]F,c· be the

continuous part of this non-decreasing path.

The next result follows the same line of proof as in Lemma 7.4 of [47].

2(i) The functions l and r are non-increasing and non-decreasing, respectively. We only report the justification

for the right boundary of the support r, a similar argument applies to l. For 0 ≤ s ≤ t ≤ 1, it follows from the

increase in convex order that for all constant c ∈ R, we have
∫∞
c (x − c)+µt(dx) ≥

∫∞
c (x − c)+µs(dx), so that

µs((c,∞)) > 0 implies that µt((c,∞)) > 0, and therefore r is non-decreasing.

(ii) Assume that µt has a density function for all t ∈ [0, 1] and t 7→ µt is continuous w.r.t the weak convergence

topology, then the functions 1(−∞,c) and 1(c,∞)(x) are µt−a.s. continuous for all t ∈ [0, 1], and it follows that

l and r are continuous.
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Lemma 2.4. Let Assumption 2.2 hold true. Then for every path x ∈ Ω with finite quadratic

variation [x]F along a sequence of partitions (πn)n≥1, we have

n−1∑
k=0

c(xtnk ,xtnk+1
) → 1

2

∫ 1

0

cyy(xt,xt)d[x]F,ct +
∑

0≤t≤1

c(xt−,xt).

We next introduce the non-decreasing process [x] as in Karandikar [58], which is defined for

every x ∈ Ω, and coincides P−a.s. with the quadratic variation, and also with [x]F , for all

P ∈M∞.

Motivated by the last convergence result, we introduce a reward function

C(x) :=
1

2

∫ 1

0

cyy(xt,xt)d[x]ct +
∑

0≤t≤1

c(xt−,xt), for all x ∈ Ω,

where the integral and the sum are defined as the difference of the positive and negative parts,

under the convention ∞−∞ = −∞. We then formulate a continuous-time MT problem under

full marginals constraints by

P∞(µ) := sup
P∈M∞(µ)

EP[C(X)
]
. (2.5)

Remark 2.5. Under the condition c(x, x) = cy(x, x) = 0 in Assumption 2.2, we have |c(x, x+

h)| ≤ K1(x)h2 for all h ∈ [−1, 1] with some locally bounded positive function K1. Since we have,

P−a.s. for all P ∈M∞, that
∑
s≤t(∆Xs)

2 <∞, then we also have
∑

0≤t≤1 c(Xt−, Xt) <∞.

Now, let us introduce the dual formulation of the above MT problem (2.5). We first introduce

the class of admissible dynamic and static strategies. Denote by H0 the class of all F−predictable

and locally bounded processes H : [0, 1]×Ω→ R, i.e. there is an increasing family of F−stopping

times (τn)n≥1 taking value in [0, 1] ∪ {∞} such that the process H·∧τn is bounded for all n ≥ 1

and τn →∞ as n→∞. Then for every H ∈ H0 and under every martingale measure P ∈M∞,

one can define the integral, denoted by H ·X, of H w.r.t. the martingale X (see e.g. Jacod &

Shiryaev [54] Chapter I.4). Define

H :=
{
H ∈ H0 : H ·X is a P-supermartingale for every P ∈M∞

}
.

For the static strategy, we denote by M([0, 1]) the space of all finite signed measures on [0, 1]

which is a Polish space under the weak convergence topology, and by Λ the class of all measurable

maps λ : R → M([0, 1]) which admit a representation λ(x, dt) = λ0(t, x)γ(dt) for some finite

non-negative measure γ on [0, 1] and measurable function λ0 : [0, 1]×R→ R which is bounded

on [0, 1]×K for all compact K of R. We then denote

Λ(µ) :=
{
λ ∈ Λ : µ(|λ|) <∞

}
, where µ(|λ|) :=

∫ 1

0

∫
R

∣∣λ0(t, x)
∣∣µt(dx)γ(dt).

We also introduce a family of random measures δX = (δXt )0≤t≤1 on R, induced by the canonical

process X, by δXt (dx) := δXt
(dx). In particular, we have

δX(λ) =

∫ 1

0

λ(Xt, dt) =

∫ 1

0

λ0(t,Xt)γ(dt).

Then the collection of all superhedging strategies is given by

D∞(µ) :=
{

(H,λ) ∈ H × Λ(µ) : δX(λ) + (H ·X)1 ≥ C(X·), P− a.s., ∀P ∈M∞
}
,

and our dual problem is defined by

D∞(µ) := inf
(H,λ)∈D∞(µ)

µ(λ). (2.6)
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3 Main results

We first construct in Subsection 3.1 a martingale transport peacock corresponding to the full-

marginals (µt)t∈[0,1] under technical conditions. This is obtained in Proposition 3.2 as an ac-

cumulation point of a sequence (Pn)n of solutions of n−periods discrete martingale transport

problems. In order to further characterize such a martingale peacock, we next restrict our

analysis to the one-maximizer context of Assumption 3.4 below. Then, our second main result

in Subsection 3.2 shows that the sequence (Pn)n converges to the distribution of a local Lévy

process. Finally our third main result is reported in Subsection 3.3. We show that this limit

indeed solves the continuous-time MT problem (2.5), and that the duality result holds with

explicit characterization of the solution of the dual problem under Assumption 3.4 below.

3.1 A martingale transport plan under full marginals constraint

For every t ∈ [0, 1], we denote by F (t, ·) the cumulative distribution function of the probability

measure µt on R, and F−1(t, ·) the corresponding right-continuous inverse with respect to the

x−variable. We also denote for t ∈ [0, 1), ε ∈ (0, 1− t]:

δεF (t, x) := F (t+ ε, x)− F (t, x), gεt (x, y) := F−1
(
t+ ε, F (t, x) + δεF (t, y)

)
, (3.1)

and

E := {(t, x) : t ∈ [0, 1], x ∈ (lt, rt)}.

Assumption 3.1. (i) The marginal distributions µ = (µt)t∈[0,1] are non-decreasing in convex

ordering and have finite first order moment.

(ii) For all t ∈ [0, 1], the measure µt has a density function f(t, ·), and t 7→ µt is continuous

w.r.t. the weak convergence topology. Moreover,

F ∈ C4
b (E) and inf

x∈[−K,K]∩(lt,rt)
f(t, x) > 0 for all K > 0.

(iii) For every t ∈ [0, 1) and ε ∈ (0, 1− t], the set of local maximizers M
(
δεF (t, x)

)
of function

x 7→ δεF (t, x) is finite; and moreover, the following irreducibility condition 3 holds true,∫ ∞
x

(ξ − x)δεF (dξ) = −
∫ ∞
x

δεF (t, y)dy > 0, for all x ∈ (lt, rt). (3.2)

Under the convex ordering condition, by considering the two marginals (µt, µt+ε), the cor-

responding unique left-monotone martingale measure can be characterized by two functions

T εu(t, x) and T εd (t, x) as in Theorem 2.1.

We recall that Ω := D([0, 1],R) is the canonical space of càdlàg paths, which is a Polish

space (separable, complete metric space) equipped with the Skorokhod topology; and X is the

canonical process. Let (πn)n≥1 be a sequence, where every πn = (tnk )0≤k≤n is a partition of the

interval [0, 1], i.e. 0 = tn0 < · · · < tnn = 1. Suppose in addition that |πn| := max1≤k≤n(tnk −
tnk−1)→ 0. Then for every partition πn, by considering the marginal distributions (µtnk )0≤k≤n,

one obtains an (n+ 1)-marginals MT problem, which consists in maximizing

E
[ ∑

0≤k≤n−1

c(X̃n
k , X̃

n
k+1)

]
among all discrete-time martingales X̃n = (X̃n

k )0≤k≤n satisfying the marginal distribution con-

straints. Under Assumptions 2.2 and 3.1, the left-monotone transference plan denoted by P∗,n

is a solution of the last martingale transport problem. Let Ω∗,n := Rn+1 be the canonical space

3We refer to Section 8.1 of [7] for the decomposition of any pair (µ0, µ1) in irreducible components.
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of discrete-time process, Xn = (Xn
k )0≤k≤n be the canonical process. Then under the optimal

martingale measure P∗,n, Xn is a discrete-time martingale and at the same time a Markov

chain, characterized by T
∆tnk+1
u (tnk , ·) and T

∆tnk+1

d (tnk , ·) with ∆tnk+1 := tnk+1 − tnk , induced by

the two marginals (µtnk , µtnk+1
) as in Theorem 2.1. We then extend the Markov chain Xn to a

continuous-time càdlàg process X∗,n = (X∗,nt )0≤t≤1 defined by

X∗,nt :=

n∑
k=1

Xn
k−11[tnk−1,t

n
k )(t), t ∈ [0, 1],

and define the probability measure Pn := P∗,n ◦ (X∗,n)−1 on Ω.

Proposition 3.2. Under Assumption 3.1, the sequence
(
Pn
)
n≥1

is tight w.r.t. the Skorokhod

topology on Ω. Moreover, every limit point P0 satisfies P0 ∈M∞(µ).

Remark 3.3. In a recent work, Juillet [56] analyzes the convergence of the left-monotone

martingale transport plan under more general conditions and/or in some other specific context.

3.2 A Local Lévy process characterization

We next seek for a further characterization of the limiting peacocks obtained in Proposition

3.2. The remaining part of our results is established under the following unique local maximum

condition. Let t ∈ [0, 1) and ε ∈ (0, 1− t], we denote by M
(
δεF (t, ·)

)
(resp. M

(
∂tF (t, ·)

)
) the

set of all local maximizer of function δεF (t, ·) (resp. ∂tF (t, ·)).

Assumption 3.4. (i) There is a constant ε0 > 0 such that, for all t ∈ [0, 1] and 0 < ε ≤
ε0 ∧ (1− t), we have M

(
δεF (t, ·)

)
= {mε(t)} and M

(
∂tF (t, ·)

)
= {mt}.

(ii) Denote m0(t) := mt, then (t, ε) 7→ mε(t) is continuous (hence uniformly continuous with

continuity modulus ρ0) on {(t, ε) : 0 ≤ ε ≤ ε0, 0 ≤ t ≤ 1− ε}.
(iii) For every t ∈ [0, 1], we have ∂txf(t,mt) < 0.

Example 3.13 below provides some concrete peacocks satisfying the last conditions.

Remark 3.5. Under the one local maximizer condition in Assumption 3.4 (i), the irreducibility

condition (3.2) holds true. Indeed, assume that (3.2) is not true, the for some t ∈ [0, t),

ε ∈ (0, 1− t], and some K ∈ (lt, rt), one has
∫∞
K

(ξ − x)δεF (dξ) = 0 =
∫K
−∞(x− ξ)δεF (dξ).

It follows by Theorem 8.4 of Beiglböck and Juillet [7], we have the decomposition µt = ρµ1
t +

(1− ρ)µ2
t and µt+ε = ρµ1

t+ε + (1− ρ)µ2
t+ε for some ρ ∈ (0, 1), where µ1

t and µ1
t+ε (resp. µ2

t and

µ2
t+ε) are probability measures supported in (−∞,K) (resp. [K,∞)), and µit � µit+ε in convex

ordering for i = 1, 2. Notice that the corresponding differences of c.d.f. δεF i satisfies

δεF = ρ1(−∞,K)δ
εF 1 + (1− ρ)1(K,∞)δ

εF 2.

Since µit � µit+ε in convex ordering for i = 1, 2, δεF 1(x) (resp. δεF 2(x)) has at least one local

maximizer in (−∞,K) ∩ (lt, rt) (resp. (K,∞) ∩ (lt, rt)). It follows that δεF has at least two

local maximizer on (lt, rt), which is a contradiction to Assumption 3.4 (i).

Recall that the left-monotone transference plan can be characterized by (T εu , T
ε
d ), whose explicit

construction are provided by [40]. Direct calculation suggests that the sequence (T εd )ε is expected

to converge to the function Td obtained via the limiting equation∫ x

Td(t,x)

(x− ξ)∂tf(t, ξ)dξ = 0. (3.3)

We also define jd(t, x) and ju(t, x) by

jd(t, x) := x− Td(t, x) and ju(t, x) :=
∂tF

(
t, Td(t, x)

)
− ∂tF (t, x)

f(t, x)
, t ∈ [0, 1], x > mt. (3.4)
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We notice that ju(t, ·) and jd(t, ·) are both positive and continuous on Dc(t) := (mt, rt). Let

us also introduce D(t) :=
(
lt,mt

]
and

Dc := {(t, x) : t ∈ [0, 1], x ∈ (mt, rt)} and D :=
{

(t, x) : t ∈ [0, 1], x ∈ D(t)
}
. (3.5)

Lemma 3.6. Let Assumptions 3.1 and 3.4 hold true. Then for all x ∈ (mt, rt), the equation

(3.3) has a unique solution Td(t, x) ∈ (lt,mt). Moreover

(i) Td is strictly decreasing in x

(ii) jd(t, x)1x>mt , ju(t, x)1x>mt and ju
jd

(t, x)1x>mt are all locally Lipschitz in (t, x).

Our second main result is the following convergence result for the sequence (Pn)n with an

explicit characterization of the limit as the law of a local Lévy process.

Theorem 3.7. Suppose that Assumptions 3.1 and 3.4 hold true, then Pn → P0, where P0 is

the unique weak solution of the SDE

Xt = X0 −
∫ t

0

1{Xs−>m(s)}jd(s,Xs−)(dNs − νsds), νs :=
ju
jd

(s,Xs−)1Xs−>m(s), (3.6)

and (Ns)0≤s≤1 is a unit size jump process with predictable compensated process (νs)0≤s≤1.

The pure jump process (3.6) is in the spirit of the local Lévy models introduced in Carr,

Geman, Madan & Yor [16]. Notice however that the intensity process (νt)0≤t≤1 in our context

is state-dependent.

We conclude this subsection by providing a point of view from the perspective of the forward

Kolmogorov-Fokker-Planck (KFP) equation.

Lemma 3.8. Under Assumptions 3.1 and 3.4, the density function f(t, x) satisfies

∂tf(t, x) = −1{x<mt}
juf

jd(1− ∂xjd)
(
t, T−1

d (t, x)
)
− 1{x>mt}

(juf
jd
− ∂x(juf)

)
(t, x), (3.7)

for all t ∈ [0, 1) and x ∈ (lt, rt) \ {mt}.

The first order PDE (3.7) can be viewed as a KFP forward equation of SDE (3.6).

Proposition 3.9. Let Assumptions 3.1 and 3.4 hold true. Suppose that the SDE (3.6) has a

weak solution X̂ which is a martingale whose marginal distribution admits a density function

f X̂(t, x) ∈ C1([0, 1]×R). Suppose in addition that E
[∣∣X̂1

∣∣p] <∞ for some p > 1, and for every

t ∈ [0, 1), there is some ε0 ∈ (0, 1− t] such that

E
[ ∫ t+ε0

t

ju(s, X̂s)1X̂s∈Dc(s)ds
]

< ∞. (3.8)

Then, the density function f X̂ of X̂ defined in (3.6) satisfies the KFP equation (3.7)

3.3 Optimality of the local Lévy process

The optimality results of this subsection are also obtained in the one-maximizer context of

Assumption 3.4. We first introduce the candidates of the optimal dual components for the dual

problem (2.6). Following Section 5 of [40], (see also the recalling in Section 6.1.1 below), the

optimal superhedging strategy (ϕε, ψε, hε) for the two marginals MT problem associated with

initial distribution µt, terminal distribution µt+ε, and reward function c : (l1, r1)× (l1, r1)→ R,

is explicitly given by:

∂xh
ε(t, x) :=

cx(x, T εu(t, x))− cx(x, T εd (t, x))

T εu(t, x)− T εd (t, x)
, x ≥ mε(t),

hε(t, x) := hε
(
t, (T εd )−1(t, x)

)
− cy

(
(T εd )−1(t, x), x

)
, x < mε(t);

9



denoting (T ε)−1(t, x) := (T εu)−1(t, x)1x≥mε(t) + (T εd )−1(t, x)1x<mε(t), the function ψε is given

by

∂xψ
ε(t, x) = cy

(
(T ε)−1(t, x), x

)
− hε

(
t, (T ε)−1(t, x)

)
,

and

ϕε(t, x) :=
x− T εd (t, x)

T εu(t, x)− T εd (t, x)

(
c
(
x, T εu(t, x)

)
− ψε

(
t, T εu(t, x)

))
+

T εu(t, x)− x
T εu(t, x)− T εd (t, x)

(
c
(
x, T εd (t, x)

)
− ψε

(
t, T εd (t, x)

))
.

Clearly, hε and ψε are unique up to a constant. More importantly, hε and ψε can be chosen

continuous on D so that

c(·, T εu(t, ·))− ψε(T εu(·))− c(·, T εd (·)) + ψε(T εd (·))−
(
T εu(·)− T εd (·)

)
hε(·)

is continuous, since T εu and T εd are both continuous under Assumption 3.4.

We shall see later that Assumption 2.2 on the reward function c implies that the continuous-

time limit of the optimal dual components is given as follows. The function h∗ : D → R is

defined, up to a constant, by

∂xh
∗(t, x) :=

cx(x, x)− cx(x, Td(t, x))

jd(t, x)
, when x ≥ mt, (3.9)

h∗(t, x) := h∗
(
t, T−1

d (t, x)
)
− cy

(
T−1
d (t, x), x

)
, when x < mt, (3.10)

and ψ∗ : D → R is defined, up to a constant, by

∂xψ
∗(t, x) := − h∗(t, x), for all (t, x) ∈ D. (3.11)

As an immediate consequence of Lemma 3.6 (ii), we obtain the following regularity results

Corollary 3.10. Under Assumptions 2.2, 3.1, and 3.4, we have ψ∗ ∈ C1,1(D).

Proof. Clearly, h∗ is continuous in (t, x) for x 6= mt, since the function Td(t, x)1x≥mt is contin-

uous. We also easily check the continuity of h∗ at the point (t,mt) by (3.9), since T−1
d (t, x)→ mt

as x→ mt and cy(x, x) = 0. By its definition in (3.11), ∂xψ
∗ is also continuous. We next com-

pute, by (3.9), that

∂t,xh
∗(t, x) = ∂tjd(t, x)

cxy
(
x, Td(t, x)

)
jd(t, x)−

(
cx(x, x)− cx(x, Td(t, x))

)(
jd(t, x)

)2 ,

which is also locally bounded on Dc since Td(t, x) is locally bounded by Lemma 3.6. Then the

function ∂tψ
∗(t, x) = C−

∫ x
0
∂th
∗(t, ξ)dξ, for some fixed constant C, is also continuous in (t, x).

tu

In order to introduce a dual static strategy in Λ, we let γ∗(dt) := δ{0}(dt) + δ{1}(dt) +Leb(dt)

be a finite measure on [0, 1], where Leb(dt) denotes the Lebesgue measure on [0, 1]; we define

λ∗0 and λ
∗
0 by λ∗0(0, x) := ψ∗(0, x), λ∗0(1, x) := ψ∗(1, x), λ

∗
0(0, x) := |ψ∗(0, x)|, λ∗0(1, x) :=

supt∈[0,1] |ψ∗(t, x)|; and for all (t, x) ∈ (0, 1)× R,

λ∗0 := ∂tψ
∗ + 1Dc

(
∂xψ

∗ju + ν[ψ∗ − ψ∗(., Td) + c(., Td)]
)
,

λ
∗
0 :=

∣∣∂tψ∗ + 1Dc

(
∂xψ

∗ju + ν[ψ∗ − ψ∗(., Td)]
)∣∣+ 1Dcν[|c(., Td)|],

where we recall that Dc = {(t, x) : x > mt}. Finally, we denote λ∗(x, dt) := λ∗0(t, x)γ∗(dt) and

λ
∗
(x, dt) := λ

∗
0(t, x)γ∗(dt).
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We are now ready for our third main result which states the optimality of the local Lévy

process (3.6), as well as that of the dual component introduced above. Similar to [40] and [47],

we obtain in addition a strong duality for the MT problem (2.5) and (2.6). Let H∗ be the

F-predictable process on Ω defined by

H∗t := h∗(t,Xt−), t ∈ [0, 1].

Theorem 3.11. Let Assumptions 2.2, 3.1 and 3.4 hold true, suppose in addition that µ(λ
∗
) =∫ 1

0

∫
R λ
∗
0(t, x)µt(dx)γ∗(dt) < ∞. Then the martingale transport problem (2.5) is solved by the

local Lévy process (3.6). Moreover, (H∗, λ∗) ∈ D∞(µ) and we have the duality

EP0[
C(X·)

]
= P∞(µ) = D∞(µ) = µ(λ∗),

where the optimal value is given by

µ(λ∗) =

∫ 1

0

∫ rt

mt

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x) dx dt.

The proofs of Theorems 3.7 and 3.11 are reported later in Section 6, the main idea is to

use the approximation technique, where we need in particular the continuity property of the

characteristic functions in Lemma 3.10.

Remark 3.12. By symmetry, we may consider the right monotone martingale transference

plan as in Remark 3.14 of [40]. This leads to an upward pure jump process with explicit

characteristics, assuming that x 7→ ∂tF (t, x) has only one local minimizer m̃t. Indeed, let

j̃u(t, x) := T̃u(t, x)− x and j̃d(t, x) :=
∂tF (t, x)− ∂tF (t, T̃u(t, x))

f(t, x)
,

where T̃u(t, x) : (lt, m̃t]→ [m̃t, rt) is defined as the unique solution to∫ T̃u(t,x)

x

(ξ − x)∂tf(t, ξ)dξ = 0.

The limit process solves SDE:

dXt = 1Xt−<m̃t
j̃u(t,Xt−)(dÑt − ν̃tdt) ν̃t :=

j̃d

j̃u
(t,Xt−)1Xt−<m̃t

, (3.12)

where (Ñt)0≤t≤1 is an upward jump process with unit jump size and predictable compensated

process (ν̃t)0≤t≤1. Moreover, under Assumption 2.2 together with further technical conditions

on µ, this martingale solves a corresponding minimization MT problem with optimal value∫ 1

0

∫ m̃t

lt

j̃d(t, x)

j̃u(t, x)
c
(
x, x+ j̃u(t, x)

)
f(t, x) dx dt.

The corresponding dual optimizer is also explicitly given by Theorem 3.11 once (j̃d, j̃u) is sub-

stituted to (jd, ju).

We conclude this section by some examples of peacocks satisfying Assumption 3.4.

Example 3.13. (i) Let F0 : R → [0, 1] be a distribution function of random variable such

that its density function f0(x) := F ′0(x) is strictly positive on R. Define F (t, x) := F0(x/t)

and f(t, x) := 1
t f0(x/t), then the associated marginal distribution is clearly a peacock. Denote

further f̂0(x) := log f0(x). Assume that f̂ ′0(x) > 0 for x ∈ (−∞, 0) and f̂ ′0(x) < 0 for x ∈ (0,∞),
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then for every t ∈ (0, 1) and ε ∈ (0, 1− t), the map y 7→ f̂0(y)− f̂0(y + εy) is strictly increasing

on (−∞, 0) and strictly decreasing on (0,∞). In this case, the set

{x : f(t, x) = f(t+ ε, x)} =
{
x : log(1 + ε/t) = f̂0

( x

t+ ε

)
− f̂0

( x

t+ ε
(1 + ε/t)

)}
has exactly two points, and one can check that the smaller one is the maximizer mε(t) of

x 7→ δεF (t, x), and the second one is the minimizer of x 7→ δεF (t, x). Denote by mt the

maximizer of x 7→ ∂tF (t, x), which is also is the smaller solution of

−f̂ ′0
(x
t

)x
t

= t ⇐⇒ ∂tf(t, x) = 0, for a fixed t > 0. (3.13)

Assume in addition that that f̂ ′0(mt) 6= 0, then by the fact that

f̂0

( x

t+ ε

)
− f̂0

( x

t+ ε
(1 + ε/t)

)
= − f̂ ′0

( x

t+ ε

) x

t+ ε

ε

t
+ o(ε/t),

we can also prove the convergence of mε(t)→ mt. In this case, Assumption 3.4 holds true.

(ii) In particular, when the marginals (µt)t∈[δ,1+δ] are those of the Brownian motion for some

δ > 0, then both Assumptions 3.1 and 3.4 hold true with f(t, x) = 1√
2πt

e−
x2

2t , mε(t) =

−
√

t(t+ε)
ε log(1 + ε/t) and mt = −

√
t. See also Section 4 for more discussions.

(iii) For general function f̂0, it is clear that (3.13) may have more than two solutions, then

Assumption 3.4 is no more true.

4 Examples of extremal peacock processes

4.1 A remarkable fake Brownian motion

In this subsection, we specialize the discussion to the special case µt :=:= N (0, t), t ∈ [0, 1].

This is the first appearance of peacocks in the literature under the name of fake Brownian

motion, see Albin [2], Fan, Hamza & Klebaner [29], Hamza & Klebaner [37], Hirsch et al. [42],

Hobson [46], Oleszkiewicz [64], Pagès [66].

Our construction in Theorem 3.7 provides a new example of fake Brownian motion which is

remarkable by the corresponding optimality property.

It is easily checked that our Assumptions 3.1 and 3.4 are satisfied. By direct computation, we

have mε(t) = −
√

t(t+ε)
ε log(1 + ε/t), mt = −

√
t for all t ∈ [δ, 1], and it follows that Td(t, x) is

defined by the equation:∫ x

Td(t,x)

(x− ξ)(ξ2 − t)e−ξ
2/2tdξ = 0 for all x ≥ mt.

Direct change of variables provides the scaled solution:

t1/2T̂d
(
t−1/2x

)
:= Td(t, x), x ≥ −1, (4.1)

where T̂d(x) is the unique solution in (−∞,−1] of
∫ x
T̂d(x)

(x − ξ)(ξ2 − 1)e−ξ
2/2dξ = 0, for all

x ≥ −1. Equivalently, T̂d is characterized by:

T̂d(x) ≤ −1 and e−T̂d(x)2/2
(
1 + T̂d(x)2 − xT̂d(x)

)
= e−x

2/2; x ≥ −1.

Similarly, we see that , where

ju(t, x) := t−1/2ĵu
(
t−1/2x

)
(4.2)
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Figure 1: Fake Brownian motion: Maps T̂d and T̂u

where the scaled function ĵ is given by:

ĵu(x) :=
1

2

[
x− T̂d(x)e−(T̂d(x)2−x2)/2

]
=

1

2

[
x− T̂d(x)

1 + T̂d(x)2 − xT̂d(x)

]
; x ≥ −1.

The maps T̂d(x) and T̂u(x) := x+ ĵu(x) are plotted in Figure 1.

4.2 A new construction of self-similar martingales

In Hirsch, Profeta, Roynette & Yor [42], the authors construct martingales Mt which enjoy

the (inhomogeneous) Markov property and the Brownian scaling property
{
Mc2t, t ≥ 0

}
∼{

cMt, t ≥ 0
}

for all c > 0. When the marginals of M admit a density f(t, x), this property

translates to:

f(t, x) = t−1/2f
(
1, t−1/2x

)
, t > 0, x ∈ R.

In order to apply our construction result of Theorem 3.7, we assume that ∂tF (t, x) has a unique

maximizer which is given by mt =
√
tm̂, where m̂ is the smallest solution of

f(1, m̂) + m̂fx(1, m̂) = 0.

The scaling properties (4.1)-(4.2) apply again in this case, and we compute that∫ x

T̂d(x)

(x− ζ)
(
f(1, ζ) + ζfx(1, ζ)

)
dζ = 0, and ĵu(x) :=

1

2

[
x− T̂d(x)f(1, T̂d(x))

f(1, x)

]
; x ≥ m̂.
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5 Application: Robust sub/superhedging of variance swap

As a final application, we consider the reward function c0(x, y) := (lnx−ln y)2, which clearly sat-

isfies Assumption 2.2. The so-called “variance swap” is defined by the payoff
∑n−1
k=0 c0(Xtk , Xtk+1

),

and is usually approximated by the continuous-time limit of Lemma 2.4:

C0(X) :=

∫ 1

0

d[X]ct
X2
t

+
∑

0<t≤1

ln2
( Xt

Xt−

)
.

We recall that, under any pathwise continuous martingale model Pc ∈ M∞, the variance swap

can be perfectly replicated by a semi-static hedging strategy. This follows from a direct appli-

cation of Itô’s formula:

C0(X) =

∫ 1

0

d[X]t
X2
t

= 2

∫ 1

0

dXt

Xt
− 2 ln

(X1

X0

)
, Pc − a.s.

However, since our set of admissible modelsM∞ also allows for models with jumps, it turns out

that the upper and lower optimal bounds for the variance swap define an interval containing∫
ln(x/X0)µ1(dx) in its interior.

In the following statement, (µt)0≤t≤1 is a non-decreasing family of marginals with support in

(0,∞), and satisfying Assumptions 3.1 and 3.4. The corresponding left-monotone and right-

monotone martingales are defined by the characteristics (m, ju, jd) and (m̃, j̃u, j̃d), respectively.

In addition, we assume that the constructed optimal static strategy λ∗ satisfies the integrability

conditions in Theorem 3.11,

Proposition 5.1. The optimal martingale measures are given by the local Lévy processes (3.6)

and (3.12), and the corresponding optimal upper and lower bounds for the variance swap are

given by∫ 1

0

∫ ∞
mt

ju(t, x)

jd(t, x)
ln2
[ x

x− jd(t, x)

]
µt(dx)dt and

∫ 1

0

∫ m̃t

0

j̃d(t, x)

j̃u(t, x)
ln2
[x+ j̃u(t, x)

x

]
µt(dx)dt

We have compared these bounds to market values denoted VSmkt for the DAX index (2-Feb-

2013) for different maturities (see Table 1). The market marginals (µt)0≤t≤1 are induced from

market prices Ct(K) of call options, with strike K and maturity t, by µt(dx) = C ′′t (dx).4

In Figure 2, we have plotted market marginals ∂tF (t,K) = −∂t∂KC(t,K) for different matu-

rities t and checked that ∂tF admits only one local maximizer.

The prices in Table 1 are quoted in volatility ×100. Note that for maturities less than 1.5

years, our upper bound is below the market price, highlighting an arbitrage opportunity. In

practice, this arbitrage disappears if we include transaction costs for trading vanilla options

with low/high strikes. Recall also that we have assumed that vanilla options with all maturities

are traded.

4Let σBS
t (K) be the Black-Scholes implied volatility of strike K and maturity t, and denote by V BS

t (K) :=

tσBS
t (K)2 the corresponding total variance. In our numerical experiments, we have used the following interpo-

lation from the observed maturities t1, t2:

V BS
t (K)2 =

( t−t1
t2−t1

)[
V BS
t2

(K)− V BS
t1

(K)
]

+ V BS
t1

(K).

This linear interpolation guarantees that C(t1,K) ≤ C(t,K) ≤ C(t2,K) for all K, and thus preserves the

consistency of the interpolation with the no-arbitrage condition.
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Figure 2: Market marginals ∂tF (t,K) = ∂t∂KC(t,K) for different (liquid) maturities t inferred

from DAX index (2-Feb-2013). For each t, ∂tF (t, ·) admits only one local maximizer.

Maturity (years) VSmkt Upper Lower

0.4 18.47 18.45 16.73

0.6 19.14 18.70 17.23

0.9 20.03 19.63 17.89

1.4 21.77 21.62 19.03

1.9 22.89 23.06 19.63

Table 1: Implied volatility for variance swap as a function of the maturity - DAX index (2-Feb-

2013). Lower/upper bounds versus market prices (quoted in volatility ×100).
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6 Proofs

6.1 Tightness of the monotone martingale plan under the finitely-

many maxima condition of the difference of cdf

In order to prove Proposition 3.2, we start by recalling in Subsection 6.1.1 the explicit charac-

terization of the left-monotone transference plan, as derived in [40], and we collect the required

properties for our convergence results in Subsection 6.1.2.

6.1.1 Reminders on the left-monotone martingale transport plan

Let (µ0, µ1) be a pair of scalar atomless probability measures with µ0 � µ1 in convex order. For

the purpose of the present paper, the corresponding cdf F0 and F1 are assumed to be continuous.

We also assume that (µ0, µ1) is irreducible which translates as a condition on the difference of

cdf δF := F1 − F0: ∫ ∞
x

δF (y)dy < 0, for all x ∈ (lµ1
, rµ1

),

and we denote x0 := inf
{
x ∈ R : δF increasing on a right neighborhood of x

}
.

We further assume that δF has a finite number of local maximizers

M(δF ) := {m0
1, . . . ,m

0
n}, lµ1

< m0
1 < . . . < m0

n < rµ1
.

Denote by F−1
1 the right-continuous inverse of F1, and

g(x, y) := F−1
1

(
F0(x) + δF (y)

)
.

and we set m1 := m0
1, and we introduce the right-continuous functions Tu, Td : R→ R by

Td(x) := tAk(x,mk), Tu(x) := g(x, Td(x)); x ∈ [mk, xk)

and Td(x) = Tu(x) = x; x ∈ (xk−1,mk],

where:

• Ak := (x0,mk] \
(
∪i<k

{
Td([mi, xi)) ∪ [mi, xi)

})
= (x0,mk] \

{
∪i<k

(
Td(xi), xi

]}
;

• for x > mk, tAk(x,mk) is the unique point in Ak such that∫ x

−∞

[
F−1

1 (F0(ξ))− ξ
]
dF0(ξ) +

∫ tAk (x,mk)

−∞
1Ak

(ξ)
(
g(x, ξ)− ξ

)
dδF (ξ) = 0; (6.1)

• for k ≥ 2, define

xk := inf
{
x > mk : g

(
x, tAk(x,mk)

)
≤ x

}
and mk+1 := inf

(
M(δF ) ∩ [xk,∞)

)
.

Let D0 := ∪k≥0(xk,mk+1] and Dc
0 := (lµ1

, rµ1
) \ D0, by the continuity of F0 and F1, it

follows from the last construction that Td and Tu take values in D0 and Dc
0, respectively. Both

functions are continuous except on points (xk)k≥1 and
(
T−1
d (xk−)

)
k≥1

, where T−1
d denotes the

right-continuous version of the inverse function of Td. Moreover, one has Td(x) ≤ x ≤ Tu(x) for

all x ∈ R.

Remark 6.1. (i) In the case δF has only one local maximizer m0
1, we have D0 = (lµ1 ,m

0
1] and

Dc
0 = (m0

1, rµ1
), Td maps Dc

0 to D0 and Tu maps Dc
0 to Dc

0.

(ii) In [40], the functions Tu and Td are obtained by solving the ODE

d(δF ◦ Td) = −(1− q)dF0, d(F1 ◦ Tu) = qdF0, (6.2)

on the continuity domain of Td, where

q(x) := 1{Tu(x)−Td(x)=0} +
x− Td(x)

Tu(x)− Td(x)
1{Tu(x)−Td(x)6=0}. (6.3)
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Given the two functions Td and Tu, we introduce a probability kernel T∗ from R to R:

T∗(x, dy) := 1D0(x)δx(dy) + 1Dc
0
(x)
[
q(x)δTu(x)(dy) + (1− q(x))δTd(x)(dy)

]
. (6.4)

We next introduce the optimal dual semi-static hedging strategy. The dynamic hedging function

h∗ : R→ R is defined up to a constant by:

h′∗(x) :=
cx(x, Tu(x))− cx(x, Td(x))

Tu(x)− Td(x)
, for x ∈ Dc

0, (6.5)

h∗(x) := h∗
(
T−1
d (x)

)
+ cy(x, x)− cy

(
T−1
d (x), x

)
, for x ∈ D0.

The stating hedging functions ψ∗ and ϕ∗ are defined, also up to a constant, by

ψ′∗ := cy
(
T−1
u , ·

)
− h∗ ◦ T−1

u on Dc
0, ψ′∗ := cy

(
T−1
d , ·

)
− h∗ ◦ T−1

d on D0,

ϕ∗(x) := q(x)
(
c(x, Tu(x))− ψ∗(Tu(x))

)
+ (1− q(x))

(
c(x, Td(x))− ψ∗(Td(x))

)
; x ∈ (lµ0 , rµ0).

Finally, the free constants are fixed by requiring that:

c(·, Tu(·))− ψ∗(Tu(·))− c(·, Td(·)) + ψ∗(Td(·))−
(
Tu(·)− Td(·)

)
h∗(·) is continuous.

Theorem 6.2. [40, Theorems 4.5 and 5.1] Suppose that the partial derivative cxyy exists and

cxyy > 0 on (lµ0 , rµ0)× (lµ1 , rµ1). Then,

(i) the probability P∗(dx, dy) := µ0(dx)T∗(x, dy) ∈ M2(µ0, µ1) is the unique left-monotone

martingale transport plan, which solves the primal problem (2.1).

(ii) Assume in addition that the positive parts ϕ+
∗ ∈ L1(µ0) and ψ+

∗ ∈ L1(µ1). Then (ϕ∗, ψ∗, h∗) ∈
D2 (see (2.3)) and it solves the dual problem (2.2); moreover, we have the duality

EP∗
[
c(X0, X1)

]
= P2(µ0, µ1) = D2(µ0, µ1) = µ0(ϕ∗) + µ1(ψ∗).

Remark 6.3. By symmetry, one can also consider the c.d.f. F̃i(x) := 1−Fi(−x), x ∈ R, i = 0, 1,

and construct a right monotone martingale transference plan which solves the minimization

transportation problem (see more discussions in Remark 5.2 of [40]).

6.1.2 Asymptotic estimates of the left-monotone transference plan

Let t ∈ [0, 1) and ε ∈ (0, 1 − t], we consider the pair (µt, µt+ε) of the two marginal mea-

sures. Under Assumption 3.1 (iii), an explicit construction of the left-monotone martingale

measure corresponding to (µt, µt+ε) can be obtained by following the procedure recalled in

Section 6.1.1. We denote the corresponding characteristics by
(
xεk(t),mε

k+1(t)
)
k≥0

, T εu(t, ·) and

T εd (t, ·). Similarly, denote Dε(t) := ∪k≥1

(
xεk−1(t),mε

k(t)
]
, (Dε)c(t) := (lt+ε,mt+ε) \Dε(t) and

Aεk(t) :=
(
xε0(t),mε

k(t)
)
\
{
∪i<k

(
T εd (t, xεi (t)), x

ε
i (t)
]}

. Recall that δεF and gεt are introduced in

(3.1), and let us define

δεf(t, x) := f(t+ ε, x)− f(t, x), t ∈ [0, 1), ε ∈ (0, 1− t].

Then for every x ∈
[
mε
k(t), xεk(t)

)
,

• the function T εd (t, x) ∈ Aεk(t) is uniquely determined by∫ x

−∞

[
F−1

(
t+ ε, F (t, ξ)

)
− ξ
]
f(t, ξ)dξ +

∫ T ε
d (t,x)

−∞
1Aε

k(t)(ξ)
[
gεt (x, ξ)− ξ

]
δεf(t, ξ)dξ = 0, (6.6)

• the function T εu is given by T εu(t, x) := gεt
(
x, T εd (t, x)

)
.

Since the functions T εd and T εu are (piecewise) monotone, we may introduce (T εd )−1 and (T εu)−1

as their right-continuous inverse function in x denotes the of x 7→ T εd (t, x). We also introduce

the jump size function by

Jεu(t, x) := T εu(t, x)− x, Jεd(t, x) := x− T εd (t, x).
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and the probability of a downward jump by

qε(t, x) :=
Jεu(t, x)

Jεu(t, x) + Jεd(t, x)
1{Jε

u(t,x)>0} =
T εu(t, x)− x

T εu(t, x)− T εd (t, x)
1{T ε

u(t,x)>x}.

Lemma 6.4. Let Assumption 3.1 hold true. Then for every K > 0, there is a constant C

independent of (t, x, ε) such that

Jεu(t, x) + qε(t, x) ≤ Cε, ∀x ∈ [−K,K] ∩ (lt, rt).

Proof. Differentiating gεt (defined below (6.6)), we have

∂y g
ε
t (x, y) =

δεf(t, y)

f
(
t+ ε, gεt (x, y)

) .
Notice that |δεF (t, x)| + |δεf(t, x)| ≤ C1ε for some constant C1 independent of (t, x, ε). Then

for ε > 0 small enough, the value of gεt (x, y) is uniformly bounded for all t ∈ [0, 1] and all x ∈
[−K,K]∩ (lt, rt) and y ∈ R. Further, the density function satisfies infx∈[−K̄,K̄]∩(lt,rt) f(t, x) > 0

for every K̄ > 0 large enough, by Assumption 3.1, then it follows by the definition of T εu below

(6.6) that

qε(t, x) ≤ T εu(t, x)− x
x− T εd (t, x)

=
gεt (x, T

ε
d (t, x))− gεt (x, x)

x− T εd (t, x)
≤ Cε.

Finally, by the definition of T εu below (6.6), we have

Jεu(t, x) = F−1
(
t+ ε, F (t, x) + δεF

(
t, T εd (t, x)

))
− F−1

(
t+ ε, F (t, x) + δεF (t, x)

)
≤

∣∣δεF (t, T εd (t, x)
)∣∣+ |δεF (t, x)|

f
(
t+ ε, F−1

(
t+ ε, F (t, x) + ξ

)) ,
for some ξ between δεF

(
t, T εd (t, x)

)
and δεF (t, x). We can then conclude the proof by the fact

that |δεF | ≤ C1ε for some constant C1.

6.1.3 Proof of Proposition 3.2

We recall that Pn is a martingale measure on the canonical space Ω, induced by the continuous-

time martingale X∗,n under the probability P∗,n. The martingale X∗,n jumps only on discrete

time grid πn = (tnk )1≤k≤n. Moreover, at time tnk+1, the upward jump size is Jεu(tnk , Xtnk
) and

downward jump size is Jεd(tnk , Xtnk
) with ε := tnk+1 − tnk (see Section 3.1). Let C, θ be some

positive constants, we define

En(C, θ) := inf
{

Πk−1
i=j

(
1− C(tni+1 − tni )

)
: for some s ∈ [0, 1) and 0 ≤ j ≤ k ≤ n

such that s ≤ tnj ≤ tnk+1 ≤ s+ θ
}
.

Since |πn| := max1≤k≤n(tnk − tnk−1) −→ 0, it follows that En(C, θ) −→ e−Cθ as n −→∞.

(i) To prove the tightness of (Pn)n≥1, we shall use Theorem VI.4.5 of Jacod & Shiryaev [54, P.

356].

First, Doob’s martingale inequality implies that

Pn
[

sup
0≤t≤1

|Xt| ≥ K
]
≤ EPn

[|X1|]
K

=
1

K

∫
R
|x|µ1(dx) =:

L1

K
, ∀K > 0. (6.7)

Let η > 0 be an arbitrary small real number, then there is some K > 0 such that

Pn
[

sup
0≤t≤1

|Xt| ≥ K
]
≤ η, for all n ≥ 1.
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We can assume K large enough so that −K < mt < K for all t ∈ [0, 1]. Denote then rK(t) :=

rt ∧K and lK(t) := lt ∨ (−K).

Let δ > 0, it follows by Lemma 6.4 that the upward jump size Jεu(t, x) is uniformly bounded

by Cε for some constant C on DK
δ := {(t, x) : mt ≤ x ≤ rK(t) − δ/2}. We then consider

θ > 0 small enough such that θ ≤ δ
2C and |lK(t+ θ)− lK(t)|+ |rK(t+ θ)− rK(t)| ≤ δ/2 for all

t ∈ [0, 1− θ]. Let S, T be two stopping times w.r.t to the filtration generated by X∗,n such that

0 ≤ S ≤ T ≤ S + θ ≤ 1. When sup0≤t≤1 |X
∗,n
t | ≤ K and X∗,n only increases between S and

S + θ, then clearly |X∗,nT −X∗,nS | < δ. Therefore

P∗,n
[

sup
0≤t≤1

|X∗,nt | ≤ K,
∣∣X∗,nT −X∗,nS

∣∣ ≥ δ]
≤ P∗,n

[
sup

0≤t≤1
|X∗,nt | ≤ K, and there is a down jump of X∗,n on [S, S + θ]

]
≤ 1− En(C, θ),

where the last inequality follows by the estimate of qε in Lemma 6.4. Then it follows that

lim sup
θ→0

lim sup
n→∞

P∗,n
[∣∣X∗,nT −X∗,nS

∣∣ ≥ δ]
≤ lim sup

θ→0
lim sup
n→∞

(
P∗,n

[
sup

0≤t≤1
|X∗,nt | ≤ K,

∣∣X∗,nT −X∗,nS
∣∣ ≥ δ]+ P∗,n

[
sup

0≤t≤1
|X∗,nt | ≥ K

])
≤ lim sup

θ→0
lim sup
n→∞

(
1− En(C, θ)

)
+ η = η.

Since η > 0 is an arbitrary small real number, we then obtain that

lim
θ→0

lim sup
n→∞

P∗,n
[∣∣X∗,nT −X∗,nS

∣∣ ≥ δ] = 0.

Then it follows by Theorem VI.4.5 of [54] that the sequence (X∗,n,P∗,n)n≥1 is tight, and hence(
Pn
)
n≥1

is tight.

(ii) Let P0 be a limit of (Pn)n≥1, let us now check that P0 ◦X−1
t = µt for every t ∈ [0, 1]. By

extracting the sub-sequence, we suppose that Pn → P0, then P∗,n ◦ (X∗,nt )−1 = Pn ◦ X−1
t →

P0 ◦X−1
t . By the construction of X∗,n, there is a sequence (sn)n≥1 in [0, 1] such that sn → t

and X∗,nt = X∗,nsn ∼ µsn under P∗,n. It follows by the continuity of the distribution function

F (t, x) that µsn → µt, and hence P0 ◦X−1 = µt.

(iii) Finally, let us show that X is still a martingale under P0. For every K > 0, denote

XK
t := (−K) ∨ Xt ∧ K. Let s < t and ϕ(s,X·) be a bounded continuous, Fs-measurable

function, by weak convergence, we have

EPn[
ϕ(s,X·)(X

K
t −XK

s )
]
−→ EP0[

ϕ(s,X·)(X
K
t −XK

s )
]
.

Moreover, since the marginals (µt)t∈[0,1] form a peacock, and hence are uniformly integrable, it

follows that∣∣EPn[
ϕ(s,X·)(X

K
t −XK

s )
]∣∣ ≤ 2|ϕ|∞ sup

r≤1

∫
|x|1{|x|≥K}µr(dx) −→ 0, as K →∞,

uniformly in n. Then, by the fact that X is a Pn−martingale, we have EP0[
ϕ(s,X·)(Xt−Xs)

]
=

0. By the arbitrariness of ϕ, this proves that X is a P0−martingale.

6.2 Convergence to the peacock under the one-maximizer condition

on the cdf difference

We recall that under Assumption 3.4, the function x 7→ ∂tF (t, x) has one unique local maximizer

on (lt, rt). Recall also in this context, one has D(t) := (lt,mt], D
c(t) := (mt, rt) and

Dc := {(t, x) : t ∈ [0, 1], x ∈ Dc(t)}, D :=
{

(t, x) : t ∈ [0, 1], x ∈ D(t)
}
.
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6.2.1 Full-marginals left-monotone martingale transport

This section is dedicated to the

Proof of Lemma 3.6. We first rewrite (3.3) into:

G
(
t, x, Td(t, x)

)
= 0, where G(t, x, y) :=

∫ x

y

(x− ξ)∂tf(t, ξ)dξ. (6.8)

Step 1: We first prove the existence and uniqueness of Td. By the non-decrease of (µt)t∈[0,1] in

convex order in Assumption 3.1, it follows that

G(t, x,−∞) =

∫ x

−∞
(x− ξ)∂tf(t, ξ)dξ ≥ 0.

Since M(∂tF (t, .)) = {mt}, the function x 7−→ ∂tF (t, x) is strictly increasing on the interval

(lt,mt], implying that the last inequality is strict, i.e.

G(t, x,−∞) > 0.

The same argument also implies that y 7−→ G(t, x, y) is strictly decreasing on (lt,mt).

Next, notice that G(t,mt,mt) = 0 and x 7−→ G(t, x,mt) is decreasing on interval (mt, rt):

∂xG(t, x,mt) =

∫ x

mt

∂tf(t, ξ)dξ = ∂tF (t, x)− ∂tF (t,mt) < 0.

In summary, for every x ∈ (mt, rt), we have G(t, x,mt) < 0, G(t, x,−∞) > 0 and y 7→ G(t, x, y)

is continuous, strictly decreasing on (lt,mt). It follows that the equation (6.8) has a unique

solution Td(t, x) and it takes values in (lt,mt), which implies that the equation (3.3) has a

unique solution in (lt,mt).

Step 2: We next prove (i). Differentiating both sides of equation (3.3) w.r.t. x ∈ (mt, rt), it

follows that

−
(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

)
∂xTd(t, x) +

∫ x

Td(t,x)

∂tf(t, ξ)dξ = 0.

Therefore, for every x ∈ (mt, rt),

∂xTd(t, x) =
∂tF (t, x)− ∂tF (t, Td(t, x))(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

) < 0, (6.9)

and hence x 7→ Td(t, x) is strictly decreasing in x on interval (mt, rt).

Step 3: It remains to prove (ii). We define, for 0 < δ < K <∞,

Eδ := {(t, x) ∈ Dc : mt < x < mt + δ}, (6.10)

Eδ,K := {(t, x) ∈ Dc : mt + δ ≤ x ≤ (mt +K) ∧ rt}. (6.11)

Let us first prove that jd1Dc is locally Lipschitz in x on [mt, rt), it is enough to verify that

∂xTd1Dc is locally bounded. From (6.9), we have

∂xTd(t, x) =
∂tF (t, x)− ∂tF (t, Td(t, x))(
x− Td(t, x)

)
∂tf
(
t, Td(t, x)

) , (t, x) ∈ Dc.

It is clear that ∂xTd(t, x) is continuous on Dc and hence bounded on Eδ,K for every 0 < δ < K.

We then focus on the case (t, x) ∈ Eδ. Since ∂tf(t,mt) = 0 and ∂txf(t,mt) < 0 by Assumption

3.4, we have

∂tf(t, ξ) = ∂txf
(
t,mt

)(
ξ −mt

)
+ C1(t, ξ)

(
ξ −mt

)2
,
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where C1(t, ξ) is uniformly bounded for |ξ −mt| ≤ δ. Inserting the above expression into (6.8),

it follows that ∫ x

Td(t,x)

(
x− ξ

)(
ξ −mt

)
dξ = C2(t, x)

(
x− Td(t, x)

)4
,

where C2 is also uniformly bounded on Eδ since min0≤t≤1 ∂t,xf(t,mt) < 0 by Assumption 3.4.

By direct computation, it follows that(
x− Td(t, x)

)2(
x−mt + 2

(
mt − Td(t, x)

))
= C2(t, x)

(
x− Td(t, x)

)4
,

which implies that

Td(t, x) = mt −
1

2

(
x−mt

)
+ C2(t, x)

(
x− Td(t, x)

)2
, (6.12)

Using again the expression (6.9), we have

∂xTd
(
t, x
)

= −1

2
+ C3(t, x)

(
x− Td(t, x)

)
,

where C3 is also uniformly bounded on Eδ. Finally, by the uniqueness of solution Td of (6.8),

we get

∂xTd
(
t, x
)

= −1

2
+ C4(t, x)

(
x−mt

)
, (6.13)

for some C4 uniformly bounded on Eδ, implying that Td1Dc is locally Lipschitz in x. Moreover,

by the expression of ju in (3.4), i.e.

ju(t, x) :=
∂tF

(
t, Td(t, x)

)
− ∂tF (t, x)

f(t, x)
,

together with (6.13), it is easy to check hat ju1Dc and (ju/jd)1Dc are also locally Lipschitz in

x.

To prove that these functions are also locally Lipschitz in t, we consider ∂tTd(t, x). By direct

computation, we obtain

∂tTd(t, x) =

∫ x
Td(t,x)

(x− ξ)∂2
ttf(t, ξ)dξ

(x− Td(t, x))∂tf(t, Td(t, x))
,

which is clearly continuous in (t, x) on Dc, and hence uniformly bounded on Eδ,K , for K >

δ > 0. Using again (6.12), it is easy to verify that ∂tTd is also uniformly bounded on E0,δ,

and hence ∂tTd(t, x) is also locally bounded on Dc. Therefore, jd(t, x)1x>mt , ju(t, x)1x>mt and
ju
jd

(t, x)1x>mt
are all locally Lipschitz.

Remark 6.5. From the previous proof, we have in particular that

∂tTd(t,mt + δ)
δ↘0−→ −3

2

∂2
ttf(t,mt)

∂2
txf(t,mt)

uniformly in t ∈ [0, 1].

6.2.2 Additional asymptotic estimates of the left-monotone transference plan

We shall use the notations Eδ and Eδ,K as defined in (6.10)-(6.11).

Lemma 6.6. Let Assumptions 3.1 and 3.4 hold true. Then Jεu and Jεd admit the expansion

Jεu(t, x) = εjεu(t, x) + ε2eεu(t, x), and Jεd(t, x) = jd(t, x) +
(
ε ∨ ρ(ε)

)
eεd(t, x), (6.14)
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where jd is defined in (3.4), and

jεu(t, x) :=
∂tF

(
t, x− Jεd(t, x)

)
− ∂tF (t, x)

f(t+ ε, x)
.

Moreover, for all 0 < δ < K < ∞, eεu(t, x), eεd(t, x) are uniformly bounded; and consequently,

there is constant Cδ,K such that qε admits the asymptotic expansion:

qε(t, x) = ε
ju(t, x)

jd(t, x)
+ Cδ,K ε

(
ε ∨ ρ0(ε)

)
, for (t, x) ∈ Eδ,K . (6.15)

Proof. Let δ < K be fixed. Notice that by its definition, the function Td(t, x) is continuous

on compact set Eδ,K and hence it is uniformly bounded.

(i) By the definition of T εu below (6.6), we have

T εu(t, x) = F−1
(
t+ ε, F (t+ ε, x) + δεF (t, T εd (t, x))− δεF (t, x)

)
.

By direct expansion, we see that the first equality in (6.14) holds true with

|eεu(t, x)| ≤ sup
t≤s≤t+ε, T ε

d (s,x)≤ξ≤x

2∂ttF (s, ξ)∂xf(s, ξ)

f3(s, ξ)
.

(ii) Let us now consider the second equality in (6.14). First,∫ x

−∞
[F−1(t+ ε, F (t, ξ))− ξ]f(t, ξ)dξ =

∫ x

−∞
ξ δεf(t, ξ)dξ +

∫ F−1(t+ε,F (t,x))

x

ξf(t+ ε, ξ)dξ

=

∫ x

−∞
ξ δεf(t, ξ)dξ − δεF (t, x)

(
x+ C1(t, x)ε

)
=

∫ x

−∞
(ξ − x) δεf(t, ξ)dξ + C2(t, x)ε2,

where |C1(t, x)| ≤ |F−1(t+ ε, F (t, x))− x|2|f |∞ and |C2(t, x)| ≤ |C2(t, x)||∂tF |∞.

We next note that gεt (x, ξ) = x+C3(t, x, ξ)ε, where |C3(t, x, ξ)| ≤ 2 |∂tF |∞mf
. Then it follows by

direct computation that Further, for every k ≥ 1,∫ T ε
d (t,x)

−∞

(
gεt (x, ξ)− ξ

)
δf(t, ξ)dξ =

∫ T ε
d (t,x)

−∞
(x− ξ) δεf(t, ξ)dξ + C4(t, x)ε2,

where |C4(t, x)| ≤ 2 |∂tF |∞mf
|∂tF |∞. Combining the above estimates with (6.6), it follows that∫ x

T ε
d (t,x)

(
x− ξ

)1

ε
δεf(t, ξ) dξ =

(
C2(t, x) ∨ C4(t, x)

)
ε.

It follows then ∫ x

T ε
d (t,x)

(x− ξ)∂tf(t, ξ) dξ = C5(t, x)
(
ε ∨ ρ(ε)

)
,

where |C5(t, x)| ≤ (x + K)(|∂tf |∞ + |∂2
ttf |∞). This implies the first estimation in (6.14) since

∂tf(t, x) > 0 for x ∈ (lt,mt).

Lemma 6.7. Under Assumptions 2.2, 3.1 and 3.4, we have

T εd1{x>mε(t)} → Td1{x>m(t)}, h
ε → h∗, ∂tψ

ε → ∂tψ
∗, and ψε → ψ∗,

locally uniformly on {(t, x) : t ∈ [0, 1), x ∈ (lt, rt)}.
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Proof. (i) In the one local maximizer case under Assumption 3.4, the definition of T εd (t, x) in

(6.6) is reduced to be∫ x

−∞

[
F−1

(
t+ ε, F (t, ξ)

)
− ξ
]
f(t, ξ)dξ +

∫ T ε
d (t,x)

−∞

[
gεt (x, ξ)− ξ

]
δεf(t, ξ)dξ = 0,

or equivalently ∫ x

T ε
d (t,x)

ξ δεf(t, ξ)dξ +

∫ T ε
u(t,x)

x

ξf(t+ ε, ξ)dξ = 0, (6.16)

with T εu(t, x) := gεt
(
x, T εd (t, x)

)
. Differentiating (6.16), it follows that

∂tT
ε
d (t, x) := − Aε(t, x)(

T εu − T εd
)
δεf
(
t, T εd (·)

) (t, x), (6.17)

with

Aε(t, x) :=

∫ x

T ε
d (t,x)

ξ∂tδ
εf(t, ξ)dξ +

∫ T ε
u(t,x)

x

ξ∂tf(t+ ε, ξ)dξ

+ T εu(t, x)
(
∂tF (t, x)− ∂tF

(
t+ ε, T εu(t, x)

)
+ ∂tδ

εF
(
t, T εd (t, x)

))
,

= −
(
T εu(t, x)− x

)(
∂tδ

εF (t, x)− ∂tδεF (t, T εd (t, x)
)

−
∫ T ε

u(t,x)

x

(
T εu(t, x)− ξ

)
∂tf(t+ ε, ξ)dξ −

∫ x

T ε
d (t,x)

(x− ξ)∂tδεf(t, ξ)dξ

and

∂xT
ε
d (t, x) := − T εu(t, x)− x(

T εu(t, x)− T εd (t, x)
)
δεf
(
t, T εd (t, x)

) f(t, x), (6.18)

where the last term is exactly the same as that induced by ODE (6.2).

(ii) Taking the limit ε → 0, it follows by direct computation and the convergence T εd (t, x) →
Td(t, x) in Lemma 6.6 that ∂xT

ε
d (t, x)→ ∂xTd(t, x) and ∂tT

ε
d (t, x)→ ∂tTd(t, x) for every (t, x) ∈

Dc. Moreover, by the local uniform convergence result in Lemma 6.6, we deduce that ∂xT
ε
d and

∂tT
ε
d also converge locally uniformly. Denote T 0

d := Td, it follows that the mapping (t, x, ε) →(
∂tT

ε
d (t, x), ∂xT

ε
d (t, x)

)
is continuous on

E :=
{

(t, x, ε) : t ∈ [0, 1], ε ∈ [0, 1− t], mε(t) < x < rε(t)
}
,

where m0(t) := mt and r0(t) := rt.

(iii) By exactly the same computation as in Proposition 3.12 of [40], we have

∂xT
ε
d (t, x) =

(
1 +O(ε) +O

(
x− T εd

))(x−mε(t)
)
− 1

2

(
x− T εd

)
+O

((
x− T εd

)2)(
x−mε(t)

)
−
(
x− T εd

)
+O

((
x− T εd

)2) (t, x),

and it follows by similar arguments as in [40] that

T εd (t, x)−mε(t) = − 1

2

(
x−mε(t)

)
+ O

(
(x−mε)2

)
,

and hence

∂xT
ε
d (t,mε(t) + δ)→ −1

2
uniformly for t ∈ [0, 1) and ε ∈ [0, ε0 ∧ (1− t)], as δ ↘ 0. (6.19)
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Next, using the estimation (6.19) and the definition of T εu , we have

T εu(t, x)− x = C1(ε, t, x)
(
x− T εd (t, x)

)2
and

T εu(t, x)− x
ε

= C2(ε, t, x)
(
x− T εd (t, x)

)
.

Therefore, by direct computation,

1

ε
Aε(t, x) = −1

2

(
x− T εd (t, x)

)2
∂t

1

ε
δεf(t,mε(t)) + C3(ε, t, x)

(
x−mε(t)

)3
.

It follows by the uniform convergence in (6.19) that

∂tT
ε
d (t, x) = −3

2

∂tδ
εf(t,mε(t))

∂xδεf(t,mε(t))
+ C4(ε, t, x)

(
x−mε(t)

)
, (6.20)

where we notice that C4 is uniformly bounded for ε > 0 and x − T εd (mε(t)) small enough.

Finally, the two uniform convergence results in (6.19) and (6.20) together with the continuity of

(t, x, ε)→
(
∂tT

ε
d (t, x), ∂xT

ε
d (t, x)

)
implies that ∂tT

ε
d (t, x) and ∂xT

ε
d (t, x) are uniformly bounded

on E ∩ {(t, x, ε) : |x| ≤ mε(t) +K} for every K > 0.

(iv) Therefore, it follows by Arzelà-Ascoli’s theorem that T εd converges to Td locally uniformly.

Finally, by the local uniform convergence of T εd → Td, together with the estimations in (6.13)

and (6.19), it is easy to deduce the local uniform convergence of hε → h, ∂tψ
ε → ∂tψ

∗ and

ψε → ψ∗ as ε→ 0.

6.2.3 Convergence to the peacock

Recall that the sequence of martingale measures (Pn)n≥1 induced by the left-monotone trans-

ference plan is tight by Proposition 3.2, we now show that any limit of (Pn)n≥1 provides a weak

solution of (3.6). Let

Mt(ϕ,x) := ϕ(xt)−
∫ t

0

ju(s,xs−)Dϕ(xs−)1xs−>m(s)ds

+

∫ t

0

[[
ϕ(xs− − jd(s,xs−))− ϕ(xs−)

]ju
jd

(s,xs−)
]
1xs−>m(s)ds, (6.21)

for all x ∈ Ω := D([0, 1],R) and ϕ ∈ C1(R). Then the process M(ϕ,X) is clearly progressively

measurable w.r.t. the canonical filtration F. For the martingale problem, we also need to use

the standard localization technique in Jacod & Shiryaev [54]. In preparation, let us introduce,

for every constant p > 0, an F-stopping time and the corresponding stopped canonical process

τp := inf
{
t ≥ 0 : |Xt| ≥ p or |Xt−| ≥ p

}
, Xp

t := Xt∧τp . (6.22)

Following [54], denote also J(x) := {t > 0 : ∆x(t) 6= 0},

V (x) := {a > 0 : τa(x) < τa+(x)} and V ′(x) := {a > 0 : τa(x) ∈ J(x) and |x(τa(x))| = a}.

Proof of Theorem 3.7. By extracting subsequences, we can suppose without loss of generality

that Pn → P0 weakly. To prove that P0 is a weak solution of SDE (3.6), it is sufficient to show

that
(
Mt(ϕ,X)

)
t∈[0,1]

is a local martingale under P0 for every ϕ ∈ C1
b (R). Since the functions

ju and jd are only locally Lipschitz (not uniformly bounded) by Lemma 3.10, we need to adapt

the localization technique in Jacod & Shiryaev [54], by using the stopping time τp defined by

(6.22). Our proof will be very similar to that of Theorem IX.3.39 in [54].

First, since Pn is induced by the Markov chain (Xn,P∗,n) for all n ≥ 1, we have

EPn

tnk

[
ϕ(Xtnk+1

)− ϕ(Xtnk
)
]

= αu + αd
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where, denoting εnk := tnk+1 − tnk ,

αi := EPn

tnk

[{
ϕ
(
Xtnk

+ J
εnk
i (tnk , Xtnk

)
)
−ϕ(Xtnk

)
} Ji
Jd + Ju

1
Xtn

k
≥mεn

k (tnk )

]
, i = d, u.

By (6.15) in Lemma 6.6 and the uniform continuity of mεnk (t), we have

αu = EPn

tnk

[ ∫ tnk+1

tnk

Dϕ(Xs)ju(s,Xs)1Xs≥m(s)ds
]

+ O
(
εnk (εnk ∨ ρ0(εnk ))

)
,

where ρ0 is the continuity modulus of (t, εnk ) 7→ mεnk (t) in Assumption 3.4. Similarly,

αd = EPn

tnk

[ ∫ tnk+1

tnk

(
ϕ(Xs − jd(s,Xs))− ϕ(Xs)

)ju
jd

(s,Xs)1Xs≥m(s)ds
]

+O
(
εnk (εnk ∨ ρ0(εnk ))

)
.

Therefore, let 0 ≤ s < t ≤ 1, p ∈ N, φs(X·) be a Fs-measurable bounded random variable on Ω

such that φ : Ω→ R is continuous under the Skorokhod topology, we have

EPn
[
φs(X·)

(
Mt∧τp(ϕ,X)−Ms∧τp(ϕ,X)

)]
≤ Cp

(
|πn| ∨ ρ0(|πn|)

)
, (6.23)

for some constant Cp > 0.

To proceed, we follow the same localization arguments as in the proof of Theorem IX.3.39 of

Jacod & Shiryaev [54]. Since Pn → P0 as n → ∞, then for every p ∈ N, the distribution of

the stopped process Xp
· under Pn also converges, i.e. there is P0,p such that LPn

(Xp
· ) → P0,p

as n → ∞. Due to the proof of Proposition IX.1.17 of [54], there are at most countably-many

a > 0 such that

P0,p
(
ω : a ∈ V (ω) ∪ V ′(ω)

)
> 0.

So we can choose ap ∈ [p− 1, p] such that

P0,p
[
ω : ap ∈ V (ω) ∪ V ′(ω)

]
= 0.

It follows by Theorem 2.11 of [54] that ω 7→ τap(ω) is P0,p-a.s. continuous and the law

LPn(
Xp
· , X

ap
·
)

converges to LP0,p(
X,Xτap

)
.

Denote by P̃0,p the law of Xτap on (Ω,F ,P0,p), we then have ω 7→ τap(ω) is P̃0,p-a.s. continuous

and LPn(
Xap

)
→ P̃0,p. In particular, since there is a countable set T∗ ⊂ [0, 1] such that

x 7→ Mt∧τap
(ϕ,x)−Ms∧τap

(ϕ,x) (6.24)

is P̃0,p-almost surely continuous for all s < t such that s, t /∈ T∗. Therefore, by taking the limit

of (6.23), we obtain

EP̃0,p[
φs(X·)

(
Mt(ϕ,X)−Ms(ϕ,X)

)]
= 0,

whenever s ≤ t and t /∈ T∗. Combining with the right-continuity of Mt(ϕ,x), we know P̃0,p is

a solution of the martingale problem (6.21) between 0 and τap , i.e.
(
Mt∧τap

(ϕ,X)
)

0≤t≤1
is a

martingale under P̃0,p. Moreover, since P̃0,p = P0 in restriction to (Ω,Fτap
) and τap → ∞ as

p→∞, it follows by taking the limit p→∞ that
(
Mt(ϕ,X)

)
0≤t≤1

is a local martingale under

P0, i.e. P0 is a solution to the martingale problem (6.21) and hence a weak solution to SDE

(3.6).

Finally, for uniqueness of solutions to SDE (3.6), it is enough to use Theorem III-4 of Lep-

eltier & Marchal [61] (see also Theorem 14.18 of Jacod [53, P. 453]) together with localization

technique to conclude the proof.
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Remark 6.8. In the multiple local maximizers case under Assumption 3.1, the functions ju
and jd are no more continuous, then the mapping (6.24) may not be a.s. continuous and the

limiting argument thereafter does not hold true. This is the main reason for which we restrict

to the one maximizer case under Assumption 3.4 in Theorem 3.7.

Proof of Lemma 3.8. We recall that by Theorem 3.8 in [40] (ii), the corresponding maps

T εu(t, .) and T εd (t, .) solve the following ODEs:

d

dx
δεF

(
t+ ε, T εd (t, x)

)
= (1− q)(t, x)f(t, x), (6.25)

d

dx
F
(
t+ ε, T εu(t, x)

)
= q(t, x)f(t, x) for all x ∈ (Dε)c(t), (6.26)

where δεF (t+ ε, .) := F (t+ ε, .)− F (t, .). With the asymptotic estimates

T εd (t, x)− x = −jd(t, x) + ◦(ε) and T εu(t, x)− x = εju(t, x) +O(ε),

which is locally uniform by Lemma 6.6. By direct substitution of this expression in the system

of ODEs (6.25-6.26), we see that the limiting maps (jd, ju) of (T εu , T
ε
d ), as ε ↘ 0, satisfy the

following system of first order partial differential equations (PDEs):

∂xjd(t, x) = 1 +
ju(t, x)

jd(t, x)

f(t, x)

∂tf(t, x− jd(t, x))
, ∂x{juf}(t, x) = −∂tf(t, x)− ju(t, x)

jd(t, x)
f(t, x).

Since x ∈ Dc(t) and x− jd(t, x) ∈ D(t), it follows directly that (3.7) holds true.

Proof of Proposition 3.9. By Lemma 3.8, item (ii) of Proposition 3.9 is a direct consequence

of item (i), then we only need to prove (i).

Let x ∈ R, the function y 7→ (y − x)+ is continuous and smooth on both (−∞, x] and [x,∞),

then it follows by Itô’s lemma that

d
(
X̂t − x

)+
= dMt + Lt (6.27)

:= 1{X̂t−>x}dX̂t +
((
X̂t − x

)+ − (X̂t− − x
)+ − 1{X̂t−>x}∆X̂t

)
,

where (Mt)0≤t≤1 is a local martingale. Notice that 1{X̂t−>x} is bounded and X̂1 ∈ Lp for some

p > 1. Using BDG inequality and then Doob’s inequality, it is a standard result that (Mt)0≤t≤1

is a real martingale. Further, the local Lévy process X̂ is clearly quasi left continuous. Moreover,

since

Ls =
(
x− Td

(
s, X̂s−

))
1{

Td

(
s,X̂s−

)
≤ x < X̂s−, X̂s−∈Dc(s)

} ≤ jd
(
s, X̂s−

)
1{

X̂s−∈Dc(s)
}

by direct computation, it follows by (3.8) together with dominated convergence theorem that

E
[ ∑
t≤s≤t+ε

Ls

]
= E

[ ∫ t+ε

t

(
x− Td

(
s, X̂s−

))ju
jd

(
s, X̂s−

)
1{

Td

(
s,X̂s−

)
≤x<X̂s−, X̂s−∈Dc(s)

}ds],
for every ε ≤ ε0, where ε0 ∈ (0, 1− t]. Then, integrating (6.27) between t and t+ ε, and taking

expectations, it follows that

E
[(
X̂t+ε − x

)+]
− E

[(
X̂t − x

)+]
=

∫ t+ε

t

∫
R

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x<y, y∈Dc(s)
}f X̂(s, y) dy ds. (6.28)
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Let us now differentiate both sides of (6.28). For the left hand side, since the density func-

tion f X̂(t, .) of X̂t is continuous, the function x 7→ E
[
(X̂t − x)+

]
=
∫∞
x

(y − x)f X̂(t, y)dy is

differentiable and

∂xE
[(
X̂t − x

)+]
=

∫ ∞
x

−f X̂(t, y)dy, ∂2
xxE

[(
X̂t − x

)+]
= f X̂(t, x). (6.29)

We now consider the rhs of (6.28) and denote

l(s, x) :=

∫
R

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x<y, y∈Dc(s)
}f X̂(s, y) dy.

Let us fix s ∈ [0, 1) and x ∈ Dc(s) := (ms, rs), then it is clear that

l(s, x) =

∫ ∞
x

(
x− Td(s, y)

)ju
jd

(
s, y
)
1{

Td(s,y)≤x, y∈Dc(s)
}f X̂(s, y)dy,

where the integrand is smooth in x for every y ∈ R. Hence for every x ∈ Dc(s),

∂xl(s, x) = ju(s, x)f X̂(s, x) +

∫ ∞
x

ju
jd

(
s, y
)
1{

Td(s,y)≤x, y∈Dc(s)
}f X̂(s, y)dy,

and

∂2
xxl(s, x) = ∂x

(
juf

X̂
)
(s, x) − ju

jd
f X̂(s, x). (6.30)

We now consider the case x ∈ (lt,mt). Notice that Td(s, ·) : Dc(s) → (ls,ms) is a bijection

and X̂s admits a density function. It follows that the random variable Td(s, X̂s) also admits a

density function on (ms, rs), given by

f T̂ (s, y) =
f X̂

∂xTd
(s, y), ∀y ∈ (ls,ms).

Then by the expression that

l(s, x) =

∫ x

−∞
(x− z)ju

jd

(
s, T−1

d (s, z)
)
1{x≤T−1

d (z)}f
T̂ (s, z)dz,

we get

∂2
xxl(x) = ju

jd

(
s, T−1

d (s, x)
)
f T̂ (s, z) = ju

jd

(
s, T−1

d (s, x)
)
fX̂

∂xTd
(s, x), ∀x ∈ (ls,ms). (6.31)

Finally, differentiating both sides of (6.28) (with (6.29), (6.30) and (6.31)), then dividing them

by ε and sending ε↘ 0, it follows that

∂tf
X̂(t, x) = 1{x>mt}

(
∂x
(
f X̂ju

)
− juf

X̂

jd

)
(t, x)− 1{x<mt}

juf
X̂

jd(1− ∂xjd)
(
t, T−1

d (t, x)
)
,

for every t ∈ [0, 1) and x ∈ (lt, rt) \ {mt}.

6.3 Convergence of the robust superhedging strategy

To prove Theorem 3.11, we will consider a special sequence of partitions of [0, 1], πn = (tnk )0≤k≤n,

where tnk := kε with ε = 1
n . To avoid heavy notation, we will omit the superscript and simplify

tnk to tk. We also recall that under every Pn, we have Pn-a.s. that

n−1∑
k=0

(
ϕε(tk, Xtk) + ψε(tk, Xtk+1

)
)

+

n−1∑
k=0

hε(tk, Xtk)
(
Xtk+1

−Xtk

)
≥
n−1∑
k=0

c
(
Xtk , Xtk+1

)
. (6.32)
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By taking the limit of every term, we obtain a superhedging strategy for the continuous-time

reward function, and we can then check that this superhedging strategy induces a duality of

the transportation problem as well as the optimality of the local Lévy process (3.6).

Let us first introduce Ψ∗ : Ω→ R by

Ψ∗(x) := ψ∗(1,x1)− ψ∗(0,x0)−
∫ 1

0

(
∂tψ
∗(t,xt) + ju(t,xt)1xt>mt∂xψ

∗(t,xt)
)
dt (6.33)

+

∫ 1

0

ju(t,xt)

jd(t,xt)
1xt>mt

(
ψ∗(t,xt)− ψ∗(t,xt − jd(t,xt)) + c(xt,xt − jd(t,xt))

)
dt.

Lemma 6.9. Let Assumptions 3.1 and 3.4 hold true. Then for every càdlàg path x ∈ D([0, 1],R)

taking value in (l1, r1), we have

lim
n→∞

n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk+1

)
)
→ Ψ∗(x) as ε → 0.

Proof. By direct computation, we have for every n ≥ 1,

n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk+1

)
)

=

n−1∑
k=1

(
ψε(tk−1,xtk)− ψε(tk,xtk)

)
+ ψε(tn−1,x1)

+

n−1∑
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk)

)
− ψε(0,x0).

First, we have ψε(tn−1,x1)→ ψ∗(1,x1) and by Lemma 6.7,

n−1∑
k=1

(
ψε(tk−1,xtk)− ψε(tk,xtk)

)
= −

∫ 1

0

n−1∑
k=1

∂tψ
ε(s,xtk)1s∈[tk,tk+1)ds −→ −

∫ 1

0

∂tψ
∗(s,xs)ds.

Further, when x > mt,

ϕε + ψε = ψε − ψε(., T εu) +
Jεu

Jεu + Jεd

(
ψε(., T εu) + c(., T εd )− ψε(., T εd )

)
+ o(ε)

= −εju∂xψε + ε
ju
jd

(
ψε − ψε(., Td) + c(., Td)

)
+ o(ε).

It follows that
∑n−1
k=0

(
ϕε(tk,xtk) + ψε(tk,xtk)

)
converges to∫ 1

0

−∂xψ∗(t,xt)ju(t,xt)dt

+

∫ 1

0

ju(t,xt)

jd(t,xt)
1xt>mt

(
ψ∗(t,xt)− ψ∗(t,xt − jd(t,xt)) + c(xt,xt − jd(t,xt))

)
dt,

which concludes the proof.

Lemma 6.10. Let Assumptions 3.1 and 3.4 hold true, and µ(λ
∗
) < ∞. Then for the limit

probability measure P0 given in Theorem 3.7, we have

EP0[
C(X·)

]
= EP0[

Ψ∗(X·)
]

= µ(λ∗) =

∫ 1

0

∫ rt

mt

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt.

Proof. We notice that under the limit probability measure P0, X is a pure jump martingale

with intensity ju
jd

(s,Xs−). Then by Itô’s formula, the following process is a local martingale

ψ∗(t,Xt)− ψ∗(0, X0)−
∫ t

0

∂tψ
∗(t,Xs)dt

−
∫ t

0

[
ju(s,Xs)∂xψ

∗(s,Xs) +
ju
jd

(s,Xs)
[
ψ∗(s,Xs − jd(s,Xs))− ψ∗(s,Xs)

]]
1Xs>m(s)ds.
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Moreover, since µ(λ
∗
) <∞, it follows by dominated convergence theorem that

EP0[
Ψ∗(X·)

]
= EP0

[ ∫ 1

0

ju
jd

(s,Xs)1Xs>m(s)c(Xs, Xs − jd(s,Xs))ds
]

=

∫ 1

0

∫ rt

mt

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt,

since the marginals of X under P0 are (µt)0≤t≤1.

To computer EP0

[C(X·)], we notice that [X]ct = 0, P0 − a.s., and the process

Yt :=
∑
s≤t

|c(Xs−, Xs)| −
∫ t

0

|c(Xs−, Xs− − jd(s,Xs−))|ju(s,Xs−)

jd(s,Xs−)
1Xs−≥mt

ds,

is a local martingale. Since µ(λ
∗
) <∞, we have∫ 1

0

|c(Xs−, Xs− − jd(s,Xs−))|ju(s,Xs−)

jd(s,Xs−)
1Xs−≥mt

ds

=

∫ 1

0

∫ rt

mt

ju(t, x)

jd(t, x)

∣∣c(x, x− jd(t, x)
)∣∣f(t, x)dxdt < ∞,

which implies that Y is a martingale and hence E[Y1] = 0. Finally, using similar arguments

together with dominated convergence theorem, we get that

E
[∑
s≤t

c(Xs−, Xs)
]

=

∫ 1

0

∫ rt

mt

ju(t, x)

jd(t, x)
c
(
x, x− jd(t, x)

)
f(t, x)dxdt,

which concludes the proof.

Next, let us consider the limit of the second term on the left hand side of (6.32).

Lemma 6.11. Let Assumptions 3.1 and 3.4 hold true. Then we have the following convergence

in probability under every martingale measure P ∈M∞:

n−1∑
k=1

hε(tk, Xtk)
(
Xtk+1

−Xtk

)
→

∫ 1

0

h∗(t,Xt−)dXt.

Proof. The functions hε are all locally Lipschitz uniformly in ε and hε → h∗ locally uniformly,

as ε → 0, by Lemma 6.7. By the right continuity of martingale X, the above lemma is then a

direct application of Theorem I.4.31 of Jacod & Shiryaev [54].

Proof of Theorem 3.11. Using (6.32), together with Lemmas 2.4, 6.9 and 6.11, it follows

that under every P ∈ M∞ (i.e. the canonical process X is a martingale under P), we have the

superhedging property

Ψ∗(X·) +

∫ 1

0

h∗(t,Xt−)dXt ≥
∫ 1

0

1

2
cyy(Xt, Xt)d[X]ct +

∑
0<t≤1

c(Xt−, Xt), P-a.s.

Further, by weak duality, we have

EP0

[C(X·)] ≤ P∞(µ) ≤ D∞(µ) ≤ µ(λ∗).

Since EP0

[C(X·)] = µ(λ∗) by Lemma 6.10, this implies the strong duality as well as the opti-

mality of the local Lévy process (3.6) and the semi-static superhedging strategy described by

(h∗, ψ∗).
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[32] Galichon A., Henry-Labordère P., Touzi N. : A stochastic control approach to no-arbitrage bounds given

marginals, with an application to Lookback options Annals of Applied Probability, 24(1):312-336, 2014.
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