
On the convergence of monotone schemes for

path-dependent PDE ∗

Zhenjie Ren† Xiaolu Tan‡

April 8, 2015

Abstract

We propose a reformulation of the convergence theorem of monotone numerical

schemes introduced by Zhang and Zhuo [32] for viscosity solutions of path-dependent

PDEs (PPDE), which extends the seminal work of Barles and Souganidis [1] on the

viscosity solution of PDE. We prove the convergence theorem under conditions similar

to those of the classical theorem in [1]. These conditions are satisfied, to the best of our

knowledge, by all classical monotone numerical schemes in the context of stochastic

control theory. In particular, the paper provides a unified approach to prove the con-

vergence of numerical schemes for non-Markovian stochastic control problems, second

order BSDEs, stochastic differential games etc.

Key words. Numerical analysis, monotone schemes, viscosity solution, path-dependent

PDE

1 Introduction

In their seminal work [1], Barles and Souganidis proved a convergence theorem for

monotone numerical schemes for viscosity solutions of fully nonlinear PDEs. Assuming

that a strong comparison principle holds true for viscosity solutions of a PDE, they

show that for all numerical schemes satisfying the three properties, “monotonicity”,

“consistency” and “stability”, the numerical solutions converge locally uniformly to

the unique viscosity solution of the PDE as the discretization parameters converge

to zero. They mainly use the stability of viscosity solutions of PDEs and the local

compactness of the state space. Due to their result, one only needs to check some local

properties of a numerical scheme in order to get a global convergence result. Also, their
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result and method are widely used in the numerical analysis of viscosity solutions to

PDEs.

It is well known that, by the Feynmann-Kac formula, the conditional expectation

of a random variable can be characterized by a viscosity solution of the correspond-

ing parabolic linear PDE. This relationship has also been generalized in the theory of

BSDE (corresponding to semi-linear PDEs), 2BSDEs (corresponding to fully nonlinear

PDEs) etc. However, the probabilistic tools have their PDE counterparts only in the

Markovian case. Recently, a theory of path-dependent PDE (PPDE) has been devel-

oped by [9, 11, 12] etc., which permits to study non-Markovian problems. In particular,

it provides a unified approach for many Markovian, or non-Markovian stochastic dy-

namic problems, e.g. BSDEs, second order BSDEs, stochastic control problems and

stochastic differential games, etc.

It would be interesting to extend the convergence theorem of Barles and Souganidis

[1] in the context of PPDE. The main obstacle for a direct extension of their arguments

is that the state space is no longer locally compact. Zhang and Zhuo [32] provided

recently a formulation of the convergence theorem of monotone schemes for PPDEs.

They mainly use the stability of the viscosity solution of PPDE, and overcome the

difficulty of non-local compactness by an optimal stopping argument as in the well-

posedness theory of PPDE. They also provide an illustrative numerical scheme which

satisfies all the conditions of their convergence theorem. However, this illustrative nu-

merical scheme is not applicable in the general case. Moreover, most of the monotone

numerical schemes in the sense of Barles and Souganidis [1], for example the finite

difference scheme, do not satisfy their conditions.

Our main objective is to provide a new formulation of the convergence theorem for

numerical schemes of PPDE. Our conditions are slightly stronger than the classical

conditions of Barles and Souganidis [1], as PPDEs degenerate to be PDEs. Never-

theless, to the best of our knowledge these conditions are satisfied by all classical

monotone numerical schemes in the optimal control context, including the classical

finite difference scheme, the Monte-Carlo scheme of Fahim, Touzi and Warin [13], the

semi-Lagragian scheme, the trinomial tree scheme of Guo, Zhang and Zhuo [15], the

switching system scheme of Kharroubi, Langrené and Pham [19], etc. Therefore, our

result extends all these numerical schemes to the path-dependent case. In particular,

it provides numerical schemes for non-Markovian second order BSDEs, and stochastic

differential games, which is new in the literature, see also Possamäı and Tan [24].

Similar to [32], we use an optimal stopping argument to overcome the difficulty

of non-local compactness. Instead of looking into an optimal stopping problem of a

controlled diffusion as in [32], we consider a discrete time optimal stopping problem of

a controlled process. Therefore, our argument is quite different from that in [32].

The paper is organized as follows. In Section 2 we provide some preliminary nota-

tions used in the paper. In Section 3 we recall the definition of viscosity solution to the

path-dependent PDE, and present our main result, that is, a convergence theorem of

monotone schemes for PPDEs. Further we compare with the result of Guo, Zhang and

Zhuo [15] and that of Barles and Souganidis [1]. In Section 4 we review some classical

monotone schemes for PDEs, and verify that they satisfy the technical conditions of
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our main convergence theorem, and thus can be applied in the PPDE context. Finally,

we complete the proof of the main theorem in Section 6.

2 Preliminaries

Throughout this paper let T > 0 be a given finite maturity, Ω := {ω ∈ C([0, T ];Rd) :

ω0 = 0} the set of continuous paths starting from the origin, and Θ := [0, T ]×Ω. We

denote by B the canonical process on Ω, F = {Ft, 0 ≤ t ≤ T} the canonical filtration,

T the set of all F-stopping times taking values in [0, T ], and P0 the Wiener measure on

Ω. Moreover, let T + denote the subset of τ ∈ T taking values in (0, T ], and for h ∈ T ,

let Th and T +
h be the subset of τ ∈ T taking values in [0,h] and (0,h], respectively.

Following Dupire [8], we introduce the following pseudo-distance on Θ: for all

(t, ω), (t′, ω′) ∈ Θ,

‖ω‖t := sup
0≤s≤t

|ωs|, d
(
(t, ω), (t′, ω′)

)
:= |t− t′|+ ‖ωt∧· − ω′t′∧·‖T .

Let E be a metric space, we say a process X : Θ → E is in C0(Θ, E) whenever

t 7→ Xt(ω) is continuous for all ω ∈ Ω. Similarly, L0(F , E) and L0(F, E) denote the

set of all F-measurable random variables and F-progressively measurable processes,

respectively. We remark that C0(Θ, E) ⊂ L0(F, E), and when E = R, we shall omit it

in these notations. We also denote by BUC(Θ) the set of all functions bounded and

uniformly continuous with respect to d.

For any A ∈ FT , ξ ∈ L0(FT , E), X ∈ L0(F, E), and (t, ω) ∈ Θ, define respectively

the shifted set, the shifted random variable and the shifted process by

At,ω := {ω′ ∈ Ω : ω ⊗t ω′ ∈ A}, ξt,ω(ω′) := ξ(ω ⊗t ω′), Xt,ω
s (ω′) := X(t+ s, ω ⊗t ω′)

where ω ⊗t ω′ is the concatenated path defined as

(ω ⊗t ω′)s := ωs1[0,t](s) + (ωt + ω′s−t)1(t,T ](s), 0 ≤ s ≤ T.

Following the standard arguments with monotone class theorem, we have the following

results.

Lemma 2.1. Let (t, ω) ∈ Θ and s ∈ [t, T ]. Then At,ω ∈ Fs−t for all A ∈ Fs,
ξt,ω ∈ L0(Fs−t, E) for all ξ ∈ L0(Fs, E), Xt,ω ∈ L0(F, E) for all X ∈ L0(F, E), and

τ t,ω − t ∈ Ts−t for all τ ∈ Ts.

Next, let us introduce the nonlinear expectation. As in [11], we fix a constant

L > 0 throughout the paper, and denote by P the collection of all continuous semi-

martingale measures P on Ω whose drift and diffusion coefficients are bounded by L.

More precisely, a probability measure P ∈ P if under P, the canonical process B is a

semimartingale with natural decomposition B = AP + MP, where AP is a process of

finite variation, MP is a continuous martingale with quadratic variation 〈MP〉, such

that AP and 〈MP〉 are absolutely continuous in t, and

‖µP‖∞, ‖aP‖∞ ≤ L, where µPt :=
dAP

t

dt
, aPt :=

d〈MP〉t
dt

, P-a.s. (2.1)
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We then define the nonlinear expectations:

E [·] := sup
P∈P

EP[·] and E [·] := inf
P∈P

EP[·]. (2.2)

3 Convergence of monotone schemes for PPDE

We consider the following PPDE

− ∂tu(t, ω) − G
(
·, u, ∂ωu, ∂2

ωωu
)
(t, ω) = 0, for all (t, ω) ∈ [0, T )× Ω, (3.1)

with the terminal condition u(T, ·) = ξ.

3.1 Definition of PPDE

As in the survey of Ren, Touzi and Zhang [25], one may define viscosity solution of

path dependent PDE by using the jets. For α ∈ R, β ∈ Rd, γ ∈ Sd, denote:

φα,β,γ(t, x) := αt+ β · x+
1

2
γ : (xxT ) for all (t, x) ∈ R+ × Rd,

where A1 : A2 := Tr[A1A2]. Then define the semijets of a function u ∈ BUC(Θ) at

(t, ω) ∈ [0, T )× Ω:

J u(t, ω) :=
{

(α, β, γ) : u(t, ω) = maxτ∈Thδ E [ut,ωτ − φα,β,γτ ], for some δ > 0
}
,

J u(t, ω) :=
{

(α, β, γ) : u(t, ω) = minτ∈Thδ E [ut,ωτ − φα,β,γτ ], for some δ > 0
}
,

where hδ(ω
′) := δ ∧ inf{s ≥ 0 : |ω′s| ≥ δ} ∈ T + and φα,β,γt := φα,β,γ(t, Bt).

Definition 3.1. Let u ∈ BUC(Θ).

(i) u is a P-viscosity subsolution (resp. supersolution) of the path dependent PDE

(3.1), if at any point (t, ω) ∈ [0, T ) × Ω it holds for all (α, β, γ) ∈ J u(t, ω) (resp.

J u(t, ω)) that

−α−G(t, ω, u(t, ω), β, γ) ≤ (resp. ≥) 0.

(ii) u is a P-viscosity solution of the path dependent PDE (3.1), if u is both a P-

viscosity subsolution and a P-viscosity supersolution of (3.1).

There are equivalent definitions of viscosity solution of path dependent PDE, for

example in [25] we may find the definition in which one uses smooth test functions in

the time-path space Θ. Here we are going to introduce another equivalent definition

using constant localization and test functions in C1,2
0 (R+ × Rd), i.e. the class of all

C1,2 scalar functions ϕ of which the partial derivatives ∂tϕ, ∂xϕ, ∂
2
xxϕ are of compact

support. Consider the set of test functions:

Au(t, ω) :=
{
ϕ ∈ C1,2

0 (R+ × Rd) : (ut,ω − ϕ)0 = max
τ∈Tδ
E
[
(ut,ω − ϕ)τ

]
, for some δ > 0

}
,

Au(t, ω) :=
{
ϕ ∈ C1,2

0 (R+ × Rd) : (ut,ω − ϕ)0 = min
τ∈Tδ
E
[
(ut,ω − ϕ)τ

]
, for some δ > 0

}
,

where ϕt = ϕ(t, Bt).
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Proposition 3.2. Assume that G(t, ω, y, z, γ) is continuous in (t, ω). A function u is

a P-viscosity subsolution (resp. supersolution) of Equation (3.1), if and only if at any

point (t, ω) ∈ [0, T )× Ω it holds for all ϕ ∈ Au(t, ω) (resp. Au(t, ω)) that

Lt,ωϕ0 := −∂tϕ0 −G(t, ω, u(t, ω), ∂xϕ0, ∂
2
xxϕ0) ≤ (resp. ≥) 0. (3.2)

We will report the proof of the above proposition in Section 6. The next lemma is

proved in Section 4.4 of [12].

Lemma 3.3. Let u ∈ BUC(Θ) be a P-viscosity subsolution of PPDE (3.1). Then for

the constant L ∈ R, ũ(t, ω) := e−Ltu(t, ω) is a P-viscosity subsolution of the PPDE

−∂tũ(t, ω)− Lũ(t, ω)− e−LtG
(
·, eLtũ, eLt∂ωũ, eLt∂2

ωωũ
)
(t, ω) = 0.

The similar result holds for supersolutions.

Since we only consider nonlinearity G(t, ω, y, z, γ) uniformly Lipschtiz in y, it follows

from the previous lemma that without loss of generality we may assume that G is

non-decreasing in y.

Remark 3.4 (Examples of path-dependent PDE). One of the motivations of the

PPDE theory is to characterize the value functions of non-Markovian stochastic control

problems.

In particular, let consider a 2BSDE (Cheridito, Soner, Touzi and Victoir [4], Soner,

Touzi and Zhang [28]) with generator F : Θ × R × Rd × K → R and the controlled

generating process with diffusion coefficient σ : Θ ×K → Sd, where K is some set in

which the control processes take values. Then the solution of the 2BSDE corresponds

to a PPDE with the nonlinearity:

G(t, ω, y, z, γ) := sup
k∈K

[1

2
σ2(t, ω, k) : γ + F (t, ω, y, σ(t, ω, k)z, k)

]
. (3.3)

Another example is the application of PPDEs in the stochastic differential games (see

e.g. Pham and Zhang [23]), where the nonlinearity of PPDE turns to be of the form:

G(t, ω, y, z, γ) := sup
k1∈K1

inf
k2∈K2

[1

2
σ2(t, k1, k2) : γ + F (t, ω, y, σ(t, k1, k2)z, k1, k2)

]
. (3.4)

We refer to Section 4 of Ekren, Touzi and Zhang [11] for more details.

3.2 Main results

Definition 3.5. Let {Ui, i ≥ 1} be a sequence of independent random variables defined

on a probability space (Ω̃, F̃ , P̃). Every Ui follows the uniform distribution on [0, 1].

Let h > 0, K be a subset of a metric space, Φh : K × [0, 1]→ R be a Borel measurable

function such that for all ν ∈ K we have

|Ẽ
[
Φh(v, U)

]
| ≤ Lh, Var

[
Φh(ν, U)

]
≤ Lh and Ẽ

[
Φh(ν, U)3

]
≤ Lh3/2. (3.5)
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Denote the filtration F̃ := {F̃i, i ∈ N}, where F̃n := σ{Ui, i ≤ n}. Let K = L0(F̃,K)

denote the collection of all F̃-adapted control processes taking values in K. For all

ν ∈ K, we define

Xh,ν
(i+1)h = Xh,ν

ih + Φh(νih, Ui). (3.6)

Further, we denote by X̂h,ν : [0, T ] × Ω̃ → Ω the linear interpolation of the discrete

process
{
Xh,ν
ih , i ∈ N

}
such that X̂h,ν

ih = Xh,ν
ih for all i. Finally, for any function

ϕ ∈ L0(F), we define the nonlinear expectation:

Eh[ϕ] := infν∈U Ẽ
[
ϕ
(
X̂h,ν

)]
and Eh[ϕ] := supν∈U Ẽ

[
ϕ
(
X̂h,ν

)]
. (3.7)

We next introduce the numerical schemes T. Let (t, ω) ∈ [0, T ) × Ω and 0 < h ≤
T − t, Tt,ωh be a family of functions from L0(Ft+h) to R. We then define

uh(t, ω) := Tt,ωh uht+h,

and assume that T satisfies the following conditions.

Assumption 3.6. (i)Consistency: for every (t, ω) ∈ [0, T )×Ω and ϕ ∈ C1,2
0 (R+×Rd),

lim
(t′,ω′,h)→(t,0,0)

ϕ(t′, ω ⊗t ω′)− Tt
′,ω⊗tω′
h

[
ϕ(t′ + h, ·)

]
h

= Lt,ωϕ0.

(ii) Monotonicity: there exists a nonlinear expectation Eh as in Definition 3.5 such

that, for any ϕ,ψ ∈ L0(Ft+h), it holds that

Tt,ωh [ϕ] − Tt,ωh [ψ] ≥ inf
0≤α≤L

Eh
[
eαh(ϕ− ψ)t,ω

]
− hρ(h). (3.8)

(iii) Stability: uh is uniformly bounded and uniformly continuous in (t, ω), uniformly

on h.

Our main theorem is the following convergence result of the monotone scheme for

PPDE (3.1).

Theorem 3.7. Assume that

• PPDE (3.1) is parabolic, i.e. G(t, ω, y, z, γ) is nondecreasing in γ,

• the nonlinearity G of PPDE (3.1) and the terminal condition ξ are continuous

in all arguments, and G(t, ω, y, z, γ) is uniformly Lipschitz in y,

• the comparison principle of viscosity solutions of (3.1) holds, i.e. if u, v ∈
BUC(Θ) are P-viscosity subsolution and supersolution of PPDE (3.1), respec-

tively, and u(T, ·) ≤ v(T, ·), then u ≤ v on Θ.

If the numerical scheme T satisfies Assumption 3.6, then PPDE (3.1) admits a unique

bounded viscosity solution u, and

uh → u locally uniformly, as h→ 0. (3.9)
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Remark 3.8. A comparison result of viscosity solutions of fully nonlinear PPDEs

is proved in Ekren, Touzi and Zhang [12] for PPDE (3.1) under certain conditions.

Further, in the case of semilinear PPDEs, a comparison result is proved in Ren, Touzi

and Zhang [26] under very general assumptions.

Remark 3.9 (Comparison with Zhang and Zhuo [32]). Let us compare our Assump-

tion 3.6 with that in [32]. Our condition (i) is weaker and thus easier to verify com-

paring to that in [32]. The essential difference is between our condition (ii) and theirs.

Our condition (ii), although stated in a complicated way, is satisfied by all (to the best

of our knowledge) classical monotone scheme in PDE context. Moreover, by the in-

terpretation of the finite difference scheme for stochastic control problem as controlled

Markov chains (see Kushner and Dupuis [20]), this condition is consistent with the

classical one in [1].

Comparison with Barles and Souganidis’s theorem When a PPDE degen-

erates to be a PDE:

Lu(t, x) := − ∂tu(t, x)−G0(·, u, ∂xu, ∂2
xxu)(t, x) = 0, on [0, T )× Rd,(3.10)

with the terminal condition u(T, ·) = g. Note that the definition of viscosity solution of

PDE is slightly different from that of PPDE recalled in Section 3.1, but under general

conditions a viscosity solution of PDE (3.10) is a viscosity solution of the corresponding

PPDE.

Assumption 3.10. (i) The terminal condition g is bounded continuous.

(ii) The function G0 is continuous and G0(t, x, y, z, γ) is nondecreasing in γ.

(iii) PDE (3.10) admits a comparison principle for bounded viscosity solution, i.e. if

u, v are bounded viscosity subsolution and supersolution of PDE (3.10), respectively,

and u(T, ·) ≤ v(T, ·), then u ≤ v on [0, T ]× Rd.

For any t ∈ [t, T ) and h ∈ (0, T − t], let Tt,xh be an operator on the set of bounded

functions defined on Rd. For n ≥ 1, denote h := T
n < T − t, ti = ih, i = 0, 1, · · · , n, let

the numerical solution be define by

uh(T, x) := g(x), uh(t, x) := Tt,xh [uh(t+ h, ·)], t ∈ [0, T ), i = n, · · · , 1.

Assumption 3.11. (i) Consistency: for any (t, x) ∈ [0, T ) × Rd and any smooth

function ϕ ∈ C1,2([0, T )× Rd),

lim
(t′,x′,h,c)→(t,x,0,0)

(c+ ϕ)(t′, x′)− Tt
′,x′

h

[
(c+ ϕ)(t′ + h, ·)

]
h

= Lϕ(t, x).

(ii) Monotonicity: Tt,xh [ϕ] ≤ Tt,xh [ψ] whenever ϕ ≤ ψ.

(iii) Stability: uh is bounded uniformly in h whenever g is bounded.

(iv) Boundary condition: lim(t′,x′,h)→(T,x,0) u
h(t′, x′) = g(x) for any x ∈ Rd.

We now recall the convergence theorem of the monotone scheme, deduced from

Barles and Souganidis [1] in this context of the parabolic PDE (3.10).
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Theorem 3.12. Let the generator function G0 in (3.10) and the terminal condition g

satisfy Assumption 3.10, and the numerical scheme Tt,xh satisfy Assumption 3.11. Then

the parabolic PDE (3.10) has a unique bounded viscosity solution and uh converges to

u locally uniformly as h→ 0.

Remark 3.13 (Comparison with Assumption 3.6). (i) First, Assumption 3.6 (i) re-

duces exactly to be Assumption 3.11 (i) when the PPDE degenerates to a PDE.

(ii) Assumption 3.6 (ii) is stronger than Assumption 3.11 (ii). It is clear that the

bound (3.8) of the difference of numerical solutions, provided by the discrete sublinear

expectation, implies the monotonicity condition in Assumption 3.11 in the PDE case.

In their book of numerical methods for stochastic control problem, Kushner and Dupuis

[20] studied the classical finite-difference scheme, and highlighted that the monotonicity

condition is in fact equivalent to a controlled Markov chain interpretation, where the

increments of the Markov chain satisfy (3.5). Our formulation of the monotonicity in

Assumption 3.6 (ii) is consistent with this spirit. In particular, for concrete numerical

schemes, the two monotonicity formulations demand exactly the same conditions on

the coefficients. Moreover, it is satisfied by all classical monotone scheme, to the best

of our knowledge, in the context of stochastic control theory. See also our review in

Section 4.

(iii) The stability condition in Assumption 3.6 (iii) is also stronger than Assumption

3.11 (iii). Nevertheless, in the classical numerical analysis for parabolic PDE (3.10),

in order to check Assumption 3.11 (iv), one needs (explicitly or implicitly) to prove

a uniform continuity property of numerical solutions uniformly on the discretization

parameter, which leads to the same condition as in Assumption 3.6 (iii). See also our

review in Section 4.

4 Examples of monotone schemes

We discuss here some classical monotone numerical schemes in the stochastic control

context, and provide some sufficient conditions Assumption 3.6 to hold true. Let us

first add some assumptions on the functions G and ξ for PPDE (3.1).

Assumption 4.1. The terminal condition ξ is Lipschitz in ω, G is increasing in γ,

and G is Lipschitz in (y, z, γ): i.e. there is some constant C such that for all (t, ω) ∈ Θ

and (y, z, γ), (y′, z′, γ′) ∈ R× Rd × Sd,∣∣∣G(t, ω, y, z, γ)−G(t, ω, y, z′, γ′)
∣∣∣ ≤ C

(∣∣y − y′∣∣ +
∣∣z − z′∣∣ +

∣∣γ − γ′∣∣).
In this section, we denote tk := hk for h = ∆t > 0. Given x = (xt0 ,xt1 , · · · ,xtk) a

sequence of points in Rd, we denote by x̂ ∈ Ω the linear interpolation of x such that

x̂ti = xti for all i. Further, for (t, ω) ∈ Θ, h > 0 and z ∈ Rd, we define a path

(ω ⊗ht z) := ω ⊗t zh, where zhs :=

{ s

h
z, for 0 ≤ s ≤ h;

z, for s > h.
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Let E be some normed vector space, then for maps ψ : Θ → E, we introduce the

norm |ψ|0 and |ψ|1 by

|ψ|0 := sup
(t,ω)∈Θ

|ψ(t, ω)| and |ψ|1 := sup
(t,ω)6=(t′,ω′)

|ψ(t, ω)− ψ(t′, ω′)|
(|ωt∧· − ω′t′∧·|+ |t− t′|1/2

.

4.1 Finite difference scheme

For simplicity, we assume that the state space is of dimension one (d = 1). Let ∆x > 0

be the space discretization size. For every (t, ω) ∈ Θ, h > 0 and Ft+h-measurable

random variable ψ : Ω→ R, we define the discrete derivatives

Dhψ(t, ω) :=
(
D0
hψ,D1

hψ,D2
hψ
)
(t, ω),

where

D0
hψ(t, ω) := ψ(ωt∧·), D1

hψ(t, ω) :=
ψ(ω⊗ht ∆x)−ψ(ωt∧·)

∆x ,

and D2
hψ(t, ω) :=

ψ
(
ω⊗ht ∆x

)
−2ψ(ωt∧·)+ψ

(
ω⊗ht (−∆x)

)
∆x2 .

Then an explicit finite difference scheme is given by

Tt,ωh [uht+h] := uh(t+ h, ωt∧·) + hG
(
t, ω,Dhuht+h(t, ω)

)
. (4.1)

Proposition 4.2. Suppose that Assumption 4.1 holds true and G is Lipschitz in ω, i.e.

there is a constant C such that for all ω, ω′ ∈ Ω and all (t, y, z, γ) ∈ [0, T ]×R×Rd×Sd,∣∣∣G(t, ω, y, z, γ)−G(t, ω′, y, z, γ)
∣∣∣ ≤ C

∥∥ωt∧· − ω′t∧·∥∥.
Assume in addition the CFL (Courant-Friedrichs-Lewy) condition, i.e.

ε ≤ ∆t|∇γG|0
∆x2

≤ 1

2
− ε, (4.2)

and that ∇γG ≥ ε for some small constant ε > 0. Then Assumption 3.6 holds true for

finite difference scheme (4.1). In particular, the numerical solution uh is 1
2–Hölder in

t and Lipschitz in ω, uniformly on h.

Proof. We will check each condition in Assumption 3.6. For the simplicity of presen-

tation, we assume that G is independent of y. Clearly, the argument still works if G

is Lipschitz in y.

(i) The consistency condition (Assumption 3.6 (i)) is obviously satisfied by (4.1) as in

the no path-dependent case.

(ii) For the monotonicity in Assumption 3.6 (ii), let us consider two different bounded

functions ϕ and ψ. Denote φ := ϕ− ψ, then by direct computation,

Tt,ωh [ϕ]− Tt,ωh [ψ] = φ(ω0) + h
(
GyD0,t

h φ+GzD1,t
h φ+GγD2,t

h φ
)
,

where Gy, Gz and Gγ is some function depending on (t, ω) and (ϕ,ψ), but uniformly

bounded by the Lipschitz constant L of G. Let b ∈ [−L,L] and ε ≤ a ≤ |∇γG|0 be
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two constants, and ζa,b be a random variable defined on a probability space (Ω̃, F̃ , P̃ )

such that

P̃(ζa,b = 0) = 1− b∆t
∆x − 2a ∆t

∆x2 ,

P̃(ζa,b = ∆x) = b∆t
∆x + a ∆t

∆x2 and P̃(ζa,b = −∆x) = a ∆t
∆x2 .

The law of ζa,b is well defined for ∆t = h small enough, because every term above is

positive and the sum of all terms equals to 1 under condition (4.2). Further, we have

Ẽ
[
ζa,b
]

= bh, Var
[
ζa,b
]

= ah, and Ẽ
[
|ζa,b|3

]
≤ |∆x|3 ≤ Ch3/2, (4.3)

where the last terms follows by ∆x ≈ h
1
2 .

Then let Fh(a, b, ·) : R → [0, 1] be the distribution function of ζa,b and Φh(a, b, ·) :

[0, 1]→ R be the generalized inverse function of Fh(a, b, ·), i.e.

Φh(a, b, x) := inf{y : Fh(a, b, y) > x}. (4.4)

In view of (4.3), the monotonicity condition of Assumption 3.6 (ii) holds true.

(iii) To prove Assumption 3.6 (iii), we will prove that there is a constant C independent

of h such that∣∣uh(t, ω)− uh(t′, ω′)
∣∣ ≤ C

(
‖ωt∧· − ω′t′∧·‖+

√
|t′ − t|

)
, ∀(t, ω), (t′, ω′) ∈ Θ.(4.5)

Let us first prove that uh is Lipschtiz in ω. Denote

Lht := sup
(t,ω),(t′,ω′)∈Θ

uh(t, ω)− uh(t, ω′)

‖ωt∧· − ω′t∧·‖
1{‖ωt∧·−ω′t∧·‖>0}.

By direct computation, we have

uh(t, ω) − uh(t, ω′) = hGω‖ωt∧· − ω′t∧·‖ + D̃G
h u

h
t+h(t, ω) − D̃G

h u
h
t+h(t, ω′), (4.6)

where

D̃G
h u

h
t+h :=

(
(1 + hGy)D0

h + hGzD1
h + hGγD2

h

)
uht+h,

with Gy, Gz and Gγ uniformly bounded by L. Then there is a constant C independent

of h such that

Lht ≤ (1 + Ch)Lht+h + Ch.

Notice that the terminal condition ξ is Lipschitz, it follows by the discrete Gronwall

inequality, we have Lht ≤ CeCT for a constant C independent of h. Hence, there is a

constant C ′ independent of h such that∣∣uh(t, ω)− uh(t, ω′)
∣∣ ≤ C ′‖ωt∧· − ω′t∧·‖, ∀t ∈ [0, T ], ω, ω′ ∈ Ω. (4.7)

We next consider the regularity of uh in t. Let t := ih and t′ := jh > t. Note that

uh(t, ω) = uh(t+ h, ωt∧·) + hG(t, ω, 0, 0, 0) + h
(
G(t, ω,Dhuht+h(t, ω))−G(t, ω, 0, 0, 0)

)
.

10



By a direct computation, we have

uh(t, ω) = Ẽ

[
j−1∑
k=i

G(tk, ω ⊗t X̂h, 0, 0, 0) h + uh(t′, ω ⊗t X̂h)

]
, (4.8)

where Xh is a discrete process defined as Xh
0 := 0,

Xh
tk+1

:= Xh
tk

+ Φh(∇γG,∇zG,Uk+1),

with Φh be given by (4.4), and X̂h is the linear interpolation of Xh. Define

Ah0 := 0, Ahtk :=
k−1∑
i=0

Ẽ
[
Φh(∇γG,∇zG,Ui+1)

∣∣F̃i], and Mh := Xh −Ah.

Clearly, Mh is a martingale and Ah is a predictable process. Further, it follows from

the property of Φh in (4.3) that

Ẽ
∣∣∣Ahtk+1

−Ahtk
∣∣∣ ≤ Lh and Var

[
Mh
tk+1
−Mh

tk

]
≤ Lh.

Then by (4.8), we have

|u(t, ω)− u(t′, ωt∧·)| ≤ C(t′ − t) + CẼ
[

sup
i≤k≤j

∣∣Mtk

∣∣]. (4.9)

Further, by Doob’s inequality, it follows that

Ẽ
[

sup
i≤k≤j

∣∣Mh
tk

∣∣] ≤ √
Ẽ
[

sup
i≤k≤j

∣∣Mh
tk

∣∣2] ≤ 2
(√

Ẽ
[
(Mh

tj
)2
])
≤ C

√
tj − ti.

Finally, combining the above estimation with (4.7) and (4.9), we obtain (4.5).

Remark 4.3. We here assume that the PPDE is non-degenerate (∇γG ≥ ε > 0).

When ∇γG = 0 and ∇zG ≥ 0, the scheme is still monotone. When ∇γG = 0 and

∇zG ≤ 0, it is possible to redefine the first order discrete derivative by

D1
hψ(t, ω) :=

ψ(ωt∧·)− ψ(ω ⊗ht (−∆x))

∆x

to obtain a monotone scheme.

Remark 4.4. In the multidimensional case, ∇γG is a matrix. If ∇γG is diagonal

dominated, then following Kushner and Dupuis [20], it is easy to construct a monotone

scheme under similar CFL condition (4.2). When ∇γG is not diagonal dominated,

it is possible to use the generalized finite difference scheme proposed by Bonnans,

Ottenwaelter and Zidani [2].

11



4.2 The trinomial tree scheme of Guo-Zhang-Zhuo [15]

We consider the PPDE of the form (3.1). Let σ0 be some symmetric d × d matrix,

denote

F (t, ω, y, z, γ) := G(t, ω, y, z, γ)− 1

2
σ2

0 : γ, G̃γ := σ−1
0 Gγσ

−1
0 .

Let ζ = (ζ1, · · · , ζd) a random vector defined on a probability space (Ω̃, F̃ , P̃) such that

ζi, i = 1, · · · , d are i.i.d and

P̃(ζi =
1
√
p

) =
p

2
, P̃(ζi = − 1

√
p

) =
p

2
, P̃(ζi = 0) = 1− p, with p ∈ (0, 1).

For every Ft+h-measurable function ψ : Ω → R, let us define Dihψ(t, ω) := Ẽ
[
ψ
(
ω ⊗ht

(
√
hσ0ζ)

)
Ki(ζ)

]
with

K0 := 1, K1 :=
σ−1

0 ζ√
h
, K2 :=

σ−1
0 [(1− p)ζζT − (1− 3p)Diag[ζζT ]− 2pId]σ

−1
0

(1− p)h
,

where for any matrix γ = [γi,j ]1≤i,j≤d ∈ Sd, Diag[γ] denotes the diagonal matrix whose

(i, i)-th component is γii. Then the numerical scheme is defined as

Tt,ωh [uh(t+ h, ·)] := D0
hu

h(t, ω) + hF
(
·,Dhuht+h

)
(t, ω). (4.10)

Proposition 4.5. Let Assumptions 4.1 hold true and G is Lipschitz in ω. Suppose

in addition that Assumption 3.3 in Guo, Zhang and Zhuo [15] holds true (where we

replace their notation G̃γ by ∇γG̃ in our context). Then the trinomial tree scheme

(4.10) satisfies Assumption 3.6.

Proof. The consistency and monotonicity condition in Assumption 3.6 (i) and (ii) can

be justified by almost the same argument as in [15]. Similarly to the finite difference

scheme, the monotonicity in sense of Barles and Souganidis [1] implies the interpre-

tation of the controlled discrete processes of the numerical scheme, which implies the

monotonicity condition (3.8) in our context. Further, using the same argument as in

Proposition 4.2, it is easy to show that∣∣uh(t, ω)− uh(t′, ω′)
∣∣ ≤ C

(
‖ωt∧· − ω′t′∧·‖+

√
|t′ − t|

)
, ∀(t, ω), (t′, ω′) ∈ Θ,

for some constant C independent of h, which implies in particular (iii) of Assumption

3.6.

Remark 4.6. As a PPDE degenerates to be a classical PDE, the conditions in Propo-

sition 4.5 turns to be exactly the same conditions in Theorem 3.10 of [15].

4.3 The probabilistic scheme of Fahim-Touzi-Warin [13]

We consider PPDE (3.1) in which G is in the form of

G(t, ω, y, z, γ) = µ(t, ω) · z − 1

2
σσT (t, ω) : γ − F (t, ω, y, z, γ).

12



Before introducing the numerical scheme, we first define a random vector

X
(t,ω)
h := µ(t, ω)h + σ(t, ω)Wh,

where Wh ∼ N(0, hId) is a Gaussian vector. For every bounded function ψ ∈ L0(Ft+h),

we define

Dhψ(t, ω) := E
[
ψ(ω ⊗t X̂(t,ω)

· )Hh(t, ω)
]
,

where Hh(t, ω) = (Hh
0 , H

h
1 , H

h
2 )T with

Hh
0 := 1, Hh

1 := (σT (t, ω))−1Wh
h , Hh

2 := (σT (t, ω))−1WhW
T
h − hId
h2

σ−1(t, ω).

Then the probabilistic scheme is given by

Tt,ωh [uh(t+ h, ·)] := E
[
uh(t+ h, X̂(t,ω))

]
+ hF

(
·,Dhuht+h

)
(t, ω). (4.11)

Remark 4.7. The probabilistic scheme in [13] is inspired by the second order BSDE

theory of Cheridito, Soner, Touzi and Victoir [4], and extends the classical numerical

scheme of BSDE (see e.g. Bouchard and Touzi [3], Zhang [31]). In practice, one

can use the simulation-regression method to estimate the conditional expectation in

the above scheme (see e.g. Gobet, Lemor and Warin [14]). We refer to Guyon and

Henry-Labordère [16] for more details on the use of the scheme, to Tan [29] for an

extension to a degenerate case, and to Tan [30] for an extension to path-dependent

control problems.

Assumption 4.8. (i) The nonlinearity F is Lipschtiz w.r.t. (ω, u, z, γ) uniformly in

t and |F (·, ·, 0, 0, 0)|0 <∞.

(ii) F is elliptic and dominated by the diffusion term of X, that is,

∇γF ≤ σσT , on Ω× R× Rd × Sd. (4.12)

(iii) ∇pF ∈ Image(∇γF ) and
∣∣(∇pF )T (∇γF )−1∇pF

∣∣
0
<∞.

(iv) |µ|1, |σ|1 <∞ and σ is invertible and ξ is bounded Lipschitz.

Proposition 4.9. Suppose that Assumption 4.8 holds true. Then the probabilistic

numerical scheme (4.11) satisfies Assumption 3.6.

Proof. (i) Assumption 3.6 (i) is obviously satisfied in view of Lemma 3.11 of [13].

(ii) Further, using probabilistic interpretation of this scheme in Tan [30, Section 3.2],

we may verify (ii) of Assumption 3.6. See also the estimation given by Lemma 3.1 of

[30].

(iii)For (iii)of Assumption 3.6, we shall prove that the numerical solution uh is Lipschitz

in ω and 1/2-Hölder in t. In [13], the authors proved this property in the case of PDEs.

Their arguments for the Lipschitz continuity in ω can be easily adapted to this path-

dependent case. For the regularity of uh in t, they used a regularization technique,

which seems impossible to be adapted to the path-dependent case. However, we can

still use similar arguments as in Proposition 4.2, i.e. use the discrete-time controlled

semimartingale interpretation, to prove the Hölder property of uh in t.

Remark 4.10. As a PPDE degenerates to be a PDE, the conditions in Assumption

4.8 reduce exactly the same conditions as in [13] (see their Theorem 3.6).
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4.4 The semi-Lagrangian scheme

For the semi-Lagrangian scheme, we shall consider the PPDE (3.1) of the Bellman-Issac

type, i.e. the function G is in the form of

G(t, ω, y, z, γ) = inf
k1∈K1

sup
k2∈K2

(1

2
ak1,k2(·) : γ + bk1,k2(·) · z + ck1,k2(·)y + fk1,k2(·)

)
(t, ω),

where K1 and K2 are some sets, (ak1,k2 , bk1,k2 , ck1,k2 , fk1,k2) are functionals defined on

Θ.

Let ζ be a random vector satisfying

E
[
ζ
]

= 0, Var
[
ζ
]

= Id and E
[∣∣ζ∣∣3] <∞. (4.13)

Then the semi-Lagragian scheme is defined as

Tt,ωh [uh(t+ h, ·)] := inf
k1∈K1

sup
k2∈K2

{
uh
(
t+ h, ω ⊗t

(
σk1,k2(t, ω)ζ

√
h+ bk1,k2(t, ω)h

))
+ uh

(
t+ h, ω)ck1,k2(t, ω)h + fk1,k2(t, ω)h

}
. (4.14)

Proposition 4.11. Suppose that |a|1 + |b|1 + |c|1 + |f |1 < ∞, and (4.13) holds true.

Then the semi-Lagrangian scheme (4.14) for the Bellman-Issac path-dependent equa-

tion satisfies Assumption 3.6.

Proof. (i) The consistency condition (Assumption 3.6 (i)) is easy to check.

(ii) Let E be a set, e : K1 ×K2 → E be an arbitrary mapping, and ψ,ϕ : E → R be

two bounded functions. Note that

inf
k1∈K1

sup
k2∈K2

ψ(e(k1, k2))− inf
k1∈K1

sup
k2∈K2

ϕ(e(k1, k2)) ≤ sup
k1∈K1,k2∈K2

(ψ − ϕ)(e(k1, k2)).(4.15)

Notice that Rd is isomorphic to R, we can always consider the random vector σk1,k2ζ
√
h+

bk1,k2h as a one-dimensional random variable. By consider the inverse function of its

distribution function, then there is a family Φh(k1, k2, ·) such that Φh(k1, k2, U) ∼
σk1,k2ζ

√
h + bk1,k2h in law with U ∼ U([0, 1]), for all (k1, k2) ∈ K1 × K2. Then it

follows from (4.15) that the monotonicity condition in Assumption 3.6 (ii) holds true

with Φh(k1, k2, ·) and K = K1 ×K2.

(iii) Finally, by the same arguments as in Proposition 4.2, we can easily deduce that

uh is Lipschitz in ω and 1/2-Hölder in t, uniformly on h, and hence complete the proof

for the stability condition in Assumption 3.6.

Remark 4.12. Solutions of path dependent Bellman-Issac equations can characterize

value functions of stochastic differential games (see e.g. Pham and Zhang [23]).

Remark 4.13. (i) For Bellman-Issac PDE, Debrabant and Jakobsen [5] studied the

semi-Lagrangian scheme with a random variable ζ following a discrete distribution,

together with an interpolation technique for the implementation.

(ii) For Bellman equation (PDE), Kharroubi, Langrené and Pham [19] propose a

semi-Lagrangian type numerical scheme with ζ ∼ N(0, 1), and provide a simulation-

regression technique for the implementation. It is worth of mentioning that [19] pro-

vides a convergence rate for the scheme, while we only prove in this paper a general

convergence theorem as in Barles and Souganidis [1].
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5 Numerical examples

In this section, we provide two toy examples of numerical implementation in low-

dimensional case. For more numerical examples (in high-dimensional case), we would

like to refer to [13, 15, 16, 19, 29], etc.

A first numerical example For a first numerical example, we consider the PPDE

−∂tu− min
µ∈[µ,µ]

µ∂ωu− max
a∈[a,a]

a

2
∂2
ωωu = f(t, ω, ω̄), u(T, ω) = g(ωT , ω̄T ). (5.1)

where d = 1, ω̄t :=
∫ t

0 ωsds, f : [0, T ] × R × R → R and g : R × R → R are two

functions.

The above PPDE (5.1) is motivated by a stochastic differential game:

u0 = inf
µ≤µt≤µ

sup
a≤at≤a

E
[ ∫ T

0
f(t,Xµ,a

t , X
µ,a

)dt+ g(Xµ,a
T , X

µ,a
T )
]
,

where Xµ,σ is controlled diffusion such that

Xµ,a
t =

∫ t

0
µsds+

∫ t

0

√
asdWs, with W a Brownian motion,

and X
µ,a
t =

∫ t
0 X

µ,a
s ds (see e.g. Pham and Zhang [23] for more details).

We choose the terminal condition g(x, y) = cos(x+ y) and the function

f(t, x, y) = − (x− µ)
(

sin(x− y)
)−

+ (x+ µ)
(

sin(x− y)
)+

+
a

2

(
cos(x− y)

)+ − a

2

(
cos(x− y)

)−
,

so that the solution of PPDE (5.1) is given explicitly by u(t, ω) = cos(ωt + ω̄t), which

serves as a reference value for the numerical examples. This idea is borrowed from

Guo, Zhang and Zhuo [15]. For numerical test, we implemented the finite difference

scheme in Section 4.1 and the probabilistic scheme (of Fahim, Touzi and Warin [13])

in Section 4.3. The results are reported in Figure 1.

A second numerical example The second example of PPDE we considered is

given by

−∂tu−maxa≤a≤a

(
1
2a∂

2
ωωu− f(t, u, ∂ωu, a)

)
= 0, (5.2)

where f(t, y, z, a) = 1
2

(
(
√
az + b/

√
a)−
)2 − zb− b2/2a,

which is taken from Matoussi, Possamai and Zhou [21]. The above equation is moti-

vated by solving a robust utility maximization problem using 2BSDE, which can be

instead characterized by a PPDE (see e.g. (3.3)).

We consider the terminal condition

u(T, ω) = K1 + (ω̄T −K1)+ − (ω̄T −K2)+, ωT :=

∫ T

0
ωsds.
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Figure 1: For PPDE (5.1), we choose µ = −0.2, µ = 0.2, a = 0.04, a = 0.09, T = 1 and

ω0 = ω0 = 0. Then the reference solution is given by u(0, 0) = cos(0) = 1. We compute the

error between the reference solution and the numerical solutions, w.r.t. difference time step

length ∆t.

Then the solution of PPDE (5.2) can also be characterized by the PDE, by adding an

associated variable y,

−∂tv − x∂yv −maxa≤a≤a

(
1
2a∂

2
xxv − f(t, v, ∂xv, a)

)
= 0, (5.3)

v(T, x, y) = K1 + (y −K1)+ − (y −K2)+.

We implemented the finite difference scheme (Section 4.1) and the probabilistic

scheme (Section 4.3) for PPDE (5.2). For reference, we implemented the classical finite

difference scheme of PDE (5.3). We also notice that the generator in PPDE (5.2) is

in fact not Lipschitz but quadratic in z, however, the convergence of the numerical

solutions can be still observed, see Figure 2.

6 Proofs

6.1 Preliminary results

In preparation of the proof of Theorem 3.7, we prove the following lemmas.
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Figure 2: For PPDE (5.1), we choose K1 = −0.2, K2 = 0.2, a = 0.04, a = 0.09, b = 0.05

and T = 1. We provide all the numerical solutions w.r.t. difference time step length ∆t. It

seems that the faire value is closed to 0.129. For finite-difference scheme, when ∆t is greater

than 0.025, we need to use a coarser space-discretization to ensure the monotonicity (similar

to the classical CFL condition), which makes a big difference to the numerical solutions for

the case ∆t < 0.25. However, the convergence as ∆t→ 0 is still obvious.

Lemma 6.1 (Fatou’s Lemma). Assume that the random variables Xn ∈ C0(F) are

bounded. Then we have

lim
n→∞

E [Xn] ≥ E
[

lim
n→∞

Xn
]

Proof. In order to prove the Fatou lemma, it is enough to show the monotone con-

vergence theorem, i.e. given a sequence {Xn : n ∈ N} of increasing random variables,

we have

lim
n→∞

E [Xn] = E [ lim
n→∞

Xn]. (6.1)

Since Xn ∈ C0(F) for each n, it follows from Theorem 31 in [6] that (6.1) holds true.

Recall the nonlinear expectation Eh defined in (3.7).

Lemma 6.2. Let ϕ : Ω → R be bounded uniformly continuous. Then there exists a

modulus continuity ρ : R+ → R+ which depends only on the continuity modulus of ϕ

and |ϕ|0, such that

E [ϕ] ≤ Eh[ϕ] + ρ(h).
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Proof. Denote ρ′ : R+ → R+ as a continuity modulus of ϕ. Let ν ∈ K and Xh,ν be

defined by (3.6) and X̂h,ν its linear interpolation on [0, T ]. Then under the condition

(3.5), it follows from Lemma 4.8 of Tan [30] (see also Dolinsky [7]) that we can construct

a process X̂h,ν and another process X in the same probability space (Ω̃, F̃ , P̃), such

that the image measure of X lies in P, and for some constant C independent of h,

P̃
(∣∣X̂h,ν −X

∣∣ ≥ h1/8
)
≤ Ch1/8.

Let ρ(h) := ρ′(h1/8) + 2‖ϕ‖∞h1/8, then it follows that

E [ϕ] ≤ Ẽ[ϕ(X)] ≤ Ẽ
[
ϕ(X̂h,ν)

]
+ ρ(h),

which concludes the proof by the arbitrariness of ν ∈ K.

Lemma 6.3. Let ϕ : Ω → R be lower semicontinuous and bounded from below, then

it holds for all (t, ω) ∈ Θ that

lim
h→0
Eh[ϕ] ≥ E [ϕ].

In particular, by defining h := inf{t ≥ 0 : |Bt| ≥ x} for some x > 0, we have

lim
h→0
Eh[1{h≤δ}] ≤ E [1{h≤δ}] for any δ > 0.

Proof. Define the approximation for the function ϕ:

ϕn(ω) := inf
ω′∈Ω

{
ϕ(ω′) + n‖ω − ω′‖

}
.

Clearly, for each n ∈ N, function ϕn is Lipschitz continuous, and ϕn ↑ ϕ. By Lemma

6.2, we obtain that

lim
h→0
Eh[ϕ] ≥ lim

h→0
Eh[ϕn] ≥ E [ϕn], for all n ∈ N.

Since ϕn ↑ ϕ, by Fatou’s lemma we have

lim
n→∞

E [ϕn] ≥ E [ϕ].

Therefore

lim
h→0
Eh[ϕ] ≥ E [ϕ]. (6.2)

Then we easily get the symmetric result for upper semicontinuous function ψ, i.e.

lim
h→0
Eh[ψ] ≤ E [ϕ].

To conclude, it remains to prove that the function ω 7−→ 1{h(ω)≤δ} is upper semicon-

tinuous. Note that

{h ≤ δ} = {max
t∈[0,δ]

|Bt| ≥ x}

Since the function ϕ : ω 7→ maxt∈[0,δ] |Bt(ω)| is continuous, the set {h ≤ δ} is closed.

Consequently, the function 1{h≤δ} is upper semicontinuous.

18



Lemma 6.4. For any δ > 0 and ε > 0, define x(δ) = Ld
√
δ
(√
δ +

√
−2 ln εδ

4d

)
and

hδ,x = inf{t ≥ 0 : |Bt| ≥ x}. Then, for δ small enough we have

sup
P∈P

P[hδ ≤ δ] ≤ εδ. (6.3)

Proof. Note that

sup
P∈P

P[hδ ≤ δ] = sup
P∈P

P
[

max
t∈[0,δ]

|Bt| ≥ x
]
≤ d sup

P∈P
P
[

max
t∈[0,δ]

|B1
t | ≥

x

d

]
By the definition of P above (2.1), for all P ∈ P, the canonical process B admits the

canonical decomposition B = AP +MP, where AP = (A1, · · · , Ad) is a finite variation

process and M = (M1, · · · ,Md) is a P-martingale. Moreover, for each i = 1, · · · , d,

P
[

max
t∈[0,δ]

|Bi
t| ≥

x

d

]
= Q

[
max
t∈[0,δ]

|Ait +M i
t | ≥

x

d

]
≤ Q

[
max
t∈[0,δ]

|M i
t | ≥

x

d
− Lδ

]
.

Further, by the time-change for martingales (see e.g. Theorem 4.6 on page 174 of [18]),

there is a scalar Brownian motion W defined on a probability space (Ω,F,P) such that

P
[

max
t∈[0,δ]

|M i
t | ≥

x

d
− Lδ

]
= P

[
max
t∈[0,δ]

|W<M1>t | ≥
x

d
− Lδ

]
≤ P

[
max

t∈[0,L2δ]
|Wt| ≥

x

d
− Lδ

]
= 4P

[
W1 ≥

x/d− Lδ
L
√
δ

]
Since η := x/d−Lδ

L
√
δ

=
√
−2 ln εδ

4d > 1 when δ is small enough, we have

4P
[
W1 ≥ η

]
≤ 4e−

η2

2 =
εδ

d
.

We then conclude that supP∈P P[hδ ≤ δ] ≤ εδ.

6.2 Proof of Proposition 3.2

We only discuss the case of subsolution. The result about the supersolution follows

similarly.

1. We first prove the only if part. Let (t, ω) ∈ [0, T ) × Ω and (α, β, γ) ∈ J u(t, ω)

with a localizing time hδ. Clearly, there is a function ϕ ∈ C1,2
0 (R+ × Rd) such that

ϕ = φα,β,γ on the set [0, δ]× {x ∈ Rd : |x| ≤ x(δ)}, where x(·) is defined as in Lemma

6.4. Thus,

(ϕ− u)0 = max
τ∈T

h̄δ,x

E [(ϕ− u)τ ],

where h̄δ,x := δ ∧ hδ,x with hδ,x be defined as in Lemma 6.4. We have

(ϕ− u)0 ≥ E [(ϕ− u)δ]− E [(ϕ− u)δ − (ϕ− u)h̄δ,x ]. (6.4)

19



For the second term on the right hand side of (6.4), we have

E [(ϕ− u)δ − (ϕ− u)h̄δ,x ] ≤ E
[
|(ϕ− u)δ − (ϕ− u)h̄δ,x |;h

δ,x ≤ δ
]

≤ C sup
P∈P

P[hδ,x ≤ δ].

Take ε > 0. By Lemma 6.4, there is a constant C(ε) > 0 such that for all δ < C(ε) we

have supP∈P P[hδ,x ≤ δ] < εδ
2C . Then it follows from (6.4) that

(ϕ− u)0 > E [(ϕ− u)δ]−
εδ

2
.

We next consider the optimal stopping problem:

Yt(ω) = sup
τ∈Tδ−t

E [(ϕ− u)t,ωτ − ετ ].

According to Ekren, Touzi and Zhang [10], τ∗ := inf{t : Yt = ϕt−ut−εt} is an optimal

stopping rule. Suppose that we always have h̄δ,x ≤ τ∗ ≤ δ. Then we obtain that

E [(ϕ− u)τ∗ − ετ∗] ≤ E [(ϕ− u)δ − εδ] + E [(ϕ− u)τ∗ − (ϕ− u)δ − ε(τ∗ − δ)]
≤ E [(ϕ− u)δ − εδ] + E [|(ϕ− u)τ∗ − (ϕ− u)δ − ε(τ∗ − δ)|;hδ,x ≤ δ]
≤ E [(ϕ− u)δ − εδ] + C sup

P∈P
P[hδ,x ≤ δ]

≤ E [(ϕ− u)δ]−
εδ

2
< (ϕ− u)0.

However, this is in contradiction with the optimality of τ∗. Therefore, there is ω∗ such

that t∗ := τ∗(ω∗) < h̄δ,x(ω∗) and

(ϕ− u)t∗(ω
∗) = max

τ∈Tδ−t∗
E [(ϕ− u)t

∗,ω∗
τ − ετ ].

So we have (
− ∂tϕ+ ε−G(·, u, ∂xϕ, ∂2

xxϕ)
)
(t∗, ω∗) ≤ 0.

By letting δ → 0 and then ε→ 0, we obtain(
− ∂tϕ−G(·, u, ∂xϕ, ∂2

xxϕ)
)
(0, 0) ≤ 0.

Finally, since α = ∂tϕ0, β = ∂xϕ0, γ = ∂2
xxϕ0, this provides that−α−G(0, u0, β, γ) ≤ 0.

2. For the if part, one may apply the same argument as in Proposition 3.11 in [25].

For completeness, we provide the full argument. Let (t, ω) ∈ [0, T )×Ω and ϕ ∈ Au(t, ω)

with a localizing time δ ∈ R+. Without loss of generality, we assume that (t, ω) = (0, 0)

and (ϕ− u)0 = 0. Denote

α := ∂tϕ0, β := ∂xϕ0, and γ := ∂2
xxϕ0. (6.5)

For any ε > 0, since ϕ is smooth, by otherwise choosing a stopping time hδ′ < δ we

may assume

|∂tϕt − α| ≤ ε, |∂xϕt − β| ≤ ε, |∂2
xxϕt − γ| ≤ 2ε, 0 ≤ t ≤ hδ′ .
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Denote αε := α+ [1 + 2L]ε. Then, for all τ ∈ Thδ′ ,

E
[
(u− φαε,β,γ)τ

]
− u0 = E

[
(u− u0 − φαε,β,γ)τ

]
≤ E

[
(u− ϕ)τ

]
+ E
[
(ϕ−ϕ0−φαε,β,γ)τ

]
≤ E

[ ∫ τ

0
(∂tϕs −αε)ds+ (∂xϕs − β) · dBs +

1

2
(∂2
xxϕs − γ) : d〈B〉s

]
.

where the last inequality is due to the Itô’s formula. Note that, for any ‖µ‖∞, ‖a‖∞ ≤
L, we have

EQµ,σ
[ ∫ τ

0
(∂tϕs −αε)ds+ (∂xϕs − β) · dBs +

1

2
(∂2
xxϕs − γ) : d〈B〉s

]
= EQµ,σ

[ ∫ τ

0

(
∂tϕs − α+ (∂xϕs − β) · µs +

1

2
(∂2
xxϕs − γ) : as

)
ds− [1 + 2L]ετ

]
≤ 0.

By the arbitrariness of µ, σ, we see that

E
[
(u− φαε,β,γ)τ

]
− u0 ≤ 0.

That is, (αε, β) ∈ J u0. Since u is a P-viscosity subsolution, it follows that

−αε −G(0, 0, u0, β, γ) ≤ 0.

Let ε→ 0, then the desired result follows.

6.3 Proof of Theorem 3.7

We first introduce two functions:

u(t, ω) = lim
h→0

uh(t, ω) and u(t, ω) = lim
h→0

uh(t, ω). (6.6)

Note that u, u inherit the uniform modulus of continuity of uh, so u, u ∈ BUC(Θ). It is

also clear that u ≤ u and uT = uT . Then it is enough to prove that u is a P-viscosity

supersolution and u is a P-viscosity subsolution, so that by the comparison principle

we may obtain u ≤ u, to conclude the proof of Theorem 3.7.

Proposition 6.5. The functions u and u defined in (6.6) are P-viscosity supersolution

and subsolution, respectively.

Proof. We only prove the result for u. The corresponding result for u can be proved

similarly.

1. Without loss of generality, we only verify the viscosity supersolution property at

the point (0, 0). Let function ϕ ∈ Au(0, 0), and by adding a constant to ϕ, we assume

that u(0, 0) > ϕ(0, 0), so that

0 < η := (u− ϕ)0 = min
τ∈Tδ
E [(u− ϕ)τ ], for some δ > 0. (6.7)

Assume that u and ϕ are both bounded by a constant M ≥ 0. Take a subsequence

still named as uh such that u0 = limh→0 u
h
0 . Now fix a constant ε > 0, and denote
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ϕε(t, x) = ϕ(t, x) − εt. By Lemma 6.4, there is a constant C(ε) ∈ (0, 1/L) such that

for all 0 < δ < C(ε), we have

sup
P∈P

P[hδ,x ≤ δ] ≤ ε

32(2M + ε)
δ. (6.8)

Since uh is uniformly continuous uniformly in h, by considering δ small enough we

may assume that uh − ϕε > 0 on [0, h̄δ,x], where h̄δ,x := δ ∧ hδ,x. It follows from (6.7)

that

(u− ϕε)0 ≤ E [(u− ϕ)δ] = E [(u− ϕε)δ]− εδ. (6.9)

In Step 2 we will show that

E [(u− ϕε)δ] ≤ lim
h→0
Eh[(uh − ϕε)δ]. (6.10)

It follows that for h sufficiently small

(uh − ϕε)0 ≤ Eh
[
(uh − ϕε)δ

]
− 3εδ

4
. (6.11)

Then by the optimal stopping argument in Step 3, we may find (t∗, ω∗) ∈ Θ such that

h̄δ,x(ω∗) ∧ (δ − h) > t∗ ∈ ∆h and

(uh − ϕε)t
∗,ω∗

0 = min
τ∈T h

δ−t∗ ,β∈B
h
Eh[βτ (uh − ϕε)t∗,ω∗τ ], (6.12)

where ∆h := {kh : k ∈ N}, T hδ−t∗ := {τ ∈ Tδ−t∗ : τ takes values in ∆h} and Bh is the

collection of all processes β defined by βt := e
∑[t/h]−1
i=0 αih for some Fih-measurable αi

taking value in [0, L]. In particular, (6.12) implies that

(uh − ϕε)(t∗, ω∗) ≤ inf
0≤α≤L

Eh[eαh(uh − ϕε)t
∗,ω∗

h ]

By (ii) of Assumption 3.6, we obtain

(uh − ϕε)(t∗, ω∗) ≤ Tt
∗,ω∗

h [uh]− Tt
∗,ω∗

h [ϕε] + hρ(h).

Since uh(t∗, ω∗) = Tt
∗,ω∗

h [uh], it follows that

Tt
∗,ω∗

h [ϕε]− ϕε(t∗, ω∗)
h

≤ ρ(h).

Further, by (i) of Assumption 3.6, letting h→ 0, we obtain

−∂tϕ(t∗, ω∗t∗) + ε−G(·, ϕ, ∂xϕ, ∂2
xxϕ)(t∗, ω∗t∗) ≥ 0. (6.13)

We next let δ → 0. Since t∗ < h̄δ,x(ω∗), we have (t∗, ω∗) → 0 as δ → 0. Therefore, it

follows from (6.13) that

−∂tϕ0 + ε−G(0, u0 − η, ∂xϕ0, ∂
2
xxϕ0) ≥ 0.

Finally, we can conclude the proof by letting ε→ 0 and then η → 0.
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2. For the simplification of notation, we denote X := (u−ϕε)δ and Xh := (uh−ϕε)δ.
It follows from (iii) of Assumption 3.6 that {Xh : h > 0} is uniformly bounded and

uniformly continuous uniformly in h, and note that X = limh→0X
h. By Lemma 6.1

and 6.2, we obtain that

lim
h→0
Eh[Xh] ≥ lim

h→0
E [Xh] + lim

h→0

(
Eh[Xh]− E [Xh]

)
≥ E [X] + lim

h→0
inf
`>0

(
Eh[X`]− E [X`]

)
≥ E [X] + lim

h→0
ρ(h) = E [X].

3. We consider the mixed control and optimal stopping problem in finite discrete-

time:

Y h
t (ω) := inf

τ∈T hδ−t,β∈B
Eh[βτ (Zh)t,ωτ ], where Zht := (uh − ϕε)t, t ∈ ∆h. (6.14)

By standard argument, we have

Y h
0 = inf

β∈B
Eh[βτ∗Z

h
τ∗ ], where τ∗ := inf{t ∈ ∆h : Y h

t = Zht }.

Recall that Zh > 0 on [0,hδ,x] for h small enough. Then since τ∗ ≤ δ, we have

Eh[Zhτ∗ ] ≤ Eh[Zhτ∗ ;h
δ,x > δ] + Eh[Zhτ∗ ;h

δ,x ≤ δ]
= inf

β∈B
Eh[βτ∗Z

h
τ∗ ;h

δ,x > δ] + Eh[Zhτ∗ ;h
δ,x ≤ δ]

≤ inf
β∈B
Eh[βτ∗Z

h
τ∗ ] + sup

β∈B
E [βτ∗ |Zhτ∗ |;hδ,x ≤ δ] + Eh[|Zhτ∗ |;hδ,x ≤ δ]

≤ Y h
0 + (1 + eLδ)Eh[|Zhτ∗ |;hδ,x ≤ δ]

≤ Y h
0 + (1 + eLδ)(2M + ε)Eh[1{hδ,x≤δ}].

Further, we obtain from Lemma 6.3 that for h small enough it holds

Eh[1{hδ,x≤d}] < E [1{hδ,x≤d}] +
εδ

8(4M + 2ε)
, (6.15)

So we get

Eh[Zhτ∗ ] ≤ Y h
0 + (1 + eLδ)(2M + ε)E [1{hδ,x≤δ}] +

εδ

8
.

Further, it follows from (6.8) that (1 + eLδ)(2M + ε)E [1{hδ,x≤δ}] ≤ εδ
8 . Therefore,

Y h
0 ≥ Eh[Zhτ∗ ]−

εδ

4
.

Suppose that

h̄δ,x(ω) ∧ (δ − h) ≤ τ∗(ω) ≤ δ, for all ω. (6.16)

Note that

Eh[Zhτ∗ ] ≥ Eh[Zhδ ] + Eh[Zhτ∗ − Zhτ∗∨(δ−h)] + Eh[Zhτ∗∨(δ−h) − Z
h
δ ]. (6.17)
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Further it follows from (6.8) and (6.15) that

I1 := Eh[Zhτ∗ − Zhτ∗∨(δ−h)] = Eh[Zhτ∗ − Zhδ−h; τ∗ < δ − h]

≥ −(4M + 2ε)Eh[1{hδ,x≤δ}] > − (4M + 2ε)E [1{hδ,x≤δ}]−
εδ

8
≥ − εδ

4
.

On the other hand, we have

I2 := Eh
[
Zhτ∗∨(δ−h) − Z

h
δ

]
≥ −Eh

[
(ρu + ρϕ)(h+ 2‖B(δ−h)∧· −Bδ∧·‖)

]
− εh,

where ρu, ρϕ are module of continuity of function u, ϕ, and are chosen to be bounded

and continuous. Again by Lemma 6.3, we have for h sufficiently small that

Eh
[
(ρu + ρϕ)(h+ 2‖B(δ−h)∧· −Bδ∧·‖)

]
< E

[
(ρu + ρϕ)(h+

2‖B(δ−h)∧· −Bδ∧·‖)
]

+
εδ

8
= E

[
(ρu + ρϕ)(h+ 2‖Bh∧·‖

]
+
εδ

8
,

It follows that limh→0 E
[
(ρu + ρϕ)(h+ 2‖Bh∧·‖

]
= 0 and therefore

I2 > −εδ
4
, for h sufficiently small.

Finally, by (6.17) and (6.11) we have

Y h
0 ≥ Eh[Zhδ ]− εδ

4
+ I1 + I2 > Eh[Zhδ ]− 3εδ

4
≥ Zh0 ,

which contradicts the definition of Y in (6.14). Therefore, (6.16) is wrong, i.e. there

is ω∗ such that t∗ := τ∗(ω∗) < h̄δ,x(ω∗)∧ (δ− h). Further, since Yt∗(ω
∗) = Zht∗(ω

∗), we

obtain (6.12).

7 Conclusion

We provide a convergence theorem of monotone numerical schemes for a class of

parabolic PPDE, which generalizes the classical convergence theorem of Barles and

Souganidis [1]. In contrast to the formulation of [32], our conditions are satisfied

by all classical monotone numerical scheme for PDEs, to the best of our knowledge.

Moreover, our results permit to deduce some numerical schemes for path-dependent

stochastic differential game problems and the second order BSDEs whose generator

depends on z (see (3.3), (3.4)), which are new in literatures.

Other numerical schemes, such as the branching process scheme of Henry-Labordère,

Tan and Touzi [17], are possible for some PPDE, but it is not analyzed by the monotone

scheme arguments.
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[8] B. Dupire, Functional Itô calculus, ssrn, 2009, http://ssrn.com/abstract=1435551.

[9] I. Ekren, C. Keller, N. Touzi and J. Zhang, On Viscosity Solutions of Path Depen-

dent PDEs, Anna. Proba. 2014.

[10] I. Ekren, N. Touzi and J. Zhang, Optimal Stopping under Nonlinear Expectation,

preprint.

[11] I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Path

Dependent PDEs: Part I, preprint.

[12] I. Ekren, N. Touzi and J. Zhang, Viscosity Solutions of Fully Nonlinear Path

Dependent PDEs: Part II, preprint.

[13] A. Fahim, N. Touzi and X. Warin, A probabilistic numerical method for fully

nonlinear parabolic PDEs, Ann. Appl. Probab. Volume 21, Number 4, 1322-1364,

2011.

[14] E. Gobet, J.P. Lemor, and X. Warin, A regression-based Monte-Carlo method to

solve backward stochastic differential equations, Ann. Appl. Probab., 15(3):2172-

2202, 2005.

[15] W. Guo, J. Zhang and J. Zhuo, A Monotone Scheme for High Dimensional Fully

Nonlinear PDEs, Annals of Applied Probability, to appear.

[16] J. Guyon and P. Henry-Labordère, Uncertain Volatility Model: A Monte-Carlo

Approach, Journal of Computational Finance, 14(3), 2011.

[17] P. Henry-Labordère, X. Tan and N. Touzi, A numerical algorithm for a class of

BSDE via branching process, Stochastic Processes and their Applications, 124:1112-

1140, 2014.

[18] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, second

edition, Springer, 1991.

25
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