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Abstract

We give a study to the algorithm for semi-linear parabolic PDEs in Henry-Labordère (2012) and then
generalize it to the non-Markovian case for a class of Backward SDEs (BSDEs). By simulating the branch-
ing process, the algorithm does not need any backward regression. To prove that the numerical algorithm
converges to the solution of BSDEs, we use the notion of viscosity solution of path dependent PDEs intro-
duced by Ekren et al. (to appear) [5] and extended in Ekren et al. (2012) [6,7].
c⃝ 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Initially proposed by Pardoux and Peng [16], the theory of Backward Stochastic Differential
Equation (BSDE) has been largely developed and has many applications in control theory,
finance etc. In particular, BSDEs can be seen as providing a nonlinear Feynman–Kac formula
for semi-linear parabolic PDEs in the Markovian case, i.e. the solution of a Markovian type
BSDE can be given as the viscosity solution of a semi-linear PDE. We also remark that this
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connection has been extended recently to the non-Markovian case by Ekren, Keller, Touzi and
Zhang [5] with the notion of viscosity solution of path dependent PDEs (PPDEs).

Numerical methods for BSDE have also been largely investigated since then. The classical
numerical schemes for BSDEs are usually given as a backward iteration, where every step
consists in estimating the conditional expectations, see e.g. Bouchard and Touzi [2], Zhang [22].
Generally, we use the regression method to compute the conditional expectations, which is quite
costly in practice and suffers from the curse of dimensionality.

Recently, a new numerical algorithm has been proposed by Henry-Labordère [11] for a class
of semi-linear PDEs, using an extension of branching process. First, it is a classical result
that the branching diffusion process gives a probabilistic representation of the so-called KPP
(Kolmogorov–Petrovskii–Piskunov) semi-linear PDE (see e.g. Watanabe [21], McKean [14]):

∂t u(t, x)+
1
2

D2u(t, x)+ β


n0

k=0

akuk(t, x)− u(t, x)


= 0 (1.1)

with a terminal condition u(T, x) = ψ(x), where D2 is the Laplacian on Rd , and (ak)0≤k≤n0

is a probability mass sequence, i.e. ak ≥ 0 and
n0

k=0 ak = 1. The above semi-linear PDE
(1.1) characterizes a branching Brownian motion, where every particle in the system dies in
an exponential time of parameter β, and creates k i.i.d. descendants with probability ak . More
precisely, let NT denote the number of particles alive at time T , and (Z i

T )i=1,...,NT denote the
position of each particle, then up to integrability, the function

v(t, x) := Et,x

Π NT

i=1 ψ(Z
i
T )


solves Eq. (1.1), where the subscript t, x means that the system is started at time t with
one particle at position x . This connection has then also been extended for a larger class of
nonlinearity, typically uα, α ∈ [0, 2], with the superdiffusion, for which we refer to Dynkin [4]
and Etheridge [9]. Moreover, this representation allows to solve numerically the PDE (1.1) by
simulating the corresponding branching process.

When the coefficients ak are arbitrary in Eq. (1.1) and the Laplacian D2 is replaced by an Itô
operator L0 of the form

L0u(t, x) := µ(t, x) · Du(t, x)+
1
2
σσ T (t, x) : D2u(t, x),

Henry-Labordère’s [11] proposed to simulate a branching diffusion process with a probability
mass sequence (pk)k=0,...,M , and by counting the weight ak

pk
, he obtained a so-called “marked”

branching diffusion method. A sufficient condition for the convergence of the algorithm is
provided in [11]. In particular, the algorithm does not need to use the regression method, which
is one of the main advantages comparing to the BSDE method.

For PDEs of the form (1.1), Rasulov, Raimova and Mascagni [18] introduced also a Monte-
Carlo method using branching processes. Their method depends essentially on the representation
of its solution by the fundamental solution of the heat equation.

The main objective of this paper is to give a more rigorous study to the algorithm in [11]
and also to generalize it to the non-Markovian case for a class of decoupled Forward Backward
SDEs (FBSDEs) whose generators can be represented as the sum of a power series, which can
be formally approximated by polynomials. Although the polynomial generators are only locally
Lipschitz, the solutions may be uniformly bounded under appropriate conditions, and hence they
can be considered as standard decoupled FBSDEs with Lipschitz generators.
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Our numerical solution is based on a branching process, which is constructed by countably
many independent Brownian motions and exponential random variables. To bring back the
numerical solution to the BSDE context of one Brownian motion with the Brownian filtration,
we use the notion of viscosity solution of path dependent PDEs introduced by Ekren, Keller,
Touzi and Zhang [5] and next extended in Ekren, Touzi and Zhang [6,7]. Namely, we shall
prove that the numerical solution obtained by the branching diffusion is a viscosity solution to a
corresponding semilinear PPDE, which admits also a representation by a decoupled FBSDE as
illustrated in [5]. Then the numerical solution is the unique solution of the corresponding FBSDE
by the uniqueness of the solution to PPDEs.

The rest of the paper is organized as follows. In Section 2, we consider a class of decoupled
FBSDEs whose generators can be represented as a convergent power series. We then introduce
a branching diffusion process, which gives a representation of the solution of the FBSDE with
polynomial generator. In particular, such a representation induces a numerical algorithm for the
class of FBSDEs using branching process. Then in Section 3, we complete the proof of the
regularity property of the value function represented by the branching process. Next, we complete
the proof of the main representation theorem in Section 4. For this purpose, we introduce in
Section 4.1 a notion of the viscosity solution to a class of semilinear PPDEs, where there is no
non-linearity on the derivatives of the solution function, following Ekren, Touzi and Zhang [6,
7]. The uniqueness of the solution to our PPDE and its representation by FBSDE are proved by
the same arguments as in [6,7], which are hence provided in the Appendix. Finally, we illustrate
the efficiency of our algorithm by some numerical examples in Section 5.

2. A numerical algorithm for a class of BSDEs

In this section, we shall consider a class of decoupled FBSDEs whose generators can be
represented as a convergent power series, which can be approximated by polynomials. Then for
FBSDEs with polynomial generators, we provide a representation of their solutions by branching
diffusion processes. In particular, the representation induces a natural numerical algorithm for the
class of FBSDEs by simulating the branching diffusion process.

2.1. A class of decoupled FBSDEs

Let Ω0
:=

ω ∈ C([0, T ],Rd) : ω0 = 0


be the canonical space of continuous paths with

initial value 0,F0 the canonical filtration and Λ0
:= [0, T ] × Ω0. For every (t, ω) ∈ Λ0, denote

∥ω∥t := sup0≤s≤t |ω(s)|.
Then the canonical process B(ω) = {Bt (ω) := ωt , 0 ≤ t ≤ T } for all ω ∈ Ω0, defines a

Brownian motion under the Wiener measure P0.
Let µ : Λ0

→ Rd and σ : Λ0
→ Sd be F0-progressively measurable processes. Suppose

further that for every 0 ≤ t ≤ t ′ ≤ T and ω,ω′
∈ Ω0,

|µ(t, ω)− µ(t ′, ω′)| + |σ(t, ω)− σ(t ′, ω′)| ≤ C


|t − t ′| + ∥ωt∧· − ω′

t ′∧·
∥T


(2.1)

for some constant C > 0, and σσ T (t, ω) ≥ c0 Id for some constant c0 > 0. We denote, for every
(t, x) ∈ Λ0, by t,x X the solution of the following SDE under P0:

Xs = xs, ∀s ≤ t and Xs = xt +

 s

t
µ(r, X ·)dr +

 s

t
σ(r, X ·)d Br , ∀s > t. (2.2)

For later uses, we provide an estimate on the SDE (2.2).
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Lemma 2.1. There is a constant C such that for every t ∈ [0, T ] and (t1, x1), (t2, x2) ∈

[t, T ] × Ω0,

EP0


sup
t≤s≤T

 t,x1 Xs∧t1 −
t,x2 Xs∧t2

2 ≤ C

1 + ∥x1∥

2
t + ∥x2∥

2
t


|t1 − t2| + ∥x1 − x2∥

2
t


.

Proof. Suppose, without loss of generality, that t1 ≤ t2, we notice that

EP0


sup
t≤s≤T

 t,x1 Xs∧t1 −
t,x2 Xs∧t2

2 ≤ EP0


sup
t≤s≤t1

 t,x1 Xs −
t,x2 Xs

2
+ EP0


sup

t1≤s≤t2

 t,x2 X t1 −
t,x2 Xs

2.
Then the estimate in Lemma 2.1 is a standard result for SDEs, by using Itô’s formula and
Gronwall’s Lemma. One can find the arguments in Lemma 2 and Theorem 37 in Chapter V
of Protter [17] for an almost the same result. �

Suppose that ψ : Ω0
→ R is a non-zero, bounded Lipschitz continuous function, and

F : (t, x, y) ∈ Λ0
× R → R is a function Lipschitz in y such that for every y, F(·, y) defined on

Λ0 is F0-progressive. We consider the following BSDE:

Yt = ψ( 0,0 X ·)+

 T

t
F(s, 0,0 X ·, Ys)ds −

 T

t
Zsd Bs, P0-a.s., (2.3)

where the generator F has the following power series representation in y, locally in (t, x):

F(t, x, y) := β


∞

k=0

ak(t, x)yk
− y


, (t, x) ∈ Λ0, (2.4)

for some constant β > 0, and some sequence (ak)k≥0 of bounded scalar F0-progressive functions
defined on Λ0. We also assume that every ak is uniformly 1/2-Hölder-continuous in t and
Lipschitz-continuous in ω.

Denoting by |.|0 the L∞(Λ0)-norm, we now formulate conditions on the power series

ℓ0(s) :=


k≥0

|ak |0 sk and ℓ(s) := β

|ψ |

−1
0 ℓ0(s|ψ |0)− s


, s ≥ 0, (2.5)

so as to ensure the existence and uniqueness of the solution to BSDE (2.3) (see also Remark 2.8
for an intuitive interpretation of the condition).

Assumption 2.2. (i) The power series ℓ0 has a radius of convergence 0 < R ≤ ∞, i.e.
ℓ0(s) < ∞ for |s| < R and ℓ0(s) = ∞ for |s| > R. Moreover, the function ℓ satisfies
either one of the following conditions:
(ℓ1) ℓ(1) ≤ 0,
(ℓ2) or, ℓ(1) > 0 and for some ŝ > 1, ℓ(s) > 0, ∀s ∈ [1, ŝ) and ℓ(ŝ) = 0.
(ℓ3) or, ℓ(s) > 0,∀s ∈ [1,∞) and

 s̄
1

1
ℓ(s)ds = T , for some constant s ∈ (1, R

|ψ |0
).

(ii) The terminal function satisfies |ψ |0 < R.

Proposition 2.3. Let Assumption 2.2 hold true, then the BSDE (2.3) has a unique solution (Y, Z)
such that sup0≤t≤T |Yt | ≤ R0,P0-almost surely for some constant R0 < R.
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Remark 2.4. When ψ ≡ 0, the function ℓ in (2.5) is not well defined. In order to provide a
sufficient condition for the power series representation, we can consider the BSDE (2.3) with
terminal condition YT = ε. Define the corresponding function qε(s) := β


ε−1ℓ0(εs) − s


.

Suppose that for some ε > 0, Assumption 2.2 holds true with the corresponding function qε,
then by the comparison result of standard BSDEs with global Lipschitz generator, the BSDE
(2.3) admits still a unique solution (Y, Z) such that Y is uniformly bounded (notice that when Y
is uniformly bounded, the generator F is Lipschitz in y).

In preparation of the proof, let us consider first the ordinary differential equation (ODE) of
ρ(t) on interval [0, T ]:

ρ′
= ℓ(ρ), with initial condition ρ(0) = 1. (2.6)

Lemma 2.5. Let |ψ |0 < R, then ODE (2.6) admits a unique bounded solution on the interval
[0, T ] if and only if Assumption 2.2(i) holds true. Moreover, in this case, we have 0 ≤ ρ(t) ≤

R0
|ψ |0

, ∀t ∈ [0, T ] for some constant R0 < R.

Proof. First, since the function ℓ is Lipschitz on [0, L] for every L < R
|ψ |0

, then it follows by the
Picard–Lindelöf theorem (see e.g. Chapter 2 of Teschl [20]) that there is Tmax > 0 such that ODE
(2.6) admits a unique solution ρ on [0, Tmax) and that limt→Tmax |ρ(t)| =

R
|ψ |0

> 1. Further, we
observe that ℓ(0) ≥ 0, which implies that ρ(t) ≥ 0 on [0, Tmax). Then it is enough to prove that
Tmax > T .

Let us now discuss three cases of Assumption 2.2. (i) Suppose that (ℓ1) holds true, i.e.
ℓ(1) ≤ 0. It follows then ρ(t) ∈ [0, 1] for every t ∈ [0, Tmax) and hence Tmax = ∞ > T .
(ii) Suppose now ℓ(1) > 0 and for some ŝ > 1, ℓ(s) > 0,∀s ∈ [1, ŝ) and ℓ(ŝ) = 0. It is
clear that in this case, t → ρ(t) is increasing and ρ(t) converges to ŝ as t → ∞, and hence
Tmax = ∞ > T . (iii) Otherwise, suppose that (ℓ3) holds true, it follows then by (2.6) that

Tmax =

 Tmax

0
dt =

 Tmax

0

1
ℓ(ρ(t))

dρ(t) =

 R/|ψ |0

1

1
ℓ(s)

ds,

since ρ(0) = 1 and ρ(Tmax) = R/|ψ |0. We hence deduce that T < Tmax by Assumption 2.2(i)
(ℓ3) and the positivity of the function ℓ on [1,∞). �

Remark 2.6. The ODE (2.6) can be rewritten as

ρ(t) = ρ(0)+

 t

0
ℓ(ρ(s))ds.

Let ϕ(t) := ρ(t)|ψ |0, then under Assumption 2.2 we have

eβtϕ(t) = ϕ(0)+

 t

0
eβsβ


∞

k=0

|ak |0ϕ
k(s)


ds. (2.7)

In other words, the existence and uniqueness of a solution to (2.6) is equivalent to that of (2.7).

Remark 2.7. Suppose that ak ≡ 0 for every k > n0 with some n0 ∈ N, then clearly

ℓ(s) := β
n0

k=0 |ak |0|ψ |
k−1
0 sk

− s


and the convergence radius R = ∞. Denote ℓε(s) :=

β
n0

k=0 |(1 + ε)ak |0|(1 + ε)ψ |
k−1
0 sk

− s

. Let Assumption 2.2 hold true for ℓ, then for ε > 0

small enough, ℓε also satisfies one of the conditions (ℓ1 − ℓ3) in Assumption 2.2. It follows that
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the ODE: ρ′(t) = ℓε(ρ) with initial condition ρ(0) = 1 admits a unique solution on [0, T ] under
Assumption 2.2.

With the above existence and uniqueness result of ODE (2.6), we get the existence and
uniqueness of the BSDE (2.3) in Proposition 2.3.

Proof of Proposition 2.3. By Lemma 2.5, the solution ρ of ODE (2.6) is uniformly bounded by
C

|ψ |0
with some constant C = R0 < R, where R is the convergence radius of the power series

∞

k=0 |ak |0xk . Denote yC := −C ∨ (y ∧ C) for every y ∈ R,

FC (s, x, y) := F(s, x, yC )

and

f C (s, x, y) := β


∞

k=0

|ak |0|yC |
k
− yC


,

f
C
(s, x, y) := −β


∞

k=0

|ak |0|yC |
k
+ |yC |


.

Then FC , f C and f
C

are all globally Lipschitz in y, and f
C

≤ FC ≤ f C . Moreover, if we

replace the generator F by f C (resp. f
C

), and the terminal condition ψ by |ψ |0 (resp. −|ψ |0) in

BSDE (2.3), the solution is given by Z := 0 (resp. Z := 0) and

Y t := ρ(T − t)|ψ |0 (resp. Y t := −ρ(T − t)|ψ |0).

Therefore, by the comparison principle, it follows that the solution (YC , ZC ) of BSDE (2.3) with
generator fC satisfies Y ≤ YC ≤ Y , and hence |YC | ≤ C . Further, since F(t, x, y) = FC (t, x, y)
for all |y| ≤ C , it follows that (YC , ZC ) is the required solution of BSDE (2.3). �

Remark 2.8. When (ak)k≥0 and ψ are all positive constant functions, then the BSDE (2.3)
degenerates to an ODE of the form (2.6). That is also the main reason for which we suppose
Assumption 2.2 to guarantee the existence and uniqueness of the BSDE (2.3).

2.2. A branching diffusion process

Let β > 0, n0 ≥ 0 and p = (pk)0≤k≤n0 be such that


k≤n0
pk = 1 and pk ≥ 0, k =

0, . . . , n0. We now construct a branching diffusion process as follows: a particle starts at time t ,
from position x , performs a diffusion process given by (2.2), dies after a mean β exponential time
and produces k i.i.d. descendants with probability pk . Then the descendants go on to perform the
diffusion process defined by (2.2) driven by independent Brownian motions. Every descendant
dies and reproduces i.i.d. descendants independently after independent exponential times, etc. In
the following, we shall give a mathematical construction of this branching diffusion process in
three steps.

In preparation, let (Ω ,F ,P) be an abstract probability space containing a sequence of
independent d-dimensional standard Brownian motions (W k)k≥1, a sequence of i.i.d. random
variables (T i, j )i, j≥0 as well as i.i.d. r.v. (In)n≥1, where T 0,0 is of exponential distribution
E(β) with mean β > 0 and I1 is of multi-nomial distribution M(p), i.e. P(I1 = k) =

pk, ∀k = 0, 1, . . . , n0. Moreover, the sequences (W k)k≥1, (T i, j )i, j≥0 and (In)n≥1 are mutually
independent.
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A birth–death process. We shall construct a continuous-time birth–death process associated with
the coefficient β > 0 and the probability density sequence (pk)0≤k≤n0 .

The branching process starts with one particle at time 0 which branches at an exponential
time. From time 0 to T , every particle in the system runs an independent exponential time and
then branches into k i.i.d. particles with probability pk . At time t ≥ 0, the number of the particles
in the system is denoted by Nt . We denote by Tn the n-th branching time of the whole system, at
which one of the existing particles branches into In particles. Between Tn and Tn+1, every particle
is indexed by (k1, . . . , kn) ∈ {1, . . . , n0}

n , which means that its parent particle is indexed by
(k1, . . . , kn−1) between Tn−1 and Tn . We also have a bijection c between N and ∪n≥1 2{1,...,n0}

n

defined by

c((k1, . . . , kn)) :=

n
i=1

ki (n0 + 1)i . (2.8)

Denote by Kt the collection of the indices of all existing particles in the system at time t . Then
the initial setting of the system is given by

N0 = 1, T0 = 0, T1 = T 0,0, Kt = {(1)}, ∀t ∈ [0, T1],

and we have the induction relationship

NTi+1 = NTi + Ii+1 − 1, Ti+1 = Ti + min
k∈KTi

T i,c(k)
= Ti + T i,c(Ki+1),

where Ki+1 denotes the index of the particle which branches at time Ti+1. Let

KTi+1 :=

(Ki+1,m) : 1 ≤ m ≤ Ii+1


∪

(k, 1) : k ∈ KTi \ {Ki+1}


.

In particular, if Ii+1 = 0, then KTi+1 =

(k, 1) : k ∈ KTi \ {Ki+1}


. Clearly, at a branching time

Ti , the particle Ki branches into Ii particles which are indexed by (Ki , 1), . . . , (Ki , Ii ), and all
the other particles with index k are re-indexed by (k, 1). Let

Nt := NTi and Kt := KTi , for all t ∈ [Ti , Ti+1).

Then (Nt )t≥0 is a continuous-time Markov process taking value in N. Since it is possible that a
particle dies with k = 0 descendants, the branching system is subject to extinction in finite time
horizon, i.e. P[Nt = 0 for some t > 0] > 0. Furthermore, (Kt )t≥0 is a random process taking
value in ∪n∈N 2{1,...,n0}

n
, and Nt = 0 whenever Kt is empty.

Example 2.9. We give an example of the branching birth–death process, with graphic illustration
below, where n0 = 2. The process starts with one particle indexed by (1), and branches at time
T1, . . . , T5. The indices of the branched particles are respectively (1), (1, 1), (1, 2, 1), (1, 1, 2, 1)
and (1, 1, 1, 1, 1). At terminal time T , the number of particles alive are NT = 5 and

KT =

(1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 2), (1, 1, 2, 1, 1, 1), (1, 2, 1, 1, 1, 1),

(1, 2, 1, 2, 1, 1)

.

• At time T1, particle (1) branches into two particles (1, 1) and (1, 2).
• At time T2, particle (1, 1) branches into (1, 1, 1) and (1, 1, 2), particle (1, 2) is reindexed by
(1, 2, 1).

• At time T3, particle (1, 2, 1) branches into (1, 2, 1, 1) and (1, 2, 1, 2), the other two particles
are reindexed by (1, 1, 1, 1) and (1, 1, 2, 1).
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• At time T4, particle (1, 1, 2, 1) branches into one particle (1, 1, 2, 1, 1), the other particles are
reindexed.

• At time T5, particle (1, 1, 1, 1, 1) branches into (1, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 2), the other
particles are reindexed by (1, 1, 2, 1, 1, 1), (1, 2, 1, 1, 1, 1), (1, 2, 1, 2, 1, 1).

Lemma 2.10. For every probability density sequence (pk)0≤k≤n0 , we have limn→∞ Tn = ∞,
a.s. In particular, the system is well defined from 0 to ∞.

Proof. Without loss of generality, we can consider the case when pk = 0, ∀k < n0 and pn0 = 1.
We first claim that Nt < ∞ for all t ≥ 0, it follows that sup{n : Tn ≤ t} < ∞ for all t ≥ 0 and
hence limn→∞ Tn = ∞. Then to conclude, it is enough to prove that Nt < ∞, ∀t ≥ 0, which
means that the population of the particles never explodes. It is then enough to use Example 2 of
Kersting and Klebaner [12] to finish the proof. �

The branching Brownian motion. Suppose that in the same probability space (Ω ,F ,P), there is a
sequence of independent d-dimensional standard Brownian motions (W 1,W 2, . . .), which is also
independent of the exponential random variables (T i, j )i, j≥0 and multi-nomial random variables
(In)n≥1. We can then construct a branching Brownian motion which starts at time t ≥ 0.

For the first particle in the system indexed by k = (1), we associate it with a Brownian motion
on [t,∞), defined by Bt,(1)

t+s = W 1
s ,∀ 0 ≤ s ≤ T1. Let k = (k1, . . . , kn) ∈ KTn be the index of

a living particle at time Tn , whose parent particle is indexed by (k1, . . . , kn−1), we associate it
with a Brownian motion between [t, t + Tn+1], defined by

Bt,k
t+s :=


Bt,(k1,...,kn−1)

t+s , ∀s ∈ [0, Tn],

Bt,(k1,...,kn−1)

t+Tn
+ W c(k)

s−Tn
, ∀s ∈ [Tn, Tn+1].

By the strong Markov property of the Brownian motion, it is clear that conditioned on (T i, j )i, j≥0

and (In)n≥0, every process (Bt,k
r )r≥t for k ∈ KT is a Brownian motion. In particular, given two
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particles k1
= (k1

1, . . . , k1
n) and k2

= (k2
1, . . . , k2

n) such that k1
j = k2

j for all j = 1, . . . , i , the

associated Brownian motions Bt,k1
and Bt,k2

share the same path before time t + Ti .

The branching diffusion process. To construct a branching diffusion process, we first remark that
for every (t, x) ∈ Λ0, the SDE (2.2) with initial condition t,x Xs = xs, 0 ≤ s ≤ t has a unique
strong solution t,x X adapted to the natural Brownian filtration, hence there is a progressively
measurable function Φt,x

: [t, T ] × C([t, T ],Rd) → R such that t,x Xs = Φt,x(s, B·), P0-a.s.
Then a branching diffusion process t,x X k is given by

t,x X k
t+s := Φt,x(t + s, Bt,k

· ), ∀s ∈ R+ and k ∈ Ks . (2.9)

Moreover, for later uses, we extend t,x X (1) on the whole interval [0, T ] by

t,x X (1)s := xs ∀s ≤ t and t,x X (1)s := Φt,x(s, Bt,(1)
· ), ∀s ≥ t.

Remark 2.11. By the flow property of the SDE (2.2), we have that for every (t, x) ∈ Λ0, r ≤ s
and k ∈ Ks ,

Φt,xt + s, (Bt,k
u )u≥t


= Φt+r, t,x Xk 

t + s, (Bt,k
u )u≥t+r


, P-a.s. (2.10)

To conclude this subsection, we equip the above system with two filtrations. First, F =

(F t )t≥0 with

F t := σ

(Tn, In, Kn)1Tn≤t + ∂1Tn>t , n ≥ 1


,

where ∂ denotes a cemetery point. Intuitively, F is the filtration generated by the birth–death
process. In particular, Tn is a F-stopping time and F Tn = σ


(Tk, Ik, Kk)1≤k≤n


. Next, for every

t ≥ 0, let Ft
= (F t

t+s)s≥0 be the filtration on the probability space (Ω ,F ,P) generated by the
branching diffusion process, which is defined by

F t
t+s := F s


σ


Kr , B(1)r , Bt,k
t+r , 0 ≤ r ≤ s, k ∈ Ks


. (2.11)

2.3. Branching diffusion representation of the backward SDE

Using the branching diffusion process defined above, we can provide a representation of the
solution to the decoupled FBSDE (2.3).

Let (t, x) ∈ Λ0, we consider the branching diffusion process (t,x X k)k∈KT on [t, T ] defined in
(2.9), where the probability sequence p = (pk)0≤k≤n0 satisfies that pk > 0 whenever |ak |0 ≠ 0.
Denote

Wt,x := Π MT −t
n=1


aIn (t + Tn,

t,x X Kn
· )

pIn


, where MT −t := sup{n : t + Tn ≤ T },

is the number of branchings occurred in the particles system between t and T , with the convention
that Π 0

n=1 := 1. Our main representation formula is the following function:

v(t, x) := EP Ψt,x


with Ψt,x := Wt,x Πk∈KT −t ψ
t,x X k

·


, (2.12)

where the integrability of Ψt,x is verified in the following result.
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Proposition 2.12. Suppose that Assumption 2.2 holds true. Then for every (t, x) ∈ Λ0, the
random variable Ψt,x given in (2.12) is integrable and the value function v is uniformly bounded.
Moreover, for every M > 0, there is a constant C such thatv(t, ω)− v(t ′, ω′)

 ≤ C


|t − t ′| + ∥ωt∧· − ω′

t ′∧·
∥T

,

whenever |(t, ω)| ≤ M and |(t ′, ω′)| ≤ M.

The proof of Proposition 2.12 will be completed later in Section 3.
Our main result of the paper is the following representation theorem. Let 0,0 X be the unique

strong solution to the SDE (2.2) in the probability space (Ω ,F ,P); denote

Y 0
t := v(t ,0,0 X ·). (2.13)

We also consider the BSDE (2.3) with generator

Fn0(t, x, y) := β


n0

k=0

ak(t, x)yk
− y


. (2.14)

We define ℓn0 by

ℓn0(s) := β


n0

k=0

|ak |0|ψ |
k−1
0 sk

− s


, ∀s ≥ 0.

It is clear that when Assumption 2.2 holds true for ℓ, then ℓn0 satisfies also Assumption 2.2.
It follows from Proposition 2.3 that the BSDE (2.3) with generator Fn0 has a unique solution,
denoted by (Y, Z), such that Y is uniformly bounded.

Theorem 2.13. Suppose that Assumption 2.2 holds true, and (Y, Z) is the unique solution of
BSDE (2.3) with generator Fn0 (defined by (2.14)) such that Y is uniformly bounded by R0, the
constant introduced in Lemma 2.5. Then Y 0

= Y,P0-a.s.

The proof of this result will be provided in Section 4 using the notion of viscosity solutions to
a path dependent PDE.

Remark 2.14. The results in Proposition 2.12 and Theorem 2.13 hold true for any probability
sequence p = (pk)0≤k≤n0 satisfying that pk > 0 whenever |ak |0 ≠ 0. This implies that the
integrability and expectation of Ψt,x are independent of the choice of p. However, the variance
of Ψt,x does depend on p, where an upper bound is given by

E


Π MT −t

n=1


|aIn |

2
0

p2
In


Πk∈KT −t |ψ |

2
0


. (2.15)

Comparing Ψt,x in (2.12) with the integral part in (2.15), it can be considered as a manipulation

of the coefficients from (ak)k≥0 to
 |ak |

2
0

pk


k≥0. Denote by Rv the convergence radius of the sum

k≥0
|ak |

2
0

pk
sk , then using Proposition 2.12 with the new coefficients, the upper bound (2.15) is

finite if and only if ℓv satisfies one of the conditions (ℓ1 − ℓ3) in Assumption 2.2, where

ℓv(s) := β


n0

k=0

|ak |
2
0

pk
|ψ |

2k−1
0 sk

− s


.
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2.4. Numerical algorithm by the branching process

The representation result in Theorem 2.13 induces immediately a numerical algorithm for
BSDE (2.3) by simulating the branching diffusion process. For numerical implementation, the
branching times can be exactly simulated since they follow the exponential law, and the diffusion
process can be simulated by a Euler scheme.

Let ∆ = (t0, . . . , tn) be a discretization of the interval [0, T ], i.e. 0 = t0 < · · · < tn = T .
Denote |∆| := max1≤k≤n(tk − tk−1). To give the Euler scheme, we introduce the frozen
coefficients µ∆ and σ∆ by

µ∆(t, x) := µ(tk, x̂∆) and σ∆(t, x) := σ(tk, x̂∆), ∀t ∈ [tk, tk+1),

where x̂∆ denotes the linear interpolation of (xt0 , . . . , xtn ) on the interval [0, T ]. Then clearly
the process X∆ given by the SDE

X∆
t =

 t

0
µ∆(s, X∆

· )ds +

 t

0
σ∆(s, X∆

· )d Bs, P0-a.s (2.16)

can be simulated, which is also the Euler scheme of the SDE (2.2). By standard arguments using
Gronwall’s Lemma (see e.g. Kloeden and Platen [13] or Graham and Talay [10] in the Markov
case), we have the following error analysis result: let X be the solution process of (2.2) with initial
condition (t, x) = (0, 0), X∆ be the solution of (2.16) and X∆ denotes the linear interpolation
of (X∆

t0 , . . . , X∆
tn ) on [0, T ].

Lemma 2.15. There is a constant C independent of the discretization ∆ such that

E


sup
0≤t≤T

X t − X∆
t

2 +
X∆

t − X∆
t

2 ≤ C |∆|.

Moreover, for the BSDE (2.3) with a general generator function F : [0, T ] × Ω0
× R → R

which admits a representation (2.4), we can approximate it by some polynomial Fn0 of the form
(2.14). Let F∆

n0
(t, x, y) := β

n0
k=0 a∆

k (t, x)yk
− y


, where

a∆
k (t, x) := ak(ti , x̂∆) for every k = 0, . . . , n0 and t ∈ [ti , ti+1).

Further, under Assumption 2.2, by simulating the branching diffusion process (X∆,k)k∈KT , the
numerical solution

Y ∆
0 := E


Π MT

n=1


a∆

In
(Tn, X∆,Kn

· )

pIn


Πk∈KTψ

X∆,k
·


is the solution of the following BSDE

Y0 = ψ
X∆

·


+

 T

0
F∆

n0


t, X∆

· , Yt

dt −

 T

0
Z t d Bt , P0-a.s.

Finally, we provide an error estimation of the numerical solution.

Proposition 2.16. Under Assumption 2.2, there is a constant C independent of n0 and ∆ such
that

|Y ∆
0 − Y0| ≤ C


|F − F∆

n0
|L∞(Λ0×[−R0,R0])

+
√

∆

.
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Proof. This estimate follows from a direct application of the stability result of backward SDEs
together with the error estimation in Lemma 2.15, see Proposition 2.1 and their subsequent
remark in El Karoui, Peng and Quenez [8]. �

Remark 2.17. Let us consider an arbitrary Lipschitz generator F : Λ0
× R, such that the

associated BSDE of the form (2.3) has a unique solution (Y , Z) where |Y | is uniformly bounded
by some constant R0 > 0. One can also approximate the function F(y) by a polynomial function
F

n
(y) :=

n
k=0 an

k yk . We may then conduct our analysis by formulating Assumption 2.2 on the
coefficients (an

k )0≤k≤n for all n ≥ 1. The problem with this approach is that the convergence
condition would depend on the approximating sequence of polynomials.

3. Hölder and Lipschitz regularity of v

This section is devoted to the proof of Proposition 2.12. We first derive some estimates of
the birth–death process defined in Section 2.2, then together with the tower property, we can
complete the proof of Proposition 2.12.

3.1. Some estimates of the birth–death process

We recall that F = (F t )0≤t≤T is the filtration generated by the birth–death process defined in
the end of Section 2.2, and that the number of branchings occurred in the system before time t is
denote by Mt := sup


n : Tn ≤ t


. We also introduce:

η(t) := EP


Π Mt
n=1

|aIn |0

pIn


|ψ |

Nt
0


.

Lemma 3.1. For every 0 ≤ s ≤ t ,

EP


Π Mt
n=1

|aIn |0

pIn


|ψ |

Nt
0

F s


=


Π Ms

n=1
|aIn |0

pIn


(η(t − s))Ns ,

and

EP


Π Mt
n=1

|aIn |0

pIn


|ψ |

Nt
0 1T1≤t

F T1


=

|aI1 |0

pI1

(η(t − T1))
I11T1≤t .

Proof. (i) Let Z be a random variable and A ∈ F , then LP(Z) denotes the law of Z and LP(Z |A)
denotes the distribution of Z conditioned on A under the probability P. We notice that for every
i, j ≥ 1 and s > 0,

LP(T i, j
− s|T i, j > s) = LP(T i, j ) = E(β).

Let 0 ≤ s ≤ t , the law of number of branches between s and t (which equals Mt − Ms) is
completely determined by Ns, (T i, j )i≥Ms , j≥0 and (Ii )i≥Ms+1. It follows that

LPMt − Ms, (IMs+i )i≥1 | Ns = 1, k ∈ Ks, Ms = j


= LPMt − Ms, (IMs+i )i≥1 | Ns = 1, k ∈ Ks, Ms = j, T Ms ,c(k) > s


= LPMt−s, (Ii )i≥1

,
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and hence

LPMt − Ms, (IMs+i )i≥1 | Ns = 1


= LPMt−s, (Ii )i≥1

.

Since Nt = Ns +
Mt

n=Ms+1(In − 1), we deduce that

EP


Π Mt
n=Ms+1

|aIn |0

pIn


|ψ |

Nt
0

Ns = 1


= η(t − s).

Moreover, since every particle branches independently to each other, we deduce that

EP


Π Mt
n=Ms+1

|aIn |0

pIn


|ψ |

Nt
0

Ns = i


= (η(t − s))i ,

which implies that

EP


Π Mt
n=Ms+1

|aIn |0

pIn


|ψ |

Nt
0

Ns


= (η(t − s))Ns ,

and hence

EP


Π Mt
n=1

|aIn |0

pIn


|ψ |

Nt
0

F s


= EP


Π Ms

n=1
|aIn |0

pIn


Π Mt

n=Ms+1
|aIn |0

pIn


|ψ |

Nt
0

F s



=


Π Ms

n=1
|aIn |0

pIn


(η(t − s))Ns .

(ii) We next prove the second equality, we notice that (Ii )i≥2 and (T i, j )i≥2, j≥0 are all
independent of (T1, I1) under the probability P. Let us consider a family of conditional
probabilities (Ps,i )s∈R+, i∈{0,...,n0} of P w.r.t. the σ -field generated by (T1, I1). Under every
conditional probability Ps,i , the law of (Mt , Nt )1s≤t depends only on (I j ) j≥2 and (T j,l) j≥2, l≥0.
Considering in particular i = 1, we have

LPs,1

Mt − Ms, (Ii )i≥2


= LPMt−s, (Ii )i≥1


.

And hence

EPs,1


Π Mt

n=Ms+1
|aIn |0

pIn


|ψ |

Nt
0 1s≤t


= η(t − s)1s≤t .

Moreover, by the independence of the evolution of i particles under Ps,i , we get

EPs,i


Π Mt

n=Ms+1
|aIn |0

pIn


|ψ |

Nt
0 1s≤t


= (η(t − s))i 1s≤t ,

which implies that

EP


Π Mt
n=1

|aIn |0

pIn


|ψ |

Nt
0 1T1≤t

F T1


=

|aI1 |0

pI1

EPT1,I1


Π Mt

n=MT1+1
|aIn |0

pIn


|ψ |

Nt
0 1T1≤t



=
|aI1 |0

pI1

(η(t − T1))
I11T1≤t ,

since MT1 = 1 by its definition. And we hence conclude the proof. �
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Lemma 3.2. Suppose that for some t ≥ 0, η(t) < ∞. Then there is δ > 0 such that η(s) < ∞,
for every s ∈ [t, t + δ].

Proof. First, it follows from Lemma 3.1 that for every t, δ ≥ 0,

η(t + δ) = EP


Π Mδ

n=1
|aIn |0

pIn


(η(t))Nδ


.

Let us consider another pure birth process (Ñt , K̃t ) on a probability space (Ω̃ , F̃ , P̃) with the
same constant characteristic β and another probability sequence ( p̃k)0≤k≤n0 such that p̃n0 = 1.
We suppose without loss of generality that n0 ≥ 2 and denote C := max0≤k≤n0

|ak |0
pk

+ η(t).

Then clearly it is enough to prove that EP̃C Ñδ

< ∞ for some δ > 0 to conclude the proof.

The distribution of Ñδ can be computed explicitly (see e.g. Athreya and Ney [1, Chapiter III.5,
P109]) and satisfies that for some constant C̃ > 0,

P

Ñδ = n


≤ C̃κn

δ with κδ :=

1 − e−δβ(n0−1)1/(n0−1)

.

Then for δ > 0 small enough, κδ is small enough such that EP̃C Ñδ

< ∞. �

The birth–death system is closely related to ODE (2.6). Let us define

Dt := EP

(1 ∨ Mt )(1 ∨ Nt )


Π Mt

n=1
|aIn |0

pIn


|ψ |

Nt
0


. (3.1)

Proposition 3.3. Suppose that Assumption 2.2 holds true. Then

sup
0≤t≤T

η(t) < ∞ and sup
0≤t≤T

Dt < ∞. (3.2)

Proof. We first observe that η(0) = |ψ |0 by its definition, and it follows from Lemma 3.1 that

η(t) = E[|ψ |01T1>t ] + E


n0

k=0

|ak |0(η(t − T1))
k1T1≤t



= η(0)e−βt
+

 t

0
βe−βs


n0

k=0

|ak |0(η(t − s))k


ds

= e−βt


η(0)+

 t

0
βeβs


n0

k=0

|ak |0(η(s))
k


ds


.

Suppose that T0 := inf{s : η(s) = ∞} ≤ T , then it follows from Lemma 2.5 and Remark 2.6
that η(t) = ρ(t)|ψ |0, ∀t ∈ [0, T0), where ρ is the unique solution to ODE (2.6). Therefore,
it follows still by Lemma 2.5 and Remark 2.6 that η(T0) = ρ(T0)|ψ |0 < ∞, and hence
η(t) < ∞, ∀t ∈ [0, T0 + δ] for some constant 0 < δ < T − T0 by Lemma 3.2. This contradicts
the definition of T0, and hence T0 > T and η(T ) < ∞. Since η is increasing, this provides the
first claim in (3.2).

We next denote

ηε(t) := EP


Π Mt
n=1

|(1 + ε)aIn |0

pIn


|(1 + ε)ψ |

Nt
0


.
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In spirit of Remark 2.7, we know that for ε > 0 small enough, ηε(T ) < ∞. It follows that

sup
0≤t≤T

Dt := sup
0≤t≤T

EP

(1 ∨ Mt )(1 ∨ Nt )


Πn,Tn≤t

|aIn |0

pIn


|ψ |

Nt
0


< ∞,

since there is some constant Cε > 0 such that n < Cε(1 + ε)n for every n ≥ 0. And we hence
conclude the proof. �

3.2. Proof of Proposition 2.12

In preparation of the proof, we first provide a tower property of the branching diffusion
process. Let (t, x) ∈ Λ0 and τ : Ω0

→ R+ be a F0-stopping time such that τ ≥ t , then
τ̂ := τ( t,x X (1)· ) is a Ft

-stopping time in the probability space (Ω ,F ,P), which is clearly inde-
pendent of T 1.

Lemma 3.4. Suppose that Assumption 2.2 holds true, let (t, x) ∈ Λ0, 0 ≤ s ≤ T − t and τ̂ be
given above. Then we have

EPΨt,x | F t
t+s


=


Π Ms

n=1
aIn (t + Tn,

t,x X Kn )

pIn


Πk∈Ksv(t + s, t,x X k

· ) (3.3)

and

v(t, x) = EP

v(τ̂ , t,x X (1)· )1t+T1>τ̂

+
aI1


t + T1,

t,x X (1)·


pI1

v I1

t + T1,

t,x X (1)·


1t+T1≤τ̂


. (3.4)

Proof. First, following the arguments of Lemma 3.1, we know

LPMt − Ms, (IMs+ j ) j≥1, (W
Ms+l)l≥1 | Ns = 1,Ms = i


= LPMt−s, (I j ) j≥1, (W

l)l≥1

.

Together with the flow property of SDE in (2.10), it follows that

EP


Π MT −t
n=Ms+1

aIn (t + Tn,
t,x X Kn

· )

pIn


Πk∈KT −tψ

 t,x X k
·

Ns = 1,Ms = i,

k ∈ Ks, (
t,x X k

r )t≤r≤t+s


= v(t + s, t,x X k

· ).

Then by the independence of evolution of every particle in Ks , (3.3) holds true.
For the second equality, we consider a regular conditional probability distribution (r.c.p.d.)

(Pω̂)ω̂∈Ω of P w.r.t. σ(B(1)
τ̂∧·
) (see also Stroock–Varadhan [19] for the notion of r.c.p.d.). Then for

every ω̂ ∈ Ω , we have Pω̂


B(1)s = B(1)s (ω̂), 0 ≤ s ≤ τ̂ (ω̂)


= 1 and


B(1)s , s ≥ τ̂ (ω̂)


is still

a standard Brownian motion under Pω̂. In particular, Pω̂


X (1)s = X (1)s (ω̂), 0 ≤ s ≤ τ̂ (ω̂)


= 1.
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Further, since T1 = T 0,0 is independent of the Brownian motions B(1), then T 0,0 is still an
exponential random variable under Pω̂, and

LPω̂


T 0,0
− (τ̂ (ω̂)− t) | T 0,0 > (τ̂ (ω̂)− t)


= LPT 0,0

= E(β).

By adding τ̂ (ω̂) on each side, it follows that

LPω̂


t + T 0,0
| t + T 0,0 > τ̂(ω̂)


= LPτ̂ (ω̂)+ T 0,0.

By the expression of Ψt,x and the fact that Pω̂


X (1)s = X (1)s (ω̂), 0 ≤ s ≤ τ̂ (ω̂)


= 1, we then

have

LPω̂

Ψt,x | t + T 0,0 > τ̂(ω̂)


= LP


Ψ
τ̂ (ω̂),X (1)· (ω̂)


.

Taking expectations, it follows that

EPω̂

Ψt,x 1t+T1>τ̂(ω̂) | t + T1 > τ̂(ω̂)


= EPω̂


Ψt,x | t + T1 > τ̂(ω̂)


= v


τ̂ (ω̂), t,x X (1)· (ω̂)


,

and hence by the independence of T1 to t,x X (1) and τ̂ , we have

EPΨt,x 1t+T1>τ̂


= EPΨt,x 1t+T1>τ̂ |t + T1 > τ̂


P(t + T1 > τ̂)

= EP

v

τ̂ , t,x X (1)·


P(t + T1 > τ̂) = EP


v

τ̂ , t,x X (1)·


1t+T1>τ̂


.

Further, using similar arguments as in Lemma 3.1, by considering the distribution of Ψt,x1t+T1≤τ̂

conditioned on F 1
T1

, we get

EPΨt,x 1t+T1≤τ̂


= EP


aI1


t + T1,

t,x X (1)·


pI1

v I1

t + T1,

t,x X (1)·


1t+T1≤τ̂


,

which concludes the proof. �

Proof of Proposition 2.12. (i) First, it follows immediately from Proposition 3.3 that Ψt,x is
integrable and |v(t, x)| ≤ ρ(T − t)|ψ |0 ≤ R0.

(ii) Let t ∈ [0, T ] and x1, x2 ∈ Ω0. It follows then by Lemma 2.1 together with the
Cauchy–Schwarz inequality, that for every s ∈ [t, T ] and k ∈ Ks :

EP


sup
t≤r≤s

|
t,x1 X k

r −
t,x2 X k

r |


≤ C


1 + ∥x1∥t + ∥x2∥t


∥x1 − x2∥t ,

for some constant C independent of x1, x2. Then using the fact that (ak)0≤k≤n0 and ψ are all
Lipschitz in x,v(t, x1)− v(t, x2)

 ≤ EPΨt,x1 − Ψt,x2

 ≤ C Dt EP t,x1 X −
t,x2 X


T


≤ C


1 + ∥x1∥t + ∥x2∥t


∥x1 − x2∥t ,

where Dt is defined in (3.1).
(iii) Let 0 ≤ s ≤ t ≤ T , then it follows from Lemma 3.4 that

|v(s, x)− v(t, xs∧·)| ≤

EP

Π Mt−s

n=1
aIn (Tn,

s,x X Kn
· )

pIn

Πk∈Kt−sv(t,
s,x X k

· )


− v(t, xs∧·)


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≤ C


sup
s≤r≤t

Dr

EP sup

r∈[s,t]
|xs −

s,x X k
r |


+

EP

Π Mt−s

n=1
aIn (t, xs∧·)

pIn


v(t, xs∧·)

Nt−s


− v(t, xs∧·)


≤ C(1 + ∥x∥s)

√
t − s + |φ(t)− φ(s)|,

where φ is the unique solution of the ODE

φ′(r) = β


n0

k=0

ak(t, x)φk(r)− φ(r)


with terminal condition φ(t) = v(t, xs∧·).

Moreover, by the comparison principle of the ODE, |φ(r)| ≤ ρ(r), ∀r ∈ [s, t]. Then |φ(t) −

φ(s)| ≤ C(t − s) for some constant C independent of (s, t, x), which implies that v is locally
(1/2)-Hölder in t . �

Remark 3.5. When (ak)0≤k≤n0 and ψ are all constants, the value function v(t, x) is independent
of x and t → v(T − t, x)|ψ |

−1
0 is a solution to ODE (2.6). Therefore, in spirit of Lemma 2.5,

Assumption 2.2 is also a necessary condition for the integrability of Ψ0,0.

4. The branching diffusion representation result

This section is devoted to the proof of Theorem 2.13.
We first consider a class of semi-linear parabolic path-dependent PDEs (PPDEs) and introduce

a notion of viscosity solution, following Ekren, Keller, Touzi and Zhang [5] and Ekren, Touzi
and Zhang [6,7]. Our objective is to show that the value function v, defined by our branching
diffusion representation, and the Y -component of the BSDE are viscosity solutions of the same
path-dependent PDE. Then, our main result follows from a uniqueness argument.

4.1. Viscosity solutions of PPDEs and FBSDEs

We consider a PPDE which is linear in the first and second order derivatives of the solution
function. This is a simpler context than that of [5–7]. As a consequence, following Remark
3.9 in [6], we use a simpler definition of viscosity solutions. We shall also provide an (easy)
adaptation of the arguments in [6] which relaxes their boundedness conditions, thus allowing the
terminal condition and the generator to have linear growth.

4.1.1. Differentiability on the canonical space
For all t ∈ [0, T ], we denote by Ω t

:= {ω ∈ C([t, T ],Rd) : ωt = 0} the shifted canonical
space, Bt the shifted canonical process on Ω t ,Ft the shifted canonical filtration generated by
Bt ,Pt

0 the Wiener measure on Ω t and Λt
:= [t, T ] × Ω t .

For s ≤ t, ω ∈ Ω s and ω′
∈ Ω t , define the concatenation path ω⊗t ω

′
∈ Ω s by

(ω⊗t ω
′)(r) := ωr 1s≤r<t + (ωt + ω′

r )1t≤r≤T , ∀r ∈ [s, T ].

Let ξ ∈ F 0
T and V be a F0-progressive process, then for every (t, ω) ∈ Λ0, we define ξ t,ω

∈ F t
T

and (V t,ω
s )t≤s≤T by

ξ t,ω(ω′) := ξ(ω⊗t ω
′), V t,ω

s (ω′) := Vs(ω⊗t ω
′), ∀ω′

∈ Ω t . (4.1)
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Following Ekren, Touzi and Zhang [6,7], we define some classes of processes in Λt , t ≥ 0. Let
C0(Λt ) be the collection of all Ft -progressive processes which are continuous under the norm
d∞, where

d∞


(s, ω), (s′, ω′)


:= |s − s′

| + sup
t≤r≤T

|ωs∧r − ω′

s′∧r |, ∀(s, ω), (s′, ω′) ∈ Λt .

Denote by C0
b(Λ

t ) (resp. UC(Λt )) the collection of functions in C0(Λt ) which are uniformly
bounded (resp. uniformly continuous), and UCb(Λt ) := UC(Λt ) ∩ C0

b(Λ
t ).

Next, denote by X0,t,x the solution of the SDE on (Ω t ,F t
T ,P

t
0):

Xs = xs, ∀s ≤ t and Xs = xt +

 s

t
µ(r, X ·)dr +

 s

t
σ(r, X ·)d Bt

r , ∀s > t. (4.2)

Clearly, X0,t,x under Pt
0 has the same law as that of t,x X introduced in (2.2) under P0. We denote

the induced measure on the shifted space Ω t by:

Pt,x := Pt
0 ◦

X0,t,x

− xt
−1 and PX := P0,0. (4.3)

Remark 4.1. Let (t, x) ∈ Λ0, τ ≥ t be a Ft -stopping time on Ω t , ξ ∈ F t
T and (Pω)ω∈Ω be

a regular conditional probability distribution (r.c.p.d., see Stroock–Varadhan [19]) of Pt,x w.r.t.
F 0
τ , then clearly, EPω [ξ ] = EPτ(ω),ω [ξ τ(ω),ω] for Pt,x-a.s. ω ∈ Ω .

For every s ∈ [0, T ) and u : Λs
−→ R, we introduce the Dupire [3] right time-derivative of

u defined by the following limit, if exists,

∂t u(t, ω) := lim
h↓0

u(t + h, ω·∧t )− u(t, ω)

h
, t < T, and

∂t u(T, ω) := lim
t<T,t→T

∂t u(t, ω).

Definition 4.2. Let u be a process C0(Λt ). We say u ∈ C1,2(Λt ) if ∂t u ∈ C0(Λt ) and there exist
∂ωu ∈ C0(Λt ,Rd), ∂2

ωωu ∈ C0(Λt ,Sd) such that for all r ≥ t ,

dur = (∂t u)r dr + (∂ωu)r · d Br +
1
2
(∂ωωu)r : d⟨B⟩r , Pt,x-a.s. (4.4)

If, in addition, u ∈ C0
b(Λ

t ), we then say u ∈ C1,2
b (Λt ).

It is clear, for s ≤ t, ω ∈ Ω0 and u ∈ C1,2(Λs), we have ut,ω
∈ C1,2(Λt ).

Finally, for all t ∈ [0, T ], we denote by T t the collection of all Ft -stopping times τ such that
{ω : τ(ω) > s} is an open set in (Ω t , ∥·∥T ) for all s ∈ [t, T ], and by T t

+ the collection of stopping
times τ ∈ T t such that τ > t . The set Λt (τ ) := {(t, ω) ∈ Λt

: t < τ(ω)} is the corresponding
localized canonical space, and we define similarly the spaces C0(Λt (τ )),C1,2(Λt (τ )), etc.

4.1.2. A path-dependent PDE
In this section, we do not need the restriction that the generator has a power series represen-

tation in y as in (2.4). We then consider a slightly more general generator F : Λ0
× R → R
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such that (t, ω) −→ F(t, ω, y) is F0-progressive for every y ∈ R. Consider the second order
path-dependent differential operator:

Lϕ := ∂tϕ + µ · ∂ωϕ +
1
2
σσ T

: ∂2
ωωϕ. (4.5)

Given a FT -measurable r.v. ξ : Ω0
−→ R, we consider the path-dependent PDE:

−


Lu + F(·, u)

(t, ω) = 0, ∀(t, ω) ∈ [0, T )× Ω0, (4.6)

with terminal condition u(T, ω) = ξ(ω), ∀ω ∈ Ω0.

Assumption 4.3. There is a constant C such that supt≤T |F(t, 0, 0)| ≤ C , andF(t, ω, y)− F(t, ω′, y′)
+ |ξ(ω)− ξ(ω′)| ≤ C


|y − y′

| + ∥ω − ω′
∥T

,

for every t ∈ [0, T ], (ω, y), (ω′, y′) ∈ Ω0
× R.

We denote by U the class of functions u defined on Λ0 satisfying, for every M > 0, there is
some continuity modulus ρM such that

u(t, ω)− u(t ′, ω′) ≤ ρM

d∞


(t, ω), (t ′, ω′)


,

whenever t ≤ t ′ and ∥ω∥ ≤ M, ∥ω′
∥ ≤ M,

and by U the class of functions u such that −u ∈ U ; we next introduce, for every F0-adapted
process u, two classes of test functions:

Au(t, ω) :=


ϕ ∈ C1,2(Λt ) : ∃ H ∈ T t

+, (ϕ − ut,ω)t (0) = min
τ∈T t

EPt,ω

(ϕ − ut,ω)τ∧H


,

Au(t, ω) :=


ϕ ∈ C1,2(Λt ) : ∃ H ∈ T t

+, (ϕ − ut,ω)t (0) = max
τ∈T t

EPt,ω

(ϕ − ut,ω)τ∧H


.

The next definition requires the following notation for the path-dependent second order
differential operator on the shifted canonical space: for all (s, ω′) ∈ Λt ,

(Lt,ωϕ)(s, ω′) := ∂tϕ(s, ω
′)+ (µt,ω

· ∂ωϕ)(s, ω
′)+

1
2


(σσ T )t,ω : ∂2

ωωϕ

(s, ω′).

Definition 4.4. Let u : Λ0
−→ R be a locally bounded F0-progressive process.

(i) We say that u ∈ U (resp. u ∈ U ) is a viscosity subsolution (resp. supersolution) of PPDE
(4.6) if, for any (t, ω) ∈ [0, T ) × Ω0 and any ϕ ∈ Au(t, ω) (resp. ϕ ∈ Au(t, ω)), it holds
that 

−Lt,ωϕ − F t,ω(·, ut,ω)

(t, 0) ≤ (resp. ≥)0.

(ii) We say that u is a viscosity solution of PPDE (4.6) if it is both a viscosity subsolution and a
viscosity supersolution.

Remark 4.5. (i) In Definition 4.4, we restrict ourselves, without loss of generality, to the test
functions ϕ ∈ A (resp. A) such that (ϕ − ut,ω)t (0) = 0.

(ii) Similar to Remark 3.9 of Ekren, Keller, Touzi and Zhang [5], we can easily verify that
under Assumption 4.3, for every λ ∈ R, u is a viscosity solution to (4.6) if and only if
ũ(t, ω) := eλ(T −t)u(t, ω) is a viscosity solution of

−Lũ − Fλ(., ũ) = 0, where Fλ(t, ω, y) := −λy + eλt Ft, ω, e−λt y

.
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(iii) Similar to Remark 2.11 of [5], we point out that in the Markovian setting, where the
PPDE (4.6) reduces to a classical PDE, a viscosity solution in the sense of Definition 4.4 is
consistent to the viscosity solution in standard sense, by the uniqueness result proved below.

4.1.3. The existence and uniqueness of solutions to PPDE
This section follows closely the arguments of [5–7]. However, their results do not apply to our

context, because of the possible unboundedness of µ and σ . Moreover, the PPDE in our context
is linear in the gradient and the Hessian components, which significantly simplifies the approach,
see Remark 3.9 of [6].

The above viscosity solution to PPDE (4.6) is closely related to the following decoupled
FBSDE. For every (t, x) ∈ Λ0, let X0,t,x be the solution of (4.2), (Y 0,t,x,Z0,t,x) be the solution
of the BSDE on (Ω t ,F t

T ,P
t
0),

Ys = ξ(X0,t,x
· )+

 T

s

Fr, X0,t,x
· ,Yr


dr −

 T

s

Zr · d Bt
r . (4.7)

By the Blumenthal 0–1 law, Y 0,t,x
t is a constant and we then define

û(t, x) := Y 0,t,x
t . (4.8)

For later use, we observe that, since the diffusion matrix σ is nondegenerate, the above BSDE
(4.7) is equivalent to the following BSDE on (Ω t ,F t

T ,Pt,x):

Ỹs = ξ t,x(Bt
· )+

 T

s

F t,xr, Bt
· , Ỹr


dr −

 T

s
Z̃r ·


d Bt

r − µt,x(r, Bt
· )dr


,

where F t,x is the shifted function of F as introduced in (4.1). Denote its solution by
(Ỹ 0,t,x, Z̃0,t,x), then Y 0,t,x

t = Ỹ 0,t,x
t = û(t, x) for every (t, x) ∈ Λ0. Moreover, by Eq. (4.6)

of [6], we have the dynamic programming principle

Ỹ 0,t,x
s = ût,x(τ, Bt

· )+

 τ

s

F t,xr, Bt
· , Ỹ 0,t,x

r


dr

−

 τ

s
Z̃0,t,x

r ·

d Bt

r − µt,x(r, Bt
· )dr


, Pt,x-a.s., (4.9)

for all (t, x) ∈ Λ0 and τ ∈ T t .
Now, let us provide a representation of PPDE (4.6) by BSDE and a uniqueness result, whose

proofs are very close to that in [5–7], and we hence complete them in the Appendix.

Theorem 4.6. Let Assumption 4.3 hold true.

(i) There is a constant C > 0 such that ∀(t, ω), (t ′, ω′) ∈ Λ0,

|û(t, ω)− û(t ′, ω′)| ≤ C

∥ω∥t + ∥ω′

∥t ′


|t − t ′| + ∥ωt∧· − ω′

t ′∧·
∥T

.

(ii) û is a viscosity solution to PPDE (4.6).

Theorem 4.7. Let Assumption 4.3 hold true, u1, u2 be two F0-progressive càdlàg processes
on Ω0 with corresponding jumps 1u1

≥ 0 ≥ 1u2. Assume that u1 (resp. u2) is a viscosity
subsolution (resp. supersolution) of PPDE (4.6), and u1(T, ·) ≤ ξ(·) ≤ u2(T, ·). Then u1

≤ u2

on Λ0.
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4.2. Proof of Theorem 2.13

Finally, we can complete the proof of our main result which gives a representation of BSDE
by the branching process.

Proof of Theorem 2.13. By Theorems 4.6 and 4.7, we only need to show that v is a viscosity
solution of (4.6) with terminal condition ψ and generator Fn0 defined in (2.14) following
Definition 4.4. We shall only show the subsolution part. Moreover, we recall that in the branching
process, the process t,x X (1) associated with the first particle is extended after its default time T1

by t,x X (1)s := Φt,x(s, Bt,(1)) for all s ∈ [t, T ], where Bt,(1) is defined by Bt,(1)
t+s := W 1

s for all
s ∈ [t, T ].

Suppose that v is not a viscosity subsolution of (4.6), then by Definition 4.4 and Remark 4.5,
there is (t0, ω0) ∈ Λ0 and ϕ ∈ Av(t0, ω0) such that v(t0, ω0) = ϕ(t0, 0) and

− Lϕ(t0, ω0) = −Lϕ(t0, ω0)− βGϕ(t0, ω0) = c > 0, (4.10)

where L is defined by (4.5) and

Gϕ(t, ω) :=

n0
k=0

ak(t, ω)ϕ
k(t, ω)− ϕ(t, ω).

Without loss of generality, we suppose that t0 = 0. Then 0,ω0 X (1) =
0,0 X (1). Further, it follows

by the continuity of functions ϕ and v in Proposition 2.12 that for every ε > 0, there is H ∈ T 0
+

such that for every t ∈ [0, τ̄ ] (with τ̄ := H(0,0 X (1)· )),vt, 0,0 X (1)·


− v


0, 0

+ Gϕ

t, 0,0 X (1)·


− Gv


t, 0,0 X (1)·


e−βt

 ≤ ε,

and

−Lϕ(t, 0,0 X (1)· ) ≥ c/2.

Clearly, τ̄ is a F0
-stopping time (see (2.11)) in probability space (Ω ,F ,P). Denote Hh = H ∧ h

the F0-stopping time on (Ω0,F 0,P0), τ̄h := τ̄ ∧ h and X t :=
0,0 X (1)t the F0

-stopping time and
process on (Ω ,F ,P), it follows from Eq. (3.4) of Lemma 3.4, together with (4.10), that

EPX

ϕ(Hh, B0

· )− v(Hh, B0
· )


= EP

ϕ(τ̄h, X ·)− v(τ̄h, X ·)


= EP


ϕ(τ̄h, X ·)− ϕ(0, 0)+ v(0, 0)− v(τ̄h, X ·)


= EP


ϕ(τ̄h, X ·)− ϕ(0, 0)+ Gv(T1, X ·)1τ̄h≥T1


+ EP


v(T1, X ·)− v(τ̄h, X ·)


1τ̄h≥T1


≤ −

c

2
EPτ̄h


− E

 τ̄h

0


βGϕ(t, X ·)− Gv(t, X ·)βe−βt


dt


+ EP


v(T1, X ·)− v(τ̄h, X ·)


1τ̄h≥T1


≤


−

c

2
+ εβ + 2ε


EP

[τ̄h] < 0
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for ε small enough, which is in contradiction with the fact that ϕ ∈ Av(t0, ω0) (see its definition
below Assumption 4.3). Therefore, v is a viscosity subsolution of Eq. (4.6). �

5. Numerical examples

In this section, we provide two numerical illustrations of our representation result, and the
corresponding numerical implications.

5.1. A two-dimensional example

Let us consider the following two decoupled FBSDEs:

d X t = σ X t d Bt , X0 = 1, (5.1)

dYt = −β

F(Yt )− Yt


dt + Z t d Bt , (5.2)

with terminal condition YT = ψ(XT , AT ) and At :=
 t

0 Xsds, and the non-linearity F is given
by F1(y) = y2 or F2(y) = −y2. It is clear that the solution Y can be given by the unique solution
of PPDE

−∂t u(t, ω)−
1
2
σ 2ω2

t ∂
2
ωωu(t, ω)− F(u(t, ω)) = 0,

with terminal condition u(T, ω) := ψ(ωT ,
 T

0 ωsds).
On the other hand, by adding a variable a, one can characterize the solution of FBSDE (5.1)

by some function v(t, x, a) which is a classical viscosity solution of the following two PDEs:

∂tv1 + x∂av1 +
1
2
σ 2x2∂2

xxv1 + β(v2
1 − v1) = 0, v1(T, x, a) = ψ(x, a) : PDE1 (5.3)

∂tv2 + x∂av2 +
1
2
σ 2x2∂2

xxv2 + β(−v2
2 − v2) = 0,

v2(T, x, a) = ψ(x, a) : PDE2.
(5.4)

These two-dimensional PDEs can be solved by a finite-difference method, which provide a
benchmark for the evaluation of the performance of our Monte Carlo algorithm.

In our numerical experiments, we have taken a diffusion coefficient σ = 0.2 and a Poisson
intensity β = 0.1, and the maturity T = 2 or T = 5 years. For T = 2 years (resp. 5 years), the
probability of default is around 0.18 (resp. 0.39). The terminal condition is ψ(x, a) = ( a

T − 1)+.
In comparison with the KPP type PDE with F1(y) = y2, the replacement of the non-linearity

y2 by −y2 has added the term (−1)NT −1 in the multiplicative functional (see Eq. (2.12)), without
changing the complexity of the branching diffusion algorithm. More precisely, we have:

v1(0, X0, A0) = E0,x


NT
i=1

ψ(X i
T , Ai

T )


, (5.5)

v2(0, X0, A0) = E0,x


(−1)NT −1

NT
i=1

ψ(X i
T , Ai

T )


. (5.6)

Our branching diffusion algorithm has been checked against a two-dimensional PDE solver
with an ADI scheme (see Tables 1, 2). The degenerate PDEs have been converted into elliptic
PDEs by introducing the process Ãt =

 t
0 Xsds + (T − t)X t , satisfying d Ãt = (T − t)d X t .
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Table 1

MC price quoted in percent as a function of the number of MC paths 2N . PDE pricer(PDE1) = 5.54. PDE
pricer(PDE2) = 5.17 (CPU PDE: 10 s). Maturity = 2 years. Non-linearities for PDE1 (resp. PDE2) F1(u) = u2 (resp.
F2(u) = −u2). For completeness, the price with β = 0 (which can be obtained using a classical Monte-Carlo pricer)
is 6.52.

N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2) CPU (s)

12 5.69 0.16 5.36 0.16 0.1
14 5.61 0.08 5.23 0.08 0.6
16 5.50 0.04 5.15 0.04 1.5
18 5.52 0.02 5.16 0.02 5.9
20 5.53 0.01 5.16 0.01 23.6
22 5.54 0.00 5.17 0.01 94.1

Table 2

MC price quoted in percent as a function of the number of MC paths 2N . PDE pricer(PDE1) = 7.24. PDE
pricer(PDE2) = 5.51 (CPU PDE: 25 s). Maturity = 5 years. Non-linearities for PDE1 (resp. PDE2) F1(u) = u2 (resp.
F2(u) = −u2). For completeness, the price with β = 0 (which can be obtained using a classical Monte-Carlo pricer)
is 10.24.

N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2) CPU (s)

12 7.40 0.25 5.63 0.26 0.3
14 7.28 0.12 5.60 0.13 1.1
16 7.20 0.06 5.47 0.07 4.3
18 7.24 0.03 5.48 0.03 17.0
20 7.24 0.02 5.50 0.02 68.3
22 7.24 0.01 5.51 0.01 272.9

The computational experiments were done using a PC with 2.99 GHz Intel Core 2 Duo
CPU. Note that our algorithm converges to the exact PDE result as expected and the error
is properly indicated by the Monte-Carlo standard deviation estimator (see column Stdev). In
order to illustrate the impact of the non-linearity F on the price v, we have indicated the price
corresponding to β = 0.

5.2. An eight-dimensional example

We would like to highlight that the high-dimensional case can be easily handled in our
framework by simulating the branching particles with a high-dimensional diffusion process. This
is out-of-reach with finite-difference scheme methods and not such an easy step for the classical
numerical schemes of BSDEs which require computing conditional expectations. In order to
illustrate this point, we have implemented our algorithm for the following decoupled FBSDEs

d X i
t = σi X i

t d Bi
t , d⟨Bi , B j

⟩t = δi, j dt, X i
0 = 1, i, j = 1, . . . , 4, (5.7)

dYt = −β

F(Yt )− Yt


dt +

4
i=1

Z i
t d Bi

t , (5.8)

with terminal condition YT = ψ(XT , AT ), Ai
t :=

 t
0 X i

sds, and the non-linearity F is given by
F1(y) = y2 or F2(y) = −y2. X t = (X i

t )i=1,...,4 define a 4d uncorrelated geometric Brownian
motion and we have 4 path-dependent variables At = (Ai

t )i=1,...,4. Similarly, the solution is
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Table 3

MC price quoted in percent as a function of the number of MC paths 2N . Maturity = 2 years. Non-linearities for PDE1
(resp. PDE2) F1(u) = u2 (resp. F2(u) = −u2). For completeness, the price with β = 0 (which can be obtained using a
classical Monte-Carlo pricer) is 3.29. The average number of descendants generated is 1.22.

N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2)

12 2.77 0.08 2.67 0.08
14 2.69 0.04 2.60 0.04
16 2.71 0.02 2.62 0.02
18 2.72 0.01 2.63 0.01
20 2.74 0.00 2.65 0.00
22 2.74 0.00 2.65 0.00

Table 4

MC price quoted in percent as a function of the number of MC paths 2N . Maturity = 5 years. Non-linearities for PDE1
(resp. PDE2) F1(u) = u2 (resp. F2(u) = −u2). For completeness, the price with β = 0 (which can be obtained using a
classical Monte-Carlo pricer) is 5.24. The average number of descendants generated is 1.65.

N Fair (PDE1) Stdev (PDE1) Fair (PDE2) Stdev (PDE2)

12 3.35 0.11 2.99 0.11
14 3.40 0.06 3.04 0.06
16 3.38 0.03 3.01 0.03
18 3.38 0.01 2.99 0.01
20 3.38 0.01 3.00 0.01
22 3.38 0.00 3.00 0.00

related to the non-linear 8d-PDEs

∂tv1 + Lv1 + β(v2
1 − v1) = 0, v1(T, x, a) = ψ(x, a) : PDE1 (5.9)

∂tv2 + Lv2 + β(−v2
2 − v2) = 0, v2(T, x, a) = ψ(x, a) : PDE2 (5.10)

with L =
1
2

4
i=1 σ

2
i ∂

2
xi

+
4

i=1 xi∂ai . In our numerical experiments, we have taken a diffusion
coefficient σi = 0.2, a Poisson intensity β = 0.1, and the maturity T = 2 or T = 5 years. The

terminal condition is ψ(x, a) = (

4
i=1 ai
4T − 1)+.

These eight-dimensional PDEs suffer from the curse of dimensionality and we are unable to
solve them by a finite-difference method. In the particular case of a constant terminal condition
v1(T, x, a) = v2(T, x, a) = 1/2, these PDEs reduce to ODEs which can be integrated out
explicitly: v1(0, X0, 0)−1

= 1 + eβT , v2(0, X0, 0)−1
= −1 + 3eβT . As a simple preliminary

benchmark, we have checked that our numerical algorithm reproduces exactly these solutions.

In the case of the non-trivial payoff ψ(x, a) = (

4
i=1 ai
4T − 1)+, we have checked that our

branching diffusion algorithm converges (see Tables 3, 4). We also report the average number of
descendants generated up to the maturity T . As far as we know, we are not unaware of alternative
numerical methods for solving such a non-linear 8d-PDE.
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Appendix

Here we complete the proofs for Theorems 4.6 and 4.7, where the arguments are mainly
adapted from that in Ekren, Touzi and Zhang [6,7].

Proof of Theorem 4.6. (i) is proved in Proposition 4.5 of [6], since our BSDE (4.7) is a
particular case to their Eq. (4.4). It is in fact an immediate consequence of Proposition 2.1 in
El Karoui, Peng and Quenez [8] together with the estimation in Lemma 2.1.

(ii) We adapt the arguments in the proof of Proposition 4.5 [6] to our context. We only show
that û is a viscosity subsolution. Assume û is not a viscosity subsolution, then there exist
(t, ω) ∈ Λ0 and ϕ ∈ Aû(t, ω) such that

c := −Lt,ωϕ(t, 0)− F t,ω(t, 0, û(t, ω)) > 0.

Without loss of generality, we may also assume that ϕ(t, 0) = û(t, ω). Denote, for s ∈ [t, T ],

Ỹ ′
s := ϕ(s, Bt ), Z̃ ′

s := ∂ωϕ(s, Bt ), δYs := Ỹ ′
s − Ỹ 0,t,ω

s ,

δZs := Z̃ ′
s − Z̃0,t,ω

s .

Applying Itô’s formula, we have Pt,ω − a.s,

d(δYs) =


(Lt,ωϕ)(s, Bt

· )+ F t,ωs, Bt
· , Ỹ 0,t,ω

s


ds + δZs ·


d Bt

s − µt,ω(s, Bt
· )ds


=


(Lt,ωϕ)(s, Bt

· )+ F t,ωs, Bt
· , Ỹ ′

s


+ αsδYs


ds

+ δZs ·

d Bt

s − µt,ω(s, Bt
· )ds


,

where α is a Ft -progressively measurable process bounded by the Lipschitz constant L0 of F in
y.

Observing that Ỹ ′
t = ϕ(t, 0) = û(t, ω) and δYt = 0, we define a stopping time

H := T ∧ inf

s > t : −Lt,ωϕ(s, Bt

· )− F t,ω(s, Bt
· , ϕ(s, Bt

· ))− L0|δYs | ≤ c/2

.

Then by the continuity of Lt,ωϕ as well as F , we have H ∈ T t
+ and

−Lt,ωϕ(s, Bt
· )− F t,ω(s, Bt

· , Ỹ ′
s)− αsδYs ≥ c/2, for all s ∈ [t, H].

Now for any τ ∈ T t such that τ ≤ H, we have

0 = δYt = δYτ −

 τ

t


(Lt,ωϕ)(s, Bt

· )+ F t,ω(s, Bt
· , Ỹ ′

s)+ αsδYs


−

 τ

t
δZs ·


d Bt

s − µt,ω(s, Bt
· )ds


≥ ϕ(τ, Bt )− ût,ω(τ, Bt )+ c(τ − t)/2 −

 τ

t
δZs ·


d Bt

s − µt,ω(s, Bt
· )ds


, (A.1)

Pt,ω-a.s. We recall that Pt,ω is defined by (4.3), under which the canonical process Bt is a solution
to SDE (4.2). Therefore,

·

t
d Bt

s − µt,ω(s, Bt
· )ds

is a Pt,ω-martingale. By taking expectation on (A.1) under Pt,ω, it follows that EPt,ω
t [(ϕ −

ût,ω)(τ, Bt
· )] < 0, which contradicts the fact that ϕ ∈ Aû(t, ω). �
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In preparation of the comparison principle in Theorem 4.7, we first introduce two extended

spaces C1,2
t,ω(Λt ) and C

1,2
t,ω(Λ

t ) of C1,2(Λ0) and derive a partial comparison principle as in [6,7].

Definition A.1. Let (t, ω) ∈ Λ0, u : Λt
→ R be Ft -adapted.

(i) We say u ∈ C1,2
t,ω(Λt ) if there exist an increasing sequence of Ft -stopping times in T t

: t =

τ0 ≤ τ1 ≤ · · · ≤ T such that,
(a) τi < τi+1 whenever τi < T , and for all ω̃ ∈ Ω t , the set {i : τi (ω̃) < T } is finite;
(b) For each i ≥ 0 and ω̃ ∈ Ω t , τ

τi (ω̃),ω̃
i+1 ∈ T τi (ω̃) and uτi (ω̃),ω̃ ∈ C1,2

b


Λτi (ω̃)


τ
τi (ω̃),ω̃
i+1


;

(c) u has non-negative jumps (1u ≥ 0), and

EPt,ω


i≥0

 τi+1

τi

Lt,ωu
2 +

σ t,ω∂ωu
2(s, Bt )ds


< ∞. (A.2)

(ii) We say u ∈ C
1,2
t,ω(Λ

t ) if −u ∈ C1,2
t,ω(Λt ).

Lemma A.2. Suppose that Assumption 4.3 holds true. Let u1 be a viscosity subsolution and u2

be a viscosity supersolution of PPDE (4.6) such that u1(T, ·) ≤ u2(T, ·). If u1
∈ C1,2

0,0(Λ
0) or

u2
∈ C

1,2
0,0(Λ

0), then u1
≤ u2 on Λ0.

Proof. We follow the lines of Proposition 4.1 of Ekren, Touzi and Zhang [7]. Suppose that
u1

∈ C1,2
0,0(Λ

0). First, let us show that, for every i ≥ 0 and ω ∈ Ω0,
u1

− u2+
τi (ω)

(ω) ≤ EPτi (ω),ω

(u1)

τi (ω),ω
τi+1(ω)

− (u2)
τi (ω),ω
τi+1(ω)

+
. (A.3)

Without loss of generality, it is enough to consider the case i = 0, where Pτ0(ω),ω = PX for all
ω ∈ Ω . Assume to the contrary that

2T c := (u1
0 − u2

0)
+

− EPX


u1
τ1

− u2
τ1

+
> 0,

we set

X t := (u1
t − u2

t )
+

+ ct, Yt := sup
τ∈T t

Et [Xτ∧τ1 ],

τ ∗
:= inf{t > 0 : X t = Yt } ≤ τ1,

where Et [ζ ](ω) := EPt,ω [ζ t,ω
] = EPX [ζ |Ft ](ω). We notice that the conditional expectation Et

is defined by using shifting operators, and in this case the supremum in the definition of Y is the
same as that of the essential supremum (see also Theorem 2.3 of Nutz and van Handel [15] for
details of a similar problem). In particular, E0[·] = EPX [·]. Then (Yt )t≥0 is a supermartingale,
(Yt∧τ∗)t≥0 is a martingale and τ ∗ is an optimal stopping time for the problem supτ∈T 0 E0[Xτ ].
It follows that

E0[Xτ∗ ] = E0[Yτ∗ ] = Y0 ≥ X0 = 2T c + Et


u1
τ1

− u2
τ1

+
≥ T c + E0[Xτ1 ].

Then there exists ω∗
∈ Ω0 such that t∗ := τ ∗(ω∗) < τ1. And therefore

(u1
− u2)+(t∗, ω∗)+ ct∗ = X t∗(ω

∗) = Yt∗(ω
∗) ≥ Et∗


Xτ1


> ct∗,

which implies that 0 < (u1
− u2)+(t∗, ω∗). Set ϕ(t, ω) := (u1)t

∗,ω∗

(t, ω) + c(t∗). Then
ϕ ∈ C1,2(Λt∗(τ1)) since u1

∈ C1,2(Λ(τ1)). Moreover, let

H := inf

t > t∗ : u1

t − u2
t ≤ 0


∧ τ1 ∈ T t∗

+ .
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Then for every τ ∈ T t∗ ,

(ϕ − (u2)t
∗,ω∗

)(t∗, 0) = X t∗(ω
∗) ≥ Et∗


Yτ∧H


(ω∗)

≥ Et∗

Xτ∧H


(ω∗) = EPt∗,ω∗


ϕ − (u2)t

∗,ω∗
τ∧H


,

which implies that ϕ ∈ Au2(t∗, ω∗). It follows that

0 ≤

−Lϕ − F(·, ϕ)(t∗, ω∗) ≤ −c −


−Lu1

− F(·, u1)

(t∗, ω∗),

which contradicts the fact that u1 is a subsolution and we hence prove (A.3). Further, since
(Pτi (ω),ω)ω∈Ω induces a r.c.p.d. of PX w.r.t. Fτi (see Remark 4.1), it follows by (A.3) that for
every i ≥ 0,

(u1
− u2)0 ≤ E0


(u1

− u2)+τi


.

By sending i → ∞, we get that (u1
− u2)0 ≤ E0[(u1

− u2)+T ] = 0, which completes the proof
of u1

0 ≤ u2
0. �

Proof of Theorem 4.7. We follow the lines of the proof of Theorem 7.4 of Ekren, Touzi and
Zhang [6], where a comparison principle for PPDE (4.6) was proved in case σ ≡ Id . In spirit of
Remark 4.5, we suppose without loss of generality that F decreases in y.

For every ε > 0, we denote

Oε := {x ∈ Rd
: |x | < ε}, Oε := {x ∈ Rd

: |x | ≤ ε},

∂Oε := {x ∈ Rd
: |x | = ε};

Oε
t := [t, T )× Oε, Oε

t := [t, T ] × Oε, ∂Oε
t := ([t, T ] × ∂Oε) ∪ ({T } × Oε).

Let t0 = 0, x0 = 0, (ti )i≥1 be an increasing sequence in (0, T ] with ti = T when i is large
enough, and (xi )i≥1 a sequence in Rd . Set π := (ti , xi )i≥0 and πn := (ti , xi )0≤i≤n . Given πn
and (t, x) ∈ Oε

tn , define

H
t,x,ε
0 := inf{s ≥ t : |Bt

+ x | = ε} ∧ T,

H
t,x,ε
i+1 := inf{s ≥ H

t,x,ε
i : |Bt

s − Bt
H

t,x,ε
i

| = ε} ∧ T .

For t ∈ (tn, T ], let Bε,πn ,t,x (ω) denote the continuous path on [0, T ] obtained by linear
interpolation of the function b(ti ) :=

i
j=0 x j for 0 ≤ i ≤ n and b(Ht,x,ε

i ) :=
n

j=0 x j +

x + Bt
H

t,x,ε
i
(ω) for all i ≥ 0. Define

θεn (πn; (t, x)) := Yε,πn ,t,x
t ,

where, omitting the superscripts ε,πn ,t,x ,Y is defined under Pt,B by

Ys = ξ(B)+

 T

s

Fr,


i≥−1

B
·∧H

t,x,ε
i

1
[H

t,x,ε
i ,H

t,x,ε
i+1 )

,Yr


dr −

 T

s
Zr

d Br − µ(r, B)dr


,

with H
t,x,ε
−1 := t . Then clearly, for every n and πn , the deterministic function θεn := θεn (πn; ·) is

the viscosity solution of the standard PDE on Oε
tn :

− ∂tθ
ε
n − µ(s, ω̂πn )Dθεn −

1
2
σσ T (s, ω̂πn ) : D2θεn − F(s, ω̂πn , θεn ) = 0 on Oε

tn , (A.4)
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with terminal condition θεn (πn; t, x) = θεn+1(πn, (t, x); t, 0) on ∂Oε
tn , where ω̂πn := Bε,πn ,t,x

·∧tn is
deterministic, and θεn (πn; T, x) = ξ(ω̂πn ) when tn = T . Further, since σσ T is non-degenerate,
it follows from Proposition 7.2 of [6] that for every δ > 0, there is θ̄ε,δn ∈ C1,2(Oε

tn ) which is

a classical supersolution of (A.4) such that θ̄ε,δn (πn; t, x) ≥ θεn+1(πn, (t, x); t, 0) on ∂Oε
tn and

|θ̄
ε,δ
n − θεn | ≤ δ on Oε

tn . Let δn = ε/2n, Hεi := H
0,0,ε
i , and Bε be the linear interpolation of

(Hεi , BHεi
)i≥0. Define

ψε(t, ω) :=

∞
n=0


δn + θ̄ε,δn

n


(Hεi , BHεi

)0≤i≤n; t, Bt − BHεn


1[Hεn ,H

ε
n+1)

,

and denote

B̃ε· :=


i≥−1

Bε
·∧H

t,x,ε
i

1
[H t,x,ε

i ,H t,x,ε
i+1 )

.

One can check straightforwardly that −ψε satisfies the conditions of Definition A.1(c),ψε(T, ω)
≥ ξ(B̃ε), and

− ∂tψ
ε
− µ(s, B̃ε· ) · ∂ωψ

ε
− σ(s, B̃ε· ) : ∂ωωψ

ε
− Fs, B̃ε· , ψ

ε(s, B̃ε)


≥ 0. (A.5)

Then Ỹ := ψε, Z̃ := ∂ωψ
ε satisfy the BSDE

Ỹs = ỸHi+1 +

 T

s

Fr, B̃ε· , Ỹr


dr −

 T

s
Z̃r


d Br − µ


r, B̃ε·


dr

, PX -a.s.

on every interval [Hi , Hi+1) such that sup0≤t≤T |Yt − Ỹt | ≤ ε, which implies that (A.2) holds

true for ψε and hence ψε ∈ C
1,2
0,0(Λ

0). Notice that ∥B̃ε − B∥T ≤ ε, then for some constant C ,

|ξ(B̃ε)− ξ(B)| ≤ Cε, |F(s, B̃ε, y)− F(s, B, y)| ≤ Cε.

Set

ψ := ψε + 2Cε[1 + T − t],

one can verify that ψ ∈ C
1,2
0,0(Λ

0) is a viscosity supersolution of (4.6), and it follows by the
partial comparison principle in Lemma A.2 that u1(0, 0) ≤ ψ(0, 0). Similarly, we can construct
a viscosity subsolution ψ ∈ C1,2

0,0(Λ
0) such that u2(0, 0) ≥ ψ(0, 0) and |ψ − ψ | ≤ 4C[2 + T ]ε.

By sending ε → 0, we conclude the proof. �
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