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Chapitre 1

Introduction

English Version

This is a synthesis of my research works since the defense of my PhD thesis, most of
which are related to the stochastic optimal control problems (without or with constraints)
and nonlinear (path-dependent) PDEs, and are usually motivated by (but not limited to)
the applications in finance. I will try to regroup them into three different themes according
to their applications and the techniques used:

(i) Martingale Optimal Transport (MOT) problem.

(ii) Non-Markovian stochastic optimal control, path-dependent HJB equations.

(iii) Branching diffusion representation for nonlinear PDEs.

In the following, I will develop the three themes with more details and discuss how these
different themes are related with each other.

Martingale Optimal Transport problem

The Martingale Optimal Transport (MOT) problem is a very recent subject in mathe-
matical finance and turns to be a “hot” tropic during the last years. It was initially formu-
lated by Beiglböck, Henry-Labordère and Penkner [18], and Galichon, Henry-Labordère
and Touzi [99], motivated by the problem of finding the minimal super-hedging cost for
a path-dependent exotic option using semi-static strategies. By considering more general
controlled diffusion dynamics in place of all martingales, my PhD thesis (2009-2011) has
been dedicated to a similar optimal transport problem (see Tan and Touzi [192]). Similar
problems have also been formulated and studied earlier using the Skorokhod embedding
approach, initiated by Hobson [119].

In the classical theory of financial market modelling, one usually assumes a reference
probability space, where the (stochastic) dynamic of the underlying risky assets is fixed.
Then under the reference model, one analyzes the financial risk, prices the derivative
options, etc. When the market is perfect, i.e. every contingent option can be replicated
perfectly by an auto-financing trading strategy, then under the no-arbitrage condition, the
price/value of the option should be equal to its replication cost. From another point of
view, this price can be obtained by taking expectation of the discounted payoff under the
risk-neutral probability measure, which is the unique martingale measure equivalent to
the reference probability measure. Here the martingale measure refers to the probability
measure under which the discounted underlying assets are all martingales. When the
market is imperfect, the equivalent martingale measure is no more unique. Nevertheless,
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it follows by the fundamental theorem of asset pricing (FTAP) that the expectation of
the discounted payoff under any equivalent martingale measure provides a no-arbitrage
price of the option. At the same time, a general option will not be replicable, and one
needs to consider the super-replication strategies to obtain a safe price. In this case, a
pricing-hedging duality has been obtained, that is, the minimal super-replication cost of
the option equals to the supremum of its no-arbitrage prices.

More recently, and in particular since the financial crisis in 2008, the model risk attracts
more and more attentions by the practitioners as well as the academic researchers. To
overcome the model risk difficulty, a natural way is to avoid imposing a fixed reference
model, but rather to consider a family of models, or equivalently a family of reference
probability measures. In particular, a model free “safe” price for an option should be its
minimal superhedging cost, where the superhedging is defined in sense of quasi sure, i.e.
the superhedging holds almost surely under each probability measure in the family.

The above model free pricing method may lead to very high prices for a “simple” option,
or even an unreasonable price for the real market. At the same time, the financial market
has been much developed such that the “simple” call/put vanilla options are very liquid so
that one can use them in the trading strategies to hedge more complicated options (exotic
options). One can then expect to obtain more reasonable superhedging cost of exotic
options by considering the semi-static strategies, that is, the dynamic trading strategy on
underlying risky assets together with the static strategy on the vanilla (call/put) options.
From a pricing point of view, if one uses martingale measure to obtain a no-arbitrage
price of an option (according to the fundamental theorem of pricing), one should consider
those martingale measures consistent with the market information about the vanilla option
prices. It is well known that, in the limit case where the call/put prices are known for
all possible strikes at some fixed maturity, one can recover a marginal distribution of the
underlying risky asset. To conclude, an upper bound of the no-arbitrage price for an exotic
option is given by the supremum of the expected value of the discounted payoff under all
martingale measures satisfying some marginal distribution constraint. This leads to the
name “martingale optimal transport” (MOT) problem, recalling that the classical optimal
transport consists in optimising a cost function among all random vector satisfying some
marginal constraints (without any martingale structure).

For this MOT problem, the natural questions could be: does the classical pricing-hedging
duality still hold in this context? do optimal solutions exist for both pricing and hedging
problems? how to find/characterize the optimal solutions? can we approximate it numer-
ically? etc. These questions are of course not independent but are generally related to
each other. Moreover, the applications of this new subject are not limited to the finance,
but are related closely to other branches of the probability theory, such as the Skroko-
hod embedding problem, the martingale inequality, Peacocks (“Processus croissant pour
l’ordre convex” in French), etc.

A large part of my contribution in this topic consists in proving the pricing-hedging du-
ality in different situations: such as the case where the underlying assets have continuous
paths or càdlàg paths, the limit case of MOT problem with infinitely many marginals
constraints, the discrete time case for American options, and/or under additional trans-
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action cost constraints. Moreover, I also studied the continuous time limit of a family of
discrete time optimal martingale transport plans. In particular, it leads to a new class of
continuous time martingale Peacocks. Further, I suggested an alternative proof for the
monotonicity principle of the optimal Skorokhod embedding problem (SEP), using the
duality result and an optional section theorem. The monotonicity principle provides a
unified characterization on the solutions to the optimal SEP. Finally, I also worked on the
numerical approximation of the MOT problems, based on a dual formulation.

Non-Markovian control, path-dependent HJB equations

Although the MOT problem is named as an extension of the classical optimal transport
problem, it can also be viewed as an optimal control problem under marginal constraints.
This point of view could be very useful in order to recover results and techniques in the
control theory. As the reward/cost function in MOT are generally non-Markovian, a better
understanding of the non-Markovian control theory would be necessary. At the same time,
the new development of finance, the game theory, and the principal-agent problems, etc.
provides new motivations to study the non-Markovian control problems.

Stochastic control theory has been largely studied since 1970s, where both PDE ap-
proach and the probabilistic approach are developed. When the value function of the
control problem is not smooth enough, it is usually the notion of viscosity solution allows
to obtain a HJB equations characterization. Notice that the classical HJB equation ap-
proach is limited to the Markovian case, but the recently developed path-dependent PDE
theory allows to study non-Markovian control problems. Further, the dynamic program-
ming principle has always been an important tool as it is allows to decompose a global
optimization problem into a family of local optimization problems. With the development
of financial mathematics in 1990s, the stochastic control theory received a renewed atten-
tion and remains an important subject until now. Moreover, the BSDE and more recently
the 2nd order BSDE theory have been developed and provide new powerful probabilistic
tools to study Markovian or non-Markovian control problems.

From a theoretical point of view, the stochastic control theory provides a probabilistic
representation for a class of nonlinear PDEs, which is an extension of the Feynmann-Kac
formula for linear PDEs. This point of view is generalized by the path-dependent PDE,
which in particular provides a unified approach to study the BSDE, 2BSDE, stochastic
optimal control, stochastic differential equations, etc.

My first contribution in this tropic consists in providing a review together with some
new development on a rigorous and detailed justification of the dynamic programming
principle for different formulations of the non-Markovian control problem. Here I use the
word “rigorous” since the measurability and the neglected set issues become very subtle,
once different singular probability measures are involved. A key argument used here is
the measurable selection theorem. Next, I worked on the dynamic programming principle
for a control problem on a family of BSDEs. In particular, it allows to generalize the
2BSDE theory to the case without any continuity conditions on the coefficient functions.
In this context, as in the classical approaches, the dynamic programming principle allows
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to characterize the value function process as a supermartingale under a family of involved
probability measures. I then worked on the Doob-Meyer decomposition and estimations
of supermartingales. Finally, I am also interested by the numerical approximation of the
non-Markovian control problems. To solve a continuous time optimization problem, a
first step is to discretise the time to obtain a discrete time optimization problem, which
could be solved numerically. To prove the convergence from the discrete-time problems to
the continuous time problem in this non-Markovian context, I studied two approaches. A
first approach is in spirit of Kushner-Dupuis’s weak convergence method. Moreover, using
a strong invariance principle result, one can obtain a convergence rate under technical
conditions. A second approach to prove the convergence consists in extending the seminal
work of Barles and Souganidis on the monotone scheme by using the recent developed
path-dependent PDE theory.

Branching diffusion representation for nonlinear PDEs

It is quite natural and classical to use the time discretization approach to solve the
continuous time problems numerically. However, in the context of the stochastic control
problems, or the nonlinear equations, a major limit of this approach is that the mono-
tonicity condition (which is a necessary condition to obtain the convergence) is hard to
ensure in high-dimensional case. Moreover, even if the monotonicity condition holds, there
are usually conditional expectation terms in the numerical schemes which require an ad-
ditional estimation step in practical implementation. Such estimation are usually based
on a regression technique which can be seen as a variation of the finite element methods,
and hence it is usually limited to the lower dimensional case in practice.

Another numerical method for nonlinear PDEs, which avoids the monotonicity condi-
tion as well as the regression techniques, could be obtained by using branching diffusion
processes. Indeed, it is well known from the very early work of Watanabe, Skorokhod,
Mckean, etc. that the KPP type equation can be represented by branching processes. A
nonlinear PDE is called a KPP type equation if its nonlinearity part is a polynomial of
the value function u, with positive coefficients whose sum equals to 1. As extension of
the Feynmann-Kac formula for linear equation, the solution of the KPP equation can be
represented as expected value of a functional of a branching diffusion process. This repre-
sentation has also been generalized by the super-processes as a (scaled) limit of branching
process. Using this probabilistic representation, one can estimate the solution of KPP type
PDE by a forward Monte Carlo method, that is, simulating a large number of the branch-
ing diffusion processes and then taking the average value of the corresponding functional
of the branching process.

My contribution in this topic consists mainly in investigating the use of branching diffu-
sion processes in the numerical resolution of nonlinear PDEs. To achieve this, we tried to
extend the classical probabilistic representation to a larger class of nonlinear equations, in
place of the class of KPP equations. First, we consider the nonlinear PDE whose nonlin-
earity is a polynomial of u and its derivative Du, with arbitrary coefficients. Next, we also
consider the non-Markovian case, using the recent theory on the path-dependent PDEs.
To consider the case with Du in the nonlinearity, a key idea is to introduce a Malliavin
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type weight function in the representation formula. Moreover, restricting to linear case
and using a freezing coefficients technique, one can obtain an unbiased simulation method
for the SDEs. Finally, for semilinear PDE with general Lipschitz generator, we consider
a polynomial approximation of the generator to apply the branching diffusion method.
To achieve this, more techniques and ideas are used to control the variance explosion
problems.

Version Française
Ce document est une synthèse de mes travaux de recherche depuis la soutenance de ma

thèse. Le plupart de ces travaux concerne la théorie du contrôle stochastique (sans ou avec
des contraintes) et les équations aux dérivées partielles (dépendant des chemins), ainsi que
leurs applications en finance. Néanmoins, je vais les regrouper en trois thèmes selon leurs
applications et les techniques utilisées :

(i) Problème de transport optimal martingale.

(ii) Contrôle stochastique Non-Markovien, équation d’HJB dépendant des chemins.

(iii) Représentation des EDP nonlinéaires par le processus de branchement.

Dans la suite, je vais développer les trois thèmes avec plus de détails et discuter également
les liens entre eux.

Problème de Transport Optimal Martingale

Le problème de transport optimal martingale est un thème de recherche très récent dans
les mathématiques financières. Pendant les dernières années, il est devenu rapidement
un sujet populaire dans cette communauté. Le problème a été initialement formulé dans
Beiglböck, Henry-Labordère et Penkner [18], et Galichon, Henry- Labordère et Touzi [99],
motivé par ses applications en finance. Plus précisément, il s’agit de la recherche du
coût minimal de sur-réplication des options exotiques dépendant de chemin en utilisant
la stratégie semi-statique, i.e. la stratégie dynamique en actif sous-jacent et la stratégie
statique en options vanilles. En considérant des semi-martingales contrôlées au lieu des
martingales, ma thèse (2009-2011) a porté principalement sur un problème similaire (voir
Tan et Touzi [192]). Antérieurement, ce problème a été formulé et étudié par Hobson [119]
avec l’approche du plongement de Skrokohod.

Dans la modélisation classique de finance de marché, on reste dans un context avec un
espace de probabilité fixé, où le modèle ou la distribution des processus sous-jacent est
fixé. Ensuite, dans ce modèle fixé, on peut analyser le risque financier, évaluer les produits
dérivées, etc. Lorsque le marché est parfait, i.e. tous les produits dérivés peuvent être
répliquer parfaitement par une stratégie auto-finançante, et sous la condition de l’absence
d’opportunité d’arbitrage (AOA), le prix d’un produit dérivée est égale à son coût de
réplication. D’un autre point de vue, ce prix pourrait aussi être obtenu comme l’espérance
du payoff actualisé sous la probabilité risque-neutre, qui est l’unique mesure martingale
équivalente à la mesure de référence. Ici, une mesure martingale représente une mesure de
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probabilité sous laquelle les actifs sous-jacents actualisés sont des martingales. Lorsque le
marché n’est plus parfait, la mesure martingale équivalente n’est pas unique. Néanmoins,
par le théorème fondamental d’évaluation des actifs, l’espérance du payoff sous une mesure
martingale équivalente donne toujours un prix sans arbitrage. En outre, lorsqu’une option
n’est pas réplicable, on peut considérer les stratégies de sur-réplication. Le théorème de
dualité montre que le coût minimal de sur-réplication est égale au maximum des prix
sans arbitrage.

Plus récemment, surtout depuis la crise financière 2008, le risque de modèle devient un
sujet de plus en plus important en finance. Pour dépasser cette difficulté, une solution
très populaire est de considérer une famille de modèles au lieu d’un modèle de référence
fixé. En particulier, pour une option, on doit considérer un prix indépendant du modèle.
Ceci est donné par son coût minimal de sur-réplication, où la sur-réplication est au sense
quasi-sûre, i.e. presque-sûre sous chaque probabilité dans la famille.

Cette approche robuste simple pourrait donner un prix très élevé pour une option simple,
ou même déraisonnable sur le marché financier. Néanmoins, avec le développement de
marché financier, les options simple (ou les “options vanilles”) deviennent très liquides,
telles que l’on pourrait les utiliser dans une stratégie de réplication. Alors, on pourrait
espérer obtenir un prix de sur-réplication plus raisonnable, en considérant les stratégies
semi-statiques, i.e. la stratégie dynamique sur les actifs sous-jacent, plus la stratégie
statique sur les options vanilles. D’un autre point de vue, lorsque l’on utilise les mesures
martingale pour obtenir le prix sans arbitrage, il faut considérer celles cohérentes avec
les informations du marché données par les prix des options vanilles. Il est bien connu
que, dans le cas limite où les prix des options vanilles sont donnés pour tous les “strikes”
à une certaine date de maturité, on pourrait récupérer la loi marginale du sous-jacent
à cette date. En conclusion, la borne supérieure du prix sans arbitrage d’une option
exotique est donné par le supremum d’espérance de son payoff actualisé sous toutes les
mesures martingales satisfaisantes une contrainte de loi marginale. Cela donne le nom:
“problème de transport optimal martingale”, en rappelant que le problème de transport
optimal classique consiste à optimiser une fonction de coût sur tous les vecteurs aléatoires
satisfaisants des contraintes de loi marginale.

Pour ce nouveau problème de transport optimal, les questions naturelles sont: est-ce
que la dualité “évaluation-réplication” reste toujours vraie, est-ce que la solution optimale
existe pour le problème d’évaluation et pour le problème de surréplication, comment carac-
tériser les solutions optimales, comment les approcher numériquement lorsqu’une solution
optimale n’est pas explicitement disponible. Ces questions ne sont pas indépendantes,
mais sont plutôt reliées les unes aux autres. En outre, les applications de ce nouveau
thème ne seront pas limitées à la finance, mais aussi aux autres thèmes en probabilité, e.g.
le problème de plongement de Skorokhod, les inégalités maximales de martingale, PCOC
(processus croissant pour l’ordre convex), etc.

Une grande partie de ma contribution dans ce sujet consiste à prouver la dual-
ité “évaluation-réplication” dans des contextes différents: le cas avec trajectoire conti-
nus/càdlàg des sous-jacent, le cas limite du problème de transport optimal martingale
avec un nombre infini de contraintes marginales, le cas en temps discret pour les options
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de type Américain ou avec le coût de transaction. En outre, j’étudie également la limite
des plans de transport martingale optimaux en temps discret lorsque la discrétisation de
temps passe à zéro. Ceci donne en particulier une nouvelle classe de solution de PCOC en
temps continu. Je propose aussi une preuve alternative du principe de la monotonie pour
le problème de plongement de Skorokhod optimal, à partir de la dualité et du théorème
de section optionnelle. Enfin, je travaille également sur l’approximation numérique du
problème de transport optimal martingale en utilisant le résultat de dualité.

Contrôle Non-Markovien, Equation d’HJB dépendant des chemins

Bien que le problème de transport optimal martingale est nommé comme un problème en
formulation du problème de transport optimal classical, il peut également être vu comme
un problème de contrôle stochastique sous contrainte de marginale. En particulier, ce
point de vue nous permet de récupérer les résultats et les techniques de la théorie de
contrôle optimal. Puisque le fonction de coût pour un problème de transport optimal
martingale est souvent non-Markovienne, une meilleure compréhension du contrôle non-
Markovien est nécessaire. Au même temps, le développement de la finance, de la théorie
de jeux, du problème de principal-agent, etc. donnent des motivations supplémentaires
pour étudier les problèmes de contrôle non-Markovien.

La théorie du contrôle stochastique est largement développée depuis les années 1970,
par l’approche EDP ainsi que l’approche probabiliste. Lorsque la fonction valeur du prob-
lème n’est pas assez régulière, c’est souvent la notion de solution de viscosité qui permet
de la caractériser comme solution de l’équation HJB. Remarquons que l’approche d’EDP
est généralement limitée au le cas Markovien, la notion des EDP dépendant des chemins
est une extension qui permet d’étudier les problèmes non-Markoviens. Le principe de la
programmation dynamique est toujours un outil important, qui permet de décomposer un
problème d’optimisation globale en problèmes d’optimisation locaux. Avec le développe-
ment des mathématiques financières en 1990, cette théorie a reçu une nouvelle atten-
tion pour ses applications en finance. Plus récemment, la théorie des EDSR (Equations
Différentielles Stochastiques Rétrogrades) ainsi que des EDSR du second ordre ont été
développés et constituent des outils probabilistes importants pour étudier les problèmes
de contrôle Markovien ou non-Markovien.

D’un point de vue théorique, la théorie du contrôle stochastique fourni des representa-
tions probabilistiques pour les EDP nonlinéaires, qui peut être considérée comme une ex-
tension de la formule de Feynmann-Kac pour les EDP linéaires. Ce point de vue est encore
généralisé par les EDP dépendant des chemins, qui constitue une approche unifiée pour
l’EDSR, l’EDSR du seconde ordre, le control stochastique (Markovien ou non-Markovien),
les jeux différentiels, etc.

Mes travaux en contrôle stochastique se situe principalement dans un contexte non-
Markovien. Dans un premier temps, je travaille sur le principe de la programmation dy-
namique. L’idée principale est de donner une analyse/revue de la littérature, ainsi qu’une
justification rigoureuse et détaillée du principe de la programmation dynamique pour des
formulations différentes du problème de contrôle. Ici, j’utilise le mot “rigoureuse” car la
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mesurabilité et les ensembles nuls dans ce contexte sont des sujets très subtiles, lorsque
des mesures différentes et singulières interviennent. Un outil essentiel que l’on utilise
est le théorème de sélection mesurable. Dans un deuxième travail, on étend le principle
de la programmation dynamique pour un problème de contrôle d’une famille d’EDSR.
Comme application, nous obtenons une extension de la théorie des EDSR du second
ordre. Dans ce travail, comme pour d’autres problèmes de contrôle, le principe de la pro-
grammation dynamique permet de characteriser le processus fonction valeur comme une
sur-martingale sous une famille de probabilités. On s’intéresse ensuite à la décomposition
de Doob-Meyer des sur-martingales. Au final, je m’intéresse également à l’approximation
numérique du problème de contrôle non-Markovien. Pour résoudre ces problèmes en temps
continu, une première étape consiste à discrétiser le temps pour le transformer en un
problème d’optimisation en temps discret, qui peut être résolu numériquement. Pour
prouver la convergence des problèmes du temps discret au temps continu dans le contexte
non-Markovien, une première approche est d’utiliser la méthode de convergence faible de
Kushner-Dupuis. En outre, avec la technique du principe d’invariance forte, on pourrait
obtenir un taux de convergence sous des conditions techniques. Une deuxième approche
consiste à étendre la méthode de Barles-Souganidis des schémas monotone pour les EDP
dans le cas non-Markovien avec les techniques d’EDP dépendent des chemins.

Représentation des EDP nonlinéaires par le processus de branche-
ment

Il est très naturel et classique de discrétiser le temps des problèmes en temps continu,
pour obtenir un schéma numérique. Néanmoins, pour les problèmes de contrôle ou les
équations nonlinéaires, une grande limite de cette approche est que la condition de mono-
tonie (qui est une condition nécéssaire pour assurer la convergence) est difficile à obtenir
en grande dimension. De plus, pour certains schémas de Monte-Carlo nonlinéaires, même
si la condition de monotonie est assurée, il existe des termes d’espérance conditionnelle à
estimer. Cette estimation est souvent basée sur des techniques de simulation-regression,
qui est en fait une variation de la méthode des éléments finis, et donc est également limitée
en petite dimension.

Une autre méthode numérique pour les EDP nonlinéaires, qui pourrait dépasser cette
limite de condition de monotonie, ainsi que les étapes de regression, consiste à utiliser
les processus de branchement diffusion. Effectivement, il est bien connu, dans les anciens
travaux de Watanabe, Skorokhod, McKean, etc., que les équations de KPP peuvent être
représentées par les processus de branchement. Une EDP nonlinéaire est dite de type
KPP lorsque la partie nonlinéaire est un polynôme de la fonction valeur, avec des coeffi-
cients positives de somme 1. Comme extension de la formule de Feynmann-Kac pour les
équations linéaires, la solution de l’équation KPP peut être représentée comme l’espérance
d’une fonctionnelle d’un processus de branchement. Cette représentation a été également
généralisée par le sur-processus comme limite des processus de branchement. Avec cette
représentation, on peut estimer la solution de l’équation KPP par la méthode de Monte
Carlo en simulant un grand nombre de processus de branchement, puis calculer la moyenne
de la fonctionnelle correspondante.
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Mes travaux dans ce sujet consiste principalement à explorer les applications de processus
de branchement pour la résolution numérique des EDP nonlinéaires. Dans un premier
travail, on cherche à étendre la représentation classique pour une classe des équations
nonlinéaires plus large que les EDP de type KPP. Cette classe plus large inclut des EDP
dépendant des chemins, ainsi que les EDP nonlinéaires avec une nonlinéarité en u et ses
dérivées Du. Pour considérer le cas avec Du, l’idée essentielle est d’introduire un poids
de type Malliavin dans la formule de représentation. Ensuite, on revient au cas des EDP
linéaires, en utilisant une technique qui consiste à geler les coefficients, cette représentation
donne une nouvelle technique de simulation sans biais pour les EDS. Enfin, pour les
EDP semilinéaire avec un générateur Lipschitz, on peut considérer une approximation
polynomiale du générateur, et puis utiliser la méthode des processus de branchement.
Des nouvelles idées et techniques sont utilisées pour contrôler la variance des estimateurs.
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Chapitre 2

Martingale Optimal Transport and its
Applications in Finance

2.1 Motivation from finance

The martingale optimal transport (MOT) is a novel subject in mathematical finance, while
its classical counterpart, the optimal transport (OT), has been an important and inspiring
mathematical topic since 18th century, see Monge [156]. Although initially motivated by
its applications in finance, it goes beyond the mathematical finance and provides also new
results in other branches of mathematics. The problem has been initially formulated by
Beiglböck, Henry-Labordère and Penkner [18] for a discrete time version, and by Galichon,
Henry-Labordère and Touzi [99] for a continuous time version. Similar problems have also
been formulated and studied using the Skorokhod embedding problem (SEP) approach, as
initiated by Hobson [119]. Since then, this topic attracts many researchers with different
background and skills and generates a large stream of publications during the last years.

Let us start by formulating the problem with its initial financial motivation. In the
classical theory of financial mathematics, the financial market is modelled with a fixed
probability space (Ω,F ,P), in which one has the underlying assets as stochastic processes,
denoted by X = (Xt)t∈T. Here T refers to the set of indexes of time, which could be an
interval [0, T ] for a continuous time model, or {0, 1, · · · , T} for a discrete time model. Then
under this model, one could analyse the financial risk, evaluate the derivative options, etc.
At the same time, the No Arbitrage (NA) condition is an essential rule in the option
pricing theory. The first fundamental theorem of asset pricing (FTAP) says that the
existence of equivalent martingale measure is a (fundamental) sufficient condition1 to
ensure the NA condition. Here the martingale measure means a probability measure on
(Ω,F) under which the discounted value of each risky asset is a martingale. In other
words, if a new asset is priced to be a martingale (after discounting) under an equivalent
martingale measure Q, then one keeps the NA condition. Consequently, for a derivative
option with discounted payoff ξ, the value EQ[ξ] provides a no-arbitrage price. Moreover,
if one considers all equivalent martingale measures to compute the upper bound of the
no-arbitrage prices for an option, it is related to the minimal super-hedging cost of the
option. This is the so-called pricing/hedging duality.

In practice, one usually looks for a martingale model, where its coefficients could be
easily calibrated in order to fit “the best” to the market data. Here the market data refers
generally to the call/put vanilla options’ price since these options are the most liquid in
the financial market. In practice, the classical models such as Dupire’s [78] local volatility

1In the discrete time market, it is a necessary and sufficient condition.
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model and the stochastic volatility model are both calibrated in this way. Moreover, it is
observed that the Dupire’s volatility function σ(t, x) is in fact the conditional expectation
of the stochastic volatility σt knowing the underlying asset value Xt = x. From a mathe-
matical point of view, Gyöngy’s [109] theorem (see also [46]) justifies that Dupire’s model
is the unique Markovian SDE model that provides the same one-dimensional marginal
distribution of the underlying process as that of the stochastic volatility model. From
an economic point of view, Breeden and Litzenberger [43] have observed that the prices
of the vanilla options allow to recover the one-dimensional marginal distribution of the
underlying in the limit case where the option prices are available for all possible strikes
K. Therefore, to be consistent with the market information, one should consider those
equivalent martingale models which provide the same vanilla option prices on the mar-
ket, or equivalently those martingale models satisfying some one-dimensional marginal
distribution constraint µ.

More recently, especially since the 2008 financial crisis, the risk of model misspecification
has been more and more highlighted. A modern approach to address the model risk is the
so-called robust approach, that is, instead of a fixed model, one considers at the same time
a family of models. In the extreme case, this family could contain all possible models.
Mathematically, this means that one considers a family P of probability measures on
(Ω,F) at the same time. In particular, when P contains all Dirac measures δω, for each
ω ∈ Ω, it leads to the so-called model free pricing approach.

In summary, to eliminate the model risk and to stay consistent with the market infor-
mation, one should consider all possible martingale measures Q on (Ω,F) satisfying the
marginal distribution constraint XT ∼Q µ, where µ is obtained from the market vanilla
options prices. Let us denote this set by M(µ). By taking the supremum, one obtains
an upper bound of the model free no-arbitrage price of a derivative option with discount
payoff ξ : Ω→ R, that is,

P (µ) = sup
Q∈M(µ)

EQ[ξ]. (2.1.1)

Notice that the above problem could be viewed as a natural extension of Kantorovich’s
[134] relaxed formulation of Monge’s [156] optimal transport (OT) problem, where the ma-
jor difference is that the new introduced problem has an additional martingale constraint
on (Xt)t∈T. Hence it is called the martingale optimal transport (MOT) problem.

From a hedging point of view, the market will not be perfect in the model uncertainty
framework, and a perfect replication is no more possible for a general option ξ. To obtain
a safe price, one could consider the super-hedging cost. Moreover, as soon as the vanilla
options are liquid on the market, one should also consider using the static strategies. By
Carr-Madan formula, any European option with payoff λ(XT ) could be represented as a
basket of vanilla options, whose cost is given by µ(λ) :=

∫
R λ(x)µ(dx), where µ is the one

dimensional marginal distribution recovered from the vanilla options’ prices as above. Let
H be the collection of all admissible dynamic trading strategies on the underlying X, and
denote by (H ◦X)t the P&L of the strategy H at time t, then a semi-static super-hedging
strategy is given by (λ,H) ∈ L1(µ)×H satisfying λ(XT ) + (H ◦X)T ≥ ξ. The value

D(µ) = inf
{
µ(λ) : λ(XT ) + (H ◦X)T ≥ ξ, P-a.s. ∀P ∈ P

}
(2.1.2)
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provides the minimum super-hedging cost of option ξ using semi-static strategies and
under model uncertainty. As extension of the classical pricing-hedging duality, one would
expect to have the following duality result:

P (µ) = D(µ). (2.1.3)

Moreover, the above duality result can also be viewed as a natural extension of the Kan-
torovich’s [134] duality in the classical OT theory.

Once the problems are formulated, the questions arising could be:

• whether and under which conditions the duality (2.1.3) holds true?

• how to find/characterize the optimal solutions for both optimization problems P (µ)

and D(µ)?

• how to compute numerically the optimal solutions/values?

• etc.

To finish this motivation section, let us provide two famous theorems which ensure the
existence of martingales with given one-dimensional marginal distribution. Given two
probability measures µ and ν on Rd with finite first order moment, we say µ is smaller
than ν in convex ordering if µ(φ) ≤ ν(φ) for all convex function φ : Rd → R, and denote
µ � ν. Here µ(φ) :=

∫
Rd φ(x)µ(dx).

Theorem 2.1.1. (i). Discrete time case, Strassen’s Theorem [187]: Let (µk)0≤k≤n

be a family of probability measures on Rd. Then there exists a martingale (Mk)0≤k≤n with
marginal distributions (µk)0≤k≤n if and only if each µk has finite first order moment and
µi � µk for all i ≤ k.
(ii). Continuous time case, Kellerer’s Theorem [137]: Let (µt)t∈[0,1] be a family
of probability measures on Rd. Then there exists a martingale (Mt)t∈[0,1] with marginal
distributions (µt)t∈[0,1] if and only if each µt has finite first order moment and µs � µt for
all s ≤ t.

In the following of the chapter, we always assume the increasing condition of (µk)0≤k≤n

or (µt)t∈[0,1] in convex ordering.

Assumption 2.1.1. The family (µk)0≤k≤n (resp. (µt)t∈[0,1]) has finite first order, and
satisfies µi � µj for all 0 ≤ i ≤ j ≤ n (resp. 0 ≤ i ≤ j ≤ 1).

2.2 Different formulations and some literature review

The above MOT problem have several variated formulations. First, the financial market
could be in discrete time or in continuous time. Next, for the continuous time model, the
underlying asset process (Xt)t∈[0,T ] could be of continuous path, or of càdlàg path. Further,
in place of the one marginal constraint problem, the case with multi-marginals constraints
has also its natural motivation as soon as the vanilla options of different maturities are
available.
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Discrete time MOT The one period discrete time MOT problem should be the for-
mulation the most closed to the classical OT problem. Let Ω := Rd × Rd be the canon-
ical space, with canonical process X = (X0, X1). Then given two probability measures
µ = (µ0, µ1) on Rd, we denote by

P(µ0, µ1) :=
{
P ∈ B(Ω) : P ◦X−1

k = µk, k = 0, 1
}
, (2.2.1)

and
M(µ0, µ1) :=

{
P ∈ P(µ0, µ1) : EP[X1|X0] = X0

}
.

A basic discrete time MOT is given by, for some ξ : Rd × Rd → R,

sup
P∈M(µ0,µ1)

EP[ξ(X0, X1)]. (2.2.2)

Under the above formulation, the duality result (2.1.3) has been proved initially in Bei-
glböck, Henry-Labordère and Penkner [18] for upper semi-continuous reward functions ξ.
In their dual formulation (2.1.2), P contains all Dirac measures δ(x,y) for (x, y) ∈ Rd×Rd,
so that the super-replication is in fact in the pathwise sense. In the one-dimensional case,
by setting P asM(µ0, µ1) in the dual formulation (2.1.2), the duality (2.1.3) is proved for
any Borel positive reward function ξ by Beiglböck, Nutz and Touzi [21]. As for the charac-
terization of the optimal martingale transport plan, Beiglböck and Juillet [20] obtained a
monotonicity principle for this one-period MOT problem. It provides a variational calcu-
lus characterization of the support of an optimal transport plan. In particular, it extends
the basic idea of the monotonicity principle of the classical OT problem, that is, one
cannot improve an optimal transport plan by switching the connection of pairs, see e.g.
Villani [196]. For some reward function, it is further proved that the optimal martingale
transport plan should support on a special binomial tree structure, named “left-monotone”
transport plan. This structure has then been explicitly computed out by Henry-Labordère
and Touzi [114], see also Beiglböck, Henry-Labordère and Touzi [19] for a simplified proof.
Effort to extend these results to the high-dimensional case, or multi-periods case has been
made recently in [64, 159, 162], etc.

Bouchard-Nutz’s discrete time framework Bouchard and Nutz [35] introduced a
discrete time framework, which is not exactly as that of the MOT problem, but is still in
the same spirit. Let Ω0 = {ω0} be a singleton, Ω1 be a Polish space, Ωt

1 denote the t-fold
Cartesian product of Ω1, then one sets Ωt := Ω0 × Ωt

1. For each t and ω ∈ Ωt, there is a
given non-empty convex probability measures set Pt(ω), which represents all possible law
on Ωt+1 knowing ω ∈ Ωt. Then set

Ω := ΩT , P :=
{
P := P0 ⊗ P1 ⊗ · · · ⊗ PT−1 : Pt(·) ∈ Pt(·)

}
.

In above, Pt(·) is a measurable probability kernel from Ωt to Ωt+1. As a first main result,
they introduced a notion of P-quasi-sure no-arbitrage (NA) condition, and extended the
fundamental theorem of asset pricing (FTAP) to this model uncertainty setting, that is,
NA is equivalent to the existence of a certain family of martingale measures. Next, we
consider the super-hedging problem (2.1.2) in the market with presence of finitely many
static options. A pricing-hedging duality in form of (2.1.3) has also been obtained for all
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options with upper semi-analytic measurable payoff. Thanks to the product structure,
one can first establish the results in the one-period case, and then extend them to the
whole space using a classical dynamic programming argument. This framework has then
been adopted by many other authors to study different problems, such as transaction cost
problems [36, 12, 33], utility maximisation problems [10], American option pricing [1], etc.

Continuous time MOT or optimal SEP For the continuous time MOT problem,
there are two main cases: the continuous path case and the càdlàg path case, with respec-
tively canonical space Ω = C([0, 1],Rd) and Ω = D([0, 1],Rd). Let X = (Xt)0≤t≤1 denote
the canonical process. Given two marginal distributions µ = (µ0, µ1), one defines

M(µ0, µ1) :=
{
P : X is a P-martingale, X0 ∼P µ0 X1 ∼P µ1

}
,

and obtains a MOT problem

sup
P∈M(µ0,µ1)

EP[ξ], for some ξ : Ω→ R. (2.2.3)

The initial formulation of Galichon, Henry-Labordère and Touzi [99] has been given in
this way. Tan and Touzi [192] studied the problem by considering the class of laws of
Itô processes with given marginal distribution instead ofM(µ0, µ1), and obtain a duality
result as extension of the initial work in Mikami and Thieullen [155]. Moreover, a numerical
scheme has been obtained in [192] based on the duality result. However, a first complete
and general duality result in this framework has been obtained by Dolinsky and Soner
[72] based on a discretization technique. In their dual formulation (2.1.2), the strategy
H are chosen to be of finite variation and hence the integrable (H ◦X)1 is defined path
by path and hence the super-replication is also pathwise. Extensions of this work to the
multi-marginals case, to the càdlàg paths’ case, etc. have been obtained in [73, 127, 105],
etc.

For the case with continuous path Ω = C([0, 1],Rd) with d = 1 and when the reward func-
tion is time invariant, the MOT problem can be reformulated to be an optimal Skorokhod
embedding problem (SEP) by a time changing argument. A basic SEP is usually formu-
lated as follows: given a probability measures µ and a Brownian motionW , one searches a
stopping time τ such that Wτ ∼ µ and (Wτ∧t)t≥0 is uniformly integrable. Such a problem
has many explicitly constructive solution, including the most famous Root solution [181],
Rost solution [182], Azéma-Yor solution [4], Perkins solution [168], Vallois solution [195],
etc. see e.g. Obloj [161], Hobson [120] for a survey. An optimal SEP consists in finding
an optimal solution of SEP w.r.t. some reward function. To see how the MOT could be
reformulated as an optimal SEP, let us first recall Dubins-Schwarz time change theorem
(see e.g. [135] or [178]): given a martingale measure P on Ω, under which X is a martin-
gale measure, then in a possibly enlarged space, one has a Brownian motion W such that
Xt = W〈X〉t , P-a.s. Moreover, the quadratic variation 〈X〉t of X is a stopping time w.r.t.
the time changed filtration. Suppose that the payoff function ξ satisfies ξ = Φ(〈X〉t,W·)
P-a.s. under each martingale measure P, for some Φ : R+×C(R+,R)→ R, then it is easy
to use Dubins-Schwarz Theorem to deduce that the MOT problem (2.2.3) is equivalent to
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the optimal SEP

sup
τ∈T (µ)

E
[
Φ(τ,W·)

]
, with T (µ) := {All embedding stopping times}. (2.2.4)

This link has been observed and used by Hobson [119] to study the upper bound of the
no-arbitrage prices for a lookback option, in a market with liquid vanilla options. Since
then, many works has been devoted to this problem, using the optimal SEP approach,
see e.g. [54, 55, 56, 57, 58, 62, 100, 122, 123, 124, 125], etc. Extension of the SEP to the
multi-marginals case has also been obtained by [45, 112], etc. In most of these works, the
basic idea is to consider some specific constructive solutions of the SEP and the show their
optimality for some specific payoff functions. More recently, Beiglböck, Hussmann and
Cox [16] formulated a monotonicity principle for the optimal SEP, a concept borrowed
from the OT theory, and provide a geometric description of the support of an solution
of the optimal SEP. In particular, it provides a unified explanation to the optimality of
different well known embedding solutions.

Multi-marginal constraints towards Peacock Although in most cases, the problems
and results are given for the one marginal case. The same problem with multi-marginals
constraints is also natural and interesting by its financial motivation. Moreover, it would
be theoretically interesting/beautiful to consider the limit case when one has a continuous
family of marginals µ = (µt)t∈[0,1]. In this case, the family µ = (µt)t∈[0,1] should have
finite first order moment and be increasing in convex ordering as shown in Kellerer’s
Theorem. A process with one-dimensional marginal distributions increasing in convex
ordering is called a “Processus Convex en Ordre Convex” (PCOC, so Peacock with a little
imagination) in French. The question of constructing martingale that has the same one-
dimensional marginal distributions as a Peacock has been interested by many peoples,
for which let us refer to the book of Hirsch, Profeta, Roynette and Yor [118]. From the
MOT problem point of view, it would be more interesting to find/construct the martingale
Peacocks that enjoy some optimality. In Madan and Yor [150], an explicitly condition is
obtained to ensure that the Azéma-Yor embedding solution τAYt w.r.t. to different µt are
automatically ordered, and hence the process (WτAYt

)t∈[0,1] becomes a martingale Peacock.
It is a Markov process, whose generator could be explicitly computed, and moreover, it
enjoys implicitly an optimality property as Azéma-Yor embedding. In Henry-Labordère,
Tan and Touzi [114], by taking the limit the binomial tree (left-monotone) martingale that
obtained in Beiglböck and Juillet [20] and Henry-Labordère and Touzi [117], a martingale
Peacock is also obtained, which is also a Markov process and is optimal w.r.t. a class of
reward functions. Hobson [121] obtained an explicit solution of martingale Peacock that
minimizing the expectation of the total variation. Källblad, Tan and Touzi [133] studied a
general optimal SEP as well as the specific lookback option case, given a continuous time
family of marginal constraints.

In the rest of the chapter, I will concentrate mainly on the contributions that I made
around this topic. To unify and simplify the presentation, the results provided here may
be less general than that given in the papers, and the proofs are usually provided in a
heuristic and non-rigorous way.
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2.3 Duality results

A large part of my work on MOT consists in establishing the duality result in different
frameworks and by different techniques. In the classical optimal transport theory, the
Kantorovich duality relies intuitively on a minimax argument, or more precisely is obtained
by Fenchel’s duality theorem. To illustrate the idea, let us recall it briefly. Given two
probability measures µ0, µ1 on Rd, recall the definition of P(µ0, µ1) in (2.2.1).

Theorem 2.3.1 (Kantorovich’s duality of OT). Assume that c : Rd × Rd → R is upper
semicontinuous and bounded from above. Then one has

P (µ0, µ1) := sup
P∈P(µ0,µ1)

EP[c(X0, X1)
]

= inf
{
µ0(λ0) + µ1(λ1) : λ0(x) + λ1(y) ≥ c(x, y), ∀(x, y) ∈ Rd × Rd

}
.

Proof. (i) First, it is easy to see that the function (µ0, µ1) 7→ P (µ0, µ1) is concave by
its definition. Next, let (µn0 , µ

n
1 ) be a sequence of probability measures converges weakly

to (µ0, µ1). Notice that P(µn0 , µ
n
1 ) is compact and hence there is some optimal Pn for

the problem P (µn0 , µ
n
1 ) so that P (µn0 , µ

n
1 ) = EPn

[
c(X0, X1)

]
. The sequence (Pn)n≥1 can be

easily shown to be relatively compact and to converges along some subsequence to some
P ∈ P(µ0, µ1). Therefore, one has

lim sup
n→∞

P (µn0 , µ
n
1 ) = lim sup

n→∞
EPn
[
c(X0, X1)

]
≤ EP[c(X0, X1)

]
≤ P (µ0, µ1).

This implies that (µ0, µ1) 7→ P (µ0, µ1) is concave and upper semi-continuous.
(ii) Next, by Fenchel’s duality theorem, a concave and upper semi-continuous function is
equal to its bi-conjugate, see e.g. [28, 69]. Applying this on P (µ0, µ1), it follows by direct
computation that its bi-conjugate function is the dual problem inf

{
µ0(λ0) + µ1(λ1) :

λ0(x) + λ1(y) ≥ c(x, y), ∀(x, y) ∈ Rd × Rd
}
, where λ0, λ1 ∈ Cb(Rd).

Remark 2.3.1. (i) We notice that a key argument used in the above proof is that P(µ0, µ1)

is compact. More important, we use the fact that a sequence (Pn)n≥1 with Pn ∈ P(µn0 , µ
n
1 )

is tight and hence relatively compact, when (µn0 , µ
n
1 )→ (µ0, µ1).

The argument still works for the discrete time MOT problem, but encounters a major
difficulty to study the continuous time MOT problem, where the compactness/tightness of
laws on the space of continuous time paths is much more difficult to obtain.

(ii) In Theorems 2.3.2, 2.3.3 and 2.3.4 below, we will use different approaches to overcome
this difficulty. We also emphasis that the results in Theorems 2.3.2, 2.3.3 and 2.3.4 will
be presented with two marginals µ = (µ0, µ1) constraint. Nevertheless, by the same or
similar arguments, they can be easily extended to the multi marginals µ = (µ0, µ1, · · · , µn)

case, or the infinitely many marginals µ = (µt)0≤t≤1 case.

The continuous time MOT (or semi-martingale optimal transport) Let us now
consider the continuous time MOT problem formulated in (2.2.3), with canonical space
Ω = C([0, 1],Rd) or Ω = D([0, 1],Rd). Dolinsky and Soner [72, 73] proved the duality result
for both cases under different technical conditions, where the basic idea is to discretize
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the canonical space Ω into a countable space. The tightness of laws on the countable
space could be easily obtained, and so is the duality result. Then it is enough to use an
approximation argument to obtain the duality on Ω.

We studied the problem with different approaches, by trying to obtain the tightness of
martingale transport plans in a different way. In a first work in Tan and Touzi [192], we
consider a general semi-martingale optimal transport problem as extension of the work in
Mikami and Thieullen [155]. Concretely, let Ω = C([0, 1],Rd) be the canonical space, X
the canonical process, µ0 and µ1 two probability measures on Rd, we set SM(µ0, µ1) as
collection of all probability measures P on Ω such that P ◦X−1

i = µi, i = 0, 1 and that X
admits a semi-martingale decomposition, under P,

dXt = bPt dt + σPdW P
t , (2.3.1)

for some predictable process (bPt , σ
P
t )t∈[0,1] and a Brownian motion W P.

Theorem 2.3.2. Suppose that L : [0, 1] × Ω × Rd × Sd → R is bounded from above and
satisfies

|(b, a)|p ≤ Cp(1 + |L(t, ω, b, a)|) for some constant p > 1 and Cp > 0, (2.3.2)

together with some technical regularity conditions. Then one has the duality:

sup
P∈SM(µ0,µ1)

EP
[ ∫ 1

0

L
(
t, ω, bPt , (σσ

>)Pt
)
dt
]

= inf
λ1∈Cb(Rd)

(
µ0(λ0) + µ1(λ1)

)
,

where, by denoting SM(µ0) the collection of all semi-martingale measures P under which
X admits the decomposition (2.3.1) and such that P ◦X−1

0 = µ0,

λ0(x) := sup
P∈SM(δx)

EP
[ ∫ 1

0

L(t,X, bPt , (σσ
>)Pt
)
dt− λ1(X1)

]
.

Proof. Let (µn0 , µ
n
1 )n≥1 be a sequence of probability measures converges weakly to (µ0, µ1)

and Pn ∈ SM(µn0 , µ
n
1 ) be an optimal semi-martingale measures in the transport problems,

then thanks to the growth condition (2.3.2), it follows that the sequence (Pn)n≥1 is tight
and any limit lies in SM(µ0, µ1). Now, similar to Theorem 2.3.1 for the classical OT,
one can deduce that the value of the semi-martingale transport problem is upper semi-
continuous (and concave) w.r.t. the marginal distributions, and it follows by Fenchel’s
duality theorem that one has the above duality.

Remark 2.3.2. (i) The main idea in the above proof is to use the growth condition (2.3.2)
to push the set of optimal transport plans to be tight. The formulation and main idea of
proofs is a direct extension of Mikami and Thieullen [155], where their volatility is a fixed
constant.
(ii) The above dual problem is not exactly a super-hedging problem in form (2.1.2). To
obtain a pricing-hedging duality, one still need to apply the optional decomposition theorem
such as in [24] to characterize µ0(λ0) + µ1(λ1) as a super-hedging cost.
(iii) Notice also that we do not consider all martingale measures on Ω, but a class of semi-
martingales having an Itô decomposition (2.3.1). A first real and complete pricing-hedging
duality in the general MOT setting is proved later by Dolinsky and Soner [72].
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In a second work in Guo, Tan and Touzi [105], we consider a MOT problem with càdlàg
underlying processes as in Dolinsky and Soner [73]. Let Ω := D([0, 1],Rd) be the canonical
space of càdlàg paths, X be the canonical space, M is the collection of all martingale
measures on Ω, andM(µ0, µ1) is defined as collection of all martingale measures P on Ω

under which P ◦X−1
t = µt for t = 0, 1, given two marginal distributions µ = (µ0, µ1). The

most popular topology on Ω is the so-called Skorokhod topology, which is metrizable to
make Ω a Polish space. Notice that the tightness ofM(µ0, µ1) depends on the topology on
Ω. Once the topology is defined, the compact subsets of Ω is fixed and then the tightness
of laws on Ω is determined. The sparser the topology is, the less the open sets there are
and the more the compact sets there are, and hence the easier the tightness ofM(µ0, µ1)

could be obtained. Nevertheless, the price to pay is that there are less continuous functions
under a sparser topology. In fact, it is easy to see thatM(µ0, µ1) is not tight when Ω is
equipped with the Skorokhod topology. Our main idea is to consider a sparser topology,
the S-topology introduced by Jakubowski [131] (see Appendix for its definition), to recover
the tightness and then to save the classical proof as in Theorem 2.3.1. Moreover, one needs
to consider the Wasserstein topology on the space of marginal distributions to obtain the
upper semi-continuity of the MOT value w.r.t. the marginal distributions. As dual space
of the space of marginal distributions on Rd equipped with the Wasserstein topology, one
obtains C1, the space of all continuous function of linear growth (see Proposition A.1.2 in
Appendix).

Theorem 2.3.3. Assume that ξ : Ω → R is bounded from above and is upper semi-
continuous w.r.t. the S-topology (see Appendix for a definition), then one has

sup
P∈M(µ0,µ1)

EP[ξ] = inf
λ0,λ1∈C1

{
µ0(λ0) + µ1(λ1) + sup

P∈M
EP[ξ − λ0(X0)− λ1(X1)

]}
.

Assume some further regularity conditions, the value of the above MOT problem equals to

inf
{
µ0(λ0) + µ1(λ1) : λ0(X0) + λ1(X1) + (H ◦X)1 ≥ ξ, for all ω ∈ Ω

}
. (2.3.3)

Proof. Again, under the S-topology, one can obtain the tightness of M(µ0, µ1). Then
following the classical arguments, one can prove that (µ0, µ1) 7→ supP∈M(µ0,µ1) EP

[
ξ
]
is

u.s.c., where the space of (µ0, µ1) is equipped with the Wasserstein topology. It fol-
lows by the Fenchel’s duality theorem that the first duality holds. Next, the second
duality follows by an optional decomposition theorem for the maximization problem
supP∈M EP

[
ξ − λ0(X0) − λ1(X1)

]
without marginal constraint, for which we use Dolin-

sky and Soner’s [73] discretization and approximation techniques.

Remark 2.3.3. (i) In the above formulation of the dual problem, the dynamic strategy
H is of finite variation and the stochastic integral (H ◦X)1 can be defined pathwisely as
suggested by Dolinsky and Soner [73]. The condition that ξ is u.s.c. under S-topology in
our context is more restrictive comparing to [73], where in the later work, ξ is essentially
assumed to be continuous under the Skorokhod topology.
(ii) Nevertheless, our dual formulation (2.3.3) is more complete than that in [73]. More
precisely, our sup-replication in (2.3.3) is assumed to hold for every ω ∈ Ω, while in [73]
it is only assumed to hold for ω that are left continuous at final time 1.
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(iii) Our approach to prove the duality seems to be more systematic. Without any mod-
ification, the same results and proofs hold true for many variated MOT problem: such
as multi-marginals case, the case when on replace a marginal distribution µ on Rd by d
marginals (µ1, · · · , µd) on R, and the case with infinitely many marginals, i.e. a Peacock
µ = (µt)0≤t≤1 is given, which all have natural financial applications.

The optimal Skorokhod embedding problem (SEP) For a class of time invariant
payoff functions, the continuous time MOT with continuous paths can be reformulated
as an optimal SEP. The previous problem consists in finding an optimal measure on the
space of continuous paths, where the tightness of the measures depends essentially on
the regularity property of the paths in the support of the measures. Nevertheless, the
SEP consists in finding an optimal stopping time, whose law is a probability measure
on R and the tightness would be much easier to obtain. More precisely, a Skorokhod
embedding is a stopping time τ on a Browinian motion W , then by considering the joint
law of (W, τ), one can view a Skorokhod as a probability measures on C(R+,R) × R+,
where the marginal distribution on the C(R+,R) is the Wiener measure. Although the
optimal SEP as well as its applications in finance has been widely studied since Hobson’s
[119] initial paper, this point to view (to see it as a measure on C(R+,R) × R+) has
been initially studied systematically by Beiglböck, Cox and Huesmann [16]. As a first
result, they establish a duality for the optimal SEP. Secondly, and more importantly, they
introduced a monotonicity principle for the optimal SEP which allows to characterize the
support of an optimal embedding solutions, and therefore provides a unified explanation
on divers well known optimal embeddings that studied by many authors.
In Guo, Tan and Touzi [106], Källblad, Tan and Touzi [133], we follow this point of view

to study the optimal SEP under finitely many or infinitely many marginal constraints. Let
Ω := C([0, 1],R) be the canonical space of continuous paths on [0, 1] with canonical process
X, Ω0 := C(R+,R) be the canonical space of continuous paths on R+ with canonical
process B, R+ be the canonical space for stopping times, with canonical element T . Let
T denote the the collection of all probability measures P on Ω0 × R+ under which B is
Brownian motion and T is a stopping time w.r.t. the same filtration, such that (BT∧t)t≥0

is uniformly integrable. Further, given marginal distributions (µ0, µ1) on R,M(µ0, µ1) is
defined as collection of all martingale measures P on Ω such that P ◦ Xt = µt, t = 0, 1,
and T (µ0, µ1) denotes the collection of P ∈ T such that B0 ∼P µ0 and BT ∼P µ1. We
assume that ξ := Ω→ R is a time invariant payoff function in sense that

ξ(X) = Φ(X〈X〉−1
·
, 〈X〉1), (2.3.4)

for some non-anticipative function Φ : Ω0 × R+ → R, where the quadratic variation 〈X〉
as well as its inverse 〈X〉−1 can be defined pathwisely on Ω, so that X〈X〉−1

·
is a Brownian

motion under any (local) martingale measure on Ω. As discussed in Section 2.2, we have
the equivalence:

sup
P∈M(µ0,µ1)

EP[ξ] = sup
P∈T (µ0,µ1)

EP [Φ(B, T )].

We also notice that for all P ∈ T , the marginal distribution on C(R+,R) is fixed, then
it is convenient to equip T with the stable convergence introduced by Jacod and Mémin
[129] (see its definition in Appendix).
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Theorem 2.3.4. Assume that Φ : Ω0 ×R+ → R is non-anticipative, bounded from above
and t 7→ Φ(ω, t) is u.s.c. for every ω ∈ Ω0, then

sup
P∈T (µ0,µ1)

EP[Φ(B, T )] = inf
{
µ(λ) : λ0(B0) + λ1(BT ) +

∫ T

0

HsdBs ≥ Φ(B, T ), ∀P ∈ T
}
.

Consequently, when ξ : Ω→ R is given by (2.3.4), one has

sup
P∈M(µ0,µ1)

EP [ξ] = inf
{
µ(λ) : λ0(X0) + λ1(X1) +

∫ 1

0

HsdXs ≥ ξ, ∀P ∈M
}
.

Proof. (i) We equip with T the stable convergence topology under which P 7→
EP[Φ(B, T )] is continuous when t 7→ Φ(ω, t) is continuous. Then using the tightness
property of T (µ0, µ1), one proves that (µ0, µ1) 7→ supP∈T (µ0,µ1) EP [Φ(B, T )] is u.s.c. and
concave, and it follows by Fenchel’s duality theorem that one obtains a first duality:

sup
P∈T (µ0,µ1)

EP [Φ(B, T )] = inf
λ0,λ1∈C1

{
µ(λ) + sup

P∈T
EP[Φ(B, T )− λ0(B0)− λ1(BT )

]}
.

The supremum problem at r.h.s. is in fact an optimal stopping problem on a functional
of the Brownian motion, whose value function can be characterized by its Snell envelop,
which is a dominating supermartingale. Using Doob-Meyer decomposition and then the
martingale representation theorem, it follows that

EP[Φ(B, T )−λ0(B0)−λ1(BT )
]

= inf
{
x0 : x0+(H◦B)T ≥ Φ(B, T )−λ0(B0)−λ1(BT ),∀T

}
.

Plugging it into the first duality, one obtains the duality result for the optimal SEP.
(ii) For the MOT problem, it is enough to use the time change argument to transform
both the primal and dual problem from Ω0 to Ω.

Remark 2.3.4. Our duality result on the optimal SEP provides an extension for the
duality result in Beiglböck, Cox and Huesmann [16]. First, we use a complete different
approach to prove the duality, where the basic idea and tools are all from the classical
optimal control/stopping theory. Such a proof should be more accessible for people famil-
iar with the optimal control/stopping theory. Secondly, by using the stable convergence
topology on T , we only assume that t 7→ Φ(ω, t) is a u.s.c., while [16] assumes that
(t, ω) 7→ Φ(ω, t) is u.s.c. Our condition covers the case where Φ is functional of the local
time of the underlying process, which is a classical case studied by Vallois’s embedding.
Finally, our approach works in the same way for the multi-marginals case as well as the
infinitely many marginals case, given a Peacock µ = (µt)0≤t≤1.

The discrete time case for American options Most of the literature on MOT prob-
lems, or more generally on the super-hedging problem using semi-static hedging strategies
have been dedicated for European type exotic options. It is nevertheless interesting to
study the super-hedging problem for American options. In the classical dominated case,
when the market is complete, it is well known that an American option’s price is given as
the supremum of the expected discounted value of the payoff at all stopping times, i.e. the
value of an optimal stopping problem. In the non-dominated context, when the perfect
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hedging is impossible, the super-hedging cost should be formulated as the minimum ini-
tial cost to construct a portfolio which dominates the payoff of the option at any possible
exercise time. To formulate the pricing problem, a natural guess on the MOT problem
for an American option should be the supremum of optimal stopping problems under all
possible martingale measures consistent to the market information.

However, in the discrete time framework of Bouchard and Nutz [35], Bayraktar, Huang
and Zhou [11] showed that there may exist a duality gap between the pricing problem and
the hedging problem for the American options problem. In an unpublished manuscript,
Neuberger [157] has considered a discrete time market with discrete state spaces, and then
formulated both problems as linear programming problems and then obtained a duality
result. This work has been very recently rewritten and extended in Hobson and Neuberger
[126]. A insightful result pointed in this paper is that the class of (strong) stopping times
w.r.t. the underlying process is not enough to obtain the duality, and one should consider
a weak formulation of the optimal stopping problem. Moreover, the weak formulation
turns to be more natural as a model-free pricing and super-replication for the American
options.

In Aksamit, Deng, Obłój and Tan [1], we study the MOT problem for American options
in a more general framework and in a more systematic way. We try to explain why the
duality fails and suggest two different approaches to recover the duality, where the first
one is in the same spirit as [126] and the second one provides a new point of view on the
dynamic trading of vanilla options for super-hedging exotic options.

Concretely, we consider (Ω,F) as an abstract space, equipped with a discrete time
filtration F = (Ft)0≤t≤N , a underlying adapted process X = (Xt)0≤t≤N , and a family P
of probability measures. Further, we are given a family (gλ)λ∈Λ of static options whose
prices are assumed to be 0 without loss of generality. In practice, this could cover different
well studied discrete time frameworks:

• The classical dominated case with abstract space (Ω,F ,P), i.e. P = {P}.

• The Bouchard-Nutz’s [35] framework with finite static options, where Ω = Ω0×Ω1×
· · ·Ω1 (as recalled above).

• The Burzoni, Frittelli, Hou, Maggis and Obłój [48] framework with finite static
options, where Ω is a Polish space, and P is the collection of all Borel probability
measures on Ω.

• The MOT framework with infinitely many static options, where Ω = Rd × · · · × Rd

and P is the collection of all Borel probability measures on Ω.

An American option is described by its payoff functions Φk : Ω→ R, k = 1, · · · , N , where
Φk is the payoff if it is exercised at time k. Our minimal super-hedging cost problem is
given by

π(Φ) := inf
{
x : x+ (Hk ◦X)N + hg ≥ Φk, ∀k = 1, · · · , N, P-q.s.

}
. (2.3.5)

In above, h = (hλ)λ∈Λ is a family with finitely man nonzero elements so that the sum
hg :=

∑
λ∈Λ h

λgλ is well defined, and eachHk is a F-predictable process such thatHk
i = Hj

i
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whenever i ≤ j ≤ k. The last condition is to ensure that the dynamic strategies are
determined by the information from the filtration F as well as the fact whether the option
is exercised or not. To obtain the robust pricing problem, we first introduce an enlarged
space. Let Ω := Ω×{1, · · · , N} and T (ω, θ) := θ for all (ω, θ) ∈ Ω be a canonical variable,
F = (F t)0≤t≤N be defined by F t := Ft ∨

{
{T ≤ k}, k = 0, 1, · · · , t

}
. Notice that by the

definition of F, the variable T : Ω→ {1, · · · , N} is automatically a F-stopping time. Let
us denote by P the collection of all probability measures P on Ω such that P|Ω ∈ P . Let us
denote byMg the collection of all martingale measures on Ω consistent with the market
information, i.e. all probability measures Q dominated by some probability P ∈ P , such
that X is a (F,Q)-martingale, and EQ[gλ] = 0 for all λ ∈ Λ. Similarly, one can define
Mg as collection of all martingale measures on Ω equipped with filtration F consistent
with the market information, and define M̂g as collection of martingale measures on Ω

equipped with and enlarged filtration F̂ ⊃ F which contains additional information from
the dynamics of option prices of gλ. Denote by T (F) (resp. T (F), T (F̂)) the collection of
all F (resp. F, F̂) stopping times.

Theorem 2.3.5. Under different frameworks for (Ω,F) and P as listed above with dif-
ferent technical conditions, one has the pricing-hedging duality (and the weak duality):

π(Φ) = sup
P∈Mg

EP[ΦT

]
≥ sup

P∈Mg

sup
τ∈T (F)

EP[Φτ

]
.

Moreover, if one is allowed to dynamically trade the options gλ and to consider the enlarged
filtration F̂, then the minimum super-hedging cost does not change and equals to

sup
P∈M̂g

sup
τ∈T (F̂)

EP[Φτ

]
. (2.3.6)

Proof. (i) For the first duality, we can first reformulate the super-hedging problem (2.3.5)
equivalently on the enlarged space to be

inf
{
x : x+ (H̄ ◦X)N + hg ≥ ΦT , P-q.s.

}
,

where H̄ is a F-predictable process. The above reformulation turns out to be a super-
hedging problem for some European option with payoff function ΦT defined on the enlarged
space Ω. Notice that in all the above frameworks, the duality for European options has
been established under different technical conditions. Then one can adapt their results
and techniques on our enlarged space Ω to deduce the duality.

(ii) When one allows the dynamic trading of the options, one can recover the dynamic
programming principle for problem (2.3.6). It follows by the Snell envelop argument that
it equals to the pricing problem formulated on Ω.

Remark 2.3.5. (i) The pricing problem supP∈Mg
EP
[
ΦT

]
is in fact a weak formulation

of an optimal stopping problem. Indeed, take the MOT framework as example, the above
pricing problem is equivalent to

sup
α

EPα[Φτα(Xα
· )
]
,
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where α = (Ωα,Fα,Fα,Pα, Xα, τα) is a stopping term, i.e. a filtered probability space
equipped with a stopping time τα and a martingale Xα such that EPα [gλ(Xα

· )] = 0. To
see the equivalence, it is enough to notice that any stopping term α induces a probability
measure inMg and any probability measure inMg is itself a stopping term.
(ii) The inequality in Theorem 2.3.5 is the duality gap when one considers (strong) stop-
ping times τ ∈ T (F), as observed in [11]. This duality gap is due to the loss of the dynamic
programming when one considers the classMg of martingale measures with terminal dis-
tribution constraint. This observation motivates us also to consider M̂g to recover the
dynamic programming and hence to obtain the duality by considering (strong) stopping
times τ ∈ T (F̂). Notice that the introduction of M̂g is closed related to the dynamic
programming approach of Cox and Källblad [53] for the MOT problem.

The discrete time case under proportional transaction cost The MOT problem
under market friction has been first studied by Dolinsky and Soner [74, 75] in both discrete
and continuous time framework, where the proofs are based on discretization technique
similar to that in [72]. As mentioned in the introduction part, the pricing-hedging duality
relies essentially on the Fundamental Theorem of Asset Pricing (FTAP), which relates
the existence of a martingale measure and the no-arbitrage condition. For a dominated
market (Ω,F ,P) in presence of transaction cost, instead of the martingale measure, the
good notion is the so-called consistent price system, which is a couple (Q, Z) such that
Q � P, Z is Q-martingale, and Z is “closed” to the underlying stock process X. In
a robust framework similar to [35], Bayraktar and Zhang [12], Bouchard and Nutz [36]
provide the FTAP for the market with proportional transaction cost, that is, the no-
arbitrage condition is equivalent to the existence of a robust version of consistent price
system. Burzoni [47] considers a point wise super-hedging framework, and provides a
robust FTAP as well as the pricing-hedging duality result.

In a recent work of Bouchard, Deng and Tan [33], we consider the framework of [36], and
prove a pricing-hedging duality under a general transaction cost model. Our main idea is to
introduce a randomization technique, which reduces the original market into a frictionless
market, and then to apply the classical results and techniques to prove the duality. For
ease of presentation, we will stay in a simplified context with the framework of Bouchard-
Nutz [36]: let Ω = Ω0 × Ω1 × · · · × Ω1, equipped with a filtration F, P be a set of Borel
probability measures satisfying some measurability conditions. In particular, the case that
P contains all Borel probability measures is a special example in this context. Let X be
an 1-dimensional positive underlying process, an admissible strategy is a F-predictable
process H = (Hk)1≤k≤N . We set H0 = HN+1 = 0 and denote ∆Hk := Hk −Hk−1 for all
k = 1, · · · , N + 1. Then the P&L (profit and loss) of an admissible strategy is given by

(H ◦X)N −
N+1∑
k=1

λ|∆Hk|Xk−1 =
N∑
k=1

Hk∆Xk −
N+1∑
k=1

λ|∆Hk|Xk−1,

where λ ∈ (0, 1) is a ratio constant for the transaction cost whenever there is a 1 transac-
tion of the underlying stock X. Given an exotic derivative option ξ : Ω→ R and finitely
many liquid options ζi : Ω → R, i = 1, · · · , e, with price 0, then the minimum super-
hedging cost of ξ using static strategy on ζ and dynamic strategy on X with transaction
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cost is then given by

πe := inf
{
x : x+

e∑
i=1

hiζi + (H ◦X)N −
N+1∑
k=1

λ|∆Hk|Xk−1 ≥ ξ, P-q.s.
}
. (2.3.7)

To formulate the pricing problem, we denote by Se the collection of all consistent price
system (Q, Z) such that Q ≤ P for some P ∈ P , (1 − λ)Xt < Zt < (1 + λ)Zt, Z is a
(F,Q)-martingale, and EQ[ζi] = 0, i = 1, · · · , e.

Theorem 2.3.6. Under a technical robust no-arbitrage condition, the set Se is non-empty.
Moreover, for any Borel ξ and ζi, i = 1, · · · , e, one has the duality

πe = sup
(Q,Z)∈Se

EQ[ξ].

Proof. Let us consider a enlarged space Ω := Ω × (1 − λ, 1 + λ)N+1 with an canonical
process X t(ω, θ) := Xt(ω)θt, for all (ω, θ) = (ω, θ0, · · · , θN) ∈ Ω. Denote by P the
collection of all probability measures P on Ω such that P|Ω ∈ P . Then by direction
computation, the super-hedging cost πe defined by (2.3.7) is equivalent to

inf
{
x : x+

e∑
i=1

hiζi + (H ◦X)N ≥ ξ, P-q.s.
}
.

Notice that the above formulation is a robust super-hedging problem in a frictionless
market and hence one can apply classical results and techniques in frictionless market to
obtain the duality.

Remark 2.3.6. (i) One can also consider the case with transaction cost on the static op-
tions, it is enough to introduce a variated enlarged space and then apply the same technique
to obtain the duality result.
(ii) The randomization approach in the proof could be used in a more general framework of
transaction cost, using the notion of solvency cone, see e.g. Kabanov and Safarian [132].
The modeling allows essentially the direct exchange between different underlying stocks
when d > 1, which was not possible in [74, 47].

2.4 Characterization of the optimal solutions

It is interesting and important to establish the duality result to relate the two different
optimization problems, but it should be more important to obtain the optimal solution as
well as the optimal value. In some special cases, one can obtain or characterize the optimal
solutions, where the duality result could be very useful. In classical OT theory, a general
characterization of the optimal transport plan is obtained by the monotonicity principle.
More precisely, the monotonicity principle provides a characterization on the support of
the optimal transport plan, that is, one cannot improve the transport plan by replacing
two couples {(x1, y1), (x2, y2)} by {(x1, y2), (x2, y1)}, since the above replacement does not
change the marginal distribution of the transport plan, see e.g. Villani [196]. This idea
has been adapted to the one-period and one-dimensional discrete time MOT problem by
Beiglböck and Juillet [20], and to the optimal SEP by Beiglböck, Cox and Huesmann [16].
See also [17] for some extensions.
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Left monotone martingale given infinitely many marginals (Peacock) Let
us first consider the one-period and one-dimensional discrete time MOT problem,
supP∈M(µ0,µ1) EP[c(X0, X1)] as recalled in Section 2.2. The monotonicity principle of
[20, 117] leads to the so-called left-monotone martingale transport plan, which is optimal
for a class of payoff functions c(x, y) satisfying the so-called martingale Spence-Mirrlees
condition, i.e. y 7→ ∂xc(x, y) is strictly convex for all x ∈ R. An explicit construction
of the left-monotone transport plan under quite general conditions has been obtained in
Henry-Labordère and Touzi [117]. They show that there are two functions Tu : R → R
and Td : R→ R such that Td(x) ≤ x ≤ Tu(x), and the optimal martingale transport plan
inM(µ0, µ1) is in form

P(dx, dy) = µ0(dx)
[
q(x)δTu(x)(dy) + (1− q(x))δTd(x)(dy)

]
,

where q(x) is such that q(x)Tu(x) + (1− q(x))Td(x) = x so that P a martingale measure.
The two functions Tu, Td is determinated by an ODE on R. Moreover, for the class
of payoff function satisfying the martingale Spence-Mirrlees condition, they also provide
explicitly the optimizer for the dual super-hedging problem as well as the optimal value
of the problem. An easy extension of the above result is the case of n + 1-marginals
(µ0, µ1, · · · , µn) with reward function c(x0, x1, · · · , xn) :=

∑n
k=1 ck(xk−1, xk). The above

extension is immediate since one can decompose the problem into n MOT problems with
two marginals, i.e. supP∈M(µk−1,µk) EP

[
ck(Xk−1, Xk)

]
. In this case, one obtains a n periods

left-monotone martingale.

In Henry-Labordère, Tan and Touzi [114], we study the case with infinitely many
marginals as limit of the case with n marginals, to obtain an explicit characterization
of the limit continuous time process. In particular, it provides a new class of martingale
Peacock process, which is in addition optimal for a class of reward functions.

Let (µt)t∈[0,1] be a family of one-dimensional marginal distributions on R, and F (t, ·)
(resp. f(t, ·) be the cumulative distribution (resp. density) function of µt. Under some
regularity condition on F (t, x) and f(t, x), assume that x 7→ ∂tF (t, x) has a unique local
maximizer m(t) on the support of µt, the following functions Td, jd and ju is well defined
on Dc with D := {(t, x) : t ∈ [0, 1], x ≤ m(t)}: first, let Td(t, x) ≤ x be defined by∫ x

Td(t,x)

(x− y)∂tf(t, y)dy;

then jd and ju be defined by

jd(t, x) := x− Td(t, x), ju(t, x) :=
∂tF (t, Td(t, x))− ∂tF (t, x)

f(t, x)
.

Theorem 2.4.1. (i) Under some technical conditions on f(t, x), the following SDE, with
initial condition X0 ∼ µ0, has a unique weak solution,

Xt = X0 −
∫ t

0

1{Xs−>m(s)}jd(s,Xs−)(dNs − νs), νs :=
ju
jd

(s,Xs−)1{Xs−>m(s)},

where Nt is unit size jump process with predictable compensated process ν.
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(ii) The above solution X is a martingale such that Xt ∼ µt for all t ∈ [0, 1], and it is an
optimal solution to the MOT under infinitely many marginals:

sup
M martingale, Mt∼µt

E
[1

2

∫ 1

0

∂2
yyc(Mt,Mt)d[M ]ct +

∑
0≤t≤1

c(Mt−,Mt)
]
.

Moreover, one can establish a duality and construct an explicit optimal solution for the
dual problem.

Remark 2.4.1. (i) The proof of the above problem is based on an approximation technique,
by considering the discretization 0 = t0 < t1 < · · · < tn = 1 and the corresponding n + 1-
marginals MOT problem that are studied in [117].
(ii) When (µt)0≤t≤1 is the family of marginal distribution of a Brownian motion, a mar-
tingale with marginal distributions µ is called a fake Brownian motion. Our technical
conditions are in particular satisfied by the Brownian marginals and hence it provides a
new class of fake Brownian motion, which is optimal for a class of reward functions.

An alternative proof of the monotonicity principle of the optimal SEP Bei-
glböck, Cox and Huesmann [16] introduced and proved a monotonicity principle for the
optimal SEP inspired by that in classical OT theory. An extraordinary contribution of
this work is that it provides a unified explanation of all well known Skrokohod embedding
solutions that are optimal w.r.t. different reward functions, which have been found and
studied since several decades. In Guo, Tan and Touzi [107], we suggested an alternative
proof in vein of the classical proof for monotonicity principle of OT problems.

Recall that by considering the joint law of the Brownian motion as well as the stopping
time, a Skorokhod embedding on the Brownian motion can be viewed as probability
measure P on canonical space Ω := Ω0 × R+ with canonical element (B, T ), where Ω0 :=

C(R+,R) denotes the canonical space of continuous paths on R+. Moreover, the marginal
distribution on Ω0 is the Wiener measure P0, i.e. P|Ω0 = P0. Given a marginal distribution
µ on R, we denote by T (µ) = T (δ0, µ) of all such measures P such that B0 = 0 and
BT ∼P µ. Let Φ : Ω0 × R+ → R be a non-anticipative reward function, the optimal SEP
is given by

P (µ) := sup
P∈T (µ)

EP[Φ(B, T )
]
.

We also recall that its dual problem can be given by

D(µ) := inf
{
µ(λ) : λ(Bt) +Mt ≥ Φ(B·, t), ∀t ≥ 0, P0-a.s.

}
.

In the above, M = (Mt)t≥0 is a P0-martingale w.r.t. the Brownian filtration.

Definition 2.4.1. A pair (ω̄ = (ω, θ), ω̄′ = (ω′, θ′)) ∈ Ω×Ω is said to be a stop-go pair if
ωθ = ω′θ′ and

Φ(ω̄) + Φ(ω̄′ ⊗ ω̄′′) > Φ(ω̄ ⊗ ω̄′′) + ξ(ω̄′) for all ω̄′′ ∈ Ω
+
,

where Ω
+

:=
{
ω̄ = (ω, θ) ∈ Ω : θ > 0

}
and ω̄ ⊗ ω̄′′ := (ω ⊗θ ω′′, θ + θ′) with

(ω ⊗θ ω′′)t := ωt1[0,θ)(t) + (ωθ + ω′′t−θ)1[θ,∞)(t), for all t > 0.

Denote by SG the set of all stop-go pairs.
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Let Γ ⊆ Ω be a subset, we define Γ< by

Γ< :=
{
ω̄ = (ω, θ) ∈ Ω : ωθ∧· = ω′θ∧· for some ω̄′ ∈ Γ with θ′ > θ

}
.

Theorem 2.4.2 (Beiglböck, Cox and Huesmann). Let Φ : Ω → R be a Borel non-
anticipative random variable. Assume that the P (µ) = D(µ) holds true, and P∗ ∈ T (µ)

is an optimal embedding so that P (µ) = EP∗ [ξ]. Then there exists a Borel subset Γ∗ ⊆ Ω

such that

P∗
[
Γ∗
]

= 1 and SG ∩
(
Γ∗< × Γ∗

)
= ∅.

Proof. Suppose that there exists a dual minimizer (λ∗,M∗) of of the dual problem D(µ),
i.e.

λ∗(ωt) +M∗
t (ω) ≥ Φ(ω, t), for all t ≥ 0, P0-a.s. and µ(λ∗) = EP∗ [Φ(B, T )]. (2.4.1)

The above inequality together with the duality implies that

Γ := {(ω, θ) : λ∗(ωθ) +M∗
θ (ω) = Φ(ω, θ)}

has full measure under P∗. We claim that (Γ< × Γ) ∩ SG = ∅. Otherwise, there exists a
pair (ω̄, ω̄′) ∈ (Γ< × Γ) ∩ SG, and hence they satisfy the condition

Φ(ω̄) + Φ(ω̄′ ⊗ ω̄′′) > Φ(ω̄ ⊗ ω̄′′) + Φ(ω̄′) for all ω̄′′ ∈ Ω
+
. (2.4.2)

Let Q∗ω̄ be the conditional probability of P∗ given {Bθ∧· = ωθ∧·, T > θ}. Then it follows
that

Φ(ω̄) + EQ∗ω̄ [Φ(ω̄′ ⊗ ·)] > EQ∗ω̄ [Φ(ω̄ ⊗ ·)] + Φ(ω̄′).

On the other hand, notice that the marginal distribution of Q∗ω̄ on Ω is still a Wiener
measure. Then denoting (M∗ + λ∗)(ω, θ) := M∗

θ (ω) + λ∗(ωθ), one has from (2.4.1) that

Φ(ω̄) + EQ∗ω̄ [Φ(ω̄′ ⊗ ·)] ≤ (M∗ + λ∗)(ω̄) + EQ∗ω̄ [(M∗ + λ∗)(ω̄′ ⊗ ·)].

Notice that M∗ is assumed to be a martingale, and one has from the definition of SG that
ωθ = ω′θ′ , it follows that

(M∗ + λ∗)(ω̄) + EQ∗ω̄ [(M∗ + λ∗)(ω̄′ ⊗ ·)] = EQ∗ω̄ [(M∗ + λ∗)(ω̄ ⊗ ·)] + (M∗ + λ∗)(ω̄′).

Finally, notice that from the definition of SG and Q∗ω̄, one knows that Q∗ω̄[ω̄ ⊗ · ∈ Γ] = 1

and ω̄′ ∈ Γ, then

Φ(ω̄) + EQ∗ω̄ [Φ(ω̄′ ⊗ ·)] ≤ EQ∗ω̄ [(M∗ + λ∗)(ω̄ ⊗ ·)] + (M∗ + λ∗)(ω̄′)

= EQ∗ω̄ [Φ(ω̄ ⊗ ·)] + Φ(ω̄′),

which is a contradiction with (2.4.2) and we hence obtain that (Γ< × Γ) ∩ SG = ∅.

Remark 2.4.2. (i) The above proof is only heuristic. For a rigorous proof, the dual
minimiser (λ∗,M∗) may not exists and one needs to consider an optimizing sequence
(λn,Mn). The rest of the proof can follow the same idea with limit limn→∞ in many
places.
(ii) The above monotonicity principle has been formulated and proved in [16]. Our main
contribution is to provide an alternative proof based on the duality P (µ) = D(µ). Such a
proof is in line with the classical proof for the monotonicity principle of the classical OT
problem, see e.g. [196], with a clear structure as illustrated in the above heuristic proof.
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2.5 Numerical methods

In general cases, an explicit description of the optimal solution for both MOT problem
(the pricing problem) and the robust super-hedging problem would be impossible and
numerical methods is needed. In the work Tan and Touzi [192], Bonnans and Tan [29],
we developed a numerical scheme for the MOT problem and the optimal SEP based on
its dual problem. To describe the main steps of the algorithm, let us stay in the context
of Theorem 2.3.4 for an optimal SEP, and denote by T the collection of all Brownian
stopping times. Let us consider the problem

V := inf
λ0,λ1∈C1

V (λ) with V (λ) := µ(λ) + sup
τ∈T

E
[
Φ(B, τ)− λ1(Bτ )− λ0(B0)

]
.

Using the weak duality “max min ≤ min max”, it is easy to check that the value V is
bounded between the l.h.s. and the r.h.s. of the first formula in Theorem 2.3.4, and then
it follows from the duality result of Theorem 2.3.4 that the value V defined above equals
to the original optimal SEP in Theorem 2.3.4.

Our numerical algorithm consists in 4 steps:

1. Let L > 0, we denote by LipL the collection of all Lipschitz function on R with
Lipschitz constant L, then let

VL := inf
λ0,λ1∈LipL

V (λ)

2. Let M,N > 0, we denote by TM,N the collection of all Brownian stopping times τ
bounded by N and such that supt≥0 |Bt∧τ | ≤M . Then let

V M,N
L := inf

λ0,λ1∈LipL
V M,N(λ), V M,N(λ) := µ(λ)+ sup

τ∈TM,N
E
[
Φ(B, τ)−λ1(Bτ )−λ0(B0)

]
.

3. Let ∆ = (∆t,∆x) be the time-space discretization parameter, and (ti, xj) be a
discrete grid of [0, N ]×[−M,M ]. We denote by Lip∆

L the collection of all L-Lipschitz
function defined on {xj ∈ [−M,M ], j ∈ Z}, and by V M,N,∆(λ) the numerical
solution of the optimal stopping problem V M,N(λ) from the finite difference scheme.
Let

V M,N,∆
L := inf

λ0,λ1∈Lip∆
L

V M,N,∆(λ). (2.5.1)

4. Notice that Lip∆
L is a compact set in a finite dimensional space, and one can show

that λ ∈ Lip∆
L 7→ V M,N,∆(λ) ∈ R is a convex function, then one can apply a classical

gradient algorithm to solve the minimization problem (2.5.1), see e.g. [14, 81], etc.

Theorem 2.5.1. Under technical conditions, the numerical algorithm converges.

Remark 2.5.1. We are only able to show the general convergence for the first step VL →
V . For the rest of steps, we have obtained convergence rate.
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2.6 Perspectives

Many advances have been made for the MOT theory during the last years, but there
are still many open (and interesting) questions. More generally, if one goes back to the
original motivation of the MOT problem, that is, to improve the risk management in
a robust context using semi-static strategies, then there would be even more interesting
questions.

For example, we may consider the general utility maximization problems and see how
it would be improved by considering the semi-static strategies, see e.g. [10, 183]. In a
more concrete project, we are interested in solving a utility maximization problem under
transaction cost using the randomization approach that we developed in Bouchard, Deng
and Tan [33].

As shown above, the MOT duality is related essentially to the fundamental theorem
of asset pricing (FTAP), as well as the super-martingale’s optional decomposition in a
robust context. This problem has been very well solved in a discrete time framework by
Bouchard and Nutz [35], and in a continuous time framework with continuous underlying
path by Biagini, Bouchard, Kardaras and Nutz [24]. In a recent project with Bruno
Bouchard, Kostas Kardaras and Marcel Nutz, we are interested in solving this problem
for the continuous time case with càdlàg underlying paths.



Chapitre 3

Non-Markovian Stochastic Control,
Path-dependent HJB Equation and

their Numerical Approximations

3.1 Introduction

The stochastic optimal stopping/control problem is a very important subject/tool in ap-
plied mathematics, and especially in mathematical finance. Since 1970s, there should
be thousands of papers and numerous monographs which are dedicated to this subject.
Motivated by its applications, there would be many different formulations.

Let us start by a simple stochastic control problem in the one-dimensional case: let W
be a standard Brownian motion w.r.t. a filtration F, an admissible control process is a F-
predictable process (νt)t≥0 taking value in some space U . Let (µ, σ) : R+×R×U → R×R
be the given coefficient functions, then given a control process (νt)t≥0, as well as an initial
condition x0, we define the controlled process Xν as solution of the SDE

Xν
t = x0 +

∫ t

0

µ(s,Xν
s , νs)ds+

∫ t

0

σ(s,Xν
s , νs)dWs.

In general, some technical conditions on (µ, σ) are needed to ensure the wellposedness of
the above SDE. Then, given reward functions f : R+ × R × U → R and g : R → R, one
has the following standard stochastic optimal control problem:

sup
ν

E
[∫ T

0

f(t,Xν
t , νt)dt+ g(Xν

T )
]
. (3.1.1)

There could be numerous variated version of the optimal control problem:

• In terms of the controlled process, it could be

– the controlled diffusion process, or diffusion-jump process, which could be de-
fined by controlled SDE, with solutions in strong sense, or in weak sense, or in
relaxed sense;

– a general controlled Markov process, such as the continuous time Markov chain,
branching process, etc;

– nonlinear process, such as process with interaction (in sense of McKean-Vlasov),
forward process in a coupled FBSDE, etc;

– etc.
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• In terms of the reward function, it could be

– finite horizon or infinite horizon reward function;

– asymptotic value such as limT→∞
1
T

∫ T
0
f(t,Xt, νt)dt;

– etc.

• In terms of the admissible controls, it could be

– process adapted to a sub-filtrationG ⊂ F, which leads to the partial observation
control problem, or the so-called filtering problem;

– control under constraints: delta constraint, gamma constraint, expectation con-
straint, target problem, etc.

– etc.

As an extension of the classical deterministic control problem, a first approach to charac-
terize the optimal control could be the stochastic maximum principle in spirit of Pontrya-
gin [170]. Assuming the existence of an optimal control, the maximum principle provides
a characterization of the optimal control by a stochastic forward backward system, see
e.g. Peng [165], Tang and Li [193], etc. Notice also that an optimal control may not exist
for a general control problem.

It seems that the Bellman’s dynamic programming approach is much more popular for
the stochastic control problem in the literature. The dynamic programming principle
allows to decompose the global optimization problem into a family of local optimiza-
tion problems. From a probabilistic point of view, this local property provides a super-
martingale characterization of the value function process. This point of view has been
explored in El Karoui [85], especially for the optimal stopping problem and the control
problem in the dominated case, where the later problem can be reformulated as a control
problem on a family of equivalent probability measures. Notice that in [85], the optimal
stopping problem has been solved in a good generality, and under mild conditions, one
has existence of the optimal stopping times. As for the optimal control problem, one
generally needs some convexity condition to ensure the existence of the optimal controls.
In this case, one may use Krylov’s Markov selection method to select a Markov feedback
control as optimal control, see e.g. Haussmann [110], [87], etc. Otherwise, it is the relaxed
formulation which allows to obtain the existence, see e.g. Fleming [94], and El Karoui,
Nguyen and Jeanblanc [87], etc. The idea of the relaxed control is to see the class of all
controls as a compact convex sets of probability measures on a good canonical space, and
hence the existence of the optimal control would follow from a compactness argument.

Another approach in vein of the dynamic programming principle consists in character-
izing the value function by the PDE, the Bellman equation, in sense of Soblev solution or
viscosity solution. Take the basic control problem in (3.1.1) as example, the associated
Bellman equation should be

∂tv(t, x) + sup
u∈U

(
µ(·, u)∂xv +

1

2
σ2(·, u)∂2

xxv + f(·, u)
)

(t, x) = 0, v(T, ·) = g(·). (3.1.2)
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Such an approach has been explored by many authors for different problems, we can refer
to the books of Bensoussan and Lions [15], Fleming and Rishel [95], Fleming and Soner
[96], Krylov [141], Yong and Zhou [198], and more recently the monographs Pham [169],
Touzi [194], see also the lecture note of Bouchard [32], etc. Moreover, given a solution to
the Bellman equation, the verification theorem allows to obtain the optimal (or ε-optimal)
controls. Further, the PDE approach opens a new door for the numerical analysis of the
control problem. Convergence analysis methods using the notion of viscosity solution has
been provided by Barles and Souganidis [9], Barles, Daher and Romano [7], Krylov [142],
Barles and Jakobsen [8], etc.

From another point of view, this relation between the control problem and the PDE
provides an extension of the Feynmann-Kac formula to the nonlinear case. Here, the non-
linearity means that by writing (3.1.2) in form F (·, v, ∂tv, ∂xv, ∂2

xxv)(t, x) = 0, the map
(y, θ, z, γ) 7→ F (·, y, θ, z, γ) is nonlinear (or more precisely sublinear). In the semilinear
case, the backward stochastic differential equation (BSDE) provides a more general exten-
sion of the Feynmann-Kac formula. Indeed, let f : R+ × R× R× R→ R be a generator,
and we consider the semilinear parabolic PDE

∂tv(t, x) +
1

2
σ2∂2

xxv(t, x) + f(·, v, σ∂xv)(t, x) = 0, v(T, ·) = g(·).

Under some technical conditions, the solution (u, σ∂xu) can be represented by solution
(Y, Z) of the BSDE:

Yt = g(XT )−
∫ T

t

f(s,Xs, Ys, Zs)ds+

∫ T

t

ZsdWs, with Xt := x0 +

∫ t

0

σ(s,Xs)dWs. (3.1.3)

Let us refer to seminal papers of Pardoux and Peng [163], El Karoui, Peng and Quenez
[89] for a precise definition of the solution of the BSDE as well as the standard condition
for its wellposedness. More recently, there is a new effort to extend this Feynmann-Kac
formula to a more general form such as

∂tv(t, x) +H(t, x, v, ∂xv, ∂
2
xxv) = 0, v(T, ·) = g(·),

for some map H : R+ × R × R × R × R → R. One can also study the Feyanmann-Kac
formula in a non-Markovian context, by considering the path-dependent PDE:

∂tv(t, ω) +H(t, ω, v, ∂ωv, ∂
2
ωωv) = 0, v(T, ω) = ξ(ω),

where ω represents a continuous (or càdlàg) paths, and the derivatives ∂ωu and ∂2
ωωu are

given in an appropriate sense. This effort leads to the so-called 2nd order BSDEs and the
path-dependent PDEs (PPDEs), see e.g. the series of papers by Cheridito, Soner, Touzi
and Victoir [50], Soner, Touzi and Zhang [186], Ekren, Keller, Touzi and Zhang [82, 83, 84],
Ren, Touzi and Zhang [175, 176, 177], etc. These new notions of equations have been mo-
tivated and have applications in finance for risk management of the non-Markovian exotic
options (see e.g. Dupire [79], Becherer and Kentia [13], etc.), in economics for principal-
agent problems (see e.g. Cvitanic, Possamaï and Touzi [61]), etc. We also notice that in
a series of works by Kharroubi, Pham et al. [139, 98], etc., another probabilistic repre-
sentation of the Bellman equations has been obtained by considering a constrained BSDE
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from a randomization approach to the control problem. Their randomization formulation
consists in fact an intermediary formulation between the strong/weak formulation and the
relaxed formulation of the control problem in El Karoui et el. [87].

My work in this subject stays mainly in a non-Markovian context, by studying the
dynamic programming principle, the wellposedness of the 2nd order BSDEs as well as
their numerical approximations.

3.2 The dynamic programming principle

The dynamic programming principle plays an essential role in the stochastic control theory.
It decomposes a global optimization problem into a family of local optimization problems,
and hence allows to provide the local characterization of the value function process, such
as the super-martingale property, or Bellman equation characterization, etc.

Let us consider a non-Markovian controlled diffusion processes problem as a direct ex-
tension of the Markovian control problem (3.1.1). We still stay in the one-dimensional case
for simplicity. Let Ω := C(R+,R) denote the canonical space with R-valued continuous
paths on R+, with canonical filtration F = (Ft)t≥0 and canonical process B. Let P0 be
the Wiener measure, under which B is a standard Brownian motion, and denote by FP0

the augmented filtration under P0. Let U be a Polish space, U denote the collection of all
F-progressively measurable U -valued process, let (µ, σ) : R+×Ω×U → R×R be the coeffi-
cient functions which are F-progressively measurable, i.e. (µ, σ)(t, ω, u) = (µ, σ)(t, ωt∧·, u)

for all t, ω, u, and such that for some K > 0,

|(µ, σ)(t, ω, u)− (µ, σ)(t, ω′, u)| ≤ K|ω − ω′| and |(µ, σ)(t, ω, u)| ≤ K(1 + |ω|).

Then given ν = (νt)0≤t≤T ∈ U , as well as an initial condition (t, ω) ∈ R+ × Ω, we define
X t,ω,ν
· as the unique strong solution of the SDE: Xs∧t := ωs, ∀s ≤ t; and

Xs = ωt +

∫ s

t

µ(r,Xr∧·, νr)dr +

∫ s

t

σ(r,Xr∧·, νr)dBr, ∀s ≥ t, P0-a.s. (3.2.1)

Given a bounded measurable variable ξ : Ω→ R, let us define

V (t, ω) := sup
ν∈U

J(t, ω, ν) with J(t, ω, ν) := EP0
[
ξ
(
X t,ω,ν
·

)]
. (3.2.2)

Notice that the above problem is in fact a strong formulation of the control problem, since
the probability space as well as the Brownian motion is fixed. By considering the law of
X t,ω,ν
· , one can also reformulate it equivalently by

V (t, ω) := sup
P∈P(t,ω)

EP[ξ], with P(t, ω) :=
{
P0 ◦ (X t,ω,ν)−1 : ν ∈ U

}
. (3.2.3)

Then the dynamic programming principle (DPP) is usually given in the following way:
for any (t, ω) ∈ R+ × Ω and any finite F-stopping time τ on Ω,

V (t, ω) = sup
ν∈U

EP0
[
V
(
τ t,ω,ν , X t,ω,ν

·
)]

= sup
P∈P(t,ω)

EP[V (τ, B·)
]
, (3.2.4)
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where τ t,ω,ν := τ(X t,ω,ν), which consists a FP0-stopping time for each (t, ω, ν). The above
DPP has very intuitive meaning: the optimization problem on [t,∞) can be decomposed
into two sequential problems on respectively [t, τ ] and [τ,∞). Before providing the proof,
it is needed to show that V is measurable to ensure that the expectation E[V (·)] is well
defined. In the literatures, a classical way is to assume some regularity conditions on the
reward functions, so that the value function is continuous and hence measurable, see e.g.
Fleming and Soner [96], Krylov [141], etc. Besides, in the context of the PDE approach,
such a regularity is also needed as viscosity solution of a PDE. We also refer to Bouchard
and Touzi [41], Touzi [194] for the so-called weak DPP, by considering the semi-continuity
envelop of the value function. As for the proof, the classical way is to decompose the
equality in the DPP into two inequalities, where an easy one can be obtained by a simple
conditioning argument, and the reverse one can be justified by a concatenation argument.

Conditioning of the controlled SDEs In the work of Claisse, Talay and Tan [52],
we revisited the conditioning argument in this classical proof of the DPP and pointed out
some subtle measurability issue related to the neglected sets. We then tried to formulate
this argument and proved it in a detailed and rigorous way.

Given two paths ω, ω′ ∈ Ω and t ∈ R+, we define the concatenated path ω ⊗t ω′ by

(ω ⊗t ω′)s := ωs1{0≤s≤t} +
(
ωt + ω′s − ωt

)
1{s>t}.

Then for any ν ∈ U , and (t, ω) ∈ R+ × Ω, we define a shifted control process

νt,ωs (ω′) := νs(ω ⊗t ω′), for all (s, ω′) ∈ R+ × Ω.

Theorem 3.2.1. For any (t,x, ν) ∈ R+×Ω×U and any FP0-stopping time τ taking value
in [t,∞), one has

EP0

[
ξ
(
X t,x,ν
·

) ∣∣∣ FP0
τ

]
(ω) = J

(
τ(ω), X t,x,ν

· (ω), ντ(ω),ω
)

for P0-a.e. ω ∈ Ω. (3.2.5)

Remark 3.2.1. (i) Notice that for each ω, ντ(ω),ω is an admissible control process, then
(3.2.5) is dominated by V

(
τ(ω), X t,x,ν

· (ω)
)
P0-a.s. Taking the expectation and then the

supremum over all ν ∈ U , then it follows the easy inequality “≤” for the DPP (3.2.4).

(ii) This conditioning or pseudo-Markov property has been very often used as a trivial
fact, without any further justification. In the case where τ equals to a deterministic time
t, a sketch of proof has been provided in Fleming and Souganidis [97] by considering the
canonical space C([0,∞),R) as the product space C([0, t],R)× C([t,∞),R).

(iii) In our context, one needs to show that the process X t,x,ν
· is still the solution of the

controlled SDEs associated with the shifted control ντ(ω),om, which is a kind of flow property
of the controlled SDE. Nevertheless, there could be some quite subtle issues related to the
P-null sets. For every control ν, the process X t,x,ν

· is defined by a controlled SDE w.r.t.
the completed filtration FP0, up to some P0-null sets. When taking conditional expectation
EP0 [·|FP0

τ ], one needs to consider a family conditional probability measures of P0 w.r.t.
FP0
τ . Then a first problem is that the conditional probability measure of P0 w.r.t FP0

τ does
not exist, a second problem is that even it exists, one needs to check that the solution of the
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controlled SDE w.r.t. the completed filtration under the conditional probability measure
should equal to its solution w.r.t. FP0 under P0, up to some “null sets”. Therefore, too
many null sets under different probability measures are involved.

(iv) The main contribution of this work is to point out that a rigorous proof may not be so
trivial even in this basic situation. We provide two proofs, a first one is based on the sketch
of the proof in Fleming and Souganidis [97] (which was given in a context τ ≡ t), and a
second one is based on the associated martingale problem satisfying by (X t,x,ν , B) under
P0. Such a detailed and rigorous proof in this basic context would help to avoid possible
gaps/mistakes when one studies more general and more sophisticated control problems.

Dynamic programming principle by measurable selection Another classical ap-
proach to prove the DPP consists in using the measurable selection theorem, which avoids
assuming the regularity conditions. Let f : E × F → R be a measurable function in a
product space, and define g : F → R ∪ {∞} by g(x) := supe∈E f(e, x). Then under some
topological structure, the measurable selection theorem confirms that g is also (univer-
sally) measurable, and there is some h : F → E such that h(x) ∈ E is a ε-optimizer of
supe∈E f(e, x) for every x ∈ F . Let us refer to e.g. Parthasarathy [164] for a review of the
different versions of the selection theorems, and in Bertsekas and Shreve [22] for a detailed
presentation of the analytic selection theorem, which is used a lot in the context of the
optimal control theory.
For the discrete time optimal control problems, this approach has been explored by

Bertsekas and Shreve [22], Dellacherie [66], etc. For the continuous time controlled dif-
fusion processes problem, if the volatility coefficient function is not controlled, the law of
the controlled diffusion process are all absolutely continuous w.r.t. a reference measure,
then the control problem can be transformed into an optimization problem over a class
of equivalent measures, see e.g. El Karoui [85]. This situation is in fact covered by the
later developed BSDE theory: the value function process is the Y -part of the solution to
the BSDE and the DPP for the control problem is a simple conditioning argument on the
solution of the BSDEs. For more general situation where the volatility is controlled, El
Karoui, Huu Nguyen and Jeanblanc [87] suggested a martingale problem formulation by
considering the law of the controlled processes (see (3.2.3)), and then proved a the DPP
using the measurable selection techniques. The same technique is more recently used in
Nutz and van Handel [160] to prove the DPP for the time consistency of the so-called
sub-linear expectation. Based on these work, in El Karoui and Tan [91, 92], we try to
give a detailed review on the measurable selection theorems, as well as how it could be
used to deduce the DPP for a control problem. Moreover, we obtained the DPP for a
large class of controlled/stopped martingale problems, which covers in particular various
formulations of the controlled diffusion processes problems.

To illustrate the idea, let us stay in the classical situation with canonical space
Ω := C(R+,R), canonical process B and canonical filtration F, equipped with a class
(P(t, ω))(t,ω)∈R+×Ω of non-empty probability measure sets on Ω. Namely, P(t, ω) denotes
the collection of all possible distributions of the controlled process, given initial condition
(t, ω), on the canonical space. In particular, one can have (3.2.3) in mind as example of
the family P(t, ω). Then, for some ξ : Ω→ R, we naturally formulate the control problem
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by

V (t, ω) := sup
P∈P(t,ω)

EP[ξ]. (3.2.6)

To formulate the assumptions, let us recall some notions on the probability measures on
Ω from Stroock and Varadhan [188]. Let P be a Borel probability measure on Ω, and τ
a F-stopping time, then there is a family (Pω)ω∈Ω of probability measures on Ω, called a
regular conditional probability distribution (r.c.p.d.) of P knowing Fτ , such that

• ω 7→ Pω is Fτ -measurable,

• P[A|Fτ ](ω) = EPω [A] for P-a.e. ω ∈ Ω,

• Pω[Bt∧· = ωt∧·] = 1 for every ω ∈ Ω.

Next, given a family (Qω)ω∈Ω of probability measures such that ω 7→ Qω is Fτ -measurable
and Pω[Bτ(ω)∧· = ωτ(ω)∧·] = 1 for every ω ∈ Ω, one can define a concatenated probability
measure P⊗τ Q· by

P⊗τ Q·[A] :=

∫
Ω

Qω[A]dP(ω).

In particular, we know that P = P⊗τ Q· on Fτ , and (Qω)ω∈Ω consists a r.c.p.d. of P⊗τ Q·
knowing Fτ .

Assumption 3.2.1. (i) Let (t, ω) ∈ R+ × Ω, one has P(t, ω) = P(t, ωt∧·) and P[Xt∧· =

ωt∧·] = 1 for every P ∈ P(t, ω); moreover, the graph set [[P ]] := {(t, ω,P) : P ∈ P(t, ω)}
is Borel measurable.

(ii) Let (t, ω) ∈ R+ × Ω, τ be a F-stopping time taking value in [t,∞), and P ∈ P(t, ω),
for a r.c.p.d. (Pω′)ω′∈Ω of P knowing Fτ , one has Pω′ ∈ P(τ(ω′), ω′) for P-a.e. ω′ ∈ Ω.

(iii) Let (t, ω) ∈ R+ × Ω, τ be a F-stopping time taking value in [t,∞), and P ∈ P(t, ω),
given a family (Qω′)ω′∈Ω such that Qω′ ∈ P(τ(ω′), ω′), one has P⊗τ Q· ∈ P(t, ω).

Theorem 3.2.2. Let Assumption 3.2.1 hold true, and assume that ξ : Ω → R is Borel
measurable. Then for every (t, ω) ∈ R+ × Ω and every F-stopping time τ taking value in
[t,∞), the value function V defined by (3.2.6) is universally measurable, and it satisfies
the DPP

V (t, ω) = sup
P∈P(t,ω)

EP[V (τ, B·)
]
. (3.2.7)

Proof. First, the measurability of V is a direct consequence of the measurable selection
theorem, knowing that (t, ω,P) 7→ EP[ξ] is Borel measurable. Then a first inequality “≤”
can be obtained by considering an arbitrary P ∈ P(t, ω) and a r.c.p.d. of P knowing Fτ ,
and then using Assumption 3.2.1 (ii). Finally, for the reverse inequality, one can choose
a ε-optimal control Qε

ω for every initial condition (τ(ω), ω), in a measurable way. Then it
is enough to consider an arbitrary P and its concatenated measure P⊗τ Qε

· , and then to
use Assumption 3.2.1 (ii).
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Remark 3.2.2. One can consider (t, ω) 7→ V (t, ω) as a process defined on R+. Then
from the DPP (3.2.7), one obtains that for all 0 ≤ s ≤ t,

V (s, ω) ≥ EP[V (t, B)
∣∣Fs], P-a.s. for all P ∈ P(0, ω).

Assume that V is F-optional, then it is a P-supermartingale. In practice, it may be difficult
to check directly that V is F-optional. Under a fixed probability, one can do a modification
of V to obtain a FP-optional supermartingale. Another way to obtain the supermartingale
is to consider its right-continuous modification.

Our next result confirms that the above framework with Assumption 3.2.1 is convenient
to study optimal control problem. Let us consider a general controlled martingale problem.
Following the language of Ethier and Kurtz [90], we say a generatorG for a control problem
is a set of couples of functions (f, g), where f : R → R, g : R+ × Ω × U × R → R. As
examples, on can have in mind the couples (ϕ,Lϕ) for an infinitesimal generator L of a
Markov process with ϕ in the domain of the generator. Given a generator G and initial
condition (t, ω) ∈ R+ × Ω, a control term (resp. relaxed control term) is a term

α =
(
Ωα,Fα,Fα,Pα, Xα, να(resp.mα)

)
,

where
(
Ωα,Fα,Fα,Pα

)
is a filtered probability space, equipped with a continuous process

Xα such that Xα
t∧· = ωt∧·, Pα-a.s., να is a U -valued predictable process (resp. mα is a

P(U)-valued predictable process with P(U) denotes the collection of all Borel probability
measures on U). Moreover, the process (Cα

s (f, g))s≥t defined below is a local martingale
for every (f, g) ∈ G,

Cα
s (f, g) := f(Xα

s )−
∫ s

t

g(r,Xα
r∧·, ν

α
s (resp.mα

r ), Xα
s )ds,

with g(r, ω,mα
r , x) :=

∫
U
g(r, ω, u, x)mα(du). Denote by A(t, ω) the collection of all control

terms α with initial condition (t, ω), then one has the following controlled martingale
problem:

sup
α∈A(t,ω)

EPα[Xα
·
]
. (3.2.8)

Theorem 3.2.3. Assume that there is a countable subset G0 ⊂ G which defines the same
martingale problem as G, and the set A(t, ω) is non-empty. Then the family

P(t, ω) :=
{
Pα ◦ (Xα

· )−1 : α ∈ A(t, ω)
}

satisfies Assumption 3.2.1. Consequently, one has the DPP for the controlled martingale
problem (3.2.8) associated to the generator G.

Remark 3.2.3. The above result holds still in a more general context, where Ω =

D(R+, E) is the canonical space of càdlàg paths taking value in a Polish space E, with
an appropriate generator G. One can also consider an enlarged canonical space Ω × R+

to study the optimal control/stopping problems.
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To go back to the controlled diffusion processes problem, it is enough to define

G :=
{(
ϕ, Lϕ

)
: ϕ ∈ C∞c (R)

}
, with Lϕ := µ(t, ω, u)Dϕ(x) +

1

2
σ2(t, ω, u)D2ϕ(x).

In particular, the formulation (3.2.8) with all control terms provides a weak formulation
of the control problem; the formulation (3.2.8) with all relaxed control terms provides
a relaxed formulation of the control problem. Finally, by consider the law the couple
(Xν , B), the strong formulation (3.2.2) of the control problem can also be reformulated
as the controlled martingale problem above. In this context, we have the following result.

Theorem 3.2.4. (i) Assume that the coefficient functions µ and σ are Borel measurable
and the controlled SDE above (3.2.2) has at least one solution. Then, the strong, weak and
relaxed formulation of the controlled diffusion processes problem all satisfies Assumption
3.2.1.
(ii) Under some further regularity conditions on µ, σ and ξ, one can approximate any
relaxed control term by strong controls and hence all the three formulations have the same
value function.

Remark 3.2.4. A very nice property of the relaxed formulation is that the set of all
measures induced by the relaxed controls is closed. In many situations, one only needs to
check the tightness or relative compactness of a sequence of control terms, and then their
limits point is still a relaxed control term. This fact is essentially used in the numerical
approximation methods for control problem by Kushner and Dupuis [144]. This property
has also been essentially used to study the mean field game problems in a series paper of
Carmona, Delarue and Lacker [145, 49, 146], etc.

3.3 Second order BSDEs, estimation and decomposi-
tion of super-solution of BSDEs

To obtain a probabilistic representation for PDEs or path-dependent PDEs in a more
general form than the classical Bellman equation (3.1.2), one could consider the problem
of controlling a family of BSDEs, which leads to the so-called second order BSDE (2BSDE)
of Soner, Touzi and Zhang [186].

Let Ω := C([0, T ],Rd) be the canonical space with canonical filtration F = (Ft)t∈[0,T ]

and canonical process B, let FP = (FP
t )t∈[0,T ] be the P-augmented filtration given P on Ω.

We will consider the probability measures P on Ω, under which B is a semi-martingale
with canonical decomposition

dBt = bPt dt+ dBc,P
t , and d〈Bc,P〉t = âtdt under P,

where Bc,P is a continuous local martingale with quadratic variation 〈Bc,P〉t = 〈B〉t. Let τ
be a F-stopping time, ξ a FP

τ -measurable variable, and f : [0, T ]×Ω×R×R×R×R→ R
the generator function, we denote by YP(τ, ζ) the Y -part of the solution to the BSDE

Ys = ζ −
∫ τ

s

f(r, Br∧·,Ys, (â1/2
r )>Zr, âr, bPr )dr −

∫ τ

s

ZsdBc,P
r −

∫ τ

s

dMr, P-a.s. (3.3.1)
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Here a solution to the above BSDE is a triple (Y ,Z,M) in an appropriate space such that
(3.3.1) holds, where in particularM is a martingale orthogonal to Bc,P. The wellposedness
of the BSDE is ensured under the integrability condition

EP[|ζ|p] <∞ for some p > 1,

and some integrability condition on f and the standard Lipschitz condition of f in (y, z),
see e.g. El Karoui and Huang [86].
We will consider a family of measures sets (P(t, ω))(t,ω)∈[0,T ]×R satisfying Assumption

3.2.1, then given ξ ∈ FT , we study the following optimization problem:

Ŷt(ω) := sup
P∈P(t,ω)

EP[YP
t (T, ξ)

]
. (3.3.2)

In particular, take the controlled diffusion processes in (3.2.3) as example, we can expect
that Ŷt(ω) provides a representation of the nonlinear PDE, in a Markovian context,

∂tv(t, x) + sup
u∈U

(
f(·, v, σ∂xv, µ(·, u), σ2(·, u)) +

1

2
σ2(·, u)∂2

xxv
)

(t, x) = 0;

or of the nonlinear PPDE, in a non-Markovian context,

∂tv(t, ω) + sup
u∈U

(
f(·, v, σ∂ωv, µ(·, u), σ2(·, u)) +

1

2
σ2(·, u)∂2

ωωv
)

(t, ω) = 0,

with terminal condition v(T, ω) = ξ(ω) for ω ∈ Ω.

2BSDE without regularity on (t, ω) In Possamaï, Tan and Zhou [172], we proved
a dynamic programming principle for the control problem (3.3.2) using the measurable
selection technique as in Theorem 3.2.2. The measurable selection technique allows to
avoid some technical regularity conditions on f and ξ in the original paper of [186].

Theorem 3.3.1. Assume that the family (P(t, ω))(t,ω)∈[0,T ]×Ω satisfies Assumption 3.2.1,
ξ : Ω→ R is Borel measurable, and the generator f(t, x, y, z, b, a) is Borel measurable and
Lipschitz in (y, z). Assume in additional some integrality conditions on ξ and f . Then
one has the DPP: for all (t, ω) ∈ [0, T ]× Ω and F-stopping time taking value on [t, T ],

Ŷt(ω) := sup
P∈P(t,ω)

EP[YP
t (τ, Ŷτ )

]
.

Remark 3.3.1. The above result is an extension of the DPP result in the linear case in
Theorem 3.2.2. To adapt the previous proof, a key step is to construct the solution of the
BSDE such that P 7→ EP

[
YP
t (T, ξ)

]
is Borel measurable.

Once we have the above dynamic programming principle result, we can follow the same
routine in [186] to obtain a wellposedness result for the 2BSDE:

1. First, the dynamic programming principle in Theorem 3.3.1 provides a super-
martingale property of process (Ŷt)t∈[0,T ] in the nonlinear sense, that is,

Ŷt(ω) ≥ EP[YP
t (τ, Ŷτ )

∣∣Ft](ω), P-a.s. for all P ∈ P0.
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2. Consider the right-continuous version Ŷ+
t of Ŷt, which is optional w.r.t. the univer-

sally augmented filtration FU,+, one hence obtain a strong super-martingale Ŷ+ in
sense that

Ŷ+
σ ≥ YP

σ (τ, Ŷ+
τ ) P-a.s. for all FU,+-stopping times σ ≤ τ, and all P ∈ P0.

3. Under each fixed P, we consider the reflected BSDE with generator f and càdlàg
obstacle Ŷ+, it follows the Doob-Meyer decomposition for the super-martingale:

Ŷ+
t = ξ −

∫ T

t

f(s, Bs∧·, Ŷ+
s , (â

1/2
s )>ZP

s )ds−
∫ T

t

ZP
s · dBc,P

s −
∫ T

t

dMP
s +

∫ T

t

dKP
s ,

where MP is a càdlàg martingale orthogonal to Bc,P, and KP is an predictable non-
decreasing process, w.r.t. the filtration FU,+.

4. By considering the co-quadratic variation 〈Ŷ+, B〉, one can aggregate the family
(ZP)P∈P0 into a unique process Z, and it follows a solution to the 2BSDE:

Ŷ+
t = ξ −

∫ T

t

f(s, Bs∧·, Ŷ+
s , (â

1/2
s )>Zs)ds−

∫ T

t

Zs · dBc,P
s

−
∫ T

t

dMP
s +

∫ T

t

dKP
s , P0-q.s. (3.3.3)

Theorem 3.3.2. Under the same technical conditions in Theorem 3.3.1, the 2BSDE
(3.3.3) has a unique solution in an appropriate space.

Remark 3.3.2. In the above routine, some technical questions motivates the next two
works.

• First, as we would like to consider a general family of semi-martingale measures P
in P(t, ω), for which the augmented filtration FP would not be quasi-leftcontinuous in
general. Nevertheless, this quasi-leftcontinuous condition is essentially assumed in
the previous literature for the a priori estimates and hence the wellposedness of the
RBSDE as in Step 3. This motivates us to consider the wellposedness of RBSDEs
under general filtration, or more essentially, the a priori estimates to the super-
solution of BSDEs.

• Without the right-continuous regularization, the original process Ŷ has already a
super-martingale property as shown Step 1. A natural question is that whether
one has the Doob-Meyer decomposition without assuming the right-continuity of the
super-martingale.

A priori estimates for super-solution of BSDEs under general filtration Most
of the literature on BSDEs, reflected BSDEs (RBSDEs), etc. remains in the context of
the Brownian filtration, or in a general filtration by assuming the quasi-leftcontinuous
condition, in order to obtain the a priori estimates of super-solutions of the BSDEs.
Technically, this condition avoids the jumps of a martingale at predictable times, a key
argument used in the classical forward approach to deduce the a priori estimates. The a



42 Chapitre 3. Non-Markovian control

priori estimates allows to control the norm of all other terms by the norm of the Y -term
for a super-solution of the BSDE. It plays an essential role for the wellposedness of the
BSDE and RBSDE, and used in various situations such as constrained BSDE in [60], weak
BSDE [34], and 2BSDE [186, 172], etc.

In Bouchard, Possamaï, Tan and Zhou [172], we provides another approach to deduce
the a priori estimates for super-solutions of the BSDEs. In particular, it allows to bypass
the previous technical conditions. Let (Ω,F ,F,P) be a filtered probability space, where
F satisfies the usual conditions, and it equipped with a standard d-dimensional Brownian
motion W . We have a random variable ξ ∈ Lp for some p > 1 and a generator function
f : [0, T ] × Ω × R × Rd → R such that f(t, ω, y, z) is Lipschitz in (y, z), and we consider
the so-called super-solution of BSDE

Yt = ξ −
∫ T

t

fs(Ys, Zs)ds−
∫ T

t

Zs · dWs −
∫ T

t

dMs +

∫ T

t

dKs, P-a.s., (3.3.4)

where M is a martingale orthogonal to W and K is predictable non-decreasing process.
We also introduce some space with the given p > 1 and α ≥ 0:

• Sp denotes the space of all optional process Y such that ‖Y ‖pSp :=

E
[

sup0≤s≤T |Yt|p
]
<∞.

• Mp,α denotes the space of all cd̀làg martingales M such that ‖M‖pMp,α :=

E
[( ∫ T

0
eαtd[M ]t

)p/2]
<∞.

• Hp,α denotes the space of all predictable process such that ‖Z‖pHp,α :=

E
[( ∫ T

0
eαt‖Zt‖2dt

)p/2]
<∞.

• Ip,α denotes the space of all predictable process K with bounded variation and
K0 = 0, and such that ‖K‖pIp,α := E

[( ∫ T
0
eαs/2dTV(K)s

)p]
< ∞. Here TV(K)

means the total variation of process K. Denote by Ip,α+ the subset of Ip,α containing
all nondecreasing paths.

Recall that in the classical linear case, any uniformly integrable strong super-martingale
has the following classical Doob-Meyer(-Mertens) decomposition

Xt = X0 +Mt −Kt − It, (3.3.5)

where M is a càdlàg martingale, K is a predictable right-continuous non-decreasing pro-
cess, and I is a predictable quasi-leftcontinuous non-decreasing process, with M0 = K0 =

I0 = 0.

Remark 3.3.3. The classical continuous time version of the Doob-Meyer decomposition
is on the càdlàg supermartingale. Mertens [152] was the first to obtains the decomposition
for general strong supermartingale, which is automatically làdlàg, see also Dellacherie and
Meyer [67] for an alternative proof.

Lemma 3.3.1 (Meyer). There is a constant Cp > 0, such that for any strong supermartin-
gale X ∈ Sp with Doob-Meyer decomposition (3.3.5), one has

‖K‖Ip + ‖I‖Ip + ‖M‖Mp,α ≤ Cp‖X‖Sp .
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Using the above estimate in Meyer [153], we will consider the nonlinear case and obtain
an extended result. Given ξ ∈ Lp and a generator function f satisfying the standard
Lipschitz condition, we say (Y, Z,M,K) ∈ Sp × Hp ×Mp × Ip+ is a super-solution of the
associated BSDE if (3.3.4) holds. Let us also define f0(t, ω) := f(t, ω, 0, 0), which can be
viewed as a process on Ω.

Theorem 3.3.3. (i) For every α > 0, there is some constant Cα,p > 0 such that for all
super-solutions (Y, Z,M,K) of the BSDE, one has

‖Z‖pHp,α + ‖M‖pMp,α + ‖K‖pIp,α ≤ Cα,p

(
‖Y ‖pSp + ‖f0‖pHp,α1

)
.

(ii) Let ξ1, ξ2 be two terminal conditions, f 1, f 2 be two generator functions, and
(Y i, Zi,M i, Ki) i = 1, 2 be the super-solution of the associated BSDEs. Denote by
(δY, δZ, δM, δK) their difference. Then for all α > 0, there is some constant C ′p,α such
that

‖δZ‖pHp,α + ‖δ(M −K)‖pMp,α ≤ C ′p,α

(
‖δY ‖pSp + ‖δY ‖p/2∧(p−1)

Sp + ‖δf0(Y 1, Z1)‖pHp,α
)
.

Doob-Meyer’s decomposition for (làdlàg) strong super-martingales The proce-
dure above Theorem 3.3.2 is a very classical routine for solving optimal control/stopping
problems. Nevertheless, in the case with one reference probability, it is possible to avoid
the technical right-continuous regularization in Step 2 and use directly the Doob-Meyer
decomposition. This is for example the case of the optimal stopping problem in El Karoui
[85]. Indeed, for any stopping time τ ∈ T , one can define the value function as a random
variable Sτ . By the dynamic programming principle, it follows that family (Sτ )τ∈T is a
super-martingale system, i.e. Sσ ≥ E[Sτ |Fσ], P-a.s. Then by Dellacherie and Lenglart
[68], one can aggregate this system into a unique optional process X such that Xτ = Sτ ,
P-a.s. for every stopping time τ . Moreover, X is a strong super-martingale, which is
làdlàg, and one has the Doob-Meyer(-Mertens) decomposition, see Remark 3.3.3.

In the BSDE context, Peng [166] provided a Doob-Meyer decomposition for the so-
called càdlàg E-super-martingales in the context of the Brownian filtration. As pointed
later by El Karoui, this is in fact a direct consequence of the reflected BSDE using the
E-supermartingale as obstacle. In Bouchard, Possamaï and Tan [38], we try to extend this
Doob-Meyer’s decomposition for general strong E-super-martingales. In particular, using
our a prioiri estimates in the previous work [39], we do not need to assume any more the
quasi-leftcontinuous condition on the filtration.

Let (Ω,F ,P) be a completed probability space, equipped with a filtration satisfying the
usual conditions and a standard Brownian motion. We denote by T the collection of all
stopping times taking value in [0, T ]. Let σ ≤ τ be two stopping times, and ξ ∈ Lp(Fτ ),
we define

Eσ,τ [ξ] := Yσ, with Yt = ξ −
∫ τ

t∧τ
fs(Ys, Zs)ds−

∫ τ

t∧τ
Zs · dWs −

∫ τ

t∧τ
dMs,

where f : [0, T ]×Ω×R×Rd → R is the generator function, M is a martingale orthogonal
to W . The wellposedness of the above BSDE is ensured by the Lp(Fτ ) condition on ξ.
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Theorem 3.3.4. Let {S(τ), τ ∈ T } be a family such that S(τ) ∈ Lp(Fτ ), S(τ) = S(τ ′)

a.s. on τ = τ ′, and S(σ) ≥ Eσ,τ [S(τ)] for every σ ≤ τ .

(i) Assume that {S(τ), τ ∈ T } is uniformly integrable. Then there is an optional process
X such that S(τ) = Xτ for every τ ∈ T .
(ii) Assume in addition that esssup{S(τ), τ ∈ T } ∈ Lp, there there exists Z ∈ Hp,0,
A ∈ Ip,0+ and a càdlàg martingale M ∈Mp,0 orthogonal to W such that for all σ ≤ τ ∈ T ,

Xσ = Xτ −
∫ τ

σ

fs(Xs, Zs)ds+

∫ τ

σ

dAs −
∫ τ

σ

Zs · dWs −
∫ τ

σ

dMs.

Remark 3.3.4. (i) In a parallel work of Grigorova, Imkeller, Offen, Ouknine and Quenez
[104], and in the context of the Brownian filtration with p = 2, the authors obtained
a wellposedeness result of reflected BSDE with right upper-semicontinuous obstacle. In
particular, their result induces the above Doob-Meyer decomposition in their context, which
is less general than ours in Theorem 3.3.4.

(ii) As applications, we provide an optional decomposition for E-supermaritingale systems,
as well as a Dual formulation for minimal super-solution of BSDEs with constraints on the
gains process studies by Cvitanić, Karatzas and Soner [60]. With the above Doob-Meyer
decomposition, one avoids the tedious right-continuous regularization step as in Step 2
above Theorem 3.3.2.

3.4 Numerical approximations

The numerical methods have been developed along the stochastic control theory. It plays
an important role for the application of the optimal control theory, as soon as an explicit
solution is not available. There are mainly two approaches: the probabilistic approach
and the PDE approach, to prove the convergence.

For the probabilistic approach, Kushner and Dupuis [144] have constructed a controlled
Markov chain to approximate the controlled diffusion process. Using the weak conver-
gence argument, the value of the controlled Markov chain problem converges to the value
of the controlled diffusion processes problem. Moreover, their controlled Markov chain
system can be interpreted as a finite difference numerical scheme. The weak convergence
technique provides only a general convergence result. Recently, Dolinsky [70] used the
strong invariance principle technique in Sakhanenko [184], and obtained a convergence
rate for a class of control problems.

The PDE approach goes back to the seminal paper of Barles and Souganidis [9]. Recall
that, in general, the value function of a control problem can be characterized by a Bellman
equation in form (3.1.2) and in sense of viscosity solution. In [9], Barles and Souganidis
introduced three sufficient conditions: consistency, monotonicity and stability conditions,
to ensure the convergence of a numerical scheme. Because of the lack of regularity of
the viscosity solution of a PDE, the convergence rate is more difficulty. Krylov [142]
introduced a perturbation technique on the Bellman equation, which allows to construct
a smooth sub and super-solution closed to the original unique viscosity solution of the
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equation. By analyzing the local error of the numerical scheme on the sub and super-
solution, and then optimizing the perturbation parameters, one obtains a convergence
rate. This convergence rate is later improved by Krylov [143], Barles and Jakobsen [8],
etc.

Further, with the development of the BSDE theory, the numerical methods for BSDEs
have been studied a lot. In particular, it provides numerical schemes for a class of control
problems, where only the drift coefficient function is controlled. Moreover, it could work
in a general non-Markovian context. Bally and Pagès [6], Ma, Protter, San Martín and
Torres [149] were the first to study the numerical methods for BSDEs when the generator
function depends only on y. For general BSDEs whose generator depends on (y, z), the
breakthroughs have been made by Bouchard and Touzi [37], Zhang [199], where a conver-
gence rate has been obtained. Let us stay in the Markov context as in BSDE (3.1.3) and
present their numerical scheme: let 0 = t0 < t1 < · · · < tn = T be a time discretization of
[0, T ], with ti := i∆t and ∆t := T/n, one first define a forward SDEs by its Euler scheme

X∆
ti+1

= X∆
ti

+ σ(ti, X
∆
ti

)∆Wi+1, with ∆Wi+1 := Wti+1
−Wti .

Then one can compute (Y ∆, Z∆) on the discrete time grid (ti)0≤i≤n by a backward itera-
tion: Y ∆

tn := g(X∆
tn), and

Z∆
ti

:= Eti
[
Y ∆
ti+1

∆Wi+1

∆t

]
, Y ∆

ti
:= Eti

[
Y ∆
ti+1

]
+ f
(
ti, X

∆
ti
,Eti [Y ∆

ti+1
], Z∆

ti

)
∆t, (3.4.1)

where Eti [·] := E[·|Fti ] denotes the conditional expectation. In practice, one can use a
simulation-regression method such as in [148, 103, 42], etc. to estimate the conditional
expectation terms. Since then, a large stream of literature on the numerical methods for
BSDEs has been generated.

Let us come back to the concrete numerical schemes of the optimal control problem.
The most classical scheme should the finite difference scheme. To obtain the finite differ-
ence scheme for the one-dimensional case with HJB equation (3.1.2), the first step is to
approximate the derivatives by their discrete counterpart on a discrete grid {(ti, xj)}i,j:

∂tv(ti, xj)≈
v(ti, xj)−v(ti−1, xj)

∆t
, ∂xv(ti, xj)≈

v(ti, xj+1)−v(ti, xj)

∆x
≈ v(ti, xj)−v(ti, xj−1)

∆x
,

and

∂2
xxv(ti, xj) ≈

v(ti, xj+1)− 2v(ti, xj) + v(ti, xj−1)

2∆x2
. (3.4.2)

Next, plugging the above approximating into the original equation (3.1.2), it follows the
the scheme

v(ti−1, xj) = sup
u∈U

{(µ(·, u)∆t

∆x
+
σ2(·, u)∆t

2∆x2

)
v(ti, xj+1) +

σ2(·, u)∆t

2∆x2
v(ti, xj−1) (3.4.3)

+
(

1− µ(·, u)∆t

∆x
− σ2(·, u)∆t

∆x2

)
v(ti, xj) + f(ti, xj, u)∆t

}
.

In the three convergence criteria of Barles and Souganidis [9], the consistency is ensured by
the approximation in and above (3.4.2), the monotonicity will be ensured by the so-called
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CFL condition

1− µ(·, u)∆t

∆x
− σ2(·, u)∆t

∆x2
≥ 0. (3.4.4)

This is exactly the same condition in Kushner and Dupuis [144] to ensure that the
three coefficients before v(ti, xj+1), v(ti, xj) and v(ti, xj−1) are all positive and with
sum 1 to obtain a probability function, so that one can interpret the finite differ-
ence scheme as a control Markov chain system: the system moves from (ti−1, xj) to
{(ti, xj+1), (ti, xj), (ti, xj−1)} with different probabilities. In high dimensional case, the
finite difference scheme is more difficult to keep monotone, except in the diagonal dom-
inated case. Bonnans, Ottenwaelter and Zidani [27, 30] introduced a generalized finite
difference scheme, where the coefficients can be computed in d = 2 case to obtain a
monotone scheme.

To solve higher dimensional problems, one may expect to use Monte-Carlo methods.
Inspired from the numerical scheme (3.4.1) of BSDEs (which is a semilinear PDE in the
Markov case), Fahim, Touzi and Warin [93] introduced a new scheme for a class of fully
nonlinear parabolic PDEs:

∂tv +
1

2
σ2(·)D2v + F (·, v,Dv,D2v) = 0, v(T, ·) = g(·). (3.4.5)

The numerical scheme is as follows: let Y ∆
tn := g(X∆

tn), we then compute Y ∆
ti

using the
backward iteration:

Z∆
ti

:= Eti
[
Y ∆
ti+1

(
σ(ti, X

∆
ti

)>
)−1 ∆Wi+1

∆t

]
,

Γ∆
ti

:= Eti
[
Y ∆
ti+1

(
σ(ti, X

∆
ti

)>
)−1 ∆W 2

i+1−∆t

∆t2
σ(ti, X

∆
ti

)−1
]
,

Y ∆
ti

:= Eti
[
Y ∆
ti+1

]
+ F

(
ti, X

∆
ti
,Eti [Y ∆

ti+1
], Z∆

ti
,Γ∆

ti

)
∆t.

(3.4.6)

Under some technical conditions, they show that the above scheme satisfies the consis-
tency, monotonicity and stability conditions of Barles and Souganidis [9] and hence obtain
a convergence result. Restrict to the HJB equations, they also apply the perturbation tech-
niques of Krylov [142] to obtain a convergence rate. An extension for degenerate nonlinear
PDEs has been made in Tan [190]. For similar nonlinear PDEs, more monotone numerical
schemes have been proposed, let us cite the semi-Lagrangian scheme in Debrabant and
Jakobsen [65], the trinomial tree scheme of Guo, Zhang and Zhuo [108], the switching
system scheme of Kharroubi, Langrené and Pham [138], etc. Notice that all the above
schemes have been analysed in a Markov context, with the numerical analysis technique
of Barles and Souganidis [9], or the Perturbation technique as in Krylov [142] and Barles
and Jacobsen [8].

My work in this subject concentrates mainly on the generalization of the classical nu-
merical analysis techniques to the non-Markovian case. As a consequence, it allows to
extend all those numerical schemes introduced in a Markov context to the non-Markovian
context.

A numerical scheme for non-Markovian stochastic control problems In the
paper of Tan [191], we worked on the numerical scheme of Fahim, Touzi and Warin [93],
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that introduced for nonlinear PDEs. As recalled above for the finite difference scheme, the
CFL condition (3.4.4) used to ensure the monotonicity condition of Barles and Souganidis
[9] is in fact equivalent to the technical condition used in Kushner and Dupuis [144] for the
existence of the controlled Markov chain. The main contribution of [191] is to provide a
re-interpretation of the numerical scheme of Fahim, Touzi and Warin [93] as a controlled
Markov chain in the context of an optimal control problem, under the same technical
monotone conditions. This allows to extend it for a class of non-Markovian control problem
in form of (3.2.2). For the non-Markovian control problem (3.2.2), our scheme is given as
follows: First, we introduce an uncontrolled volatility function σ0 : [0, T ] × Ω → R, and
simulate the associated solution of SDE dXt = σ0(t,Xt∧·)dWt by its Eurler scheme

X∆
ti+1

= X∆
ti

+ σ0(t, X̂∆
ti∧·)∆Wi+1,

where X̂∆ denotes the continuous time path obtained by linear interpolation of
(X∆

t0
, · · · , X∆

ti
). Recall that µ and σ are the controlled drift and volatility coefficient

functions for SDE (3.2.1), we introduce

bt,ωu := µ(t, ω, u), at,ωu := σ2(t, ω, u)− σ2
0(t, ω) and F (t, ω, z, γ) := sup

u∈U

(
bt,ωu z +

1

2
at,ωu γ

)
.

As a non-Markovian extension of Fahim, Touzi and Warin’s [93] scheme, our numerical
solution is computed in the backward iteration: Let Y ∆

tn := ξ(X̂∆
· ), and then define Y ∆

ti

by induction:
Z∆
ti

:= Eti
[
Y ∆
ti+1

(
σ0(ti, X̂

∆
ti

)>
)−1 ∆Wi+1

∆t

]
,

Γ∆
ti

:= Eti
[
Y ∆
ti+1

(
σ0(ti, X̂

∆
ti

)>
)−1 ∆W 2

i+1−∆t

∆t2
σ0(ti, X̂

∆
ti

)−1
]
,

Y ∆
ti

:= Eti
[
Y ∆
ti+1

]
+ F

(
ti, X̂

∆
ti
, Z∆

ti
,Γ∆

ti

)
∆t.

(3.4.7)

Notice that the above scheme can be implemented together with a simulation-regression
technique to estimate the conditional expectation terms, similar to the numerical schemes
of the BSDEs (3.4.1).

To prove the convergence, we adapted Kushner and Dupuis’s [144] weak convergence
technique in our non-Markovian context. When the controlled coefficient functions µ and
σ do not dependent on (t,Xt), we also adapted Dolinsky’s [70] strong invariance principle
approach to provide a convergence rate result.

Weak approximation of 2BSDEs With the above numerical scheme for non-
Markovian control problem, it is natural to consider the numerical approximation of the
second order BSDEs, which is basically a control problem on a family of BSDEs. It would
be easy to extend formally the above schemes (3.4.1) and (3.4.7) for BSDEs and non-
Markov control problem to the case of 2BSDEs. However, the main difficulty here is to
extend the weak convergence technique to this nonlinear context. From another point of
view, the weak convergence would be an interesting property for the 2BSDE. In the work
of Possamaï and Tan [171], our aim is to develop a weak convergence property for the
2BSDE as an extension of the classical Donsker’s theorem.



48 Chapitre 3. Non-Markovian control

The classical Donsker’s [76] theorem is given as follows: Let (Xi)i≥1 be a sequence of i.i.d.
random variables with mean 0 and variance 1, we define the sum Sn :=

∑n
i=1 Xi and the

scaled sum W n
t := Sbntc/

√
n, t ≥ 0, then the process W n

· converges weakly to a standard
Brownian motion W·. In particular, given a bounded continuous variable ξ : Ω→ R with
canonical space Ω := D(R+,Rd) of càdlàg paths, one obtains that E[ξ(W n

· )] → E[ξ(W·)]

as n→∞. Recall that the solution of BSDE with terminal condition ξ can be considered
as a nonlinear expectation on ξ. This motivates Briand, Delyon and Mémin’s [44] work to
provide an extension of the Donsker’s theorem to the BSDE case. Namely, let (W n)n≥1 be a
sequence as above which converges weakly to the Brownian motionW , and let (Y, Z) (resp.
(Y n, Zn)) be the solution of the BSDE (3.1.3) generated by W (resp. W n), it is proved in
[44] that (Y n, Zn) converges to (Y, Z) in a weak sense. For the G-expectation introduced
by Peng [167], Dolinsky, Nutz and Soner [71] studied its weak convergence property. As the
G-expectation is the supremum of expectations under a family of probability measures on
Ω, by considering the supremum of expectation under an appropriate family of probability
measures on a discrete time canonical space, they obtained an weak approximation result
as in Donsker’s theorem. Notice that the G-expectation is in fact a simple non-Markovian
control problem, where the drift function is 0, and the volatility function is bounded
between two constants σ0 < σ1. Their proof is in fact in the same spirit of the weak
convergence argument as in Kushner and Dupuis [144].

In view of the above results, our main objective in [171] is to extend the Donsker’s type
result for the 2BSDE. Notice that the solution of a 2BSDE is in fact the supremum of
solutions of BSDEs under a family of probability measures P , see (3.3.3), where P could
be a family of probability measures induced by the controlled diffusion processes as in
(3.2.3). Given a family of discrete time controlled processes (Mν,π

· )π, where π denotes the
time discretization with time step converging to 0, such that

• Any sequence of controlled processes (Mνn,πn
· )n≥0 with |πn| → 0 is tight on the space

of continuous time pahs, and any continuous time limit lies in P .

• Any probability in P can be approximated weakly by the discrete time controlled
processes in the family (Mν,π

· )π.

Let us consider the BSDEs generated by the family (Mν,π
· )π:

Yν,πt = ξ(Mν,π
· )−

∫ T

t

f(s,Mν,π
s∧· ,Yν,πs ,Zν,πs , νs)ds−

∫ T

t

Zν,πs dMν,π
s −

∫ T

t

dNν,π
s , (3.4.8)

and denote Y π
0 := supν Y

ν,π
0 . Using results and techniques as in Ma, Protter, San Martín

and Torres [149] and Briand, Delyon and Mémin [44], we have the following convergence
result:

Theorem 3.4.1. Under some regularity conditions, we have lim inf |π|→0 Y
π

0 ≥ Y0, where
Y is the Y -part of the solution to the 2BSDE (3.3.3). Assume in addition that f does not
dependent on z, then

lim
|π|→0

Y π
0 = Y0.
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Remark 3.4.1. (i) In the above result, the final convergence result is only obtained when
f is independent of z. The main technical reason is that one cannot have the convergence
of Z under the augmented filtration FP for a general probability P. Indeed, the process Z
in the solution of the BSDE is intuitively the integral part in the martingale representation
theorem, counter-examples can be found in e.g. [130].
(ii) As applications, we can choose an appropriate family (Mν,π

· ) such that the discrete time
BSDE (3.4.8) can be reformulated as a numerical scheme, and the above result ensures
its convergence. In particular, it covers the finite-difference scheme as in (3.4.3), and the
Fahim-Touzi-Warin scheme as in (3.4.6), etc.

Numerical analysis for path-dependent PDEs The weak convergence techniques
could be very powerful in numerical analysis for non-Markovian control problems, but
it has its limit in many cases such as the 2BSDE, the differential games, etc. With the
development of the viscosity solution theory of the path-dependent PDE (PPDE) in [82],
etc., it is natural to try to extend the seminal work of Barles and Souganidis [9] to the
path-dependent case. As the PPDE describes the value function for a large class of non-
Markovian control problems, the 2BSDE, the differential games, etc., such an extension
could provide new numerical schemes and convergence results for these non-Markovian
problems. This is the main objective of the work in Ren and Tan [174].

Let us first recall the seminal work of Barles and Souganidis [9] on the monotone scheme
for numerical approximation of the viscosity solution of the PDE. We will restrict to the
parabolic PDE:

Lv(t, x) := − ∂tv(t, x)−G0(·, v, ∂xv, ∂2
xxv)(t, x) = 0, on [0, T )× Rd, (3.4.9)

with the terminal condition u(T, ·) = g. A function u is said to be a viscosity super-
solution (resp. sub-solution) of PDE (3.4.9) if for any point (t, x) ∈ (0, T ) × Rd and any
function φα,β,γ(s, y) := αs + β · y + 1

2
γ : (yy>) such that (u − φα,β,γ)(s, y) has a local

minimum (resp. maximum) at (t, x), one has −α −G0(t, x, u(t, x), β, γ) ≥ 0 (resp. ≤ 0).
Then u is a viscosity solution of (3.4.9) if it is at the same time super- and sub-solutions,
see e.g. Crandall, Ishii and Lions [59].

Assumption 3.4.1. (i) The terminal condition g is bounded continuous.
(ii) The function G0 is continuous and G0(t, x, y, z, γ) is non-decreasing in γ.
(iii) PDE (3.4.9) admits a comparison principle for bounded viscosity solution, i.e. if
u, v are bounded viscosity subsolution and supersolution to PDE (3.4.9), respectively, and
u(T, ·) ≤ v(T, ·), then u ≤ v on [0, T ]× Rd.

For any t ∈ [t, T ) and h ∈ (0, T − t], let Tt,xh be an operator on the set of bounded
functions defined on Rd. For n ≥ 1, denote h := T

n
< T − t, ti = ih, i = 0, 1, · · · , n, let

the numerical solution be defined by

uh(T, x) := g(x), uh(t, x) := Tt,xh [uh(t+ h, ·)], t ∈ [0, T ), i = n, · · · , 1.

Assumption 3.4.2. (i) Consistency: for any (t, x) ∈ [0, T )×Rd and any smooth function
φ ∈ C1,2([0, T )× Rd),

lim
(t′,x′,h,c)→(t,x,0,0)

(c+ φ)(t′, x′)− Tt
′,x′

h

[
(c+ φ)(t′ + h, ·)

]
h

= Lφ(t, x).
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(ii) Monotonicity: Tt,xh [φ] ≤ Tt,xh [ψ] whenever φ ≤ ψ.
(iii) Stability: uh is bounded uniformly in h whenever g is bounded.
(iv) Boundary condition: lim(t′,x′,h)→(T,x,0) u

h(t′, x′) = g(x) for any x ∈ Rd.

Theorem 3.4.2 (Barles and Souganidis). Let the generator function G0 in (3.4.9) and
the terminal condition g satisfy Assumption 3.4.1, and the numerical scheme Tt,xh satisfies
Assumption 3.4.2. Then the parabolic PDE (3.4.9) has a unique bounded viscosity solution
u and the numerical solution uh converges to u locally uniformly as h→ 0.

Remark 3.4.2. In Barles and Souganidis [9], the results are given for more general PDEs
instead of the parabolic PDEs.

Let us now consider the PPDE defined on [0, T ] × Ω, where Ω = C([0, T ],Rd) is the
canonical space with continuous paths on [0, T ],

− ∂tu(t, ω) − G
(
·, u, ∂ωu, ∂2

ωωu
)
(t, ω) = 0, for all (t, ω) ∈ [0, T )× Ω, (3.4.10)

with the terminal condition u(T, ·) = ξ(·). The main difference in the definition of viscosity
solution of PDE and that of PPDE is that the test functions φ are dominated by u for
every (t, x) in the PDE case, but are dominated in expectation in the PPDE case. More
precisely, the test functions to define the viscosity solution of PPDE is given as follows. Let
P be the family of all semi-martingale measures P on Ω under which the canonical process
B has the canonical decomposition Bt = B0 +AP

t +MP
t with ‖dA

P
t

dt
‖ ≤ L and ‖d〈M

P〉t
dt
‖ ≤ L.

We denote by E [·] := supP∈P EP[·] and E [·] := infP∈P EP[·], and the introduce the class of
test functions:

J u(t, ω) :=
{

(α, β, γ) : u(t, ω) = maxτ∈THδ E [ut,ωτ − φα,β,γτ ], for some δ > 0
}
,

J u(t, ω) :=
{

(α, β, γ) : u(t, ω) = minτ∈THδ E [ut,ωτ − φα,β,γτ ], for some δ > 0
}
,

where Hδ(ω
′) := δ ∧ inf{s ≥ 0 : |ω′s| ≥ δ} ∈ T +. Notice that in above, the optimal

stopping problems described the dominance of u by φ in sense of expectation.

Definition 3.4.1. Let u : [0, T ]× Ω→ R be a bounded uniformly continuous functions.
(i). u is a P-viscosity subsolution (resp. supersolution) of the PPDE (3.4.10), if at any
point (t, ω) ∈ [0, T )× Ω it holds for all (α, β, γ) ∈ J u(t, ω) (resp. J u(t, ω)) that

−α−G(t, ω, u(t, ω), β, γ) ≤ (resp. ≥) 0.

(ii). u is a P-viscosity solution of the PPDE (3.4.10), if u is both a P-viscosity subsolution
and a P-viscosity supersolution of (3.4.10).

Let us consider a numerical scheme denoted by T: for each (t, ω) ∈ [0, T ) × Ω and
0 < h ≤ T − t, Tt,ωh is a function from L0(Ft+h) to R, the numerical scheme is given by
the backward iteration: uh(T, ·) = ξ(·) and

uh(t, ω) := Tt,ωh
[
uh(t+ h, ·)

]
.

Remember that for the viscosity solution of the PPDE, the domination of test function φ
on value function u is only given in sense of expectation, our key step is to find a good
reformulation of the monotonicity condition in Barles and Souganidis [9] in our context.
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Definition 3.4.2. Let {Ui, i ≥ 1} be a sequence of independent random variables defined
on a probability space (Ω̃, F̃ , P̃), such that each Ui follows the uniform distribution on [0, 1].
Let h > 0, K be a subset of a metric space, Fh : K × [0, 1] → R be a Borel measurable
function such that for all k ∈ K we have

|Ẽ
[
Fh(k, U)

]
| ≤ Lh, Var

[
Fh(k, U)

]
≤ Lh and Ẽ

[
Fh(k, U)3

]
≤ Lh3/2.

Denote the filtration F̃ := {F̃i, i ∈ N}, where F̃n := σ{Ui, i ≤ n}. Let K = {ν :

νih is F̃i-measurable and takes values in K for all i ∈ N}. For all ν ∈ K, we define

Xh,ν
0 := 0, Xh,ν

ih = Xh,ν
(i−1)h + Fh(νih, Ui) for i ≥ 1.

Further, we denote by X̂h,ν : [0, T ]× Ω̃→ Ω the linear interpolation of the discrete process{
Xh,ν
ih , i ∈ N

}
such that X̂h,ν

ih = Xh,ν
ih for all i. Finally, for any function φ ∈ L0(F), we

define the nonlinear expectation:

Eh[φ] := infν∈K Ẽ
[
φ
(
X̂h,ν

)]
and Eh[φ] := supν∈K Ẽ

[
φ
(
X̂h,ν

)]
.

Our conditions on the numerical scheme T are as follows

Assumption 3.4.3. (i) Consistency: for every (t, ω) ∈ [0, T )×Ω and φ ∈ C1,2
0 (R+×Rd),

lim
(t′,ω′,h,c)→(t,0,0,0)

φ(t′, (ω ⊗t ω′)t′) + c− Tt
′,ω⊗tω′
h

[
φ(t′ + h, ·) + c

]
h

= ∂tφ(0, ωt)−G(t, ω, φ(0, ωt), Dφ(0, ωt), D
2φ(0, ωt)).

(ii) Monotonicity: there exists a nonlinear expectation Eh as in Definition 3.4.2 such that,
for any ϕ, ψ ∈ L0(Ft+h) we have

Tt,ωh [ϕ]− Tt,ωh [ψ] ≥ −hδ̄(h) whenever inf
0≤α≤L

Eh
[
eαh(φ− ψ)t,ω

]
≥ 0.

where δ̄ : R+ → R is a function such that limh↓0 δ̄(h) = 0.
(iii) Stability: uh are uniformly bounded and uniformly continuous in (t, ω), uniformly in
h.

Our main result is the following convergence of the monotone scheme for PPDE (3.4.10).

Theorem 3.4.3. Assume that

• G and ξ in PPDE (3.4.10) satisfies some technical conditions;

• the numerical scheme Th satisfies Assumption 3.4.3;

• the comparison of the viscosity sub- and super-solutions of PPDE (3.4.10) holds
true, i.e. if u, v are P-viscosity subsolution and supersolution to PPDE (3.4.10),
respectively, and u(T, ·) ≤ v(T, ·), then u ≤ v on [0, T ]× Ω.

Then PPDE (3.4.10) admits a unique bounded P-viscosity solution u, and

uh → u locally uniformly, as h→ 0.

Remark 3.4.3. Zhang and Zuo [200] were the first to make the extension of Barles and
Souganidis’s result to the PPDE case. However, their convergence conditions are not
satisfied by most of the classical numerical schemes, such as the finite difference scheme,
the Fahim-Touzi-Warin scheme, etc. Our reformulation of the conditions allows to cover
all the numerical schemes (to the best of our knowledge) in the context of stochastic control
theory. Our proof is also quite different since the assumptions are different.
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3.5 Perspectives

As summarized at the beginning of the chapter, the stochastic control problem may have
numerous different formulations. My previous work concentrates mainly on the non-
Markovian control problems in a very standard formulation: the controlled diffusion pro-
cesses problem, in a finite horizon, without any constraint on the control processes. It
would be quite interesting to extend some techniques as well as results to the variated
formulations of the non-Markovian control problem.

For a concrete project, with Dylan Possamaï and Fabrice Djete, we are interested in the
McKean-Vlasov control problem, which is notably studied in a series of recent papers of
Hûyen Pham and his co-authors. As a first objective, we aim to deduce a dynamic pro-
gramming principle for the McKean-Vlasov control problem under minimal conditions,
using the measurable selection argument. Secondly, we will consider its numerical approx-
imation, which would be important for its applications.



Chapitre 4

Branching diffusion representation for
nonlinear PDEs

4.1 Introduction

The branching stochastic process has always been an important topic in mathematics. It
is notably motivated by its applications in biology to study the evolution of the population
of some living species. For example, the most elementary discrete time branching process,
Galton-Watson process, was initially introduced in 19th century to study the probability
of the extinction of family names. Embedding the Galton-Watson process into a con-
tinuous time framework, where each particle has an independent life time of exponential
distribution, one obtains a continuous time Markov branching process. The life time of
particles may follow other distributions than the exponential distribution, then it loses
the Markov property and becomes an age-dependent process. Let us refer to Athreya and
Ney [3] for a presentation of the basic properties of different basic branching stochastic
processes.

With the development of the diffusion process theory, it is quite natural to consider the
branching diffusion process, by introducing a diffusion movement for each particle in the
branching system. Moreover, it is related to a class of semilinear parabolic PDEs, the KPP
equations, as extension of the classical Feynmann-Kac formula. This was initially explored
by Skrokohod [185], Watanabe [197], Mckean [151], etc., and developed by Dynkin [80],
Le Gall [147], etc. It has also been studied as examples of measure valued Markov process,
see e.g. Dawson [63], Roelly and Rouault [180], El Karoui and Roelly [88], etc. Combining
with the stochastic control theory, the optimal control of branching diffusion processes has
also been studied by Nisio [158], Claisse [51], etc.

It is quite classical to use the KPP equation to characterize the branching process sys-
tem. Nevertheless, the idea to use branching process systems to represent the solution
of PDEs and hence to obtain a Monte-Carlo method for PDEs seems to be new. To the
best of our knowledge, Rasulov, Raimova and Mascagni [173] were the first to consider
the Monte-Carlo method for KPP type equations by branching processes, although no
rigorous convergence analysis was provided. Motivated by some high dimensional nonlin-
ear equation with application in finance, Henry-Labordère [111] introduced a Monte-Carlo
simulation method by the so-called “marked” branching process. Sufficient conditions for
the convergence has been provided. In Henry-Labordère, Tan and Touzi [115], we tried
to extend this algorithm for a class of path-dependent PDE (or equivalently nonMarko-
vian BSDEs), and provide a more rigorous convergence analysis. Similar ideas have also
been used in Bossy, Champagnat, Leman, Maire, Violeau and Yvinec [31] to solve a class
of nonlinear Poisson-Boltzmann equations using branching process systems. Notice that
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the above methods are all studied for the KPP type equations, where the nonlinearity of
the PDE is a polynomial of value function u. To introduce the derivative Du into the
nonlinearity, in Henry-Labordère, Oudjane, Tan, Touzi and Warin [113], we introduced a
Malliavin type weight into the representation formula and obtained a representation result
for a larger class of semilinear PDEs.

These ideas could also be used to deduce new simulation schemes for stochastic differ-
ential equations (SDEs). To estimate the expected value of a functional of the solution of
SDEs by Monte Carlo method, a key step is to simulate the SDEs. For one-dimensional
homogeneous SDEs with constant volatility function, Beskos and Roberts [23] introduced
an exact simulation technique, based on a Girsanov measure change technique together
with a rejection algorithm. However, for more general SDEs, an exact simulation method
is still not available, and one needs to use a time discretization simulation method. Then
the global error of the Monte Carlo method decomposes into two parts: the discretiza-
tion error and the statistical error. The most elementary discrete scheme should be Euler
scheme, where the discretization error has been initially analyzed by Talay and Tubaro
[189]. Since then, many new discretization technique as well as error analysis result have
been studied, for which we can refer to e.g. Kloeden and Platen [140], Graham and Talay
[102], etc. Generally, to reduce the discretization error, one needs to use a finer time grid,
which requires however more simulation effort. In other words, under a fixed computation
effort, there will be less simulated samples of the SDEs if one uses a finer time grid, which
induces more important statistical error. Recently, a new efficient simulation method,
named multilevel Monte (MLMC) algorithm, has been introduced by Giles [101] (see also
the statistical Romberg method of Kebaier [136]). The idea is to rewrite a high order
discretized scheme as the sum of a low order discretized scheme and their differences. The
low order term has big variance but can be simulated with little computation effort, one
simulate many samples to reduce the statistical error; the differences terms need large
computation effort but has a very small variance, one can simulate less samples to obtain
a good estimation. With a good tradeoff on the levels and number of simulated samples,
one can obtain an estimator with small discretization error as well as small statistical
error.

As an extension of the MLMC method, Rhee and Glynn [179] considered a randomized
level method and obtained an unbiased simulation method of SDEs, that is, the obtained
estimator has the same expected value as the functional of solutions of the SDE. More
recently, Bally and Kohatsu-Higa [5] provided a probabilistic interpretation for the PDE
parametrix method. In particular, they obtained another unbiased simulation estimator
for SDEs, where the estimator consists in simulating the SDE by a Euler scheme on
a Poisson random discrete time grid, and then multiplying the final functional with a
corrective weight function. By restricting our branching process analysis to the linear
PDE case and using a freezing coefficient technique, we also obtained a unbiased simulation
method for linear PDEs, or equivalently for the stochastic differential equations (SDEs).
Our estimator is similar to that of Bally and Kohatsu-Higa [5], while the weight functions
are quite different since they are obtained by different arguments. In particular, the
estimator in [5] has an infinite variance, but we achieved to control the variance explosion
in our estimator.
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Coming back to the branching diffusion process algorithm, we notice that the considered
semilinear PDEs (or PPDEs) should have a polynomial nonlinearity to have the repre-
sentation result. For general semilinear PDEs, one needs to approximate the nonlinear
part by a polynomial in order to use this algorithm. Nevertheless, to achieve a good
approximation, a high order polynomials is required, but it may makes the branching
process estimator explode. In Bouchard, Tan, Warin and Zou [40], we introduce a local
polynomial approximation technique together with a Picard iteration to implement the
branching process algorithm.

4.2 Branching diffusion, semilinear PDEs and Monte
Carlo methods

Representation of a class of semi-linear PDEs by branching diffusions In
Henry-Labordère, Oudjane, Tan, Touzi and Warin [113], we aim to provide a branch-
ing diffusion representation for the following semi-linear PDE:

∂tu+ µ ·Du+
1

2
σσ> :D2u+ f(·, u,Du) = 0, on [0, T )× Rd, and u(T, .) = g, (4.2.1)

where g : Rd −→ R is bounded Lipschitz, f is given by

f(t, x, y, z) :=
∑

`=(`0,`1,··· ,`m)∈L

c`(t, x) y`0
m∏
i=1

(
bi(t, x) · z

)`i ,
with some set L ⊂ Nm+1, and functions (c`)`∈L and (bi)i=1,··· ,m. For every ` =

(`0, `1, · · · , `m) ∈ L, denote |`| :=
∑m

i=0 `i.

Let us first introduce an age-dependent branching diffusion process. Let ρ : R+ → R+

be a distribution density function, (p`)`∈L be a probability mass function (i.e. p` ≥ 0

and
∑

`∈L p` = 1). The age-dependent process starts from one particle indexed by (1),
and marked by θ(1) = 0, performing a diffusion process movement X(1)

· with generator
L := µ ·D + 1

2
σσ> : D2 and initial condition (0, x0). Denote also by W (1) the associated

Brownian motion in the definition of diffusion process X(1). Assume that the arrival
time T(1) of (1) is of density function ρ. At the arrival time, the particle branches into
|`| offsprings with probability p`, indexed by (1, 1), · · · (1, |`|). In other words, one has
the random variable I(1) such that P[I(1) = `] = p`. Among these offspring particles, `i
particles carry the mark i, i = 0, . . . ,m. Then regardless of its mark, each descendant
particle performs the same but independent branching process as the initial particle.

We denote by Kt (resp. Knt ) the set of all living particles (resp. of generation n) in the
system at time t, and Kt (resp. Kcbnt ) the set of all particles which have been alive (resp.
of generation n) before time t. Similarly to θ(1), T(1) and I(1), we denote by θk the mark,
by Tk the default time, and by k− the parent for any particle k ∈ KT . As a result, the
birth time of k is Tk−. The position of particle k is denoted by Xk

· with the associated
Brownian motion W k. Denote ∆W k

· := W k
·∧Tk− −W

k
Tk−

.
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Our key argument is an automatic differentiation technique on the underlying diffusion
X
t,x

s defined by

X
t,x

s = x+

∫ s

t

µ
(
r,X

t,x

r

)
dr +

∫ s

t

σ
(
r,X

t,x

r

)
dWr, s ∈ [t, T ],

where W is a d-dimensional Brownian motion.

Assumption 4.2.1. There is a measurable functionalW(t, s, x, (Wr−Wt)r∈[t,s]) satisfying
(t, x) 7→ W(t, s, x, (Wr − Wt)r∈[t,s]) is continuous, and for any s ∈ [t, T ] and bounded
continuous function φ : Rd → R, one has

∂xE
[
φ
(
X
t,x

s

)]
= E

[
φ
(
X
t,x

s

)
W(t, s, x, (Wr −Wt)r∈[t,s])

]
.

Remark 4.2.1. In case (µ, σ) ≡ (µ0, σ0) for some constant (µ0, σ0) ∈ Rd ×Md, where
the matrix σ0 is not degenerate, an example of such automatic differentiation function is
given by

W
(
t, s, x, (Wr −Wt)r∈[t,s]

)
:= (σ>0 )−1Ws −Wt

s− t
.

For general coefficient functions (µ, σ) satisfying some regularity and non-degeneracy con-
ditions, one can find such functional W using Malliavin calculus.

With the above notations, we finally introduce

ψ :=
[ ∏
k∈KT

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0}

F (∆Tk)
Wk

][ ∏
k∈KT \KT

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
, (4.2.2)

where F (t) :=
∫∞
t
ρ(s)ds, and

Wk := 1{θk=0} + 1{θk 6=0} bθk(Tk−, X
k
Tk−

) · W
(
Tk−, Tk, X

k
Tk−

,∆W k
·
)
.

Theorem 4.2.1. (i) Assume that the PDE (4.2.1) has a smooth solution u, then under
technical condition, one has u(0, x0) = E[ψ].
(ii) Replacing the initial condition (0, x0) of the above branching diffusion system by (t, x),
and denote by ψt,x the corresponding estimator. Under technical condition, the function
u(t, x) := E[ψt,x] is well defined and is a viscosity solution of PDE (4.2.1).

Proof. We will only provide a formal proof for item (i). For every n ≥ 1, let us introduce

ψn :=
[ ∏
k∈∪nj=1K

j
T

g(Xk
T )− g(Xk

Tk−
)1{θk 6=0}

F (∆Tk)
Wk

][ ∏
k∈∪nj=1(KjT \K

j
T )

cIk(Tk, X
k
Tk

)

pIk

Wk

ρ(∆Tk)

]
[ ∏
k∈Kn+1

T

(
1{θk=0}u+

m∑
i=1

1{θk=i}bi ·Du
)

(Tk−, X
k
Tk−

)
]
. (4.2.3)
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First, given a solution u of the PDE (4.2.1), it follows from the Feynma-Kac formula
that

u(0, x0) = E
[ 1

F (T )
g
(
X

0,x0

T

)
F (T ) +

∫ T

0

1

ρ(s)
f
(
·, u,Du

)(
s,X

0,x0

s

)
ρ(s)ds

]
= E

[ 1

F (T(1))
g
(
X

(1)
T

)
1{T(1)=T} +

1

ρ(T(1))

( cI(1)

pI(1)

uI(1),0

m∏
i=1

(
bi ·Du

)I(1),i

)(
T(1), X

(1)
T(1)

)
1{T(1)<T}

]
(4.2.4)

= E[ψ1].

In the above, the last equality is in fact a simple reformulation of the expression for ψ1.
Next, we use Assumptions 4.2.1 to obtain that

Dxu(0, x0) = E
[
ψ1W

(
0, T(1), x0,∆W

(1)
·
)]
. (4.2.5)

For k ∈ K2

T , change the initial condition from (0, x0) to (Tk−, X
k
Tk−

) = (T(1), X
(1)
T(1)

) in
formula (4.2.4) and (4.2.5), and plugging them into the definition of ψ1 in (4.2.3), it
follows that u(0, x0) = E

[
ψ2

]
.

To conclude, it is enough to iterate the above procedure to prove that

u(0, x0) = E
[
ψn
]
, for all n ≥ 1,

and by taking the limit, one obtains

u(0, x0) = lim
n→∞

E
[
ψn
]

= E
[
ψ
]
.

Unbiased simulation of SDEs In Henry-Labordère, Tan and Touzi [116], we restrict
to the linear case and then obtain an unbiased simulation method for SDEs. Let us
consider the SDE

X0 = x0, dXt = µ(t,Xt) dt + σ0 dWt,

where σ0 is a non-degenerate constant matrix. Our aim is to estimate

u(0, x0) = E[g(XT )],

which, by Feynmann-Kac formula, is the solution of the linear PDE

∂tu+
1

2
σ0σ

>
0 : D2u+ µ(·) ·Du = 0, u(T, ·) = g(·).

Assumption 4.2.2. The drift function µ(t, x) is bounded continuous in (t, x), uniformly
1
2
-Hölder in t and uniformly Lipschitz in x, i.e. for some constant L > 0,∣∣∣µ(t, x)− µ(s, y)

∣∣∣ ≤ L
(√
|t− s|+

∣∣x− y∣∣), ∀(s, x), (t, y) ∈ [0, T ]× Rd. (4.2.6)
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Let β > 0 be a fixed positive constant, (τi)i>0 be a sequence of i.i.d. E(β)-exponential
random variables, which is independent of the Brownian motion W . We define

Tk :=
( k∑
i=1

τi

)
∧ T, k ≥ 0, and Nt := max

{
k : Tk < t

}
.

Then (Nt)0≤t≤T is a Poisson process with intensity β and arrival times (Tk)k>0, and T0 = 0.
For simplicity, denote

∆WTk := ∆W k
∆Tk

= WTk −WTk−1
, k > 0.

Define X̂ by X̂0 = x0 and

X̂Tk+1
:= X̂Tk + µ

(
Tk, X̂Tk

)
∆Tk+1 + σ0∆WTk+1

, k = 0, 1, · · · , NT .

In the present case, the increment X̂Tk+1
− X̂Tk , conditioning on (Tk, X̂Tk ,∆Tk+1),

is Gaussian. Then following Remark 4.2.1, we obtain the Malliavin weight function
Ŵ1

θ

(
·, δt, δw

)
:= (σT0 )−1 δw

δt
. Our estimator is given by

ψ̂ := eβT
[
g
(
X̂T

)
− g
(
X̂TNT

)
1{NT>0}

]
β−NT

NT∏
k=1

W1

k, (4.2.7)

with

W1

k :=

(
µ(Tk, X̂Tk)− µ(Tk−1, X̂Tk−1

)
)
· (σT0 )−1∆WTk+1

∆Tk+1

. (4.2.8)

Theorem 4.2.2. Suppose that Assumption 4.2.2 holds true, and g is Lipschitz. Then for
all intensity constant β > 0, one has

E
[(
ψ̂
)2]

< ∞; and moreover, V0 = u(0, x0) = E
[
ψ̂
]
.

Remark 4.2.2. (i) The proof of Theorem 4.2.2 follows by the same arguments as in
Theorem 4.2.1, together with a freezing coefficient argument.
(ii) Extensions have been made in [77] for more general SDEs, which is obtained essen-
tially from an important sampling technique. see also Andersson and Kohatsu-Higa [2] as
extension of Bally and Kohatsu-Higa’s [5] estimator.

Solving BSDE using polynomial generators approximation and branching pro-
cesses Notice that the generator f of the semilinear PDE (4.2.1) has a polynomial struc-
ture, and the technical conditions to ensure the convergence of the Monte Carlo method
requires essentially a small time horizon, or small coefficient functions in f . In practice,
one would need to solve the semilinear PDE, or BSDEs with general Lipschitz generator
f , which is wellposed for an arbitrary time horizon. To obtain a good approximation of
f by polynomials fn, one would like to use some high-order polynomial with arbitrary
coefficients, but it may lead to variance explosion in practice. In Bouchard, Tan, Warin
and Zou [40], we introduced an local polynomial approximation method together with a
Picard iteration implementation technique to overcome this difficulty.
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Let us consider the BSDE:

Y· = g(XT ) +

∫ T

·
f(Xs, Ys) ds−

∫ T

·
Zs dWs,

with generator f(x, y) Lipschitz in y and

X = X0 +

∫ ·
0

µ(Xs) dt+

∫ ·
0

σ(Xs) dWs.

Equivalently, one has Y0 = u(0, X0), where u is the unique viscosity solution of

∂tu+ µ ·Du+
1

2
σσ> : D2u+ f(·, u) = 0, u(T, ·) = g(·).

Our first step is to approximate f by some local polynomials f`◦ (in y):

f`◦ : (x, y, y′) ∈ Rd × R× R 7→
j◦∑
j=1

`◦∑
`=0

aj,`(x)y`ϕj(y
′), (4.2.9)

in which (aj,`, ϕj)`≤`◦,j≤j◦ is a family of bounded continuous functions satisfying

|aj,`| ≤ C`◦ , |ϕj(y′1)− ϕj(y′2)| ≤ Lϕ|y′1 − y′2| and |ϕj| ≤ 1, (4.2.10)

for all y′1, y′2 ∈ R, j ≤ j◦ and ` ≤ `◦, for some constants C`◦ , Lϕ ≥ 0. Without loss of
generality, we assume that `◦ ≥ 2. We then consider the BSDE with generator f`◦ :

Ȳ· = g(XT ) +

∫ T

·
f`◦(Xs, Ȳs, Ȳs) ds−

∫ T

·
Z̄s dWs.

Whenever f`◦(x, y, y) is a good approximation of f(x, y), it is very classical to see that Ȳ
is a good approximation of Y .

To approximate Ȳ , we suggest a Picard iteration: Let us first fix h > 0 small enough
and such that Nh := T/h ∈ N, and define ti = ih. Then set Ȳ 0 := y(t,Xt) for some
deterministic function y, and then define Ȳ m given Ȳ m−1 as follows:

• Let Ȳ m
T := g(XT ) be the terminal condition.

• On each interval [ti, ti+1], define (Y m
· , Z

m
· ) as the solution on [ti, ti+1] of

Y m
· = Ȳ m

ti+1
+

∫ ti+1

·
f`◦(Xs, Y

m
s , Ȳ

m−1
s )ds−

∫ ti+1

·
Zm
s dWs. (4.2.11)

• Let Ȳ m := Y m on (ti, ti+1], and Ȳ m
ti

:= (−M) ∨ Y m
ti
∧M , where M is some a priori

constant dominating Y .

Theorem 4.2.3. Under technical conditions, Ȳ m converges to Ȳ with a convergence rate
Cεε

m with some constant Cε for any ε > 0.

Remark 4.2.3. (i) Notice that given y′, the function y 7→ f`◦(x, y, y
′) is a polynomial, and

hence Y m in (4.2.11) can be computed by its branching diffusion representation formula.
A good choice h > 0 as time discretization parameter could ensure the convergence of
branching Monte Carlo method.
(ii) For implementation of the algorithm, thanks to the time discretization, we do not need
really to repeat the Picard iteration, only once is enough.
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4.3 Perspectives

The link between branching diffusion process and the nonlinear PDE provides not only
new Monte-Carlo methods for nonlinear equations, but also has its theoretical interest.
As for the application in Monte-Carlo approximation of nonlinear PDEs, it is still limited
to the small time horizon or/and small nonlinearity coefficients case. New efforts are still
needed to obtain more stable and efficient algorithm. Moreover, our actual result is only
presented for a class of semilinear PDEs. Using the same Mallaivin type weight for the
second order derivative of the value function, it could be immediately extended to the fully
nonlinear case, where the nonlinearity depends also on D2u. Nevertheless, it is observed
that such an estimator in the simplest case will not be integrable, and one can not even
define the expectation. In an on-going project with Pierre Henry-Labordère, Nizar Touzi
and Xavier Warin, we use an antithetic variable kind method to obtain a new estimator.
Moreover, numerical tests show that it could work in a fully nonlinear case. We are still
woking on it to understand how to control the variance theoretically.

The branching process has been largely used in biological mathematics to model the
dynamic of the population. Nevertheless, there has been very little work using branching
processes in economical or financial modelling. In a current project with Julien Claisse
and Zhenjie Ren, we are interested in a mean-field game problem where the population
could be dynamic because of the immigration, emigration and branching behaviour of the
individuals. We use the branching process to model the dynamics of the population in
the game.
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Appendix

A.1 Convergence of measures and the topology

In this section, we provide a summary of different notions related to the convergence of
measures as well as the associated topology, which have been used in different places in
this HDR thesis. Most of the the results can be found in Billinsley [25, 26], Jacod and
Shiryaev [128], etc. In this section, we assume that (Ω,F) is an abstract measurable space,
E is a topological space with the associated Borel σ-field E , so that (E, E) is a measurable
space.

Weak convergence

Let B(E) denote the collection of all probability measures on (E, E) and (µn)n≥1 be a
sequence in B(E), we introduce some definitions related to the weak convergence.

Definition A.1.1. (i). We say that (µn)n≥1 converges weakly to a probability measure µ∞
if µn(f) → µ∞(f) for all f ∈ Cb(E), where Cb(E) denotes the collection of all bounded
continuous functions defined on E, and µ(f) denotes the integration of function f w.r.t.
measure µ.
(ii). We say that the set (µn)n≥1 is tight if for any ε > 0, there is a compact set Kε such
that µn(Kε) ≥ 1− ε for all n ≥ 1.
(iii). We say that the set (µn)n≥1 is relatively compact if for any subsequence (µnk)k≥1,
there is a subsubsequence (µnki )i≥1 which converges weakly to some probability measure.

In many context, it would be nice to see a probability measure µ ∈ B(E) as an element
in a vector space and the natural candidate of such a vector space would be the space
M(E) of all finite signed measures on (E, E). The above notion of weak convergence
can be defined on M(e) by exactly the same way. One has the following results on the
tightness and the relative compactness of the measures on E.

Proposition A.1.1. (i). If E is a Hausdoff topological space, then (µn)n≥1 is tight, then
it is relatively compact.
(ii). If E is a Polish space, then the tightness of (µn)n≥1 is equivalent to its relative
compactness.
(iii). If E is a Polish space, then the weak convergence induces a metrizable topology on
B(E) as well as on M(E) such that they are both Polish spaces. Moreover, the dual space
of M(E) can be identify to be Cb(E), i.e. any linear continuous form φ : M(E) → R is
in form φ(µ) = µ(f) for some f ∈ Cb(E).
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Wasserstein convergence

Although the Wasserstein convergence topology can be defined on general Polish space,
we restrict here to the case E = Rd. Let p ≥ 1, we denote by Bp(Rd) the space of all
probability measures µ on Rd such that

∫
Rd |x|

pµ(dx) <∞, and by Cp(Rd) the space of all
continuous functions φ : Rd → R such that supx∈Rd

|φ(x)|
1+|x|p < ∞. Similarly, we denote by

Mp(Rd) the collection of all finite signed measures µ on Rd such that
∫
Rd |x|

p|µ|(dx) <∞

Definition A.1.2. We say that (µn)n≥1 ⊂ Mp(Rd) converges to µ∞ ∈ Mp(Rd) in
p−Wasserstein topology if µn(f)→ µ∞(f) for all f ∈ Cp(Rd).

Proposition A.1.2. (i). The space Bp(Rd) equipped with p−Wasserstein topology is a
Polish space.
(ii). The dual space of the vector space Mp(Rd) can be identified to Cp(Rd).

Item (ii) in Proposition A.1.2 should compare to item (iii) in Proposition A.1.1.

Stable convergence

In some context, one would like to keep an abstract measurable (or probability) space
(Ω,F) and consider at the same the weak convergence of the E-valued random variables
(processes) in this measurable (or probability) space. A powerful tool in this context
should be the stable convergence topology on the space of measures on the product space
(Ω,F) := (Ω×E,F⊗E) introduced by Jacod and Mémin [129]. Let us denote by BCb(Ω)

the collection of all bounded measurable functions ξ : Ω → R such that e 7→ ξ(ω, e) is
continuous for every fixed ω ∈ Ω.

Definition A.1.3. Let (Pn)n≥1 be a sequence of probability measures defined on (Ω,F).
We say that (Pn)n≥1 converges to P∞ under the stable convergence topology if EPn [ξ] →
EP∞ [ξ] for every ξ ∈ BCb(Ω).

Let P be a fixed probability measure on (Ω,F), denote by B(Ω,P) the collection of all
probability measures P on (Ω,F) such that P|Ω = P.

Proposition A.1.3. (i). A sequence (Pn)n≥1 converges to P∞ under the stable convergence
topology if and only if EPn [ξ] → EP∞ [ξ] for every bounded measurable variable ξ : Ω → R

and every bounded continuous variable ξ : E → R.
(ii). For every probability measure P ∈ B(Ω), the set B(Ω,P) is a closed subspace of
B(Ω) under the stable convergence topology. If, in addition, Ω is a Polish space with its
Borel σ−field, then restricted on B(Ω,P), the stable convergence is equivalent to the weak
convergence topology.

Item (ii) of Proposition A.1.3 could be very useful in the case where one considers the
joint distributions on a product space with a fixed marginal distribution.
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Topologies on the Skorokhod space

In many cases, we are interested in the weak convergence of the stochastic processes,
where we usually identify E as the Skorokhod space, i.e. the space of càdlàg paths E =

D([0, 1],Rd). The above notions of convergence of measures depend on the continuous
functions on E, which depends essentially on the topology equipped on the space E.
We recall here 4 different topologies defined on E below, which are sequential topologies
induced by different notions of convergence: let (xn)n≥1 be a sequence of elements in E,

• (The uniform convergence topology) we say xn → x∞ under the uniform convergence
topology if ‖xn − x∞‖ := sup0≤t≤1 ‖xn(t)− x∞(t)‖ → 0 as n→∞.

• (The Skorokhod topology) we say xn → x∞ under the Skorokhod topology if

inf
λ∈Λ

max{‖λ− I‖, ‖xn − x∞ ◦ λ‖} → 0, (A.1.1)

where I is the identical function on [0, 1] and Λ is the collection of all strictly
increasing, continuous bijection from [0, 1] to [0, 1].

• (The S-topology) we say xn →S x∞ if for any ε > 0, there exists a sequence (vεn)n≥1

of functions of finite variation, and such that sup0≤t≤1 ‖xn(t) − vεn(t)‖ ≤ ε and∫ 1

0
f(t) · dvεn(t)→

∫ 1

0
f(t) · dvε∞(t) for all continuous functions f : [0, 1]→ Rd.

• (The pseudo-path topology of Meyer and Zheng [154]) we say xn → x∞ under the
pseudo-path topology if

∫ 1

0
f(xn(t))dt →

∫ 1

0
f(x∞(t))dt for all bounded continuous

function f : [0, 1]× Rd.

Remark A.1.1. (i). The uniform convergence topology, Skorokhod topology and the
pseudo-path topology are all metrizable topologies. In particular, the convergence in the
three topologies is the equivalent to the above notions of convergence which induce the three
topologies. Moreover, E is metrisable under the uniform convergence topology and the Sko-
rokhod topology, and is a Borel subset in a Polish space under the pseudo-path topology.
However, the S-topology, defined as the sequential topology induced by the convergence→S,
is not metrizable. Moreover, the →S induces the convergence under S-topology, but the
reverse induction may not be true.

(ii). The uniform convergence topology is finer that the Skorokhod topology, which is finer
than S-topology, and the pseudo-path topology is the sparsest one. The sparser the topology
is, the less the open sets there are, and the more the compact sets there are, and hence
the easier the tightness of the measures on it can be obtained. However, the sparser the
topology is, the less the continuous functions there are. In practice, there is a tradeoff to
make in order to choose a good topology to have the tightness (and hence the sequential
compactness) and at the same time the most continuous functions possible.

The Skorokhod topology is clearly the most important one on the Skorokhod space in
many situation. In this HDR thesis, the S-topology has also been essentially used. Let
us just recall some sufficient conditions to ensure the tightness of the distributions on E
under the two different topologies.
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Proposition A.1.4. (i). All the four topologies induce the same Borel σ−field E on E.
(ii). A sequence of probability measures (µn)n≥1 on (E, E) is tight w.r.t. the Skorokhod
topology if and only if

lim
C→∞

lim sup
n→∞

µn
[
{x ∈ E : ‖x‖ ≥ C}

]
= 0,

and

lim
δ→0

lim sup
n→∞

µn
[
{x ∈ E : ω̄′x(δ) ≥ ε}

]
= 0, for all ε > 0, (A.1.2)

where ω̄′x(δ) := infΠδ max1≤i≤k sups,t∈(ti−1,ti)
|x(s) − x(t)| and Πδ is the collection of all

partition π = {0 = t0 < t1 < · · · < tk = 1} such that all ti − ti−1 ≥ δ.
(iii). Let (µn)n≥1 be a sequence of probability measures on (E, E), assume that
the canonical process on canonical space E is a supermartingale under each µn and
supn≥1 sup0≤t≤1

∫
Rd |x(t)|µ(dx) <∞. Then (µn)n≥1 is tight w.r.t. the S-topology.

Remark A.1.2. In condition (A.1.2), ω̄′x(δ) could be small even if the path x has a big
jump, since one can choose the partition in a way such that the jump times do not lie
in any interval (ti, ti+1). However, because of the condition ti − ti−1 ≥ δ, one could not
have two consequent big jumps to make ω̄′x(δ) small. The intuition in condition (A.1.2)
to ensure the tightness is that the process should not have two big consequent jumps, nor
large volatility with big probability.

To conclude, we also consider a subspace of the Skorokhod space, which is the space
A([0, 1],R) of all non-decreasing càdlàg paths. An important topology on A([0, 1],R) is
that induced by the Lévy metric.

d(x,x′) := inf{ε > 0 : x(t− ε)− ε ≤ x′(t) ≤ x(t+ ε) + ε for all t ∈ [0, 1]}.

Any non-decreasing càdlàg path on [0, 1] can be identified as a finite positive measure on
[0, 1], then the topology induced by Lévy metric is equivalent to the corresponding weak
convergence topology.
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