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Chapter 1

Introduction

1.1 The principle

The principle of Monte-Carlo method is to use simulations of the random variables to
estimate a quantity such as

E
[
f(X)

]
=

∫
Rd
f(x) µ(dx), (1.1)

where f : Rd → R is a function, X is some random vector taking value in Rd with
distribution µ. It may also be used to solve an optimization problem of the kind

min
θ∈Θ

E
[
fθ(X)

]
, (1.2)

where (fθ : Rd → R)θ∈Θ is a family of functions.
To solve the basic problem (1.1), the method consists in simulating a sequence of i.i.d.

random vectors (Xk)k≥1 with the same distribution of X, and then estimate E[f(X)] by
the empirical mean value

Y n :=
1

n

n∑
k=1

Yk :=
1

n

n∑
k=1

f(Xk). (1.3)

The advantages of the Monte-Carlo are usually its simplicity, flexibility and efficiency
for high dimensional problems. It can also be served as an alternative method (or bench-
mark) for other numerical methods.

1.2 The error analysis of Monte-Carlo method

Theorem 1.1 (Law of large number) Let (Yk)k≥1 be a sequence of i.i.d. random
variables such that E[|Y |] <∞. Then with Y n defined in (1.3), one has

P
(

lim
n→∞

Y n = E[Y ]
)

= 1.
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Theorem 1.2 (Central limit theorem) Let (Yk)k≥1 be a sequence of i.i.d. random
variables such that E[|Y |2] <∞. Then

√
n
(
Y n − E[Y ]

)
⇒ N

(
0,Var(Y )

)
.

And consequently,

√
n

σ̂n

(
Y n − E[Y ]

)
⇒ N

(
0, 1
)
, where σ̂2

n : =
1

n

n∑
k=1

(
Yk − Y n

)2
. (1.4)

Notice that σ̂2
n defined in (1.4) is an estimator of the variance Var[Y ] from the se-

quence (Yk)k≥1, and it admits the representation

σ̂2
n =

1

n

n∑
k=1

Y 2
k − (Y n)2.

The central limit theorem induces that the asymptotic confidence interval of level p(R) :=∫
|x|≤R

1√
2π
e−x

2/2dx of the estimator Y n is given by

[
Y n −

R√
n
σ̂n, Y n +

R√
n
σ̂n

]
. (1.5)

More precisely, it means that

P
[
Y n −

R√
n
σ̂n ≤ E[Y ] ≤ Y n +

R√
n
σ̂n

]
→ p(R), as n→∞.

Remark 1.1 In practice, for p(R) = 95%, we know R ≈ 1.96.

Conclusions To utilize the Monte-Carlo method, the first issue is then how to simulate
a sequence of random vector (Xk)k≥1 given its law µ or given its definition based on other
random elements, the second issue is how to improve the estimator by reducing its error.
The error of Monte-Carlo method is measured by its confidence interval (1.5), whose
length is given by 2Rσ̂n/

√
n. When the confidence level is fixed, R is fixed. One can

then use a larger n, where the cost is the computation time which is proportional to n in
general. Otherwise, one can reduce σ̂n by find some other random variable Ỹ such that

E
[
Ỹ
]

= E[Y ] and Var
[
Ỹ
]
< Var[Y ].

We shall address these issues in the following of the course.



Chapter 2

Simulation of random vectors or
stochastic processes

2.1 Random variable of uniform distribution on [0, 1]

Here we admits that we know how to simulate a random variable of uniform distribution
U [0, 1]. In particular, most of the programming environment are equipped with the
computer with a generator of uniform distribution.

However, it worths noticing that a generator of random variables in a computer
is a deterministic program, and hence it generates always a sequence of deterministic
variables, in place of a sequence of independent random variables. In practice, we search
for a generator such that the sequence of generated variables has “similar” performance
statistically.

2.2 Inverse method

Let X be random variable, its distribution function, defined by

F (x) := P(X ≤ x),

is a right-continuous non-decreasing function from R to [0, 1]. We then define its right-
continuous generalized inverse function by

F−1(u) := inf
{
x ∈ R : F (x) ≥ u

}
.

Theorem 2.1 Let X be a random variable with distribution function F and U be a
random variable of uniform distribution U [0, 1] on interval [0, 1]. Then

X ∼ F−1(U) in law.

3
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Proof. Notice that for any y ∈ R, we have

“F−1(u) ≤ y” ⇐⇒ “u ≤ F (y)”.

It follows that for any y ∈ R,

P
[
F−1(U) ≤ y

]
= P

[
U ≤ F (y)

]
= F (y).

�

Example 2.1 (i) Let X be a random variable of discrete distribution, P(X = xk) = pk

where xk ∈ R, pk ≥ 0 for k ∈ N and
∑

k∈N pk = 1. Then let U ∼ U [0, 1], and Z be the
random variable defined by

Z := xn, if U ∈

[
n−1∑
k=0

pk,
n∑
k=0

pk

)
.

Then Z has the same distribution of X. The definition of Z can be interpreted as F−1(U)

with the distribution function F of X.

(ii) Let X ∼ E(λ) be a random variable of exponential distribution of parameter λ > 0,
i.e. the density function is given by f(x) := λe−λx1x≥0, and the distribution is given by
F (x) := 1−e−λx. By direct computation, F−1(u) = −λ−1 log(1−u) for every u ∈ (0, 1).
Then for U ∼ U(0, 1),

F−1(U) = −λ−1 log(1− U) ∼ − λ−1 log(U) ∼ E(λ),

since 1− U and U have the same distribution when U ∼ U(0, 1).

2.3 Transformation method

Proposition 2.1 (Box-Muller) Suppose that U and V are independent random vari-
ables of uniform distribution on the interval (0, 1]. Let

X :=
√
−2 log(U) cos(2πV ) and Y :=

√
−2 log(U) sin(2πV ).

Then X and Y are two independent random variables of Gassian distribution N(0, 1).

Proof.

�

Exercise 2.1 Let (U, V ) be a random vector which is uniformly distributed on the disk
{(u, v) : u2 + v2 ≤ 1}. Let

X := U

√
−2 log(U2 + V 2

U2 + V 2
and Y := V

√
−2 log(U2 + V 2

U2 + V 2
.
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Prove that (X,Y ) ∼ N(0, I2).

2.4 Reject method

Let f : Rd → R+ and g : Rd → R+ be two density functions such that, for some constant
γ > 0, one has

f(x) ≤ γg(x), for all x ∈ Rd.

In practice, g is the density function of some distribution with well-known simulation
method (such as Gaussian distribution, uniform distribution, exponential distribution,
etc.), but f is the density function of some distribution without an easy simulation
method. The objective is to use the simulations of random variables of distribution g,
together with a rejection procedure, to simulate the random variable of distribution f .

Proposition 2.2 Let (Yk)k≥1 be an i.i.d. sequence of random variables of density g,
and (Uk)k≥1 be an i.i.d. sequence of random variable of distribution U [0, 1]. Moreover,
(Yk)k≥1 and (Uk)k≥1 are also independent. Define a sequence (Xn)n≥1 of random vari-
ables

Xn := YNn , with N0 := 0, andNn+1 := min
{
k > Nn : Uk ≤

f(Xk)

γg(Xk)

}
.

Then (Xn)n≥1 is a sequence of i.i.d. random variable of density f .

Proof.

�

Exercise 2.2 Let f : R→ R+ be defined by

f(x) := (1− |x|)+.

Give a numerical algorithm (based on the above reject method) to simulate an i.i.d. se-
quence of random variables of density f .

2.5 Simulation of Gaussian vector

The case of dimension 2 Let (Z1, Z2) ∼ N(0, I2) be two independent random variable
of Gaussian distribution, ρ ∈ [−1, 1] a constant. Define

X1 := Z1 and X2 := ρZ1 +
√

1− ρ2Z2.
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It is clear that X1 ∼ X2 ∼ N(0, 1) and Cov(X1, X2) = Cov(Z1, ρZ1 +
√

1− ρ2Z2) = ρ,
which means that (

X1

X2

)
∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))
.

More generally, for (Z1, Z2) ∼ N(0, I2), let

X1 := µ1 + σ1Z1 and X2 := µ2 + σ2

(
ρZ1 +

√
1− ρ2Z2

)
,

then (
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
. (2.1)

Notice also that any Gaussian vector of dimension 2 can be written in the form (2.1).

General case: Cholesky’s method Let Z ∼ N(0, Id) be standard Gaussian random
vector of dimension d, and A be a lower triangular matrix of dimension d× d, i.e.

Z =

 Z1

· · ·
Zd

 and A =


A11 0 · · · 0

A21 A22 · · · 0

· · · · · · · · · · · ·
Ad1 Ad2 · · · Add.


Then the vector X := AZ ∼ N(0,Σ) with variance-covariance matrix Σ := AAT .

Cholesky’s method consists in finding a lower triangular matrix A such that AAT = Σ,
where Σ is a given variance-covariance matrix. Let us write the equation AAT = Σ as

A11 0 · · · 0

A21 A22 · · · 0

· · · · · · · · · · · ·
Ad1 Ad2 · · · Add.




A11 A21 · · · Ad1

0 A22 · · · Ad2

· · · · · · · · · · · ·
0 0 · · · Add.

 =


Σ11 Σ12 · · · Σ1d

Σ21 Σ22 · · · Σ2d

· · · · · · · · · · · ·
Σd1 Σd2 · · · Σdd

 .

The solution is given by

A2
11 = Σ11

A21A11 = Σ21

· · ·

Ad1A11 = Σd1

· · · ⇐⇒

Aii =
√

Σii −
∑i−1

k=1A
2
ik

Aij =
(
Σii −

∑j−1
k=1AikAjk

)
/Ajj , ∀j < i.

Exercise 2.3 Provide a pseudo code for the algorithm of Cholesky’s method.
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2.6 Simulation of Brownian motion

Definition 2.1 A standard Brownian motion W is a stochastic process starting from 0,
and having
(i) continuous paths (i.e. t 7→Wt is almost surely continuous),
(ii) independent increments (i.e. Wt −Ws ⊥Ws −Wr, ∀0 ≤ r ≤ s ≤ t),
(iii) stationary and Gaussian increments (i.e. Wt −Ws ∼ N(0, t− s)).

Forward simulation Using the the independent and stationary Gaussian increments
property, one can simulate a path of a Brownian motion in a forward way. Let 0 = t0 <

t1 < · · · be a discrete grid of R+, (Zk)k≥1 be a sequence of i.i.d. random variable of
Gaussian distribution N(0, 1), we define W by

W0 := 0 and Wtk+1
:= Wtk +

√
tk+1 − tkZk+1.

Then W is a sample of paths of the Brownian motion on the discrete grid (tk)k≥0.

Brownian bridge The forward simulation method consists in simulating Wtk+1
know-

ing the value of Wtk . There is backward simulation method, i.e. one simulates first the
variable Wtn , and then simulates the variables Wtn−1 , Wtn−2 , · · · , Wt2 , Wt1 recursively.

Proposition 2.3 Let 0 = t0 < t1 < · · · be a discrete grid, then the conditional distribu-
tion of Wk knowing

(
Wti , i 6= k

)
is a Gaussian distribution N(µ, σ2) with

µ =
tk+1 − tt
tk+1 − tk−1

Wtk−1
+

tk − tk−1

tk+1 − tk−1
Wtk+1

and σ2 =
(tk+1 − tk)(tk − tk−1)

tk+1 − tk−1
,

in particular,

L
(
Wtk

∣∣ Wtk−1
= x, Wtk+1

= y
)

= N
(
x+

tk − tk−1

tk+1 − tk−1
y,

(tk+1 − tk)(tk − tk−1)

tk+1 − tk−1

)
.

Proof.

�

Exercise 2.4 Give the backward simulation algorithm for a Brownian motion on [0, 1],
using the above results.
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Chapter 3

Variance reduction techniques

Recall that the principle of the Monte-Carlo method is to estimate

E[Y ],
(
where Y := f(X)

)
by

Y n :=
1

n

n∑
k=1

Yk :=
1

n

n∑
k=1

f(Xk), (3.1)

with simulations (Yk)k≥1 (or more precisely (Xk)k≥1) of random variables Y . In view
of the confidence interval (1.5), it is clear that to reduce the error, one should either
augment the simulation number n (in cost of computation time), or reduce the variance
σ̂2
n. More precisely, since the variance Var[Y ] of Y is fixed, the real issue is to find some

other random variable Ỹ satisfying

E
[
Ỹ
]

= E[Y ] and Var
[
Ỹ
]
< Var[Y ]. (3.2)

In most of cases, Ỹ admits the representation Ỹ := g(X) with some function g : Rd → R.
Then using the simulations of Ỹ , one could expect an estimator of E[Y ](= E

[
Ỹ
]
) with

smaller error.

3.1 The antithetic variable

For many random variables (vectors) X, their distributions have some symmetric prop-
erty and admits a simple transformation A : Rd → Rd such that

A(X) and X have the same distribution.

We call A(X) the antithetic variable of X. For example, let X ∼ U [0, 1], then A(X) :=

1 − X ∼ U [0, 1]; let X ∼ N(0, σ2), then A(X) := −X ∼ N(0, σ2). It follows that

9
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E
[
f(A(X))

]
= E[f(X)], and hence

E
[
Ỹ
]

= E[Y ] with Ỹ :=
f(X) + f

(
A(X)

)
2

.

Then a new Monte-Carlo estimator can be given by

Ỹn :=
1

n

n∑
k=1

f(Xk) + f(A(Xk))

2
=

1

2n

n∑
k=1

(
f(Xk) + f(A(Xk))

)
. (3.3)

In some context, we can expect that Var[Ỹ ] much smaller than Var[Y ] (see the criteria
(3.2)).

Example 3.1 (Naive Examples) (i) Let f(x) := x and X ∼ N(0, σ2) be a Gaussian
r.v., then Y := f(X) = X. The random variable X admits an antithetic variable −X.
Then Ỹ := f(X)+f(−X)

2 ≡ 0 and it is clear that

E
[
Ỹ
]

= E[Y ] and Var[Y ] > Var
[
Ỹ
]

= 0.

i.e. (3.2) is true for this example.

(ii) Let f(x) := x, Y := f(U) and U ∼ U [0, 1] which admits an antithetic variable 1−U .
Then Ỹ := f(U)+f(1−U)

2 ≡ 1
2 and it is clear that (3.2) holds true in this context.

Exercise 3.1 Let U ∼ U [0, 1], then X := − log(U)
λ ∼ E(λ) and X̃ := − log(1−U)

λ ∼ E(λ).
Then

E
[
X
]

= E
[X + X̃

2

]
.

Comparer the variance of X and that of X+X̃
2 .

Variance analysis By direct computation, we have

Var
[
Ỹ
]

=
1

4

(
Var[f(X)] + 2Cov

[
f(X), f(A(X))

]
+ Var[f(A(X))]

)
=

1

2
Var[Y ] +

1

2
Cov

[
f(X), f(A(X))

]
.

Then one has

Var
[
Ỹ
]
≤ 1

2
Var[Y ] (3.4)

whenever

Cov
[
f(X), f(A(X))

]
≤ 0.

Intuitively, since A(X) is the “antithetic” variable, we can expect that A(X) has a neg-
ative correlation with X. In practice, the computation error of estimators Ỹn (in (3.3))
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and Y 2n (in (3.1)) should be the same, and under the condition (3.4), one has

Var
[
Ỹn
]
≤ Var

[
Y 2n

]
.

Remark 3.1 It is very important to use the same simulation Xk for estimator Ỹn in
(3.3). Otherwise, image that (X̃k)k≥1 is i.i.d with (Xk)k≥1, and consider

Ŷn :=
1

n

n∑
k=1

f(Xk) + f(A(X̃k))

2
.

Then one has
Var
[
Ŷn
]

= Var
[
Y 2n

]
,

which means that the estimator Ŷn is not better than the classical estimator.

Case of Gaussian distribution When X is of Gaussian distribution, we can provide
more precise criteria for condition (3.4).

Proposition 3.1 Let X ∼ N(µ, σ2), which admits an antithetic variable A(X) := 2µ−
X. Let f : R→ R be a monotone function, then

Cov
[
f(X), f(A(X))

]
≤ 0.

Proof. Without loss of generality, we can suppose that X ∼ N(0, 1). Let X1, X2 be two
independent r.v. of distribution N(0, 1), then for a monotone function, one has

(
f(X1)− f(X2)

)(
f(−X1)− f(−X2)

)
≤ 0.

And hence

E
[(
f(X1)− f(X2)

)(
f(−X1)− f(−X2)

)]
≤ 0.

By direct computation, it follows that

0 ≥ E
[(
f(X1)− f(X2)

)(
f(−X1)− f(−X2)

)]
= 2 Cov

[
f(X1), f(−X1)

]
= 2 Cov

[
f(X), f(−X)

]
.

�

Example 3.2 In application of finance, a problem may be

E
[
e−rT (ST −K)+

]
with ST := S0e

(r−σ2/2)T+σWT ,

where W is a Brownian motion, i.e. WT ∼ N(0, T ). In this case, it is clear that
Y := e−rT (ST − K)+ can be expressed as an increasing function of WT , and one can
then use the antithetic variable technique in the Monte-Carlo method.
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3.2 Variate control method

We recall that the random variable takes the form f(X) with some random vector X
and f : Rd → R. Suppose that there is some other function g : Rd → R (close to f) and
such that the constant

m := E[g(X)]

can be computed explicitly. Then for every constant b ∈ R, one has

E[Y ] = E[Ỹ (b)] with Ỹ (b) := f(X)− b
(
g(X)−m

)
.

It follows another Monte-Carlo estimator of E[Y ], with simulations (Xk)k≥1,

1

n

n∑
k=1

Ỹk(b) where Ỹk(b) := f(Xk)− b
(
g(Xk)−m

)
. (3.5)

Example 3.3 Let X ∼ U [0, 1], f : [0, 1] → R be some function, and Y := f(X). By
approximation, one may find some polynomial function g : [0, 1] → R such that f ≈ g.
Besides, the constant m := E[g(X)] is known explicitly whenever g is a polynomial. Take
b = 1, it follows that

E[Y ] = E
[
f(X)− g(X) +m

]
and we can expect that

Var
[
f(X)− g(X) +m

]
= Var

[
f(X)− g(X)

]
< Var

[
f(X)

]
,

since g is an approximation of f .

Variance analysis By direct computation, it follows that

Var
[
Ỹ (b)

]
= Var

[
f(X)− b

(
g(X)−m

)]
= Var

[
f(X)

]
− 2b Cov

[
f(X), g(X)

]
+ b2Var

[
g(X)

]
.

We then minimize the variance on the control variable b:

min
b∈R

Var
[
Ỹ (b)

]
= Var[Y ]−

(
Cov

[
f(X), g(X)

])2
Var
[
g(X)

] = Var[Y ]
(
1− ρ2

[
f(X), g(X)

])
,

with the optimal control variable

b∗ :=
Cov

[
f(X), g(X)

]
Var
[
g(X)

] . (3.6)
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Remark 3.2 (i) The above computation shows that to use the variate control method,
one should search for a function g : Rd → R such that

m := E
[
g(X)

]
is known explicitly, and |ρ

(
f(X), g(X)

)
| is big.

(ii) As in Remark 3.1, it is very important to use the same simulation Xk for estimator
Ỹn in (3.5). Otherwise, image that (X̃k)k≥1 is i.i.d with (Xk)k≥1, and consider

Ŷn :=
1

n

n∑
k=1

(
f(Xk)− b(g(X̃k)−m)

)
,

Then one has
ρ
(
f(X), g(X̃)

)
= 0,

which means that the estimator Ŷn is not better than the classical estimator.

Estimation of the optimal control variable b∗ In practice, we use Monte-Carlo
method to compute E[f(X)] since it can be computed explicitly. Then there is no reason
we know how to compute Cov

[
f(X), g(X)

]
, and hence we need to estimate it to obtain

an estimation of b∗ in (3.6). A natural estimator of b∗ should then be

b̂n :=

∑n
k=1(Yk − Y n)(g(Xk)−Gn)∑n

k=1(g(Xk)−Gn)2
, with Gn :=

1

n

n∑
k=1

g(Xk). (3.7)

Further, to avoid the correlation between the estimator b̂n and the simulations Ỹk(b̂n)

in (3.5), we can estimate first b̂n with a small number n of simulations of (Xk)1≤k≤n, then
use a large number m of simulations (Xk)n+1≤k≤n+m to estimate E[Y ], i.e. to obtain the
estimator

1

m

m∑
k=1

Ỹn+k(b̂n).

Multi-variate controls On can also consider several functions (gk : Rd → R)k=1,··· ,n.
Denote Zk := gk(X), Z = (Z1, · · · , Zn) and suppose that E[Z] is known explicitly, we
can then have a new variate control candidate

Ỹ (b) := Y − 〈b, Z − E[Z]〉, ∀b = (b1, · · · , bn) ∈ Rn.

It is clear that E[Y ] = E
[
Ỹ (b)

]
, and by similar computation, one has

min
b∈Rn

Var
[
Ỹ (b)

]
= min

b∈Rd

(
σ2
Y − 2bΣY Z + bTΣZZb

)
,
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where ΣY , ΣY Z and ΣZZ are given by

Var

[
Y

Z

]
=

(
ΣY ΣY Z

ΣY Z ΣZZ

)
.

The optimal control b∗ is provided by

b∗ := Σ−1
ZZΣZY .

3.3 Stratification

Recall that X is random vector and Y := f(X) for some function f : Rd → R. Let
g : Rd → Rm be some function and denote Z := g(X) another random vector. Let
(Ak)1≤k≤K be partition of the support of Z in Rn, i.e. A1, · · · , AK are disjoints such
that

K∑
k=1

pk = 1 with pk := P(Z ∈ Ak), ∀k = 1, · · ·K.

It follows by Bayes’s formula that

E
[
Y
]

=
K∑
k=1

pk E
[
Y
∣∣Z ∈ Ak].

Assumption 3.1 (i) The values of probability (pk)1≤k≤K are known explicitly.
(ii) One knows how to simulate a random variable following the conditional distribution
L(Y |Z ∈ Ak).

Under Assumption 3.1, we can propose another Monte-Carlo estimator of E
[
Y
]
:

for each k = 1, · · · ,K, let (Y
(k)
i )i≥1 be a sequence of i.i.d random variable such that

L(Y
(k)

1 ) = L(Y |Z ∈ Ak), then for n = (n1, · · · , nK) ∈ NK , denote

Ŷn :=
K∑
k=1

pk

( 1

nk

nk∑
i=1

Y
(k)
i

)
. (3.8)

It is clear that

E
[
Ŷn
]

= E[Y ] and Ŷn → E[Y ] as (n1, · · · , nK)→∞.

Simulation of conditional distribution (i)Suppose thatX is a random variable with
distribution function F , Z = X and Ak = (ak, ak+1] for some constant a1, a2, · · · , aK+1.
Let

X(k) := F−1
(
F (ak) + U

(
F (ak+1)− F (ak)

))
where U ∼ U [0, 1],
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and Y (k) := f(X(k)). Then

L
(
X(k)

)
= L(X|X ∈ Ak) and L

(
Y (k))

)
= L

(
f(X(k))

)
= L(Y |X ∈ Ak).

(ii) Suppose that X is a random vector of density ρ : Rd → R and Z = X. Define

ρk(x) :=
1

pk
ρ(x)1x∈Ak with pk := P(X ∈ Ak) =

∫
Ak

ρ(x)dx.

Then ρk is the density function of the conditional distribution of L(X|X ∈ Ak).

Variance analysis Denote µk := E[Y (k)], σ2
k := Var[Y (k)], qk := nk

n with n :=∑K
k=1 nk. Then

Var
[
Ŷn
]

=

K∑
k=1

p2
k

1

nk
Var
[
Y (k)

]
=

K∑
k=1

p1
k

1

nqk
σ2
k

=
1

n

K∑
k=1

p2
k

qk
σ2
k =

1

n
σ2(q), where σ2(q) :=

K∑
k=1

p2
k

qk
σ2
k.

Recall also that Var
[
Y n

]
= 1

nVar
[
Y
]

= 1
nσ

2. Then one compare the value σ2(q) and σ2.

(i) Proportional allocation: Let nk
n =: q∗k = pk, then σ2(q∗) :=

∑K
k=1 pkσ

2
k, and one has

σ2 = σ2(q∗) +

K∑
k=1

pkµ
2
k −

( K∑
k=1

pkµk

)2
≥ σ2(q∗), (3.9)

where the last inequality follows by Jensen’s inequality.

Remark 3.3 Let us define a random variable η by

η :=

K∑
k=1

k1Z∈Ak .

Then we have µk := E[Y (k)] = E[Y |η = k] and σ2
k = Var[Y (k)] = Var[Y |η = k]. More-

over,

E
[
Var[Y |η]

]
=

K∑
k=1

pkσ
2
k and Var

[
E[Y |η]

]
=

K∑
k=1

pkµ
2
k −

( K∑
k=1

pkµk

)2
.

Then the equality (3.9) can be interpreted as a variance decomposition:

σ2 = Var[Y ] = E
[
Var[Y |η]

]
+ Var

[
E[Y |η]

]
.
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(ii) Optimal allocation: Let us consider the minimal variance problem

min
q

K∑
k=1

p2
k

qk
σ2
k subject to q : qk ≥ 0,

K∑
k=1

qk = 1.

The Lagrange multiplier is given by

L(λ, q1, · · · , qK) :=

K∑
k=1

p2
k

qk
σ2
k + λ

( K∑
k=1

qk − 1
)
.

Then the first order condition gives

∂L

∂qk
= −

p2
kσ

2
k

q2
k

+ λ = 0,

which implies that

pkσk
qk

=
√
λ, ∀k = 1, · · · ,K.

Thus qk =
√
λpkσk for all k = 1, · · · ,K, and it follows that

qk =
pkσk∑K
i=1 piσi

.

Application: Let St be defined by

St = S0e
−σ2/t+σWt ,

where S0 and σ are some positive constant. Denote X := WT /
√
T ∼ N(0, 1), motivated

by its application in finance, we usually need to compute the value

E
[
Y
]

with Y := f(ST ) = g(X),

for some function f : R → R and g : R → R (notice that ST can be expressed as
a function of X). Let Φ : R → (0, 1) be the distribution function of the Gaussian
distribution N(0, 1), and take Ak = (ak, ak+1] for some constant (ak)1≤k≤K+1,

X(k) := Φ−1
(
ak + (ak+1 − ak)U

)
Y (k) := g(X(k)).

We then obtain the following algorithm:

Algorithm 3.1 (i) Choose the sequence of stratification (ak)1≤k≤K+1.

(ii) For each k = 1, · · · ,K, simulate a sequence of i.i.d. random variable (Uki )i≥1 of
uniform distribution U [0, 1], and let X(k)

i := Φ−1
(
ak + (ak+1 − ak)Uki

)
.
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(iii) Estimate E[Y ] by

K∑
k=1

(
ak+1 − ak

) ( 1

nk

nk∑
i=1

g(Xk
i )
)
.

3.4 Importance sampling method

For the importance sampling, let us begin with a simple example. Suppose that X ∼
N(0, 1) and h : R→ R is some function, then

E
[
h(X)

]
=

∫
R
h(x)

1√
2π
ex

2/2dx =

∫
R
h(x)e−x

2/2+(x−µ)2/2 1√
2π
e(x−µ)2/2dx

=

∫
R
h(x)e−µx+µ2/2 1√

2π
e(x−µ)2/2dx

= E
[
h(Y )e−µY+µ2/2

]
(where Y ∼ N(µ, 1))

= E
[
h(X + µ)e−µX−µ

2/2
]
. (3.10)

In some context, we can expect that

Var
[
h(X)

]
> Var

[
h(X + µ)e−µX−µ

2/2
]
,

then we can use the latter expectation to propose a Monte-Carlo estimator. To deduce
the equality (3.10), the main idea is to divide the function h(x) by some density function
and then multiple it. We can use this idea in a more general context.

Importance sampling method Let X be a random vector of density function f :

Rd → R+ and h : Rd → R, the objective is to compute E
[
h(X)

]
. Suppose that there is

some other density function g : Rd → R+ such that g(x) > 0 for every x ∈ Rd such that
f(x) > 0. Then by direct computation, we have

E
[
h(X)

]
=

∫
Rd
h(x)f(x)dx =

∫
Rd
h(x)

f(x)

g(x)
g(x)dx = E

[
h(Z)

f(Z)

g(Z)

]
,

where Z is a random vector of density function g. Then an importance sampling estimator
for E[h(X)] is given, with a sequence (Zk)k≥1 of i.i.d. simulations of Y , by

1

n

n∑
k=1

h(Zk)
f(Zk)

g(Zk)
. (3.11)
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Variance analysis Let us compute the variance of the new estimator.

Var
[
h(Z)

f(Z)

g(Z)

]
= E

[
h2(Z)

f2(Z)

g2(Z)

]
−
(
E
[
h(Z)

f(Z)

g(Z)

])2

=

∫
Rd
h2(z)

f2(z)

g2(z)
g(z)dz −

(
E
[
h(X)

])2

= E
[
h2(X)

f(X)

g(X)

]
−
(
E
[
h(X)

])2
.

And hence the problem of minimizing the variance turns to be

min
g

Var
[
h(Z)

f(Z)

g(Z)

]
⇐⇒ min

g
E
[
h2(X)

f(X)

g(X)

]
. (3.12)

Example 3.4 (i) Suppose that h(x) = 1A(x) for some subset A ⊂ Rd. Then the mini-
mization problem

min
g

Var
[
h(Z)

f(Z)

g(Z)

]
= min

g
Var
[
1A(Z)

f(Z)

g(Z)

]
,

is solved by g(z) := f(z)1A(z)
α , where α is the constant making g a density function.

(ii) Suppose that h is positive, then the minimization problem (3.12) is solved by g(z) :=
1
αf(z)h(z), where α is the constant making g a density function.

The above two examples can not be implemented since to make g a density function,
we need to choose

α :=

∫
Rd
f(z)h(z)dz = E

[
h(X)

]
,

which is not known a priori. Therefore, the minimum variance problem (3.12) is not a
well posed problem. In practice, we consider a family of density functions (gθ(·)

)
θ∈Θ

,
and then solve the minimum variance problem:

min
θ∈Θ

Var
[
h(Z)

f(Z)

gθ(Z)

]
⇐⇒ min

θ∈Θ
E
[
h2(X)

f(X)

gθ(X)

]
.

Gaussian vector case Let X = (X1, · · ·Xn) ∼ N(0, σ2In), which admits density
function

f(x1, · · · , xn) := Πn
k=1ρ(xk), with ρ(x) :=

1√
2πσ

e−
x2

2σ2 .

Let θ = (θ1, · · · , θn) ∈ Rn, and

gθ(x1, · · · , xn) := Πn
k=1ρθk(xk), with ρθk(xk) :=

1√
2πσ

e−
(x−θk)

2

2σ2 .
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Then the ratio of the density function turns to be

f(x)

gθ(x)
= exp

(−∑n
k=1 µkxk + 1

2

∑n
k=1 µ

2
k

σ2

)
.

Then

E
[
h(X1, · · · , Xn)

]
= E

[
h
(
X1 + θ1, · · · , Xn + θn

)
e

(
−
∑n
k=1 µkXk−

1
2

∑n
k=1 µ

2
k

)
/σ2
]
.

Example 3.5 In application in finance, one usually considers a Brownian motion W ,
and denote ∆Wk := Wtk −Wtk−1

on the discrete time grid 0 = t0 < t1 < · · · and one
needs to compute E

[
h
(
∆W1, · · · ,∆Wn

)]
for some function h. Let Xk = ∆Wk, σ2 = ∆t

and µk = θk/∆t, then

E
[
h
(
∆W1, · · · ,∆Wn

)]
= E

[
h
(
∆W1 + µ1∆t, · · · ,∆Wn + µn∆t

)
exp

(
−

n∑
k=1

µk∆Wk −
1

2
µ2
k∆t

)]
.
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Chapter 4

Stochastic gradient algorithm

The objective is solve an optimization problem of the form

min
θ∈Θ

E
[
F (θ,X)

]
, (4.1)

where (F (θ, ·))θ∈Θ is a family of functions.

An iterative algorithm to find the root

Proposition 4.1 Let f : Rd → Rd a bounded continuous function and θ∗ ∈ Rd such that
f(θ∗) = 0 and

(θ − θ∗) · f(θ) > 0, ∀θ ∈ Rd \ {θ∗}. (4.2)

Let (γn)n≥1 be a sequence of numbers satisfying

γn > 0, ∀n ≥ 1, and
∑
n≥1

γn =∞,
∑
n≥1

γ2
n <∞. (4.3)

Further, with some θ0 ∈ Rd, define a sequence (θn)n≥1 by

θn+1 = θn − γn+1f(θn), ∀n ≥ 0.

Then, θn → θ∗ as n→∞.

Proof. (i) First, by its definition, we have

|θn+1 − θ∗|2 = |θn − θ∗|2 + 2(θn − θ∗) · (θn+1 − θn) + |θn+1 − θn|2

= |θn − θ∗|2 − 2γn+1f(θn) · (θn − θ∗) + γ2
n|f(θn)|2

≤ |θn − θ∗|2 + γ2
n|f(θn)|2,

21
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where the last inequality follows by (4.3). Define

xn := |θn − θ∗|2 −
n∑
k=1

γ2
k |f((θk−1)|2.

Then the sequence (xn)n≥1 is non-increasing. Moreover, it is bounded from below since
xn ≥ −|f |∞

∑
k≥1 γk. Therefore, there is some x∞ such that xn ↘ x∞ and hence

|θn − θ∗|2 → ` := x∞ +
∑
k≥1

γ2
k |f(θk−1)|2.

It is clear ` ≥ 0 since it is the limit of |θn−θ∗|2. We claim that ` = 0, which can conclude
the proof.

(ii) We now prove ` = 0 by contradiction. Assume that ` > 0, then there is some N > 0

such that `/2 ≤ |θ − θ∗|2 ≤ 2` for every n ≥ N . Besides, by the continuity of f and
(4.2), we have

η := inf
`/2≤|θ−θ∗|2≤2`

(θ − θ∗) · f(θ) > 0.

Therefore,∑
n≥1

γnf(θn=1) · (θn−1 − θ∗) ≥
∑
n≥N

γnf(θn=1) · (θn−1 − θ∗) ≥ η
∑
n≥N

γn = ∞.

However, we have also∑
n≥1

γnf(θn=1) · (θn−1 − θ∗) = −
∑
n≥1

(θn − θn−1) · · · (θn−1 − θ∗)

= −1

2

∑
n≥1

(
|θn − θ∗|2 − |θn − θn−1|2 − |θn−1 − θ∗|2

)
=

1

2

(∑
n≥1

γ2
n|f(θn−1)| − `+ |θ0 − θ∗|2

)
< ∞.

This is a contradiction, and hence the claim ` = 0 is true. �

Stochastic gradient algorithm

Theorem 4.1 In the context of Proposition 4.1, suppose that f(θ) = E
[
F (θ,X)

]
for

some function F : Rd × Rn → R and some random vector X. Suppose that f satisfies
(4.2) and a sequence of numbers (γ)n≥1 satisfies (4.3). Then, with some θ0 ∈ Rd and a
sequence (Xn)n≥1 of i.i.d. simulations of X, we define a sequence (θn)n≥1 by

θn+1 = θn − γn+1F (θn, Xn+1). (4.4)

Then, θn → θ∗ almost surely as n→∞.
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Proof.

�

Application: optimal importance sampling In the context of Section 3.4, we solve
the minimum variance problem

min
µ∈R

Var
[
h(X + µ)e−µX−µ

2/2
]
⇐⇒ min

µ∈R
E
[
h2(X + µ)e−2µX−µ2

]
⇐⇒ min

µ∈R
E
[
h2(X)e−µX+µ2/2

]
(4.5)

Let us denote

L(µ,X) := h2(X)e−µX+µ2/2 and `(µ) := E
[
L(µ,X)

]
,

and

F (µ,X) :=
∂L

∂µ
(µ,X) := (µ−X)h2(X)e−µX+µ2/2 and f(µ) := E

[
F (µ,X)

]
.

Then the minimum variance problem (4.5) is equivalent to find the µ∗ such that f(µ∗) =

`′(µ∗) = 0. Notice that

f ′(µ) = `′′(µ) = E
[(

1 + (µ−X)2
)
h2(X)e−µX+µ2/2

]
> 0,

and hence such a µ∗ is separate for f . Therefore, we can use the stochastic gradient
algorithm (4.4) to find the optimal µ∗.

Algorithm 4.1 (i) Simulate a sequence (Xn)n≥1 of i.i.d. simulations of X.
(ii) With µ0 = 0, use the iteration:

µn+1 = µn − γn+1F (µn, Xn+1)

(iii) The estimator of E[h(X)] is given by

Y n+1 :=
1

n+ 1

n+1∑
k=1

(
h(Xk + µk−1)e−µk−1Xk−µ2k−1/2

)
=

n

n+ 1
Y n +

1

n+ 1
h(Xn+1 + µn)e−µnXn+1−µ2n/2.

The advantage of the above algorithm is that one does not need to memorized the
simulation (Xn)n≥1 in the iteration.



24


