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Chapter 1

Introduction

1.1 The principle

The principle of Monte-Carlo method is to use simulations of the random variables to

estimate a quantity such as
Ef0] = | S pld), (1.1)

where f : R? — R is a function, X is some random vector taking value in R% with
distribution u. It may also be used to solve an optimization problem of the kind
min E[ X ] 1.2
min B/ fo(X) (1.2)
where (fp : R? = R)gpep is a family of functions.
To solve the basic problem (1.1), the method consists in simulating a sequence of i.i.d.

random vectors (Xj)g>1 with the same distribution of X, and then estimate E[f(X)] by

the empirical mean value
J(Xk). (1.3)
k=1 k=1

The advantages of the Monte-Carlo are usually its simplicity, flexibility and efficiency
for high dimensional problems. It can also be served as an alternative method (or bench-

mark) for other numerical methods.

1.2 The error analysis of Monte-Carlo method

Theorem 1.1 (Law of large number) Let (Yj;)r>1 be a sequence of i.i.d. random
variables such that E[|Y|] < co. Then with Y,, defined in (1.3), one has

IP( lim Y, :E[Y]) ~ 1

n—o0



Theorem 1.2 (Central limit theorem) Let (Yy)r>1 be a sequence of i.i.d. random
variables such that E[|Y|?] < co. Then

Vvn(Y, —E[Y]) = N(0,Var(Y)).

And consequently,

\&/ﬁ(Yn — E[Y]) = N(O, 1), where [7721 o= 1 z”: (Yk — ?n)Z. (1.4)
n n 1

Notice that 62 defined in (1.4) is an estimator of the variance Var[Y] from the se-

quence (Y%)r>1, and it admits the representation

The central limit theorem induces that the asymptotic confidence interval of level p(R) :=

1 —x2/2 . s .
flw\SR orid /24 of the estimator Y, is given by

v, - s v+ s
N

v (1.5)

More precisely, it means that
R — R
o < E[Y] < Yn+%

Remark 1.1 In practice, for p(R) = 95%, we know R ~ 1.96.

&n] — p(R), asn— oo.

Conclusions To utilize the Monte-Carlo method, the first issue is then how to simulate
a sequence of random vector (X)x>1 given its law p or given its definition based on other
random elements, the second issue is how to improve the estimator by reducing its error.
The error of Monte-Carlo method is measured by its confidence interval (1.5), whose
length is given by 2Ré6,//n. When the confidence level is fixed, R is fixed. One can
then use a larger n, where the cost is the computation time which is proportional to n in

general. Otherwise, one can reduce &, by find some other random variable ¥ such that
E[Y] = E[Y] and Var [17] < Var[Y].

We shall address these issues in the following of the course.



Chapter 2

Simulation of random vectors or

stochastic processes

2.1 Random variable of uniform distribution on [0, 1]

Here we admits that we know how to simulate a random variable of uniform distribution
U[0,1]. In particular, most of the programming environment are equipped with the

computer with a generator of uniform distribution.

However, it worths noticing that a generator of random variables in a computer
is a deterministic program, and hence it generates always a sequence of deterministic
variables, in place of a sequence of independent random variables. In practice, we search
for a generator such that the sequence of generated variables has “similar” performance

statistically.

2.2 Inverse method

Let X be random variable, its distribution function, defined by
F(z) = P(X <ux),

is a right-continuous non-decreasing function from R to [0,1]. We then define its right-

continuous generalized inverse function by
F~Y(u) = inf {zeR : F(z) >u}.

Theorem 2.1 Let X be a random variable with distribution function F and U be a

random variable of uniform distribution U0, 1] on interval [0,1]. Then

X ~ FYU) in law.



Proof. Notice that for any y € R, we have
chfl(u) S yn - “a S F(y)n

It follows that for any y € R,

0

Example 2.1 (i) Let X be a random variable of discrete distribution, P(X = xy) = px
where x, € R, pp, > 0 for k € N and Y, .ok = 1. Then let U ~ U[0,1], and Z be the

random variable defined by

Z = xm,, if Uc€

n—1 n
Zplm Zm) :
k=0

k=0

Then Z has the same distribution of X. The definition of Z can be interpreted as F~1(U)
with the distribution function F of X.

(ii) Let X ~ E(X) be a random variable of exponential distribution of parameter A > 0,
i.e. the density function is given by f(x) := Ne 1,50, and the distribution is given by
F(z) := 1—e=?*. By direct computation, F~'(u) = —A\"!log(1 —u) for every u € (0,1).
Then for U ~U(0,1),

FLU) = A tog(1—U) ~ —Atlog(U) ~ E(N),

since 1 — U and U have the same distribution when U ~ U(0,1).

2.3 Transformation method

Proposition 2.1 (Box-Muller) Suppose that U and V' are independent random vari-

ables of uniform distribution on the interval (0,1]. Let
X = y/—2log(U)cos(2nV) and Y := +/—2log(U)sin(27V).
Then X andY are two independent random variables of Gassian distribution N(0,1).

Proof.

g

Exercise 2.1 Let (U,V) be a random vector which is uniformly distributed on the disk
{(u,v) :u?+0v% <1}, Let

—2log(U? +V? —2log(U? + V2
X = U\/ TEERTE andY =V Zave




Prove that (X,Y) ~ N(0, I1).

2.4 Reject method

Let f: R? — Rt and ¢ : R? — R* be two density functions such that, for some constant
v > 0, one has
f(z) < ~g(x), forall z € R%

In practice, g is the density function of some distribution with well-known simulation
method (such as Gaussian distribution, uniform distribution, exponential distribution,
etc.), but f is the density function of some distribution without an easy simulation
method. The objective is to use the simulations of random variables of distribution g,

together with a rejection procedure, to simulate the random variable of distribution f.

Proposition 2.2 Let (Y;)r>1 be an i.i.d. sequence of random wvariables of density g,
and (Ug)g>1 be an i.i.d. sequence of random variable of distribution U[0,1]. Moreover,
(Yi)k>1 and (Ug)k>1 are also independent. Define a sequence (Xy)n>1 of random vari-

ables

f(Xk) }

X, = Yw,, with Ng:=0, andNp,; = min{k>Nn Uy <
Y9(Xk)

Then (Xy,)n>1 is a sequence of i.i.d. random variable of density f.

Proof.

Exercise 2.2 Let f : R — R™ be defined by
fl@) =1~ lz))".

Give a numerical algorithm (based on the above reject method) to simulate an i.i.d. se-

quence of random variables of density f.

2.5 Simulation of Gaussian vector

The case of dimension 2 Let (Z1, Z3) ~ N(0, I3) be two independent random variable

of Gaussian distribution, p € [—1,1] a constant. Define

X1 = Zl and XQ = le—l-\/l—pQZg.



It is clear that X7 ~ X2 ~ N(0,1) and Cov (X1, Xo) = Cov(Z1,pZ1 + /1 — p*Z2) = p,

which means that
X 1 ~ N 0 ’ 1 P '
X2 0 P 1

More generally, for (Z1, Z2) ~ N(0, I2), let

X1 = p1+o01Z1 and Xy := M2+U2<le+v1—PQZ2)7

X1 N p1 o7 poio2
()=o) o)) e

Notice also that any Gaussian vector of dimension 2 can be written in the form (2.1).

then

General case: Cholesky’s method Let Z ~ N(0, ;) be standard Gaussian random

vector of dimension d, and A be a lower triangular matrix of dimension d x d, i.e.

All 0 e 0
o Ay A 0
7 = e and A = 21 22
Zq
Ap Age -+ Aga

Then the vector X := AZ ~ N(0, ) with variance-covariance matrix ¥ := AA”.

Cholesky’s method consists in finding a lower triangular matrix A such that AAT = ¥,

where ¥ is a given variance-covariance matrix. Let us write the equation AA”T = ¥ as

Aqy 0 T 0 Ay Ay - Anpn Y11 Y12 o0 X4
Aoy Agg  --- 0 0 Ay - Ap _ o1 Yoo - Yog
A Ag2 -+ Ada- 0 0 - Ay Yo Sa o Yad

The solution is given by
At =21

AnAn =% Ay =[Sy — S0 A2
214111 2 = \/ ﬁil ik
Aij = (Bii — 2ohm AnAge) /A5, Vi <.

\AdlAll =2

Exercise 2.3 Provide a pseudo code for the algorithm of Cholesky’s method.



2.6 Simulation of Brownian motion

Definition 2.1 A standard Brownian motion W is a stochastic process starting from 0,
and having

(i) continuous paths (i.e. t — Wy is almost surely continuous),

(ii) independent increments (i.e. Wy — Wy L Wy —W,, VO <r < s<t),

(iii) stationary and Gaussian increments (i.e. Wy — Wy ~ N(0,t — s)).

Forward simulation Using the the independent and stationary Gaussian increments
property, one can simulate a path of a Brownian motion in a forward way. Let 0 =y <
t1 < -+ be a discrete grid of R, (Zg)k>1 be a sequence of i.i.d. random variable of
Gaussian distribution N(0, 1), we define W by

Wo :== 0 and Wy, = Wy + \/mzkﬂ-

Then W is a sample of paths of the Brownian motion on the discrete grid (tx)g>0-

Brownian bridge The forward simulation method consists in simulating Wy, , know-
ing the value of Wy, . There is backward simulation method, i.e. one simulates first the

variable Wy, , and then simulates the variables W} Wi, o, oy Wey, Wy, recursively.

n—17

Proposition 2.3 Let 0 =ty <t < --- be a discrete grid, then the conditional distribu-
tion of Wy knowing (Wti, 1 k:) is a Gaussian distribution N(u,o?) with

(tha1 — i) (te — t—1)
tet1 — -1

e W, o+ th — th—1
k—1

2
Wi, and o° =

il

g1 — et b1 — T

in particular,

y) = N(x + b = e (tr1 — ti) (tk — tkq))_

L(W, Wy, _, =z, Wy =
( k ‘ k-1 ’ k+1 b1 — the1 tht1 — te—1

Proof.

0

Exercise 2.4 Give the backward simulation algorithm for a Brownian motion on [0, 1],

using the above results.






Chapter 3
Variance reduction techniques

Recall that the principle of the Monte-Carlo method is to estimate

E[Y], (whereY := f(X))

n

Y, — %Zyk - %Zf(Xk), (3.1)

with simulations (Yj)g>1 (or more precisely (Xj)r>1) of random variables Y. In view
of the confidence interval (1.5), it is clear that to reduce the error, one should either
augment the simulation number n (in cost of computation time), or reduce the variance
62. More precisely, since the variance Var[Y] of Y is fixed, the real issue is to find some

other random variable Y satisfying
E[Y] = E[Y] and Var[Y] < Var[Y]. (3.2)

In most of cases, Y admits the representation Y := g(X) with some function g : R¢ — R.
Then using the simulations of ¥, one could expect an estimator of E[Y](= E[YD with

smaller error.

3.1 The antithetic variable

For many random variables (vectors) X, their distributions have some symmetric prop-

erty and admits a simple transformation A4 : R — R? such that
A(X) and X have the same distribution.

We call A(X) the antithetic variable of X. For example, let X ~ U]0, 1], then A(X) :=
1—X ~ U[0,1]; let X ~ N(0,0?), then A(X) :== —X ~ N(0,0?). It follows that

9



10

E[f(A(X))] = E[f(X)], and hence

E[Y] = E[Y] with YV := f(XHg(A(X)).

Then a new Monte-Carlo estimator can be given by

:sz(Xk)‘i‘g(A( _ %Z( F(Xk) + FIAX ))) (3.3)
k=1 =

k=1

In some context, we can expect that Var[Y] much smaller than Var[Y] (see the criteria

(3.2)).

Example 3.1 (Naive Examples) (i) Let f(z) := x and X ~ N(0,02) be a Gaussian
r.v., then' Y := f(X) = X. The random variable X admits an antithetic variable —X .
Then Y := w = 0 and it is clear that

E[Y] = E[Y] and Var[Y] > Var[Y] = 0.

i.e. (3.2) is true for this example.

(ii) Let f(z) =2, Y = f( ) and U ~ U[0, 1] which admits an antithetic variable 1 —U.

Then Y := M =1 and it is clear that (3.2) holds true in this context.

Exercise 3.1 Let U ~ U[0,1], then X := —% ~EN) and X = —M ~ E(N).
Then ~
X+ X
E[X] = E[==].

Comparer the variance of X and that of X%X

Variance analysis By direct computation, we have

Var[7] = 3 (Varlf(X)] + 2Cov[£(X), FACX)] + Varlf(A(X))
= %Var[Y] + %Cov[f(X),f(A(X))].

Then one has

Var[¥] < %Var[Y] (3.4)

whenever

Cov[£(X). f(AX))] < o.

Intuitively, since A(X) is the “antithetic” variable, we can expect that A(X) has a neg-

ative correlation with X. In practice, the computation error of estimators Y, (in (3.3))
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and Y, (in (3.1)) should be the same, and under the condition (3.4), one has
Var [?n] < Var [72,1]

Remark 3.1 It is very important to use the same simulation X}, for estimator Y, in
(3.3). Otherwise, image that (Xk)k21 is 1.1.d with (X)k>1, and consider

o L= F(Xe) + FA(KR))
Y, = n; 5 .
Then one has
Var[f/n} = Vangn],

which means that the estimator Yn 18 not better than the classical estimator.

Case of Gaussian distribution When X is of Gaussian distribution, we can provide

more precise criteria for condition (3.4).

Proposition 3.1 Let X ~ N(u,0?), which admits an antithetic variable A(X) = 2u —
X. Let f : R — R be a monotone function, then

Cov[f(X), f(A(X))] < 0.

Proof. Without loss of generality, we can suppose that X ~ N(0,1). Let X1, X5 be two

independent r.v. of distribution N(0,1), then for a monotone function, one has
(f(X1) = f(X2)) (f(—=X1) — f(—X2)) < 0.
And hence

E[(f(X1) = f(X2)) (f(-X1) = f(-X2)| < 0.

By direct computation, it follows that

o
v

E[(£(X1) = £(X2)) (F(=X1) = f(~X2)]
= 2 Cov[f(X1), f(-X1)] = 2 Cov[f(X), f(~X)].

Example 3.2 In application of finance, a problem may be
E[e™T(Sp — K)*] with Sp:= Spelr—/PT+oWr,

where W is a Brownian motion, i.e. Wrp ~ N(0,T). In this case, it is clear that
Y := e7"T(Sy — K)* can be expressed as an increasing function of Wr, and one can

then use the antithetic variable technique in the Monte-Carlo method.
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3.2 Variate control method

We recall that the random variable takes the form f(X) with some random vector X
and f : R? — R. Suppose that there is some other function g : R — R (close to f) and

such that the constant
m = E[g(X)]
can be computed explicitly. Then for every constant b € R, one has
E[Y] = EF(®)] with V() = f(X) - b(g(X) —m).

It follows another Monte-Carlo estimator of E[Y], with simulations (X)x>1,
= Yi(b) where Yi(b) := f(Xx)—b(g(Xk) - m). (3.5)

Example 3.3 Let X ~ U[0,1], f : [0,1] = R be some function, and Y := f(X). By
approzimation, one may find some polynomial function g : [0,1] — R such that f =~ g.
Besides, the constant m := E[g(X)] is known explicitly whenever g is a polynomial. Take
b =1, it follows that

and we can expect that
Var[f(X)—g(X)+m] = Var[f(X)—-g(X)] < Var[f(X)],

since g is an approzimation of f.

Variance analysis By direct computation, it follows that

Var[f/(b)] = Var[f(X) —b(g(X) —m)]
= Var[f(X)] —2b Cov[f(X),g(X)] +b2Var[g(X)].

We then minimize the variance on the control variable b:

] (Cov[£(X),9(0)])*  _
rbrélﬁlVar[Y(b)] = VarlY]— Var[g(X)] = Var[Y](1 - [f(X),9(X)]),

with the optimal control variable

b = . (3.6)
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Remark 3.2 (i) The above computation shows that to use the variate control method,

one should search for a function g : R* — R such that

m :=E[g(X)] is known explicitly, and |p(f(X),g(X))] is big.

(ii) As in Remark 3.1, it is very important to use the same simulation Xy for estimator
Y, in (3.5). Otherwise, image that (Xg)k>1 is i.i.d with (Xp)x>1, and consider

o= 30 (F) - be(Xe) — m),
k=1

Then one has

p(f(X),9(X)) = 0,

which means that the estimator f/n 18 not better than the classical estimator.

Estimation of the optimal control variable b* In practice, we use Monte-Carlo
method to compute E[f(X)] since it can be computed explicitly. Then there is no reason
we know how to compute Cov|[f(X), g(X)], and hence we need to estimate it to obtain

an estimation of b* in (3.6). A natural estimator of b* should then be

_ 2= Ya)g(X) =Gn) e L n
" S g —Cup O n;ﬂ“- (3.7)

>

Further, to avoid the correlation between the estimator I;n and the simulations ?k(lsn)
in (3.5), we can estimate first by, with a small number n of simulations of (Xk)1<k<n, then
use a large number m of simulations (Xy)n41<k<n+m to estimate E[Y], i.e. to obtain the

estimator

l e~ -
Ezyn-l-k(bn)'
k=1

Multi-variate controls On can also consider several functions (g : R — R) k=1, n-
Denote Zy, := gi(X), Z = (Z1,--+, Zy) and suppose that E[Z] is known explicitly, we

can then have a new variate control candidate
Y(b) ==Y —(b,Z—E[Z]), Vb= (b1, - ,b,) € R"
It is clear that E[Y] = E[Y (b)], and by similar computation, one has

i Y()] = mi <2—2b2 > b)
min Var Y (b)] min (oy vz +b Yzzb),
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where Yy, Yyz and Xz are given by

_ Yy Xyz
Yyz Xzz
The optimal control b* is provided by

bt o= X, 5y

3.3 Stratification

Recall that X is random vector and Y := f(X) for some function f : R — R. Let
g : RY = R™ be some function and denote Z := g(X) another random vector. Let

(Ar)i<k<k be partition of the support of Z in R", i.e. Aj,---, Ag are disjoints such
that

K

> =1 with pp = P(ZeAy), Vb=1,-- K.

k=1

It follows by Bayes’s formula that

E[Y] = ipkE[Y‘ZeAk].

Assumption 3.1 (i) The values of probability (pr)i1<k<k are known explicitly.

(ii) One knows how to simulate a random variable following the conditional distribution

Under Assumption 3.1, we can propose another Monte-Carlo estimator of E[Y]:
for cach k = 1,--- , K, let (Yi(k))izl be a sequence of i.i.d random variable such that
ﬁ(Yl(k)) = L(Y|Z € Ap), then for n = (n1,--- ,nx) € NX, denote

K ng
o= 3o (;;Yﬂ“)). (3.8)

It is clear that

E[}Afn] = E[Y] and Y, — E[Y]as (n1, - ,ng) — 0.

Simulation of conditional distribution (i)Suppose that X is a random variable with
distribution function F, Z = X and Ay = (ag, ax+1] for some constant ay,ag,- - ,ax4+1.
Let

x® = F_I(F(ak) + U(F(ak+1)—F(ak))> where U ~ U]0, 1],
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and Y(®) .= f(X®)). Then

L(XW) = L(X|X € Ay) and L£(Y®)) = £(f(XP)) = L(V|X € Ap).
(ii) Suppose that X is a random vector of density p : R — R and Z = X. Define

1 .
p@) = S p)leen, with p= BXE ) = [ playde
Pk Ay

Then py, is the density function of the conditional distribution of £(X|X € Ay).

Variance analysis Denote p; = E[Y®)], o2 := Var[Y®)], ¢ := " with n :=

n
S ng. Then

K K
N 1 1
Var[V;] = 2 — Var[Y®] = y—oh
ar[ n] ; Dy T ar[ ] ; Di nqkak
K 2 K 2
1 k2 L, 2 D 2
= — Lo = — 0°(q), where 0“(q) = Lo,
3t - L 0= Yt
Recall also that Var[Y,,] = 1Var[V] = 152, Then one compare the value 6%(¢) and o2,
(i) Proportional allocation: Let =% =: ¢ = p, then a%(q*) == Zszl pros, and one has
K
o2 = oXq) + 3 sl - (Zpkuk) > o2(q"), (3.9)
k=1

where the last inequality follows by Jensen’s inequality.

Remark 3.3 Let us define a random variable n by

K
Z k;].ZeAk.
k=1

Then we have y, := E[Y®)] = E[Y|n = k] and 0} = Var[Y )] = Var[Y'|n = k]. More-

over,

K
E[VarY|n]] = Y peoy and Var[E[Y|n]] Zpkﬂk*(zpkﬂk>-

k=1

Then the equality (3.9) can be interpreted as a variance decomposition:

0’ = VarlY] = E[Var[Y|n]] + Var[E[Y|n]].
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(ii) Optimal allocation: Let us consider the minimal variance problem
K

K 2
. Py o .
min —~o3 subject to ¢q :qr >0, qr = 1.

The Lagrange multiplier is given by

=

K K
L()\v(ha"'aq}() = quo’%"‘)‘(ZQk_l)
k=1 k=1

Then the first order condition gives

oL Woh
e
qx, qi
which implies that
PrOk

=V Vk=1,-- K.
qk

Thus g, = VApgoy for all k =1,--- , K, and it follows that

ak POk
e
>ie1Pi0;
Application: Let S; be defined by
St — Soefa'2/t+0'Wt

where Sy and o are some positive constant. Denote X := Wz /v/T ~ N(0, 1), motivated

by its application in finance, we usually need to compute the value
E[Y] with Y := f(Sr) = g(X),

for some function f : R — R and g : R — R (notice that Sp can be expressed as
a function of X). Let ® : R — (0,1) be the distribution function of the Gaussian
distribution N(0,1), and take Ay = (ag, ag4+1] for some constant (ax)i1<p<r+1,

X® = oV ap + (a1 —ap)U)  YH = g(x®),

We then obtain the following algorithm:

Algorithm 3.1 (i) Choose the sequence of stratification (ar)1<k<k+1-

(ii) For each k = 1,---, K, simulate a sequence of i.i.d. random variable (Uf)izl of
uniform distribution U[0,1], and let XZ»(k) = (ID_I(ak + (ag41 — ak)Uf).
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(iii) Estimate E[Y] by

K ng
Z (akJrl - ak) (ni Zg(Xf))-
k=1 L

3.4 Importance sampling method

For the importance sampling, let us begin with a simple example. Suppose that X ~
N(0,1) and h : R — R is some function, then

1 ey 1
E[nX)] = /Rh(x)%e Py = /Rh(m)e /2+(z—p) ﬂEe( 2/2 1,
1 2
= [ h(z)er=tr2 ___c@-m?/2q
| e - .

- E[h(Y)e’“Yﬂ‘z/z} (where Y ~ N (i, 1))

- E[h(X + #)e—ﬂx—ﬂz’/?}. (3.10)
In some context, we can expect that
Var [h(X)} > Var [h(X + u)e_“X_“2/2],

then we can use the latter expectation to propose a Monte-Carlo estimator. To deduce
the equality (3.10), the main idea is to divide the function h(x) by some density function

and then multiple it. We can use this idea in a more general context.

Importance sampling method Let X be a random vector of density function f :
R? — Rt and h : R* — R, the objective is to compute E[h(X)] Suppose that there is
some other density function g : R? — R* such that g(z) > 0 for every # € R such that
f(x) > 0. Then by direct computation, we have

)] - /Rdh(:r)f(x)dw _ /Rdh(x)f(x)g(x)dx - E[h(z)gég},

where Z is a random vector of density function g. Then an importance sampling estimator

for E[h(X)] is given, with a sequence (Z)i>1 of i.i.d. simulations of Y, by

% ; h(Zk)ﬁ?;i. (3.11)
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Variance analysis Let us compute the variance of the new estimator.

Var[h(Z)M} = [hQ( )gzggﬂ <E[h(z)£égﬂ>2
_ / h2(2) f)g( )dz — (E[h(X)])2

)
_ E[}ﬁ( )g(XH (E[h(X)])Q.

And hence the problem of minimizing the variance turns to be

: f(2) . f(X)
min Var [h(Z)M} — min E[i#(X)m] (3.12)
Example 3.4 (i) Suppose that h(z) = 14(x) for some subset A C R?. Then the mini-

mization problem

mgin Var[h(Z)M] = mgin Var[lA(Z)g((?},

_ [(x)1a(2)

«

is solved by g(z) := , where « is the constant making g a density function.

(ii) Suppose that h is positive, then the minimization problem (3.12) is solved by g(z) :=

1 . . . .
~f(2)h(2), where « is the constant making g a density function.

The above two examples can not be implemented since to make g a density function,

we need to choose
o = / fh(z)de = E[RX)],
Rd

which is not known a priori. Therefore, the minimum variance problem (3.12) is not a
well posed problem. In practice, we consider a family of density functions (gg(-)) 0o
and then solve the minimum variance problem:

f(Z)]
96(2)

min Var [h(Z)

& min E [hQ(X)
0cO 6

Gaussian vector case Let X = (Xi,---X,) ~ N(0,021,), which admits density

function

1 _ 2%
fan e an) = T_plag), with p(a) i= —oee 52
2ro
Let 6 = (61,---,0,) € R", and
1 (x—6;,)2

go(x1,- -+ ,xn) = IIJ_pg,(xr), with pg, (x1) = \/%06_ 202
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Then the ratio of the density function turns to be

fl@)  _ — et P+ 5 D M
go(x) P < o? )
Then
E[h(X1, -, X,)] = E[h(Xl +01, -, X + Qn)e(—ZZ:1 peXe—5 2k #%)/02}‘

Example 3.5 In application in finance, one usually considers a Brownian motion W,
and denote AWy, := Wy, — Wy, | on the discrete time grid 0 = tg < t; < --- and one
needs to compute E[h(AWl, e ,AWn)] for some function h. Let X}, = AWy, 0% = At
and py = 0/ At, then

E[h(AWy, -, AW,)]

- E[h(AWl + AL AW, + i At) exp ( - ; 1AW, — %Mzm)} .
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Chapter 4

Stochastic gradient algorithm

The objective is solve an optimization problem of the form

min E[F(&,X)}, (4.1)

where (F'(0,-))geo is a family of functions.

An iterative algorithm to find the root

Proposition 4.1 Let f : R — R 4 bounded continuous function and 0* € R?* such that
f(6*) =0 and

@ —0%)-f(0) >0, VOeR {6} (4.2)
Let (yn)n>1 be a sequence of numbers satisfying

Y >0, Vn>1, and Z’yn:oo, 27,21<oo. (4.3)

n>1 n>1

Further, with some 0y € R, define a sequence (0,)n>1 by

Ont1 = 0n — 'YnJrlf(On)a Vn > 0.

Then, 6,, — 0* as n — co.

Proof. (i) First, by its definition, we have

|01 — 9*|2 = |0n — 9*|2 + 2(0n = 0%) - (bns1 — On) + (01 — 9n|2
= 100 =0 — 2y f(0n) - (On = 07) + 72l f(0n)]?
< |0n_9*|2 + 772L‘f(0n)|27

21
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where the last inequality follows by (4.3). Define
T = 00— 0 = Y ARIF(O-)
k=1

Then the sequence (z,,)p>1 is non-increasing. Moreover, it is bounded from below since

T > —|floo Zk21 ~i. Therefore, there is some o, such that z, \, Z~ and hence

0 — 07 = Ci=a00+ > IO
k>1

It is clear £ > 0 since it is the limit of |6,, — 0*|2. We claim that £ = 0, which can conclude

the proof.

(ii) We now prove £ = 0 by contradiction. Assume that ¢ > 0, then there is some N >0
such that £/2 < |0 — 0*|> < 2¢ for every n > N. Besides, by the continuity of f and
(4.2), we have

n = 0—0%)-f(0) > 0.

inf
0/2<|0-6%|2<2¢

Therefore,

S 1 fOn=1) - On1 —07) > D guf(bn1) - Gnr —07) > 0D m = oo

n>1 n>N n>N

However, we have also

S ) (B 6 = = SO0~ On) e (B — )

n>1 n>1

_ _% S (160 0% = 160 — Bua 2~ (60— 0°P)

n>1

= (AR 10— 6) < o

n>1

This is a contradiction, and hence the claim ¢ = 0 is true. O

Stochastic gradient algorithm

Theorem 4.1 In the context of Proposition 4.1, suppose that f(0) = E[F(H,X)] for
some function F : R x R® — R and some random vector X. Suppose that f satisfies
(4.2) and a sequence of numbers (7)n,>1 satisfies (4.3). Then, with some 0y € R and a

sequence (Xp)n>1 of i.i.d. simulations of X, we define a sequence (0y,)n>1 by

0n+1 =0, — 'YnJrlF(‘gna XnJrl)- (44)

Then, 0, — 0" almost surely as n — oco.
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Proof.
O

Application: optimal importance sampling In the context of Section 3.4, we solve

the minimum variance problem
min Var | h(X + p)e #¥ 1/ 2] = minE[h2(X + u)e”“x_ﬂ
HER pER

: 2 —pX+p2/2
%EE[h (X)e ] (4.5)

]

Let us denote

and

oL _ 2
FuX) = G200 i= (= X2 and () = B[P, X)),
Then the minimum variance problem (4.5) is equivalent to find the p* such that f(u*) =
¢'(*) = 0. Notice that

flw) = "(p) = IE[(1+(M—X)Q)hQ(X)e—uXw?/ﬂ -0,

and hence such a p* is separate for f. Therefore, we can use the stochastic gradient
algorithm (4.4) to find the optimal u*.

Algorithm 4.1 (i) Simulate a sequence (Xy,)n>1 of i.i.d. simulations of X.
(ii) With po = 0, use the iteration:

Hn41 = Pn — "Yn—i-lF(,Um Xn—i-l)

(iii) The estimator of E[h(X)] is given by

1 n+1

Yo o= ntl (h(Xk+Mk—1)e*“kflxk*“%fl/2>
k=1

n J—
= Y. +

_ _ 2
ntl B(Xsr + pin)etinXnrhi/2,

n—+1

The advantage of the above algorithm is that one does not need to memorized the

simulation (X, ),>1 in the iteration.
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