
The Annals of Applied Probability
2004, Vol. 14, No. 3, 1455–1478
DOI 10.1214/105051604000000422
© Institute of Mathematical Statistics, 2004
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Generalized Pólya urn models can describe the dynamics of finite
populations of interacting genotypes. Three basic questions these models
can address are: Under what conditions does a population exhibit growth?
On the event of growth, at what rate does the population increase? What is
the long-term behavior of the distribution of genotypes? To address these
questions, we associate a mean limit ordinary differential equation (ODE)
with the urn model. Previously, it has been shown that on the event of
population growth,the limiting distribution of genotypes is a connected
internally chain recurrent set for the mean limit ODE. To determine when
growth and convergence occurs with positive probability, we prove two
results. First, if the mean limit ODE has an “attainable” attractor at which
growth is expected, then growth and convergence toward this attractor occurs
with positive probability. Second, the population distribution almost surely
does not converge to sets where growth is not expected and almost surely
does not converge to “nondegenerate”unstable equilibria or periodic orbits
of the mean limit ODE. Applications to stochastic analogs of the replicator
equations and fertility-selection equations of population genetics are given.

1. Introduction. The founder-effect in population genetics refers to the
establishment of a new population consisting of a few founders that is isolated
from the original population. A founder-effect can occur when a small number of
individuals colonize a place previously uninhabited by their species. In this case,
the founding population is geographically isolated from the original population.
A founder-effect due to temporal isolation can occur when a population passes
through a bottle neck after which only a few individuals survive. Several
fundamental questions surrounding the founder-effect include: What is the
probability that a founding population successfully establishes itself? If a founding
population establishes itself, what is the population’s growth rate and what is the
long-term genotypic or phenotypic composition of the population? How does the
initial genotypic composition and initial population size influence the likelihoods
of the various outcomes?

To address these questions, we consider a general class of Pólya urn models
introduced in [12]. Traditionally, Pólya urn models are described as involving
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an urn, which contains a finite number of balls of different colors. At discrete
moments in time, balls are added or removed from the urn according to
probabilities that only depend on their distribution and number at that point in
time. The pertinence of these models to evolutionary questions is self-evident
if we view the balls as individuals whose color represents their genotype or
phenotype, adding or removing balls as replication or death of individuals and
updates of the urn as interactions between individuals. When balls are added at a
constant rate (i.e., a fixed number of individuals are added at every update of the
process), Pólya urn models have been studied extensively by Arthur, Ermol’ev
and Kaniovskii [1], Benaïm and Hirsch [5, 6], Hill, Lane and Sudderth [8],
Pemantle [10] and Posch [11] amongst others. What makes the models introduced
in [12] more relevant to population processes is that they permit the removal of
balls, as well as the addition of balls at nonconstant rates. Consequently, extinction
of the entire population or one or more subpopulations is possible in finite time.

The article is structured as follows. In Section 2 we introduce the class
of generalized urn models. As examples, replicator processes and fertility-
selection processes with and without mutations are introduced. These urn
models typically predict that either the populations go extinct or grow, and that
demographic stochasticity is most pronounced when the population is small. Once
the population starts to get large, it tends to grow in an essentially deterministic
fashion. For this reason, on the event of nonextinction, the dynamics of the
distribution of types in the population (i.e., the distribution of the color of balls
in the urn) are strongly correlated to the asymptotic behavior of an appropriately
chosen ordinary differential equation (ODE), commonly called themean limit
ODE. In Section 3 we describe the mean limit ODE, and recall a theorem [12] that
on the event of growth relates the asymptotic behaviors of the stochastic process to
its mean limit ODE. Using this result, we derive a time averaging principle and a
competitive exclusion principle for replicator processes. We also show that additive
fertility-selection processes almost surely converge on the event of nonextinction
to a fixed point of the mean limit ODE. These results, however, provide no insight
into when population growth occurs with positive probability and which limiting
behaviors occur with positive probability. In [12], Theorem 2.6, it was shown that
if the populationgrows with probability1 (i.e., more balls are being added than
removed at each update), then the population distribution converges with positive
probability to “attainable” attractors for the mean limit ODE. However, for most
evolutionary and ecological processes extinction occurs with positive probability
and, consequently, the almost surely growth assumption is not meet. In Section 4
we remedy this issue and prove that if there is an “attainable” attractor for the
mean limit ODEat which growth is expected(i.e., on average more balls are added
than removed), then there is a positive (typically less than 1) probability that the
population grows and the population distribution converges to the attractor. In
addition, we provide an estimate for this probability and for the rate of growth.
In Section 5 we prove nonconvergence to invariant subsets of the mean limit ODE
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where growth is not expected and nonconvergence to “nondegenerate” unstable
equilibria and periodic orbits of the mean limit ODE. In Section 6 we combine
our results to give necessary and sufficient conditions for growth with positive
probability for processes with gradient-like mean limit ODEs and apply these
conditions to additive fertility processes with mutation.

2. Generalized urn models. In this section we introduce a class of general-
ized urn models. This class generalizes the urn models introduced in [12]. Three
examples or evolutionary processes described by these generalized urn models are
given in the sections below. One of these processes, replicator processes, was de-
scribed previously in [12] and stochastic versions of the replicator equations [9].
The other two processes, fertility-selection processes with and without mutation,
are stochastic versions of the fertility-selection equations with and without muta-
tion [9].

Due to the fact that we are dealing with finite populations consisting of
individuals that are one ofk types, we consider Markov chains on the positive
cone

Zk+ = {
z = (z1, . . . , zk) ∈ Zk : zi ≥ 0 for all i

}
of the setZk of k-tuples of integers. Given a vectorw = (w1, . . . ,wk) ∈ Zk, define

|w| = |w1| + · · · + |wk| and α(w) = w1 + · · · + wk.

We shall always write‖ · ‖ for the Euclidean norm onRk .
Let zn = (z1

n, . . . , z
k
n) be a homogeneous Markov chain with state spaceZk+.

In our context,zi
n corresponds to the number of balls of colori at thenth update.

Associated withzn is the random processxn defined by

xn =



zn

|zn| , if zn �= 0,

0, if zn = 0,

which is the distribution of balls at thenth update. Note that when there are no
balls at thenth update, we setxn to zero which we view as the “null” distribution.
Let Sk ⊂ Rk denote the unitk − 1 simplex, that is,

Sk =
{
x = (x1, . . . , xk) ∈ Rk :xi ≥ 0,

k∑
i=1

xi = 1

}
.

Let � :Zk+ × Zk+ �→ [0,1] denote the transition kernel of the Markov chainzn.
In other words,�(z, z′) = P [zn+1 = z′|zn = z]. We place the following assump-
tions on the Markov chainszn of interest:

(A1) At each update, there is a maximal number of balls that can be added
or removed. In other words, there exists a positive integerm such that
|zn+1 − zn| ≤ m for all n.
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(A2) There exist Lipschitz maps

{pw :Sk → [0,1] :w ∈ Zk, |w| ≤ m}
and a real numbera > 0, such that

|pw(z/|z|) − �(z, z + w)| ≤ a/|z|
for all nonzeroz ∈ Zk+ andw ∈ Zk with |w| ≤ m.

Since we view updates of the Markov chain to correspond to the effect of
interactions between individuals, assumption (A1) implies that each interaction
results in the addition or removal of no more than a maximum number of
individuals. Assumption (A2) assures that there is a well-defined mean limit ODE
for the urn models.

2.1. Replicator processes.Consider a system consisting of a finite popula-
tion of individuals playingk different strategies. At each update of the population,
pairs of individuals are chosen randomly with replacement from the population.
The chosen individuals replicate and die according to probabilities that only de-
pend on their strategies. More precisely, letm be a nonnegative integer that rep-
resents the maximum number of progeny that any individual can produce in one
update. Let{Rn}n≥0 and{R̃n}n≥0 be sequences of independent identically distrib-
uted randomk × k matrices whose entries take values in the set{−1,0,1, . . . ,m}.
Let R

ij
n andR̃

ij
n denote theij th entry ofRn andR̃n, respectively. Let{rn}n≥0 be

a sequence of independent identically distributed randomk × 1 matrices whose
entries take values in the set{−1,0,1, . . . ,m}. We define a replicator process ac-
cording to the following rules:

1. Two individuals are chosen at random with replacement from the the popula-
tion. Make note of the individuals chosen and return them to the population.

2. If the same individual is chosen twice and it plays strategyi, thenri
n individuals

of strategyi are added to population.
3. If two distinct individuals are chosen, say strategyi and strategyj , then addRij

n

individuals of strategyi and addR̃j i
n individuals of strategyj .

It is not difficult to verify that this process satisfies assumptions (A1) and (A2)
with pw(x) = xixiP [Rii

1 + R̃ii
1 = wi] + ∑

j �=i 2xixjP [Rij
1 = wi]P [R̃j i

1 = 0],
wheneverw = (0, . . . ,0,wi,0, . . . ,0) with wi �= 0, pw(x) = 2xixjP [Rij

1 =
wi]P [R̃j i

1 = wj ], wheneverw = (0, . . . ,0,wi,0, . . . ,0,wj ,0, . . . ,0) with wi �= 0,
wj �= 0, andi �= j , pw(x) = 0, wheneverw has three or more nonzero coordinates,
andp0(x) = 1− ∑

w �=0pw(x).
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2.2. Fertility-selection processes.Consider a population of diploid individu-
als that hask distinct allelesA1, . . . ,Ak that occupy a single locus. Assume that
the population is monoecious (i.e., there is only one “sex”) and that each individual
chooses its mate randomly from the population. We assume that individuals die
immediately after mating. Although there is no distinction between individuals of
genotypeAiAj andAjAi , we develop an urn model of the formzn = (z

ij
n ) ∈ Zk×k+

as it is notationally more convenient. Fori �= j , let zij
n = z

ji
n denote the number of

individuals of genotypeAiAj at thenth update of the population. Alternatively,
let zii

n denote twice the number of individuals of genotypeAiAi at thenth update

of the population. Hence,|zn| = ∑
i,j z

ij
n equals twice the total number of individ-

uals in the population.
For every pair of genotypes, sayAiAj and ArAs , we associate a sequence

of i.i.d. random variablesGn(ij, rs) = Gn(rs, ij) that take values in{0, . . . ,m},
where m represents the maximal number progeny produced by a mating and
whereGn(ij, rs) represents the number of progeny produced by a mating between
genotypesAiAj and ArAs at updaten. Let zn ∈ Zk×k+ be a Markov chain

satisfyingz
ij
n = z

ji
n and updated according to the following rules:

1. If the population size is less than two, then the population goes extinct. In other
words, if |zn| < 4, thenzn+1 = 0.

2. Pick two individuals at random without replacement from the population, say
genotypesAiAj andArAs .

3. Remove the chosen individuals from the population (i.e., they die).
4. AddGn(ij, rs) individuals to the population. The genotype, sayAuAv , of each

added individual is independently determined by random mating probabilities
(i.e., u equalsi or j with equal probability andv equalsr or s with equal
probability).

Define

xij
n =




z
ij
n

|zn| , if zn �= 0,

0, if zn = 0.

Hence, if i �= j , then 2xij = 2xji equals the proportion of the population
with genotypeAiAj . Alternatively,xii is the proportion of the population with
genotypeAiAi .

To see that this process satisfies assumption (A2), letw andz be inZk×k+ such
thatwij = wji andzij = zji for all 1≤ i, j ≤ k. Assume that|z| > 0. pw(z/|z|) is
given by a linear combination of the termsxij xrs . On the other hand,�(z, z + w)

is given by the corresponding linear combination of the termsxij xrs |z|/(|z| − 2),
when {i, j} �= {r, s} and xij (xrs |z| − 2)/(|z| − 2). From these observations it
follows that assumption (A2) is satisfied.
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2.3. Fertility-selection process with mutations.To account for mutations in
the fertility-selection process, letµ(ij, rs) ≥ 0 for 1 ≤ i, j, r, s ≤ k be such
that

∑
r≤s µ(ij, rs) = 1 for all 1 ≤ i ≤ j ≤ k. The quantityµ(ij, rs) represents

the probability that the genotypeAiAj mutates to the genotypeArAs . The
fertility process with mutation is given by the first three rules of the fertility
process without mutation and replacing the fourth rule with: AddGn(ij, rs)

individuals to the population. For each added individual, its genotype is determined
by two steps. First, determine a genotypeAuAv according to random mating
probabilities. The probability that the added individual has genotypeAũAṽ is
given byµ(uv, ũṽ). For reasons similar to the fertility-selection process without
mutation, this process also satisfies assumptions (A1) and (A2).

3. Mean limit ODEs. To understand the limiting behavior of thexn, we
expressxn as a stochastic algorithm using the following lemma.

LEMMA 1. Let zn be a Markov chain onZk+ satisfying assumptions(A1)
and (A2) with mean limit transition probabilitiespw :Sk → [0,1]. Let Fn denote
the σ field generated by{z0, z1, . . . , zn}. There exists sequences of random
variables{Un} and{bn} adapted toFn, and a real numberK > 0 such that:

(i) if zn �= 0, then

xn+1 − xn = 1

|zn|
( ∑

w∈Zk

pw(xn)
(
w − xnα(w)

) + Un+1 + bn+1

)
,(1)

(ii) E[Un+1|zn] = 0,
(iii) ‖Un‖ ≤ 4m andE[‖Un+1‖2|Fn] ≤ 4m2,
(iv) ‖bn+1‖ ≤ K

max{1,|zn|} .

PROOF. The proof of this lemma is very similar to the proof of Lemma 2.1
in [12]. Consequently, we only provide an outline of the proof. Define

g(x) = ∑
w∈Zk

pw(x)
(
w − xα(w)

)
,

Un+1 = (xn+1 − xn − E[xn+1 − xn|zn])|zn|,
bn+1 = |zn|E[xn+1 − xn|zn] − g(xn).

From these definitions it follows that (i) and (ii) hold. For the remainder of the
proof, letz = zn andx = xn. To prove (iii), notice that ifzn+1 �= 0, then it can be
shown that

‖(xn+1 − x)|z|‖ ≤ 2m,(2)

as no more thanm balls are being added or removed at any update. Alternatively,
if zn+1 = 0, then it must be that|zn| ≤ m since no more thanm balls can be
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removed at a single update. In which case,xn+1 = 0 and‖(xn+1 − xn)|zn|‖ =
‖zn‖ ≤ m. From this (ii) follows. To prove (iv), notice that ifz �= 0, then

|z|E[xn+1 − x|zn = z]
(3)

= ∑
w �=−z

|z|(w − α(w)x)

|z| + α(w)
�(z, z + w) − z�(z,0).

If |z| > m, (3) can be used to show

‖bn+1‖ ≤
∥∥∥∥∥

∑
|w|≤m

( |z|
|z| + α(w)

�(z, z + w) − pw(x)

)(
w − α(w)x

)∥∥∥∥∥.
Applying assumptions (A1) and (A2) implies that there isK1 > 0 such that
‖bn+1‖ ≤ K1/|zn|, whenever|zn| > m. On the other hand, if|z| ≤ m, then
the definition ofbn+1 implies that‖bn+1‖ ≤ 2m + supx∈Sn

‖g(x)‖. ChoosingK

sufficiently larger thanK1 completes the proof of (iv). �

The recurrence relationship (1) can be viewed as a “noisy” Cauchy–Euler
approximation scheme with step size 1/|zn| for solving the ordinary differen-
tial equation

dx

dt
= ∑

w∈Zk

pw(x)
(
w − xα(w)

)
,(4)

which we call themean limit ODE. When the number of individuals in the
population grow without bound, the step size decreases to zero and it seems
reasonable that there is a strong relationship between the limiting behavior of the
mean limit ODE and the distribution of ballsxn. To make the relationship between
the stochastic processxn and the mean limit ODE more transparent, it is useful
to define a continuous time version ofxn where time is scaled in an appropriate
manner. Since the number of events (updates) that occur in a given time interval is
likely to be proportional to the size of the population, we definethe timeτn that
has elapsed by updaten as

τ0 = 0,

τn+1 =



τn + 1

|zn| , if zn �= 0,

τn + 1, if zn = 0.

The continuous time version ofxn is given by

Xt = xn for τn ≤ t < τn+1.(5)

To relate the limiting behavior of the flowφt(x) of (4) to the limiting behavior
of Xt , Schreiber [12] proved the next theorem using techniques of Benaïm [2, 4].
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Recall, a setC is called invariant for the flow φt provided thatφt (C) = C for
all t ∈ R. A compact invariant setC is internally chain recurrentprovided that
for every x ∈ C, T > 0 and ε > 0, there exist pointsx1, x2 . . . , xs in C and
times t1, . . . , ts greater thanT such thatx1 = xs = x and ‖φti (xi) − xi+1‖ < ε

for 1 ≤ i ≤ s − 1. Given a functionXt :R+ → Rk or a sequence{xn}n≥0 in Rk ,
we define thelimit sets, L(Xt ) and L(xn), of Xt and xn. L(Xt) is the set
of p ∈ Rk such that limk→∞ Xtk = p for some subsequence{tk}k≥0 with
limk→∞ tk = ∞. L(xn) is the set ofp ∈ Rk such that limk→∞ xnk

= p for some
subsequence{nk}k≥0 with limk→∞ nk = ∞.

THEOREM 1 ([12]). Let zn be a Markov process satisfying assumptions
(A1) and(A2) with mean limit ODE(4). Then on the event{lim infn→∞ |zn|

n
> 0}:

1. The interpolated processXt is almost surely anasymptotic pseudotrajectoryfor
the flowφt of the mean limit ODE. In other words, Xt almost surely satisfies

lim
t→∞ sup

0≤h≤T

‖φhXt − Xt+h‖ = 0

for anyT > 0.
2. The limit setL(Xt ) of Xt is almost surely an internally chain recurrent set for

the mean limit ODE.

The first assertion of the theorem roughly states thatXt tracks the flow of the
mean limit ODE with increasing accuracy far into the future. The second assertion
of the theorem states that the only candidates for limit sets of the processxn

corresponding to the distribution of balls are connected compact internally chain
recurrent sets for the mean limit flow.

To give a sense of the utility of this result, we derive some corollaries for
the replicator processes and the fertility-selection process in the next two sections.

3.1. Implications for replicator processes.Let {Rn}n≥0 and {R̃n}n≥0 be
sequences of independent identically distributed randomk × k matrices whose
entries take values in the set{−1,0,1, . . . ,m}. Let {rn}n≥0 be a sequence of
independent identically distributed randomk × 1 matrices whose entries take
values in the set{−1,0,1, . . . ,m}. Letzn ∈ Zk+ be the replicator process associated
with these random matrices. Define the mean payoff matrix byA = E[R0 + R̃0].
The limiting mean ODE associated with this process is given by a replicator
equation [9]

dx

dt
= diag(x)Ax − (x.Ax)x, i = 1, . . . , k,(6)

wherex.A denotes multiplying the left-hand side ofA by the transpose ofx and
diag(x) is a diagonalk × k matrix with diagonal entriesxi . The dynamics of (6)
are well studied and have two remarkable properties whose proofs can be found
in [9].
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THEOREM 2 (Exclusion principle). If the replicator equation(6) has no
equilibrium in intSk , then every orbit of(6) converges to∂Sk .

THEOREM 3 (Time averaging principle). If the replicator equation(6) has
a unique equilibriump in intSk and if x(t) is a solution of (6) such that
L(x(t)) ⊂ intSk , then

lim
T →∞

1

T

∫ T

0
x(t) dt = p.

It turns out that Theorem 1 provides us the tool in which to transfer these
theorems to replicator processes.

THEOREM4. Letzn be a replicator process onZk+ with mean payoff matrixA.
If mean limit replicator equation has no equilibria inintSk , thenL(xn)∩ ∂Sk �= ∅

almost surely on the event{lim infn→∞ |zn|
n

> 0}.

PROOF. The proof of Theorem 2 implies there exists a vectorc ∈ Rk such that
the functionV (x) = ∑

ci logxi is strictly increasing along the forward orbits of
the mean limit replicator equation that lie in intSk . Consequently, every compact
connected internally chain recurrent set intersects∂Sk . Applying Theorem 1
completes the proof.�

THEOREM5. Letzn be a replicator process onZk+ with mean payoff matrixA.
LetXt be continuous-time process associated withzn that is defined by(5).Assume
that (6) has a unique rest pointp in intSk . Then

lim
T →∞

1

T

∫ T

0
Xt dt = p

almost surely on the event{
lim inf
n→∞

|zn|
n

> 0
}

∩ {L(Xt) ⊂ intSk}.

PROOF. Consider a trajectoryXt from the event{lim infn→∞ |zn|
n

> 0} ∩
{L(Xt) ⊂ intSk}. Theorem 1 implies thatXt is almost surely an asymptotic
pseudotrajectory for the flowφt of the mean limit replicator equation. Theorem 1
implies thatL(Xt) is a compact internally chain recurrent set for the flowφt of (6).
Theorem 3 implies that

lim
t→∞

1

t

∫ t

0
φsx ds = p



1464 M. BENAÏM, S. J. SCHREIBER AND P. TARRÈS

for all x ∈ L(Xt), and this convergence is uniform. Therefore givenε > 0, we can
chooseT > 0 and a compact neighborhoodU of L(Xt) such that∥∥∥∥ 1

T

∫ T

0
φsx ds − p

∥∥∥∥ <
ε

3
,

wheneverx ∈ U . SinceXt is an asymptotic pseudotrajectory, there exists anl ≥ 1
such that

sup
0≤h≤T

‖Xt+h − φhXt‖ <
ε

3

for all t ≥ lT . For anyi ∈ Z+, define

ψ(i) =
∥∥∥∥
∫ T

0
(XiT +s − φsXiT ) ds

∥∥∥∥ +
∥∥∥∥
∫ T

0
(φsXiT − p)ds

∥∥∥∥.
SinceL(Xt ) ⊂ U , there is anN ≥ l such thatXt ∈ U for all t ≥ NT . Given
anyt ∈ R, let [t] denote the integer part oft . For anyt > (N + 1)T , we get∥∥∥∥1

t

∫ t

0
Xs ds − p

∥∥∥∥
≤ 1

t

(∥∥∥∥
∫ NT

0
(Xs − p)ds

∥∥∥∥ + ψ(N) + ψ(N + 1) + · · ·

+ ψ

([
t

T

]
− 1

)
+

∥∥∥∥
∫ t

[t/T ]T
(Xs − p)ds

∥∥∥∥
)

≤ 1

t

(
2NT + εT

([
t

T

]
− N

)
+ 2

(
t −

[
t

T

]
T

))
.

Taking the limit ast → ∞, we get that

lim sup
t→∞

∥∥∥∥1

t

∫ t

0
Xs ds − p

∥∥∥∥ ≤ ε.

Taking the limit asε → 0 completes the proof of the theorem.�

3.2. Implications for additive fertility-selection processes.Let zn ∈ Zk×k+ be
a fertility-selection process defined by the sequence of random variablesGn(ij, rs)

with 1 ≤ i, j, r, s ≤ k. Define g(ij, rs) = E[G0(ij, rs)]. Define xn = zn/|zn|,
wheneverzn �= 0 andxn = 0 otherwise.

The mean limit ODE for this selection-fertility process is given by the fertility-
selection equations (see, e.g., [9])

dxij

dt
=

k∑
r,s=1

g(ir, js)xirxjs − xij ḡ,(7)
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where

ḡ = ∑
1≤i,j,r,s≤k

g(ir, js)xirxjs.

Now consider the special case, when each allele contributes additively to number
of progeny produced by a mating. In this case, ifγij is genotypeAiAj ’s
contribution to fertility, then the mating between genotypesAiAj and ArAs

produces on average

g(ij, rs) = γij + γrs

progeny. Under this additional assumption, equation (7) simplifies to

dxij

dt
= xjγi + xiγj − 2xij γ̄ ,(8)

wherexi = ∑k
j=1xij is the frequency of the alleleAi in the population,

γi =
k∑

r=1

γirx
ir

is the average fertility of allelei in the population and

γ̄ =
k∑

i=1

γi =
k∑

i,j=1

γij x
ij

is the average fertility of the population.

THEOREM 6. If zn is an additive fertility-selection process and the mean-
limit ODE (8) has only a finite number of equilibria, then on the event
{lim infn→∞ |zn|

n
> 0}, xn almost surely converges to an equilibrium of(8).

The proof of this theorem follows from the work of Hofbauer and Sigmund [9]
that we include here for the reader’s convenience.

PROOF OFTHEOREM 6. Define the Hardy–Weinberg manifold by

H = {x :xij = xixj for all 1 ≤ i, j ≤ k}.
Since for any solutionx(t) to (8)

d

dt

(
xij (t) − xi(t)xj (t)

) = −(
xij (t) − xi(t)xj (t)

)
2γ̄ ,

xij (t)−xi(t)xj (t) converges exponentially to zero. Hence, all compact connected
internally chain recurrent sets lie in the Hardy–Weinberg manifold. On the Hardy–
Weinberg manifold, the dynamics of (8) are determined by the Hardy–Weinberg
relationsxij = xixj and the differential equation

dxi

dt
= γi − xiγ̄ .(9)
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This differential equation is the continuous-time selection equations with selection
parametersγij and, consequently, the mean fertilityγ̄ is a strict Lyapunov function
for (9) (see, e.g., [9]). Hence, all compact connected internally chain recurrent sets
correspond to compact connected sets of equilibria. Since we have assumed that
there are only a finite number of equilibria, the only compact connected internally
chain recurrent sets are individual equilibria. Applying Theorem 1 completes
the proof of this theorem.�

4. Growth and convergence with positive probability. Theorem 1 helps to
determine the limiting behavior of the genotypic composition of a population on
the event of growth. However, it does not indicate which limiting behaviors occur
with positive probability and sheds no insight into conditions that ensure that the
population grows with positive probability. The goal of this section is to show
that when the mean limit ODE admits an attractor at which growth is expected,
the population growswith positive probability and its genotypic composition
converges to the attractor with positive probability. Prior to stating and proving
this result, we prove the following proposition that estimates the rate of growth on
the event of convergence to a set where growth is expected.

PROPOSITION 1. Let zn be a generalized urn process satisfying assump-
tions(A1) and(A2). LetK ⊂ Sk be a compact set. If

λ = inf
x∈K

∑
w

pw(x)α(w) > 0,

then

lim inf
n→∞

|zn|
n

≥ λ

on the event{L({xn})n≥0 ⊂ K} ∩ {limn→∞ |zn| = ∞}.
REMARK. If K is an equilibrium, lim infn→∞ |zn|

n
= λ on the event

{L({xn})n≥0 ⊂ K} ∩ {limn→∞ |zn| = ∞}.
PROOF OFPROPOSITION1. Let

E = {L({xn})n≥0 ⊂ K} ∩
{

lim
n→∞|zn| = ∞

}
.

We will show that lim infn→∞ |zn|/n ≥ λ − ε on the eventE for every ε > 0.
Let ε > 0 be given. The definition ofλ, compactness ofK , continuity ofpw and
assumption (A2) imply that there exist an integerI and compact neighborhoodU
of K such thatE[|zn+1| − |zn||zn = z] ≥ λ − ε, whenever|z| ≥ I andz/|z| ∈ U .
For each natural numberj , define the eventEj = {|zn| ≥ I, zn/|zn| ∈ U for n ≥ j}.
Notice thatE ⊂ ⋃∞

j=1Ej . Define a sequence of random variables byN0 = 0 and

Nn+1 =
{ |zn+1| − |zn|, if |zn| ≥ I andzn/|zn| ∈ U ,

λ, otherwise,
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for n ≥ 0. Let

Mn =
n∑

i=1

1

i
(Ni − E[Ni|Fi−1]).

Mn is a martingale that satisfies

sup
n

E[M2
n] ≤ 4m2

∑
i≥1

1

i2
,

as |Ni | ≤ 2m. Therefore, by Doob’s convergence theorem{Mn}n≥1 converges
almost surely. By Kronecker’s lemma,

lim
n→∞

1

n

n∑
i=1

Ni − E[Ni|Fi−1] = 0(10)

almost surely. Since
∑n

i=j+1Ni = |zn| − |zj | for all n ≥ j on the eventEj and

E[Ni|Fi−1] ≥ λ−ε for all i ≥ 1, (10) implies that lim infn→∞ |z(n)|
n

≥ λ−ε almost

surely on the eventEj . It follows that lim infn→∞ |z(n)|
n

≥ λ − ε almost surely on
the eventE . �

Let φt (x) denote the flow of the mean limit ODE in (4). A compact
invariant setA ⊂ Sk is called anattractor provided that there is an open
neighborhoodU ⊂ Sk of A such that⋂

t>0

⋃
s≥t

φsU = A.

The basin of attractionB(A) of A is the set of pointsx ∈ Sk satisfying
infy∈A ‖φtx − y‖ → 0 ast → ∞.

Define the set ofattainable points, Att∞(X), as the set of pointsx ∈ Sk such
that, for allM ∈ N and every open neighborhoodU of x

P [|zn| ≥ M andxn ∈ U for somen] > 0.

THEOREM 7. Letzn be a generalized urn process satisfying assumptions(A1)
and(A2). LetA be an attractor for mean limit ODE with basin of attractionB(A).
Assume that

λ = inf
x∈A

∑
w

pw(x)α(w) > 0

and define

C =
{

lim inf
n→∞

|zn|
n

≥ λ

}
∩ {

L({xn}n≥0) ⊆ A
}
.
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If U is an open set, whose closure is contained inB(A), then there exists
a constantK > 0 such that for allM ∈ N,

P [C] ≥
(

1− K

M

)
P [|zn| ≥ M andxn ∈ U for somen].

In particular, if

B(A) ∩ Att∞(X) �= ∅,

thenP [C] > 0.

REMARK. Theorem 7 simultaneously provides a condition that ensures that
the population grows with positive probability and that the distribution of
the population converges to an “attainable” attractor. Consequently, this result
significantly improves ([12], Theorem 2.6) that proved convergence with positive
probability to “attainable” attractor under the strong assumption of population
growth with probability one.

PROOF OFTHEOREM 7. Assumption infx∈A
∑

w pw(x)α(w) > 0 means that
the population grows in a neighborhood of the attractorA when the population size
is sufficiently large. It implies that there exista1, a2 > 0 and a neighborhoodN
of A such thatE[|zn+1| − |zn||zn] ≥ a11{xn∈N ,|zn|≥a2}. The proof relies on the
following principle: remaining in a neighborhood of the attractor increases the
population size and this increase in population size increases the likelihood of
remaining near the attractor. LetU be an open set such thatU is a compact subset
of B(A). AssumeM ∈ N and ρ ∈ N are such thatP [|zρ | ≥ M,xρ ∈ U ] > 0.
Choose a neighborhoodV of A such thatV is a compact subset ofN ∩ B(A).
Since A is an attractor there exists a timeT0 ≥ 1 such that the trajectories
coming fromU ∪ V rejoin the neighborhoodV after timeT0. More precisely,
there existsδ > 0 such that, ifXt ∈ U ∪ V , T ≥ T0 and‖φT (Xt ) − Xt+T ‖ < δ,
thenXt+T ∈ V .

To avoid double subscripts, we letz(r) denote zr , τ (r) denote τr , etc.
Definer0 = ρ and

rk = inf {r > rk−1, τ (r) − τ (rk−1) ≥ T0}
for all k ≥ 1. Sinceτn+1 − τn ≥ 1

|z0|+mn
for all n where m is the integer in

assumption (A1), limn→∞ τn = ∞ and rn < +∞ for all n. Define A = eT0m,
B = 3A and the following events for allk ≥ 1:

E1(k): |z(rk)| ≥ ζ k−1B−1M,
E2(k): for all r ∈ [rk, rk+1], xr ∈ V ,

whereζ = 1 + a1T0/2B. Let E(0) be the event{|zρ | ≥ M,xρ ∈ U }. For k ≥ 1,
define E(k) = E(k − 1) ∩ E1(k) ∩ E2(k). We will show that there exists
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a constantF > 0 such thatP [E(k + 1)|E(0)] ≥ P [E(k)|E(0)] − F/Mζk for
all k ≥ 0. The proof of this estimate relies on three lemmas. The first consists
in observing that the population size|zr | remains bounded on time intervals of
order T0, namely betweenB−1|z(rk)| and B|z(rk)| on [rk, rk+1]. The second
one makes use of this claim to underestimate probability of being insideV

on [rk+1, rk+2] if x(rk) ∈ U ∪ V . The third lemma estimates the probability that
the population grows sufficiently.

LEMMA 2. For enough large|z(rk)|:
1. B|z(rk)| ≥ |zr | ≥ B−1|z(rk)| for all r ∈ [rk, rk+1],
2. T0 ≤ τ (rk+1) − τ (rk) ≤ 2T0,
3. T0B

−1|z(rk)| ≤ rk+1 − rk ≤ T0B|z(rk)|.

PROOF. Suppose|z(rk)| > Am. Letu = inf{n ∈ N : |z(rk + n)| ≤ A−1|z(rk)|}.
Then

τ (rk + u) − τ (rk) ≥ ∑
0≤j<|z(rk)|(1−A−1)/m

1

A−1|z(rk)| + mj

≥
∫ |z(rk)|(1−A−1)/m

0

dx

A−1|z(rk)| + mx

= 1

m
ln(A) = T0.

This proves thatA−1|z(rk)| ≤ |z(r)| for all r ∈ [rk, rk+1), which implies for suf-
ficiently large|z(rk)| thatB−1|z(rk)| ≤ |z(r)| for all r ∈ [rk, rk+1]. One can show
similarly that 2A|z(rk)| ≥ |z(r)| for all r ∈ [rk, rk+1]. The definition ofrk imme-
diately implies thatτ (rk+1) − τ (rk) ≥ T0. SinceT0 ≥ 1 andτ (n + 1) − τ (n) ≤ 1
for all n, the definition ofrk also implies thatτ (rk+1) − τ (rk) ≤ T0 + 1≤ 2T0.
The proof of claim 1 and the fact thatT0 ≥ 1 imply that rk+1−rk

|z(rk)|B−1 ≥ τ (rk+1) −
τ (rk) ≥ T0 and r−rk

2|z(rk)|A ≤ τ (r) − τ (rk) ≤ T0 for all r ∈ [rk, rk+1). Claim 3 follows
for sufficiently large|z(rk)|. �

LEMMA 3. There exists aC > 0 depending only onpw , T0 , δ, a1 andm such
that

P [E2(k + 1)|E1(k), x(rk) ∈ U ∪ V ] ≥ 1− C

Mζk

for all k ≥ 0 andM > 0 sufficiently large.

PROOF. SupposeE1(k) is satisfied andx(rk) ∈ U ∪ V . Lemma 2 implies
that for large enoughM , |z(r)| ≥ B−2|z(rk)| for r ∈ [rk, rk+2], 4T0 ≥ τ (r) −
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τ (rk) ≥ T0 for r ∈ [rk+1, rk+2] andrk+2 − rk ≤ 2B2T0|z(rk)|. Define

g(x) = ∑
w

pw(x)
(
w − xα(w)

)
.

Let L be the Lipschitz constant forg and‖g‖0 = sup‖g(x)‖. Using Gronwall’s
inequality, we prove the following estimate:

sup
r∈[rk+1,rk+2]

∥∥φτ(r)−τ(rk)x(rk) − x(r)
∥∥ ≤ e4LT0

(
�1(rk, rk+2) + �2(rk, rk+2)

)
,(11)

where

�1(rk, rk+2) = sup
rk≤l≤rk+2−1

∥∥∥∥∥
l∑

i=rk

U(i + 1)

|z(i)|
∥∥∥∥∥

and

�2(rk, rk+2) = 2 sup‖g(x)‖
infrk≤r≤rk+2 |z(r)| + sup

rk≤l≤rk+2−1

∥∥∥∥∥
l∑

i=rk

b(i + 1)

|z(i)|
∥∥∥∥∥.

To prove (11), letX(t) = Xt denote the continuous time version ofxn defined
in (5) andc(t) = sup{n ∈ Z+ : t ≥ τ (n)}. Notice that for anyh ≥ 0 andt ≥ 0,

X(t + h) − X(t)

= x
(
c(t + h)

) − x(c(t)) =
c(t+h)−1∑

i=c(t)

x(i + 1) − x(i)

=
c(t+h)−1∑

i=c(t)

g(x(i)) + U(i + 1) + b(i + 1)

|z(i)|

=
∫ τ(c(t+h))

τ(c(t))
g(X(s)) ds +

c(t+h)−1∑
i=c(t)

U(i + 1) + b(i + 1)

|z(i)|

=
∫ τ(c(t+h))−t

τ (c(t))−t
g
(
X(t + s)

)
ds +

c(t+h)−1∑
i=c(t)

U(i + 1) + b(i + 1)

|z(i)| .

SinceφhX(t) = X(t) + ∫ h
0 g(φsX(t)) ds, the previous equalities imply that

‖φh(X(t)) − X(t + h)‖
≤

∫ h

0

∥∥g(
φs(X(t))

) − g
(
X(t + s)

)∥∥ds +
∫ 0

τ(c(t))−t

∥∥g(
X(t + s)

)∥∥ds

+
∫ h

τ(c(t+h))−t

∥∥g(
X(t + s)

)∥∥ds +
∥∥∥∥∥
c(t+h)−1∑

i=c(t)

U(i + 1) + b(i + 1)

|z(i)|
∥∥∥∥∥
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≤ L

∫ h

0
‖φs(X(t)) − X(t + s)‖ds + ‖g‖0

|z(c(t))|

+ ‖g‖0

|z(c(t + h))| +
∥∥∥∥∥
c(t+h)−1∑

i=c(t)

U(i + 1) + b(i + 1)

|z(i)|
∥∥∥∥∥.

Choosingt = τ (rk) and applying Gronwall’s inequality to the previous inequality
over the interval 0≤ h ≤ τ (rk+2) − τ (rk) gives the desired estimate.

SinceE1(k) holds,|z(r)| ≥ |z(rk)|B−2 ≥ ζ k−1B−3M for all r ∈ [rk, rk+2]. This
observation, plus the fact that there existsK > 0 such that‖b(n + 1)‖ ≤ K

|z(n)| ,
imply that e4LT0�2(rk, rk+2) < δ

2 for M sufficiently large. On the other hand,
Doob’s inequality and Lemma 1 imply that

E

[
sup

rk≤l≤rk+2−1

∥∥∥∥∥
l∑

i=rk

U(i + 1)

|z(i)|
∥∥∥∥∥

2∣∣∣z(rk)
]

≤ 16m2E

[rk+2−1∑
i=rk

1

|z(i)|2
∣∣∣z(rk)

]

≤ 16m2B4

|z(rk)|2 E[rk+2 − rk|z(rk)]

≤ 32m2T0B
6

|z(rk)| ≤ 32m2B7T0

Mζk−1 .

Therefore,

P

[
sup

rk≤l≤rk+2−1

∥∥∥∥∥
l∑

i=rk

U(i + 1)

|z(i)|
∥∥∥∥∥ ≥ e−4LT0

δ

2

∣∣∣z(rk)
]

≤ 128m2T0B
7e8LT0

δ2Mζk−1
.(12)

Define

E =
{

sup
r∈[rk+1,rk+2]

d
(
φτ(r)−τ(rk)x(rk), x(r)

) ≤ δ

}
.

Sinceτ (rk+1) − τ (rk) ≥ T0 and x(rk) ∈ U ∪ V , our choice ofT0 implies that
x(r) ∈ V for all r ∈ [rk+1, rk+2] on the eventE . Inequalities (11) and (12) imply

thatP [E ] ≥ 1− 128m2T0B
7e8LT0

δ2Mζk−1 for M sufficiently large. �

LEMMA 4. There existsD > 0, depending only onpw, T0, δ, a1 and m

such that

P [E1(k + 1) ∪ E2(k)c|E1(k)] ≥ 1− D

Mζk

for all k ≥ 1 andM > 0 sufficiently large.

PROOF. Define

N(i) = |z(i)| − |z(i − 1)|, D(i) = N(i) − E[N(i)|z(i − 1)]
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and

G(k + 1) = 1

rk+1 − rk

rk+1∑
i=rk+1

D(i).

Observe that|D(n)| ≤ 2m. Therefore,

E[G(k + 1)2|z(rk)] ≤ B2

T 2
0 |z(rk)|2

E

[(
rk+T0B|z(rk)|∑

i=rk+1

D(i)1{i−1<rk+1}
)2∣∣∣∣z(rk)

]

≤ B2

T 2
0 |z(rk)|2

rk+T0B|z(rk)|∑
i=rk+1

E[D(i)2|z(rk)] ≤ 4m2B3

T0|z(rk)| ,

where we have used the fact thatT0B
−1|z(rk)| ≤ rk+1 − rk ≤ T0B|z(rk)|. It

follows thatP [G(k + 1) ≤ −a1
2 ] ≤ P [G(k + 1)2 ≥ a2

1
4 ] ≤ D

Mζk with D = 16m2B4ζ

a2
1T0

.

Sinceζ = 1+ a1T0/2B, it follows that

E1(k + 1)c ∩ E1(k) ∩ E2(k) ⊂ {G(k + 1) ≤ −a1/2}. �

These three lemmas imply that there existsF > 0 depending only onpw, T0, δ,
a1 andm such that

P [E(k + 1)|E(0)] ≥ P [E(k)|E(0)] − F

Mζk

for all k ≥ 0 and M > 0 sufficiently large. Indeed, due to the fact that for
all k ≥ 1 E(k) equals the disjoint union ofE(k + 1), E1(k + 1)c ∩ E(k), and
E2(k + 1)c ∩ E1(k + 1) ∩ E(k), we get

P [E(k + 1)|E(0)]
= P [E(k)|E(0)] − P [E2(k + 1)c ∩ E1(k + 1) ∩ E(k)|E(0)]

− P [E1(k + 1)c ∩ E(k)|E(0)]
≥ P [E(k)|E(0)]

− P [E2(k + 1)c ∩ E1(k) ∩ {x(rk) ∈ U ∪ V }|E(0)]
− P [E1(k + 1)c ∩ E2(k)|E(0)] ≥ P [E(k)|E(0)] − F

Mζk
,

where the first inequality follows from the inclusionsE(k)∩E1(k + 1) ⊂ E1(k)∩
{x(rk) ∈ U ∪V } andE(k) ⊂ E2(k), and the second equality follows from Lemmas
3 and 4 withF = C + D. These inequalities remain true fork = 0, sinceE1(1)

always holds.
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It follows that

P

[
lim

k→∞E(k)

]
≥ P [E(0)]

(
1−

∞∑
k=0

F

Mζk

)
≥ P [E(0)]

(
1− ζF

M(ζ − 1)

)
.

The definition ofE(k) implies that

P [C] ≥ P [E(0)]
(

1− ζF

M(ζ − 1)

)
,

whereC = {lim infn→∞ |zn|
n

> 0} ∩ {xn ∈ U ∪ V i.o.}. On the eventC, Theorem 1
implies thatL({xn}) is a compact internally chain recurrent set for the mean limit
ODE. SinceL({xn}) ∩ B(A) �= ∅ on the eventC, a basic result about internally
chain recurrent sets (see, e.g., [4], Corollary 5.4) implies thatL({xn}) ⊂ A on
the eventC. SettingK = ζF

M(ζ−1)
and applying Proposition 1 completes the proof

of the first assertion of the theorem. To prove the second assertion, assume that
p ∈ Att∞(X) ∩ B(A), chooseU an open neighborhood ofp such thatŪ ⊂ B(A),
and apply the first assertion of the theorem.�

5. Nonconvergence. In this section we show that there are two types
of invariant sets of the mean limit ODE toward which the generalized urn process
does not converge. The first type corresponds to a compact set where growth of
the process is not expected, and the second type corresponds to a “nondegenerate”
equilibrium or periodic orbit.

PROPOSITION 2. Let zn be a Markov process onZk+ satisfying assumptions
(A1) and (A2). If K ⊂ Sk is a compact set satisfying

sup
x∈K

∑
w

pw(x)α(w) < 0,(13)

thenP [{L(xn) ⊂ K} ∩ {limn→∞ |zn| = +∞}] = 0.

PROOF. Equation (13) implies that we can choose a neighborhoodU of K ,
N ∈ N andε > 0 such that

sup
|z|≥N,z/|z|∈U

E[|zn+1| − |zn||zn = z] ≤ −ε.(14)

Given anyl ∈ N such thatxl ∈ U and|zl| ≥ N , define the stopping time

T = inf{n ≥ l :xn /∈ U or |zl| < N}.
For anyn ≥ l, we get

0 ≤ E[|zT ∧n|] = E

[
T ∧n∑

i=l+1

|zi | − |zi−1|
]

+ E[|zl|]
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=
n∑

i=l+1

E
[|zi∧T | − ∣∣z(i−1)∧T

∣∣] + E[|zl|]

≤ −ε

n∑
i=l+1

P [T ≥ i] + E[|zl|].

Taking the limit asn → ∞, we get that
∑∞

i=l+1 P [T ≥ i] ≤ E[|zl|]/ε. The Borel–
Cantelli lemma implies thatP [T = ∞] = 0. It follows thatP [{L(xn) ⊂ K} ∩
{limn→∞ |zn| = +∞}] = 0. �

If A is a subset ofRk , then we let Span(A) ⊂ Rk denote the vector space
spanned by the points inA. Given a compact subsetU ⊂ int(Sk), we say that
the process{zn} is nondegenerate atU if for all x ∈ U,

Span{w ∈ Zk :pw(x) > 0} = Rk.

Recall, a periodic orbit or an equilibrium of an ODE islinearly unstable
provided that one of its characteristic exponents is greater than zero.

THEOREM 8. Let {zn} be a generalized urn process satisfying assumptions
(A1) and (A2). Let U ⊂ int(Sk) be a linearly unstable periodic orbit or
equilibrium for the mean limit ODE. Assume the following:

(a) There existsβ > 1/2 such that the functionspw areC1+β in a neighborhood
of U.

(b) {zn} is nondegenerate atU.

ThenP [(L(xn) ⊂ U) ∩ {lim infn→∞ |zn|
n

> 0}] = 0.

PROOF. Let N(U) be a neighborhood ofU. The event{
L(xn) ⊂ U and lim inf

n→∞
|zn|
n

> 0
}

is contained in the event ⋃
N∈Z+,λ∈Q∗+

EN,λ,

whereQ∗+ denotes the positive rationales and

EN,λ = {L(xn) ⊂ U} ∩ {∀n ≥ N |zn| ≥ nλ andxn ∈ N(U)}.
In order to prove Theorem 8 it then suffices to prove that forN large enough
andλ ∈ Q∗+,

P [EN,λ] = 0.
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Let Fn denote the sigma field generated byz0, . . . , zn andVn+1 = |zn|(xn+1−xn).
LetF denote the vector field onSk defined byF(x) = ∑

w pw(x)(w−xα(w)). Let
{εn} denote a sequence of bounded, zero-mean i.i.d. random variables taking
values in

T Sk =
{
u ∈ Rk :

∑
ui = 0

}
,

whose covariance matrix is nondegenerate (i.e., has rankk − 1).
Define the sequence{x̃n}n≥N as follows:

x̃N = xN,

x̃n+1 − x̃n =




1

|zn|
(
F(x̃n) + Vn+1 − F(xn)

)
,

if xn ∈ N(U) and|zn| ≥ nλ,

1

λn

(
F(x̃n) + εn+1

)
, otherwise.

(15)

The processes{xn} and{x̃n} coincide on the eventEN,λ. On the other hand,

P

[
lim

n→∞ dist(x̃n,U) = 0
]

= 0

in view of the following theorem whose proof is an easy adaptation of [13],
Theorem 2.

THEOREM9. Let{Fn}n∈Z+ denote a nondecreasing sequence of sub-σ -algeb-
ras ofF and(x̃n) a sequence of adapted random variables given by

x̃n+1 − x̃n = βn

(
F(x̃n) + Ũn+1 + b̃n+1

)
,(16)

whereF is aC1+β vector field, with 1/2 < β ≤ 1, {Ũn}, {b̃n} and{βn} are adapted
random variables.

We defineṼn+1 = F(x̃n) + Ũn+1 + b̃n+1.
Assume the following:

(i) ∃K > 0, ∀n ∈ Z+ ‖Ũn‖ ≤ K andE(Ũn+1|Fn) = 0.
(ii) There exista, b > 0 and a deterministic sequence{γn} of nonnegative

numbers having infinitely positive terms, such that∀n ∈ Z+, aγn ≤ βn ≤ bγn.
(iii)

∑
b̃2
i < +∞.

(iv) U ⊂ Int(Sk) is a linearly unstable periodic orbit or equilibrium forF .
(v) There exist a neighborhoodN(U) of U and c > 0 such that, for all unit

vectorsv ∈ Rm, E(|〈Ṽn+1, v〉‖Fn) ≥ c1{x̃n∈N(U)}.

ThenP [L(x̃n) ⊂ U] = 0.
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Let

An = {xn ∈ N(U) and|zn| ≥ nλ}.
Using the notation of Lemma 1 set

Ũn+1 = Un+1, b̃n+1 = bn+1, βn = 1/|zn| onAn

and

Ũn+1 = εn+1, b̃n+1 = 0, βn = 1/λn onAc
n.

Then, by Lemma 1, the process{x̃n} defined by (15) verifies recursion (16) and
assertions (i)–(iv) of Theorem 9 are satisfied.

It remains to verify assertion (v). LetB(1) = {v ∈ Sk :‖v‖ = 1}. Let G1 :Sk ×
B(1) → R+ andG2 :U × Sk × B(1) → R+ be the functions defined by

G1(x̃, v) = E
(|〈F(x̃) + εn, v〉|)

and

G2(x, x̃, v) = ∑
e

|〈F(x̃) − F(x) + Qx(e), v〉|pe(x),

whereQx denote the projection operatorQx :Span{x} ⊕ T Sk → T Sk .
Then it is not hard to verify that

E(|〈Ṽn+1, v〉||Fn) = G1(x̃n, v)1Ac
n
+ G2(x, x̃n, v)1An + O(1/n).

By continuity of G1, G2 compactness of the setsU, Sk,B(1) and assump-
tion (A2), there existsb > 0 and a neighborhoodN(U) such thatG1(x̃, v) > b,
G2(x, x̃, v) > b for all x ∈ N(U), x̃ ∈ Sk andv ∈ B(1)

Assumption (v) is thus verified forn ≥ N andN large enough. �

6. Nondegenerate processes with gradient-like mean limit ODEs. Using
the results from the previous two sections, we can prove the following result.

THEOREM 10. Let zn be a generalized urn process satisfying assump-
tions (A1) and (A2), pw are C1+β for some β > 1/2, zn is nondegener-
ate on Sk , Att∞(X) = Sk and the chain recurrent set for the mean limit
ODE consists of hyperbolic equilibriaq that satisfy

∑
w pw(q)α(w) �= 0. Then

P [lim infn→∞ |zn|
n

> 0] if and only if there exists a linearly stable equilibriumq
such that

∑
w pw(q)α(w) > 0. Furthermore, P [{L(xn) = q}] > 0 for any linearly

stable equilibriumq satisfying
∑

w pw(q)α(w) > 0, andP [{L(xn) = q}] = 0 for
any equilibriumq which is linearly unstable.
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PROOF. Define G = {lim infn→∞ |zn|/n > 0}. Since zn is nondegenerate,
Theorems 1 and 8 imply thatL(xn) is contained almost surely in the set
of linearly stable equilibria on the eventG. If

∑
w pw(q)α(w) < 0 for all

linearly stable equilibriaq, then Proposition 2 impliesP [G] = 0. Alternatively,
if q is a linearly stable equilibrium and

∑
w pw(q)α(w) > 0, then Theorem 7

implies P [G ∩ {L(xn) = q}] > 0. Finally, if q is an equilibrium which is linearly
unstable, then Proposition 2 impliesP [L(xn) = q] = 0 if

∑
w pw(q)α(w) < 0 and

Proposition 1 and Theorem 8 implyP [L(xn) = q] = 0 if
∑

w pw(q)α(w) > 0. �

As an application of this result, we consider additive fertility-selection proces-
seszn with mutation, whereg(ij, rs) = E[Gn(ij, rs)] is the expected number of
progeny produced by a mating between genotypesAiAj andArAs , andµ(ij, rs)

is the probability genotypeAiAj mutates to genotypeArAs .

COROLLARY 1. Let zn be an additive fertility-selection process with muta-
tion. Suppose:

• ∀ i, j, r, s ∈ {1, . . . , k}, µ(rs, ij) is strictly positive, and sufficiently small when
{r, s} �= {i, j}.

• ∀ i, j, r , s ∈ {1, . . . , k} and such that the fertility-selection equation(8) with-
out mutation has hyperbolic equilibriaq satisfying

∑
w pw(q)α(w) �= 0,

P [G1(ij, rs) ≥ 3] > 0.

ThenP [lim infn→∞ |zn|
n

> 0], if and only if there exists a linearly stable equi-
librium q such that

∑
w pw(q)α(w) > 0. Furthermore, P [{L({xn}) = q}] > 0 for

any linearly stable equilibriumq satisfying
∑

w pw(q)α(w) > 0, andP [{L{xn} =
q}] = 0 for any equilibriumq which is linearly unstable.

PROOF. Since the mean limit ODE corresponding to the fertility-selection
process without mutation is gradient-like and has only hyperbolic equilibria,
the chain-recurrent set for this mean limit ODE equals the set of equilibria.
Consequently, the mean limit ODE corresponding to the fertility-selection process
with sufficiently small mutation rates also has a chain-recurrent set consisting
only hyperbolic equilibria. Due to the factthat all mutation rates are positive,
this process is nondegenerate on the entire simplex. SinceP [G1(ij, rs) ≥ 3] > 0
for all 1 ≤ i, j, r, s ≤ k, Att∞(X) is the entire simplex. Applying Theorem 10
completes the proof.�
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