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Abstract. We consider a model of the shape of a growing polymer introduced by Durrett and Rogers (Probab. Theory Related
Fields 92 (1992) 337–349). We prove their conjecture about the asymptotic behavior of the underlying continuous process Xt

(corresponding to the location of the end of the polymer at time t) for a particular type of repelling interaction function without
compact support.

Résumé. Nous considérons un modèle de formation de polymères introduit par Durrett et Rogers (Probab. Theory Related Fields
92 (1992) 337–349). Nous prouvons leur conjecture sur le comportement asymptotique du processus continu associé Xt (corres-
pondant à l’emplacement de l’extrémité du polymère au temps t) pour un type particulier de fonction d’interaction répulsive à
support non compact.
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1. Introduction

1.1. General setting

Let (Ω,F ,P) be a probability space, let {Bt ,Ft : t ≥ 0} be a Brownian motion on Rd (starting in 0 at time 0), and let
f : Rd → Rd (d ≥ 1) be a measurable function. In this paper we will consider processes (Xt )t≥0 of the form

Xt = Bt +
∫ t

0
ds

∫ s

0
f (Xs − Xu)du. (1)

Equation (1) has a pathwise unique strong solution if f is assumed to be Lipschitz, e.g. by Theorem 11.2 in [40]. Note
that the assumption of f being continuous is sufficient to conclude the uniqueness of a strong solution if it exists (see
Theorem 5 and Corollary 1, p. 271 in [19]). The existence and uniqueness of a weak solution to (1) is ensured under
the assumption that f is bounded, using a generalization of Girsanov theorem (see Corollary 3.5.2 in [22]).

Observe that Eq. (1) is equivalent, in dimension one, to

Xt = Bt +
∫ t

0

∫ ∞

−∞
f (−z)Ls(Xs + z)dzds (2)
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or

dXt = dBt +
{∫ ∞

−∞
f (−z)Lt (Xt + z)dz

}
dt,

where Lt(y) is the local time (or occupation time density) of the process X. This formulation makes it clear how the
process interacts with its own occupation density.

This setting has been introduced by Durrett and Rogers [18] in 1992 as a model for the shape of a growing polymer,
Xt corresponding to the location of the end of the polymer at time t . Without any assumption on the function f , the
stochastic differential equation (1) defines a self-interacting diffusion, in the sense that the process X evolves in an
environment changing with its prior trajectory. We will call it self-repelling (resp. self-attracting) if, for all x ∈ Rd ,
x·f (x) ≥ 0 (resp. ≤ 0), in other words if it is more likely to stay away from (resp. come back to) the places it has
already visited before.

The model is a continuous analogue of the notion of edge (resp. vertex) self-interacting random walk (SIRW) on
discrete graphs, defined as follows: at each step, the probability to move along an edge is proportional to a function –
called the weight function – of the number of visits to this edge (resp. to the adjacent vertex). This notion was
introduced in 1986 by Coppersmith and Diaconis [7] with the seminal definition of edge-reinforced random walk
(ERRW) in the particular case of linear weight function.

Self-interacting random processes are useful in the understanding of self-organization and learning behaviour.
Othmer and Stevens [33] suggest reinforced random walks as a model for the movement of myxobacteria (each
bacterium moving to a site with a probability depending on the number of visits of all the bacteria to this site), and
raise the question as to whether “aggregation is possible with such strictly local modification or whether some form of
longer range communication is necessary”. These reinforced walks can also describe spatial monopolistic competition
in economics.

Let us mention some results on self-interacting diffusions (SIDs) and self-interacting random walks (SIRWs), and
discuss the relationship between these two models.

1.2. Previous results on self-interacting diffusions (SIDs)

Durrett and Rogers [18] obtain upper bounds on the norm of the position of the particle for bounded functions f
of compact support and, in dimension one, lower bounds in the two following cases: f nonnegative and f bounded
of the form f (x) ∼ lx−β as x → ±∞. Cranston and Mountford [9] describe precisely the asymptotic behaviour for
nonnegative f , which solves a conjecture of Durrett and Rogers in [18] (the purpose of the present article is to prove
their conjecture in the other case f (x) ∼x→±∞ lx−β ). The two articles [9,18] are presented in more detail below.

The self-attracting case is studied in 1995 by Cranston and Le Jan [8]: the linear interaction (i.e. linear f ) is con-
sidered, as well as the constant interaction (i.e. f (x) = σ sign(x), σ < 0) in dimension one, both cases leading to an
almost-sure convergence of the process, which is intuitive in the sense that self-attraction should lead to localization.
The constant interaction result is generalized on Rd – d ≥ 2 – (defined here by f (x) = σx/‖x‖, σ < 0) by Raimond
[38], again with a.s. convergence of the process. In dimension one, Herrmann and Roynette [20] generalize the a.s.
convergence result to the case of odd, decreasing and bounded functions f of lower bounded intensity in the neigh-
bourhood of 0 (i.e. such that |f (x)| ≥ C exp(−ρ/|x|k) for small |x|, with constants C, ρ > 0 and k ∈ N). The lower
bounded intensity is indeed needed in order to always keep a strictly attractive force towards the already visited sites.
In the case f (x) = − sign(x)1|x|≥a , non-local in the sense that f is zero in a neighbourhood of 0 so that the particle
does not take into account the visits to its close neighbourhood, Cranston and Le Jan [8] prove that the diffusion does
not converge a.s., and Herrmann and Roynette [20] show that the paths are however a.s. bounded.

Let us also present alternative models of self-interacting diffusions. Norris, Rogers and Williams [32] define in
1987 a self-avoiding random walk as a Brownian motion model with local time drift. More recently, Benaïm, Ledoux
and Raimond [2] introduce a model similar to Eq. (1), with this difference that the drift is given by an average of
the past occupation (inserting a factor of 1/s in the first integral). Assuming that the particle lives in a compact
connected smooth (C∞) Riemannian manifold (without boundary), and that f (Xs − Xt) is replaced by the gradient
of a potential ∇VXs (Xt ) with sufficient differentiability, they prove that the normalized occupation measure µt =
1
t

∫ t
0 δXs ds asymptotically shadows the solutions of a deterministic differential equation, so that the possible limit sets

of µt are “attractor free sets” for this equation. Depending on the structure of the interaction, various corresponding
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dynamics are possible; however, when the diffusion is self-repelling or weakly self-attracting, according to definitions
introduced by the authors (taking into account that the particle lives in a compact set), µt a.s. converges toward the
normalized Riemannian measure.

These self-interacting diffusions are further analysed by Benaïm and Raimond. In [3], convergence in law proper-
ties are discussed, whereas the symmetric interaction case is studied in [4]: µt converges almost surely to the critical
set of a certain nonlinear free energy functional J . Generically, this critical set consists of finitely many points, so that
µt converges a.s. toward a local minimum of J , each such minimum having a positive probability of being selected.
A self-interacting model introduced by Del Moral and Miclo [13,14] presents some similarity with the latter model:
in a discrete time setting, the evolution depends on the present position and on the occupation measure created by
the path up to this instant. The authors give sufficient conditions for a.s. convergence of the empirical measures, and
provide upper bounds on the corresponding rate of convergence to the limiting measure.

1.3. Previous results on self-interacting random walks (SIRWs)

The results on discrete-time SIRWs are naturally ordered by the structure of the interaction: edge SIRW with respec-
tively self-repelling, weakly reinforced, linear, once-reinforced or superlinear interaction, and vertex SIRW with linear
and polynomial interaction.

The edge SIRW with self-repelling and weakly reinforced interactions, which correspond to decreasing and sublin-
ear weight functions, have been studied by Tóth on the integer line Z in various cases, leading to results of convergence
in law of the position of the random walk after renormalization: see [47] for the case of exponentially self-repelling
random walks, which may be interpreted as the discrete-time counterpart of the self-repelling diffusion defined by (1),
with f odd of compact support; see also [48] for a survey of the different results obtained in this framework.

The linear edge SIRW (i.e. with linear weight function) corresponds to the critical case, and is generally called edge-
reinforced random walk (ERRW). The ERRW on finite graphs is a mixture of reversible Markov chains, and the mixing
measure can be determined explicitly ([15], see also [23,41]), which has applications in Bayesian statistics [16]. On
infinite graphs, the main question so far has been to give criteria for recurrence versus transience. Coppersmith and
Diaconis [7] observe in 1986 that the walk is recurrent on Z; more generally, on acyclic or directed graphs, the walk
can be written as a random walk in an independent random environment, as was first observed by Pemantle in 1988,
which enables to deduce a recurrence/transience phase transition on the binary tree [34] and recurrence/transience
criteria or laws of large numbers in different instances [5,24,45]. In the case of infinite graphs with cycles, Merkl
and Rolles have recently obtained recurrence criteria and asymptotic estimates on graphs of the form Z × G, G finite
graph, and a two-dimensional graph [27,28,30,31,42]. The fundamental question of recurrence or transience on Zk ,
k ≥ 2, is still open.

The edge SIRW with one-time reinforcement, i.e. where the current weight of an edge is 1+ δ if it has been crossed
and 1 if it has never been crossed, is generally called once-reinforced random walk and has been introduced by Davis
[10] in an attempt to provide a simplified version of the problem of establishing recurrence or transience for ERRW.
The process is recurrent on ladders Z × {1, . . . , d} for δ ∈ (0,1/(d − 2)) [43] and for large δ [50], and is transient on
regular trees for all δ > 0 or more generally on random trees generated by a supercritical branching process [6,17], in
contrast with the behavior of ERRW on these trees.

The superlinear edge SIRW has so far been studied under the condition of a reciprocally summable weight function.
This condition is necessary and sufficient for visiting only a finite number of vertices in the case of nondecreasing
weight functions. Davis [10] and Sellke [44] proved, respectively on the integer line and on Zk , k ≥ 2, that this
condition a.s. implies the existence of a random attracting edge. In the general case of a graph of bounded degree,
the attracting edge property still holds for weight functions increasing like a power greater than 1, see Limic [25],
and in fact for any reciprocally summable nondecreasing function, see Limic and Tarrès [26].

The vertex SIRW has so far mainly been considered in the case of a linear weight function, which is generally called
vertex-reinforced random walk (VRRW) and was introduced by Pemantle in 1988 [35]. Vertex-reinforced random
walks on finite complete graphs, with reinforcements weighted by factors associated to each edge of the graph, have
been studied by Pemantle [36] and Benaïm [1]. On the integers Z, Pemantle and Volkov showed that the VRRW a.s.
visits only finitely many vertices and, with positive probability, eventually gets stuck on five vertices, and Tarrès [46]
proved that this localization on five points is the almost sure behavior. On arbitrary graphs, Volkov [51] proved that
VRRW localizes with positive probability on some specific finite subgraphs.
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The vertex SIRW with weight function W(n) = nρ has recently been studied by Volkov [52]. In the superlinear
case ρ > 1, the walk a.s. visits two vertices infinitely often. In the sublinear case ρ < 1 the walk a.s. either visits
infinitely many sites infinitely often or is transient; it is conjectured that the latter behaviour cannot occur, and that in
fact all integers are infinitely often visited.

1.4. Link between the continuous and discrete cases

The relationship between the continuous and discrete cases has so far not been much investigated. Note that the
interaction is local for SIRWs (in the sense that the particle only takes into account the visits to its neighbouring sites),
whereas the SID generally evolves according to the past of the process on the whole space at any time, so that we a
priori expect a more erratic or localized behaviour for SIRW, at least without renormalization in space.

Let us mention two continuous limits of SIRWs, for the exponentially self-repelling walk and the once-reinforced
random walk. In the self-repelling case on Z, Tóth and Werner [49] have constructed in 1998 a continuous process
arising as limit of the renormalized position of the self-repelling walk with exponentially decaying weight function,
called the true self-repelling motion. The self-repellance is “local” in the sense that it is only due to the occupation
measure density at an “immediate neighbourhood”, and the process is not solution of a stochastic differential equation,
having finite variation of order 3/2. Formally, this process is of the form (2) with f := −δ′, the negative gradient of
Dirac’s delta, but without Brownian increments, the white noise disappearing in the scaling limit. This similarity with
Eq. (2) led Tóth and Werner [49] to conjecture that self-interacting diffusions (1) with f of compact support and
exponentially self-repelling SIRWs display the same large scale asymptotic behaviour, the assumption on f allowing
the same local interaction mechanism.

As for once-reinforced random walks, Davis [11] establishes a connection between the weak limit of the walk and
a diffusion which receives a push when at its maximum or minimum.

We are not aware of any study of self-interacting diffusions leading to results of the same nature.
Surveys on self-interacting random processes have been written by Davis [12], Merkl and Rolles [29], Pemantle

[37] and Tóth [48], each viewing the subject from a different perspective.

1.5. Statement of the problem

From now on, we restrict ourselves to a process (Xt )t≥0 taking values in R, satisfying a stochastic differential equa-
tion (1), with f : R → R Lipschitz. Let us describe the results obtained by Durrett and Rogers [18] in 1992 in this
one-dimensional setting. First, if f is bounded and has a compact support, then there exists a constant Γ < ∞ so that

lim sup
|Xt |
t

≤ Γ a.s.

One would like to say more about the existence of a limit for Xt/t . They prove that if f is nonnegative and
f (0) > 0, then there exists γ > 0 such that

lim inf
Xt

t
≥ γ .

Cranston and Mountford [9] have shown in 1996, under the weaker condition f nonnegative and f ,≡ 0, the strong
law of large numbers for the polymer, i.e. that there exists a positive constant c such that

lim
t→∞

Xt

t
= c a.s.

This result was partially conjectured in [18].
However, the assumption of f being nonnegative is undesirable since it says that the process, neither repulsive

nor attractive, keeps a steady drift towards the right and therefore always goes through new territory, so that its self-
interaction will not modify its qualitative behaviour, but rather only its speed of convergence to infinity.

The situation where f takes values of both signs and is “repulsive” (∀x ∈ R, xf (x) ≥ 0) is more difficult to study
since the particle, which avoids familiar territory, can in general receive contradictory signals from its left-hand and
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right-hand sides (respectively towards the right and the left), so that it does not necessarily decide on a direction in the
long run. This repulsive case has so far led to a very small number of results. We first mention a conjecture of Durrett
and Rogers in [18] in the case of an odd function f of compact support.

Conjecture (Durrett and Rogers [18]). Suppose f has compact support, and f (−x) = −f (x); then

Xt

t
→ 0 a.s.

Tóth and Werner [49] also conjectured, by comparing this model with exponentially self-repelling random walks
on Z [47], that under the same assumptions Xt/t2/3 converges in law (see remarks in Section 1.4), which means
that the particle has a super-diffusive behaviour despite the fact that it only looks at the time spent in its immediate
neighbourhood.

When the function f is not compactly supported, and in particular when f is not integrable, the issue is different
since the drift is expected to grow with time if the process keeps the same direction asymptotically. Let (A1), (A2)
and (A3) be the following assumptions:

(A1) |f (x)| ≤ M ,
(A2) f (x) is decreasing for x ∈ [q,∞),
(A3) xβf (x) → l > 0 as x → ∞ with 0 < β < 1.

Let us recall the heuristics described in the introduction of the article of Durrett and Rogers [18].
Letting xt = T −αXtT and Wt = T −1/2BtT we can rewrite (1) as

xt = T 1/2−αWt + T 2−α

∫ t

0
ds

∫ s

0
f

(
T α(xs − xu)

)
du.

If we set

α := 2
(1 + β)

so that 2 − α = αβ and let T → ∞ we expect that a possible limit (still called xt for simplicity) should satisfy

xt =
∫ t

0
ds

∫ s

0

l du

(xs − xu)β
.

One solution is xt = c0t
α where c0 satisfies

αc
β+1
0 =

∫ 1

0

l du

(1 − uα)β
. (3)

Durrett and Rogers [18] obtained the two following Theorems A and B, and conjectured the following Theorem 1,
which is the main result of this paper.

Theorem A (Durrett and Rogers [18]). Suppose (A1)–(A3) hold and α and c0 are as above. Then

lim sup
t→∞

Xt

tα
≤ c0.

Theorem B (Durrett and Rogers [18]). Suppose (A1)–(A3) hold, f is nonnegative and f (0) > 0. Then

Xt

tα
→ c0 a.s.
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Theorem 1 (Conjecture 3 of Durrett and Rogers [18]). Suppose f (x) = x/(1 + |x|β+1) with 0 < β < 1. Then with
probability 1/2,

Xt

tα
→ c0.

The aim of this article is to prove Theorem 1. The conjecture is believable in that, given the long term nature of the
function f , it is reasonable to think that once the motion has decided on a direction, the contribution to the drift in the
opposing direction will become increasingly negligible.

We fix 0 < β < 1 and assume that f (x) = x/(1 + |x|β+1) in the sequel.

2. Introduction to the ideas of the proof

2.1. Notation

Let a ∧ b or min(a, b) (resp. a ∨ b or max(a, b)) be the minimum (resp. the maximum) of a and b. For all x ∈ R, let
x+ := max(x,0) and x− := max(−x,0).

Given a and b ∈ R such that b > a, we use the convention that [b, a] is the empty set.
Given a subset A of R, we let A∗ = A \ {0}, A+ = {x ∈ A and x ≥ 0}, A− = {x ∈ A and x ≤ 0}, A∗

± = (A±)∗.
Let Cst(a1, a2, . . . , ap) denote a positive constant depending only on a1, a2, . . . ap , and let Cst denote a universal

positive constant.
Given a real-valued function g on R, we let ‖g‖∞ := supx∈R |g(x)|.
We will make use of the following classical exponential inequality (cf. for instance [39], Proposition (1.8), p. 52):

P
[

sup
s∈[0,t]

Bs ≥ a
]

≤ exp
(

−a2

2t

)
. (4)

2.2. Sketch of the proof

The first (and most important) step of the proof is the following proposition.

Proposition 1. P(lim supt→∞ |Xt | = ∞) = 1.

The proof of Proposition 1 relies on the particular shape of the drift when the process remains stuck in a bounded
interval. More precisely, let us define, for any u ∈ R+ and any interval I ,

hI
u(x) =

∫ u

0
f (x − Xs)1Xs∈I ds, kI

u(x) =
∫ u

0
f (x − Xs)1Xs /∈I ds,

gu(x) =
∫ u

0
f (x − Xs)ds = hI

u(x) + kI
u(x).

Recall that

dXu = dBu + gu(Xu)du.

Firstly, when the process remains in interval I for a long time, kI
u remains constant, so that hI

u gives the main
contribution to the drift. As long as Xt does not leave I its behavior is, on time intervals of fixed scale starting at a
stopping time S, comparable to the behavior of a diffusion with drift hI

S , as stated in the following simple Lemma 1.
Let us beforehand introduce the preliminary Definition 1.

Definition 1. Let I ⊆ R be an interval, and let S be an a.s. finite stopping time for filtration (Ft )t≥0.
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We denote by (BS
t : t ≥ 0) the Brownian motion (BS+t − BS : t ≥ 0) (which is independent of FS ), by (ZS

t : t ≥ 0)

the time-shifted process (XS+t : t ≥ 0), and by (Y S
t : t ≥ 0) the diffusion

YS
t = XS +

∫ t

0
hI

S(Y S
u )du + BS

t

with a drift function x 3→ hI
S(x) depending on the past, “frozen” at time S, of the process on interval I .

Lemma 1. Let S be an a.s. finite stopping time for filtration (Ft )t≥0, let I be an interval and let v be a finite positive
constant. Let Wv(R) be the Wiener space of continuous paths ω : [0, v] → R, equipped with the σ -algebra G generated
by projection maps ω 3→ ω(t). Let (Y S

t )t≥0 and (ZS
t )t≥0 be the processes introduced in Definition 1.

Given A ∈ G, assume that

P
(
YS

· ∈ A|FS

)
≥ ε.

Then

P
(
ZS

· ∈ A|FS

)
≥ Cst(v, ε)

a.s. on event {‖kI
S‖∞ ≤ v}.

Lemma 1 is an easy consequence of Girsanov theorem, and is proved in Section 3.2.
Secondly, given a fixed time u and a space interval I = [a, b], the drift function x 3→ hI

u(x) satisfies the following
property: when x ∈ R is close to the right boundary of I , according to a definition involving only a and b, then either
hI

u(x) is positive or hI
u(y) is nonpositive for all y ∈ [a, x], as implied by the following Lemma 2.

Let xmax := (1/β)1/(1+β) be the point of change of monotonicity of f .

Lemma 2. Let u ∈ R∗
+, a, b ∈ R. Suppose there exists x0 ∈ [a, b] such that h

[a,b]
u (x0) ≤ 0, and either f (b − x0) ≤

f (b − a)2 and b − x0 ≤ 1/16, or b − a ≤ xmax. Then, for all x ∈ [a, x0], h
[a,b]
u (x) ≤ 0.

Lemma 2 is proved in Section 3.3. The symmetrical statement at the left boundary holds similarly, replacing ≤ by
≥ in the inequalities involving h

[a,b]
u (x0) and h

[a,b]
u (x), and b − x0 by x0 − a. An equivalent statement to Lemma 2

is that there exists a constant c ∈ (a, b) only depending on a, b and β such that, either hu(x) ≥ 0 for all x ∈ [c, b],
or there exists x0 ∈ [c, b] such that hu(x)(x − x0) ≥ 0 for all x ∈ [a, b]. A consequence of Lemmas 1 and 2 is that,
as long as Xt remains in I , each time it approaches the border of I the probability to leave it within a time limit
depending only on the size of the interval is lower bounded. Therefore, the range of the process Xt regularly widens,
which explains Proposition 1, proved in Section 3.4.

In the remainder of this introduction, let us assume that {lim supXt = ∞} holds. The treatment of the event
{lim infXt = −∞} is similar, by symmetry.

Next, we prove that each time Xt reaches its maximum, the probability that it surpasses its supremum by one within
one unit of time is lower bounded, independently of the prior occupation measure of the process. This observation
leads to the following lemma. For all x ∈ R, let the stopping time Tx be the first hitting time of x by the process
(Xt : t ≥ 0). For all x ∈ R+, let us define the following event

Ax := {Tx ≤ Tx−1 + 1 < ∞}.

Then Ax holds for infinitely many x ∈ Z+, as stated in Lemma 3.

Lemma 3. One has

{lim supXt = ∞} ⊆
{ ∑

x∈Z+

1Ax = ∞
}
.
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Lemma 3 is proved in Section 4.1.
Let us now use notation

G(t) := gt (Xt )

for the drift at time t .
The introduction of events Ax in the study of Xt is justified by the following observation: For sufficiently large

x ∈ Z+, if Ax holds then the drift at time Tx can be lower bounded by a term of the order of T α−1
x using that, by

Theorem A, |Xt |/tα has remained upper bounded by 2c0 for t ∈ [t0, Tx], t0 sufficiently large. This is the purpose of
the following Lemma 4.

Lemma 4. One has

lim inf
x→∞,Tx≤Tx−1+1

G(Tx)

T α−1
x

≥ lim inf
x→∞,Tx≤Tx−1+1

infy∈[x−1/2,x+1] gTx (y)

T α−1
x

≥ (4c0)
−β > 0 a.s.

Proof. The first inequality is straightforward.
Let us prove the second inequality. Let x ≥ 1 be such that Tx ≤ Tx−1 + 1. Let us first make use of Theorem A: Fix

t0 ∈ Z+ such that, for all t ∈ R+, |Xt | ≤ 2c0(t ∨ t0)
α . Note that this implies

x − inf
0≤s≤Tx

Xs = XTx − inf
0≤s≤Tx

Xs ≤ 4c0(Tx ∨ t0)
α. (5)

Suppose Ax holds, and let y ∈ [x − 1/2, x + 1]. Then, using Eq. (5), ‖f ‖∞ ≤ 1 and f (γ ) ≥ f (α) ∧ f (θ) for all
0 ≤ α ≤ γ ≤ θ (see Section 3.1), we deduce that

gTx (y) =
∫ Tx

0
f (y − Xs)ds ≥

∫ Tx−1

0
f (y − Xs)ds − 1

≥
(

inf
z∈[infs≤t Xs ,x−1]

f (y − z)
)
Tx−1 − 1

≥ min
(

f

(
1
2

)
, f

(
4c0(Tx ∧ t0)

α + 1
))

(Tx − 1) − 1.

This enables us to conclude, using that f (u)/u−β →u→∞ 1 and 2 − α = αβ . !

The last step makes use of the proof of Theorem 4 in [18] (stated here as Theorem B). This theorem cannot be
applied directly, since the assumption f nonnegative and f (0) > 0 is not satisfied. However, Lemma 4 will imply
that the drift increases fast asymptotically and that event Ax occurs for any large x, so that the negative contributions∫ t

0 (f (Xt − Xs))
− ds in G(t) become increasingly negligible. More precisely, let

Γ+ :=
{

lim inf
t→∞

(
inf

0≤s≤t

(
gt (Xt ) − gs(Xt )

))
> −∞

}
∩

{
lim infG(t) > 0

}
.

Then Γ+ a.s. holds on {lim supXt = ∞}, as implied by the following Lemma 5, and the proof of Theorem 4 in [18]
can be adapted to show that Xt/tα a.s. converges to c0 on Γ+, as stated hereafter in Lemma 6. The two Lemmas 5
and 6 complete the proof of Theorem 1.

Lemma 5. One has

{lim supXt = ∞} ⊆ Γ+ ∩
{

lim inf
G(t)

tα−1 > 0
}

a.s.

Lemma 6. One has

Γ+ ⊆
{

lim
Xt

tα
= c0

}
a.s.
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Lemma 5 is proved in Section 4.2; it provides a tighter asymptotic estimate of G(t) than the one occurring on
Γ+ but this improvement, which is a consequence of the proof, is not required in Lemma 6. Lemma 6 is proved in
Section 4.3.

2.3. Outline of contents

Section 3 begins with some remarks on function f in Section 3.1, and then provides the proofs of Lemmas 1, 2 and
Proposition 1, in Sections 3.2–3.4. Section 4 is devoted to the proofs of Lemmas 3, 5 and 6, in Sections 4.1–4.3.

3. Proof of Lemmas 1, 2 and Proposition 1

3.1. Some remarks on function f

We will need in the proof some observations about the function

f (x) = x

1 + |x|1+β
.

First, for x ∈ R+, the derivative of f is

f ′(x) = 1 − βx1+β

(1 + x1+β)2 .

• Hence, on R+, f increases until xmax := (1/β)1/(1+β) ≥ 1, and decreases after xmax; remark that f (xmax) ≤
x

−β
max ≤ 1. Therefore ‖f ‖∞ ≤ 1.

• For all α, γ , θ ∈ [−xmax,∞) such that α ≤ γ ≤ θ ,

f (γ ) ≥ min
(
f (α), f (θ)

)
. (6)

• Let us prove that f ′(x) ≥ −f (x) for all x ∈ [−1/2,∞).

The inequality is straightforward on [0,1], since f and f ′ are both nonnegative on this interval. Observe that, for
all x ≥ 1,

∣∣∣∣
f ′(x)

f (x)

∣∣∣∣ =
∣∣∣∣

1 − βx1+β

x(1 + x1+β)

∣∣∣∣ ≤ 1 + βx1+β

1 + x1+β
≤ 1.

It remains to study the case x ∈ [−1/2,0]. Since f is odd, it suffices to prove that f ′(x) ≥ f (x) for all x ∈ [0,1/2].
On [0,1/2], f ′ is decreasing and f is increasing, and therefore f ′/f is decreasing. Now

f ′(1/2)

f (1/2)
= 2(1 − (β/2β)(1/2))

1 + 1/2(1+β)
≥ 2(1 − 1/4)

1 + 1/2
= 1,

using β/2β ≤ 1/2 (since f (x) = x/2x increases on [0,1]). This yields the result.

3.2. Proof of Lemma 1

Assume that P(Y S
. ∈ A|FS) ≥ ε. One can write the process ZS

· as

ZS
t = XS +

∫ t

0
gS+u

(
ZS

u

)
du + BS

t

= XS +
∫ t

0
hI

S

(
ZS

u

)
du + US

t ,
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where US
t := BS

t +
∫ t

0 CS
u dt , with CS

u := gS+u(Z
S
u ) − hI

S(ZS
u ). Note that CS

u is FS+u-measurable.
Conditioned on FS , the solutions YS

· , ZS
· are strong, adapted to the filtration (FS+t )t≥0 and are a.s. equal to a

Borel function of respectively the pair (XS,BS
· ) and (XS,US

· ) arising out of the limit of Picard iteration. See e.g.
[39], Chapter IX. Thus the events {YS

· ∈ A} and {ZS
· ∈ A} can be rewritten as respectively {(XS,BS

· ) ∈ A′} and
{(XS,US

· ) ∈ A′}.
By Girsanov’s theorem (see e.g. [39], Chapter VIII), there exists a probability P̃ under which the process (US

t : 0 ≤
t ≤ v) has Wiener measure as its distribution (so that

P̃
((

XS,US
·
)
∈ A′|FS

)
= P

((
XS,BS

·
)
∈ A′|FS

)
(7)

in particular) and

P
(
ZS

· ∈ A|FS

)
= P

((
XS,US

·
)
∈ A′|FS

)
= Ẽ

(
1{(XS,US· )∈A′} exp(∆)|FS

)
, (8)

where

∆ :=
∫ v

0
CS

u dUS
u − 1

2

∫ v

0

(
CS

u

)2 du.

Let us assume that {‖kI
S‖∞ ≤ v} holds. Our goal is to estimate from below ∆ on an event of large probability. To this

end, observe that, for u ∈ [0, v],
∣∣CS

u

∣∣ ≤
∣∣kI

S

(
ZS

u

)∣∣ +
∣∣gS+u

(
ZS

u

)
− gS

(
ZS

u

)∣∣ ≤
∥∥kI

S

∥∥
∞ + v‖f ‖∞ ≤ 2v,

using that ‖f ‖∞ ≤ 1.
Now, the process (MS

t )0≤t≤v defined by

MS
t := exp

(
−

∫ t

0
CS

u dUS
u − 1

2

∫ t

0

(
CS

u

)2 du

)

is a martingale on (Ω, (FS+t )0≤t≤v, P̃), and therefore

P̃(∆ ≤ −x|FS) ≤ P̃
(
MS

v ≥ ex−4v3 |FS

)
≤ Ẽ

(
MS

v |FS

)
e4v3−x = e4v3−x = ε

2
, (9)

choosing x := 4v3 − ln(ε/2). Consequently, Eqs (7)–(9) imply (recall that P(Y S
· ∈ A|FS) ≥ ε by assumption)

P
(
ZS

· ∈ A|FS

)
≥ e−xẼ[1{(XS,US· )∈A′}1{∆>−x}|FS]

≥ e−x
[̃
P
((

XS,US
·
)
∈ A′|FS

)
− P̃(∆ ≤ −x|FS)

]

≥ e−x

[
P
((

XS,BS
·
)
∈ A′|FS

)
− ε

2

]
= e−x

[
P
(
YS

· ∈ A|FS

)
− ε

2

]

≥ e−x ε

2
= e−4v3 ε2

4
.

3.3. Proof of Lemma 2

Let hu := h
[a,b]
u for simplicity.

Let us assume that b − a > xmax: indeed, when b − a ≤ xmax, hu is nondecreasing on [a, b], since f is increasing
on [−xmax, xmax], and hence hu(x) ≤ hu(x0) ≤ 0 for all x ∈ [a, x0].

Let x0 ∈ [b − 1/16, b] be such that hu(x0) ≤ 0 and f (b − x0) ≤ f (b − a)2.
Firstly, let us prove that, for all x ∈ [b − 1/2, x0], h′

u(x) ≥ −hu(x). This will imply that x 3→ hu(x)ex increases on
[b − 1/2, x0], and therefore that hu(x) ≤ 0 for all x ∈ [b − 1/2, x0].
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Indeed, let x ∈ [b − 1/2, x0]. Then

h′
u(x) =

∫ u

0
f ′(x − Xs)1Xs∈[a,b] ds.

Now, if Xs ∈ [a, b] then x − Xs ∈ [−1/2,∞) and therefore f ′(x − Xs) ≥ −f (x − Xs) (see the remarks on
function f , Section 3.1). Hence

h′
u(x) ≥ −

∫ u

0
f (x − Xs)1Xs∈[a,b] ds = −hu(x).

Let us now consider the case x ∈ [a, b − 1/2]. Let us compare hu(x) to hu(x0). Observe that

hu(x) =
∫ u

0
f (x − Xs)1Xs∈[a,x]∪[x0,b] ds +

∫ u

0
f (x − Xs)1Xs∈(x,x0) ds

≤
∫ u

0
f (x − Xs)1Xs∈[a,x] ds −

∫ u

0
f (Xs − x)1Xs∈[x0,b] ds (10)

since f (x − Xs) ≤ 0 when Xs ∈ [x, x0].
On the other hand, using a similar argument,

0 ≥ hu(x0) ≥
∫ u

0
f (x0 − Xs)1Xs∈[a,x] ds −

∫ u

0
f (Xs − x0)1Xs∈[x0,b] ds. (11)

Now, x0 − x ≥ 7/16 (since x ≤ b − 1/2 and x0 ≥ b − 1/16) and x0, x ∈ [a, b] imply that, when Xs ∈ [a, x], then
x0 − Xs ∈ [7/16, b − a] and that, when Xs ∈ [x0, b], Xs − x0 ∈ [0, b − x0] ⊆ [0, xmax] and Xs − x ∈ [7/16, b − a].

Therefore, Eqs (10) and (11) yield respectively, together with ‖f ‖∞ ≤ 1 and inequality (6),

hu(x) ≤
∫ u

0
1Xs∈[a,x] ds − min

(
f

(
7
16

)
, f (b − a)

)∫ u

0
1Xs∈[x0,b] ds

and

0 ≥ hu(x0) ≥ min
(

f

(
7
16

)
, f (b − a)

)∫ u

0
1Xs∈[a,x] ds − f (b − x0)

∫ u

0
1Xs∈[x0,b] ds.

Thus, it suffices to show that (min(f (7/16), f (b − a)))2 ≥ f (b − x0) to conclude that hu(x) ≤ 0. We already
know that f (b − a)2 ≥ f (b − x0) by assumption, and thus it remains to prove that f (7/16)2 ≥ f (1/16), since
f (1/16) ≥ f (b − x0) (recall that b − x0 ∈ [0,1/16] by assumption). This inequality follows from

f

(
7

16

)
≥ f

(
3
8

)
≥ 3

8
1

(1 + 1/21+β)
≥ 3

8
1

(3/2)
= 1

4
,

and f (1/16) ≤ 1/16.

3.4. Proof of Proposition 1

Let us define the sequence (an)n∈Z+ by a0 := 0, a1 := xmax/2 and, recursively, for all n ≥ 1,

an+1 := an + 1
2

(
f (4an−1)

2 ∧ 1
16

)
.

It is immediate from the definition that (an)n∈Z is an increasing sequence, converging to infinity as n → ∞, and
such that for all n ≥ 1, an+1 ≤ 2an (using that an ≥ xmax/2 ≥ 1/2).
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For all n ∈ Z+ and t ∈ R+, let us define the stopping time

Sn,t := inf
{
u > t s.t. Xu /∈ [−an, an]

}
;

remark that S0,t = t .
Let us prove by induction on n ∈ Z+ that, for all n ∈ Z+ and t ∈ R+, Sn,t < ∞ a.s. This will obviously suffice to

prove the proposition. The case n = 0 is trivial.
Let n ≥ 1 and t ∈ R+. We will prove that there exists a positive constant ζn,t (depending only on n and t) such that,

for all s ≥ t ,

P(Sn,t < ∞|FSn−1,s ) ≥ ζn,t > 0 a.s. on {Sn−1,s < ∞}. (12)

This will enable us to complete the induction step: indeed, for all t ∈ R+ and s ≥ t , the induction assumption im-
plies Sn−1,s < ∞ a.s., and we deduce from (12) that E(1Sn,t<∞|Fs) ≥ ζn,t a.s. By a standard martingale convergence
theorem, E(1Sn,t<∞|Fs) →s→∞ 1Sn,t<∞ ≥ ζn,t > 0, and therefore Sn,t < ∞ a.s.

Given t ∈ R+ and s ≥ t , let us now prove (12). Let S := Sn−1,s , I := [−an, an] and hS := hI
S . If S ≥ Sn,t , there is

nothing to prove. Hence we assume S < Sn,t , which implies XS ∈ [−an,−an−1] ∪ [an−1, an]. We do the proof under
the assumption XS ∈ [an−1, an], the treatment of the case XS ∈ [−an,−an−1] being similar.

Let (BS
t )t≥0 and (Y S

t )t≥0 be the processes introduced in Definition 1 (with S and I fixed above).
Consider the stopping time

τ := inf
{
u > 0 s.t. YS

u /∈ [−an, an]
}
.

We now prove that

P
(
τ ≤ 8a2

n ∨ 1| FS

)
≥ 1

2
, (13)

which implies by Lemma 1 that P(Sn,t ≤ S + 8a2
n ∨ 1|FS) ≥ Cst(an, t) > 0 a.s., using that ‖k[−an,an]

S ‖∞ ≤ t (as a
consequence of S < Sn,t and ‖f ‖∞ ≤ 1), and therefore yields (12).

We distinguish between two cases (note that hS(an) > 0, and that 2an−1 − an = an−1 − (an − an−1)):
(1) ∀x ∈ [2an−1 − an, an], hS(x) ≥ 0.
Then the process (Y S

u )u≥0 is, before leaving [2an−1 −an, an], bigger than the Brownian motion (BS
u )u≥0 plus an−1,

and therefore the probability for YS
u to leave the interval [2an−1 −an, an] at an before time 1 is greater than or equal to

the probability of BS
u leaving the interval [−(an − an−1), an − an−1] at an − an−1 before time 1 (using a comparison

result, cf. [21] for instance). Hence, using an − an−1 ≤ 1,

P(τ ≤ 1|FS) ≥ 1
2

P
(∣∣BS

1

∣∣ ≥ an − an−1|FS

)
≥ 1

2
P
(∣∣BS

1

∣∣ ≥ 1|FS

)
= Cst. (14)

(2) ∃x ∈ [2an−1 − an, an] such that hS(x) = 0.
Let x0 be the greatest x in [2an−1 − an, an] such that hS(x) = 0. Next apply Lemma 2, with a := −an and b := an.

Let us check that the assumptions are fulfilled. If n = 1, then b − a = 2an ≤ xmax. If n ≥ 2, then it follows from the
recursive definition of (an)n∈Z+ that b − x0 ≤ 2(an − an−1) ≤ 1/16, and

f (b − x0) ≤ b − x0 ≤ 2(an − an−1) ≤ f (4an−1)
2 ≤ f (2an)

2,

using in the last inequality that xmax ≤ 2an ≤ 4an−1 and that f is decreasing on [xmax,∞).
Hence, Lemma 2 implies hS(x) ≤ 0 for all x ∈ [−an, x0]. Consequently, using that hS(x) ≥ 0 for all x ∈ [x0, an]

by definition of x0, the process (RS
u )u≥0, defined by

RS
u =

(
YS

u∧τ − x0
)2 − u ∧ τ

is a submartingale. Therefore

0 ≤ E
(
RS

8a2
n
− RS

0 |FS

)
≤ (2an)

2 − 8a2
nP

(
τ ≥ 8a2

n

)
,



An asymptotic result for Brownian polymers 41

thus

P
(
τ ≥ 8a2

n|FS

)
≤ 1

2
. (15)

4. Proof of Lemmas 3, 5 and 6

4.1. Proof of Lemma 3

Let us first introduce Definition 2 and Lemma 7.

Definition 2. For all a, t ∈ R+ and any continuous process (Rt )t≥0, let U(a, t,R) be the stopping time

U(a, t,R) := inf
{
u > t s.t. |Ru − Rt | = a

}
∧

(
t + a2

2

)
.

Lemma 7. Let h ∈ R+, and let Mt := Bt + ht be a Brownian motion with drift. Then, for every a.s. finite stopping
time S and all a ∈ R∗

+ such that ah ≥ 6,

P[MU(a,S,M) = MS + a|Ft ] ≥ 1 − exp(2 − ah).

Proof. Assume that ah ≥ 6, and that S = 0 for simplicity. Let U := U(a,0,M).
For all λ ∈ R, Nλ

t := exp(λBt −λ2t/2) = exp(λMt −λ(λ/2+h)t) is a martingale. We choose λ := 2/a −h, which
satisfies λ < 0 and λ/2 + h > 0. Then

1 = E
[
Nλ

U |F0
]
≥ P

[
MU = −a or U = a2

2

∣∣∣FS

][
exp(−λa) ∧ exp

(
λa − λ

(
λ

2
+ h

)
a2

2

)]

= P
[
MU = −a or U = a2

2

∣∣∣FS

][
exp(ah − 2) ∧ exp

(
(ah − 2)2

4

)]

= P
[
MU = −a or U = a2

2

∣∣∣FS

]
exp(ah − 2).

!

Let

E := {lim supXt < ∞} ∪
{∑

x∈Z
1Ax = ∞

}

and, for all y ∈ Z+,

Ey := {lim supXt < ∞} ∪
{∑

x≥y

1Ax ≥ 1
}
.

Then E = ⋂
y∈Z+ Ey and, for all z ≥ y, Ez ⊆ Ey .

Our goal is to prove that, for all y ∈ Z+,

P(Ey |FTy ) ≥ Cst > 0 a.s. on {Ty < ∞}. (16)

This enables us to conclude that P(E) = 1. Indeed, this implies that for all y ∈ Z+ and s ∈ R+, P(Ey |Fs) ≥ Cst > 0
since, if z := inf{n ∈ Z+ s.t. n ≥ sup0≤t≤s Xt ∨ y}, then

P(Ey |Fs) ≥ P(Ez|Fs) ≥ E
(
E(1Ez

|FTz)1Tz<∞|Fs

)
+ P(Tz = ∞|Fs) ≥ Cst.
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We deduce subsequently that, for all y ∈ Z+, Ey holds a.s. (using that P(Ey |Fs) tends to 1Ey
a.s. as s tends to infinity),

which completes the proof of P(E) = 1.
Given y ∈ Z+, let us prove Eq. (16). Almost surely on {Ty < ∞}, the distribution of Xt , 0 ≤ t ≤ Ty , is absolutely

continuous with respect to that of Brownian motion run until hitting y, and therefore has a.s. a bounded local time ly .
Assume that Ty < ∞. Let us define

δ := inf
{
u > 0 s.t.

∫ y

y−u
ly(v)dv = 1

u2

}
∧ 1.

Note that δ exists, since limu→∞ 1/u2 = 0 and
∫ y
−∞ ly(v)dv = Ty.

Let U(a, t,X) be the stopping time of Definition 2. Observe that
⋂

n∈Z+,nδ<1

{
Ty+(n+1)δ = U(δ, Ty+nδ,X)

}

⊆
{
Ty+1 ≤ Ty +

(
sup

k∈Z+, kδ<1
k + 1

)δ2

2
≤ Ty + 1

}
⊆ Ey. (17)

Therefore, it suffices to estimate from below, for all n ∈ Z+ such that nδ < 1,

P
(
Ty+(n+1)δ = U(δ, Ty+nδ,X)|FTy+nδ

)

provided that ∆n := ⋂
0≤k≤n−1{Ty+(k+1)δ = U(δ, Ty+kδ,X)} holds (which implies Ty+nδ < ∞). To achieve this goal,

we give a lower bound of the drift gt (Xt ) on the time interval [Ty+nδ,U(δ, Ty+nδ,X)], and then compare Xt with
Brownian motion with drift.

Let n ∈ Z+ be such that nδ < 1, assume ∆n holds (note that ∆0 always holds) and let t ∈ [Ty+nδ,U(δ, Ty+nδ,X)].
Then

gt (Xt ) ≥ gTy+nδ (Xt ) − δ2

2
≥ gTy+(n−1)+δ

(Xt ) − δ2 ≥ gTy (Xt ) − δ2, (18)

the last inequality following, when n ≥ 1, from Xt ≥ y + (n − 1)+δ ≥ supu∈[Ty,Ty+(n−1)+δ] Xu.
Now, by inequality (6),

gTy (Xt ) ≥
(∫ y

y−δ
ly(v)dv

)
min

((
f (n − 1)δ

)
, f

(
(n + 2)δ

))

≥ 1
δ2

(
−1{n=0}δ + 1{n,=0}

(n − 1)δ

10

)
≥ 1

δ

(
n

10
− 1

)
, (19)

using in the second inequality that f (x) ≥ x/10 for all x ∈ [0,3] (since 1 + |x|1+β ≤ 1 + 31+β ≤ 10). Note that
Eq. (19) remains true in the case δ = 1 (which implies n = 0 since nδ < 1 by assumption), since

∫ y
y−1 ly(v)dv ≤ 1.

In summary, Eqs (18) and (19) imply, using δ ≤ 1,

gt (Xt ) ≥ 1
δ

(
n

10
− 2

)
. (20)

Given n ∈ Z+, let h := (n/10 − 2)/δ and let Mt := Bt + ht (with B0 = 0). Then a comparison result (cf. [21] for
instance) yields that, if Ty+nδ < ∞, then

P
[
Ty+(n+1)δ = U(δ, Ty+nδ,X)|FTy+nδ

]
≥ P[MU(δ,0,M) = δ]. (21)

If n ≥ 80, Lemma 7 provides (with a := δ and h defined above)

P[MU(δ,0,M) = δ] ≥ 1 − exp
(

4 − n

10

)
. (22)
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If n < 80, Girsanov’s lemma implies

P[MU(δ,0,M) = δ] ≥ exp
[
hδ − h2

2
δ2

2

]
P[MU(δ,0,B) = δ] ≥ e−3 1

2
P
[
|Bδ2/2| ≥ δ

]
= Cst (23)

the last inequality following from the self-similarity of the Brownian motion.
In summary, Eqs (17), (21)–(23) yield, for all y ∈ Z+ such that Ty < ∞,

P(Ey |FTy ) ≥ Cst
∏

k≥80

(
1 − exp

(
4 − n

10

))
≥ Cst > 0.

4.2. Proof of Lemma 5

Let, for all x ∈ Z+,

Cx := Ax ∩
{

inf
t∈[Tx−1,Tx ]

Xt ≥ x − 3
2

}
∩

{
inf

t∈[Tx−1,Tx ]
G(t)

tα−1 ≥ (4c0)
−β

2

}
.

We divide the proof in two parts. In part (1) we prove that, for any sufficiently large x ∈ Z+,

Ax ⊆ Cx+1. (24)

This implies, since Ax holds infinitely often by Lemma 3, that Cx holds for any large x. In part (2) we assume Cx

for any sufficiently large x, and conclude that Γ+ ∩ {lim infG(t)/tα−1 > 0} holds.
Part (1). Let, for all x ∈ Z+,

Ex :=
{

inf
0≤s−Tx≤3(4c0)βT 1−α

x

(Bs − BTx ) ≥ −1
2

}
,

with the convention that Ex = Ω if Tx = ∞. Let us first prove in part (1)(a) that Ex holds for any sufficiently large x

and in part (1)(b) that Ax ∩ Ex ⊆ Cx+1 for any sufficiently large x.
(1)(a) Using the standard exponential inequality (4), for any sufficiently large x,

P
[
Ec

x |FTx

]
≤ exp

(−(4c0)
−βT α−1

x

24

)
≤ exp

(−(4c0)
1−α−1−βx1−α−1

24

)
,

where we use that x = XTx ≤ 2c0T
α
x by Theorem A. Therefore

∑
P[Ec

x |FTx ] < ∞, which proves the claim by Borel–
Cantelli lemma.

(1)(b) Assume Ax ∩ Ex holds, and that x is large. Then, for all t ∈ [Tx,Tx + 1], as long as Xt ∈ [x − 1/2, x + 1],

G(t) = gt (Xt ) ≥ gTx (Xt ) − (t − Tx)‖f ‖∞ ≥ inf
y∈[x−1/2,x+1]

gTx (y) − 1,

and, by Lemma 4, for any sufficiently large x,

G(t)

tα−1 ≥ infy∈[x−1/2,x+1] gTx (y) − 1
(Tx + 1)α−1 ≥ (4c0)

−β

2
. (25)

Therefore, using that Ex holds,

X
Tx+6(4c0)βT 1−α

x
≥

[
x − 1

2
+ 3(4c0)

βT 1−α
x

(4c0)
−β

2
T α−1

x

]
∧ (x + 1) ≥ x + 1,

which implies that Tx+1 ≤ Tx + 3(4c0)
βT 1−α

x ≤ Tx + 1 for any sufficiently large x ∈ Z+ and, using again Eq. (25),
that Cx+1 holds.
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Part (2). Assume that Cx holds for any sufficiently large x. The asymptotic estimate of G(t) follows immediately.
Let us prove the estimate of inf0≤s≤t (gt (Xt )−gs(Xt )) as t goes off to infinity: For all large t ∈ R+, there exists x ∈ Z+
such that Xt ∈ [x, x + 1), and x is large for t large enough, since limt→∞ Xt = ∞ by assumption, so that Cy holds for
y ≥ x. Hence, t ≤ TXt + 2 since on one hand, t ≤ Tx+2 ≤ Tx + 2 (t > Tx+2 would imply Xt ≥ x + 2 − 1/2 = x + 3/2,
which is contradictory), and since on the other hand TXt ≥ Tx by definition of Tx . This implies

gt (Xt ) − gs(Xt ) =
∫ t

s
f (Xt − Xu)du =

∫ TXt ∨s

s
f (Xt − Xu)du +

∫ t

TXt ∨s
f (Xt − Xu)du

≥
∫ t

TXt ∨s
f (Xt − Xu)du ≥ −‖f ‖∞(t − TXt ) ≥ −2‖f ‖∞ ≥ −2.

4.3. Proof of Lemma 6

In this section, we explain why the conclusions of Theorem 4 in [18] almost surely hold on Γ+, notwithstanding that
assumptions f nonnegative and f (0) > 0 are not satisfied. The proof in [18] makes use of these assumptions on two
occasions. First, Lemma 5.1 and the beginning of the proof of Lemma 5.2 apply the following inequality, referred to
as (3.7): there exists A > 0 such that, for all t ≥ s ≥ 0,

Xt − Xs ≥ (t − s)
A1/2

2
+ inf

s≤r≤t
(Bt − Br) + inf

s≤r≤t
(Br − Bs) − 1.

Our condition lim infG(t) > 0 on Γ+ implies that there exist a.s. A > 0 and C ∈ R+ such that G(u) ≥ A for all
u ≥ C, so that for all t ≥ s,

Xt − Xs =
∫ t

s
G(u)du + Bt − Bs ≥ (t − s)A − C(A + C) + Bt − Bs

≥ (t − s)A + inf
s≤r≤t

(Bt − Br) + inf
s≤r≤t

(Br − Bs) − C(A + C)

so that the inequality continues to hold with this difference that 1 is replaced by a constant D := C(A+C) > 0, which
does not modify the consequences when T is large enough, depending on D.

Second, the assumption f nonnegative also appears in Eq. (5.8) in [18] (in the proof of Lemma 5.2), which makes
use of the following inequality, for v = t − uT (where uT is a constant depending on T ):

∫ t

0
f (XT t − XT s)ds ≥

∫ v

0
f (XT t − XT s)ds.

Observe that
∫ t

0
f (XT t − XT s)ds = 1

T

∫ T t

0
f (XT t − Xs)ds = gT t (XT t )

T

and
∫ v

0
f (XT t − XT s)ds = gT v(XT t )

T
.

Therefore, on Γ+, lim inft→∞(inf0≤s≤t (gt (Xt ) − gs(Xt ))) > −∞ implies
∫ t

0
f (XT t − XT s)ds ≥

∫ v

0
f (XT t − XT s)ds − O

(
T −1).

The error term of order T −1 turns out to be negligible with respect to the lower bound of
∫ v

0 f (XT t − XT s)ds by
Cst(α,γ , c)tα−1/T αβ later in the proof Lemma 5.2 [18] (Eq. (5.12)). Indeed,

T −1 = T −αβT αβ−1 = T −αβT 1−α = T −αβo
(
tα−1),
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if we suppose that t ≥ tT = c−1/αT −λ/α 7 T −1, as it is indeed assumed in this part of the proof in [18].
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