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VERTEX-REINFORCED RANDOM WALK ON Z EVENTUALLY
GETS STUCK ON FIVE POINTS1

BY PIERRE TARRÈS

CNRS, Université Paul Sabatier and Université de Neuchâtel

Vertex-reinforced random walk (VRRW), defined by Pemantle in 1988,
is a random process that takes values in the vertex set of a graphG, which
is more likely to visit vertices it has visited before. Pemantle and Volkov
considered the case when the underlying graph is the one-dimensional integer
lattice Z. They proved that the range is almost surely finite and that with
positive probability the range contains exactly five points. They conjectured
that this second event holds with probability 1. The proof of this conjecture
is the main purpose of this paper.

1. General introduction. Let (�,F ,P) be a probability space. LetG be a
locally finite graph, let∼ be its neighbor relationship and letV (G) be its vertex
set. Let(Xn)n∈N be a process that takes values inV (G). Let F= (Fn)n∈N denote
the filtration generated by the process [i.e.,Fn = σ(X0, . . . ,Xn) for all n ∈N] and
let F∞ = σ(Fn, n≥ 0).

For anyv ∈ V (G), let Zn(v) be the number of times plus 1 that the process
visits sitev up through timen ∈N∪ {∞}, that is,

Zn(v)= 1+
n∑

i=0

1{Xi=v}.

Then (Xn)n∈N is called vertex-reinforced random walk (VRRW) with starting
point v0 ∈ V (G) if X0= v0 and for alln ∈N,

P(Xn+1= x|Fn)= 1{x∼Xn}
Zn(x)∑

w∼Xn
Zn(w)

.

In other words, moves are restricted to the edges ofG, with the probability of a
move to a neighborx being proportional to the augmented occupationZn(x) of x

at that time.
VRRWs were introduced in 1988 by Pemantle [7] in the spirit of the seminal

work by Coppersmith and Diaconis [4], who defined the notion of edge-reinforced
random walks, which have at each step a probability to move along an edge
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proportional to the number of times plus 1 that the process has visited this edge.
Reinforced processes are useful in models involving self-organization and learning
behavior; they can also describe spatial monopolistic competition in economics.
For more details on applications and known results in connection with these
models, refer to the articles by Pemantle and Volkov [8, 9].

VRRWs on finite complete graphs, with reinforcements weighted by factors
associated to each edge of the graph, have been studied by Pemantle [8] and
Benaïm [1]. Pemantle and Volkov obtained results in 1997 on reinforced random
walks on Z [9], which are described in the following text. More recently,
Volkov [13] generalized some of these results and proved that, on a fairly broad
class of locally finite graphs (containing the graphs of bounded degree), the VRRW
has finite range with positive probability. The remainder of this paper is devoted to
VRRWs onZ.

Define the two random sets

R := {v ∈ Z/∃n ∈N s.t.Xn = v},
R′ := {v ∈ Z/Xn = v infinitely often}

and, givenk ∈ Z andα ∈ (0,1), define the six events:

1. {R′ = {k− 2, k − 1, k, k+ 1, k+ 2}};
2. {lnZn(k − 2)/ lnn→ α};
3. {lnZn(k + 2)/ lnn→ 1− α};
4. {Zn(k − 1)/n→ α/2};
5. {Zn(k + 1)/n→ (1− α)/2};
6. {Zn(k)/n→ 1/2}.
Let | · | be the cardinality of a set. Pemantle and Volkov [9] proved the following
results.

THEOREM 1.1. One hasP(|R|<∞)= 1 andP(|R| = 5) > 0.

THEOREM 1.2. One hasP(|R′| ≤ 4)= 0.

THEOREM 1.3. For any open setI ⊂ [0,1] and any integerk ∈ Z there exists,
with positive probability, α ∈ I such that events1–6occur.

Pemantle and Volkov also proposed the following conjecture.

CONJECTURE 1. There exist almost surelyk ∈ Z and α ∈ (0,1) such that
events1–6occur.

The main purpose of the present article is to prove this conjecture. In fact, we
prove the following result, which is slightly more accurate. GivenC1, C2 ∈ (0,∞)

andk ∈ Z, define the two events:
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2′. Zn(k − 2)/nα →C1;
3′. Zn(k + 2)/n1−α →C2.

THEOREM 1.4. There exist almost surelyk ∈ Z, α ∈ (0,1) and C1, C2 ∈
(0,∞) such that events1, 2′, 3′ and4–6occur.

In our proof, we make use of Theorem 1.1 of Pemantle and Volkov ([9];
stated above). The heuristic developed by these authors on the comparison of
VRRW to Pólya and Friedman urn models [9, 13] also has been very useful
and is partly related to the results claimed in Section 3.1. Although we do not
use it explicitly, the heuristic of a result from Benaïm about convergence with
positive probability toward an attractor ([2], Chapter 7) has been very useful in
Lemmas 2.4, 2.9 and 2.11.

2. Introduction to the ideas of the proof.

2.1. Notation. Let R∗ = R \ {0}, N∗ = N \ {0}, R∗+ = R+ \ {0} and Q∗+ =
Q+ \ {0}. Given a random sequence(γn) of F-adapted nondecreasing stopping
times (∀q ∈ N, {γn ≤ q} ∈ Fq ), let F(γn)n∈N

= (Fγn)n∈N denote the filtration
defined as follows: For alln ∈ N, A ∈ Fγn ⇐⇒ ∀q ∈ N ∪ {∞},A ∩ {γn ≤ q} ∈
Fq . The equalities and inclusions between probability events are understood to
hold almost surely. Givenx, y ∈ R, we use alternately the notationx ∧ y and
min(x, y) [resp. x ∨ y and max(x, y)] for the minimum [resp. the maximum]
of x and y. We write x = �(y) iff |x| ≤ y. We let x+ = max(x,0) and
x− = max(−x,0). Let Cst(a1, a2, . . . , ap) denote a positive constant depending
only on a1, a2, . . . , ap and let Cst denote a universal positive constant. We
say for simplicity that a property holds forx < Cst(a1, . . . , ap) [resp. forx >

Cst(a1, . . . , ap)] when there exists a constantc, which depends only ona1, . . . , ap

so that this property holds forx < c (resp. forx > c).
Let (un)n∈N and (vn)n∈N be two sequences taking values inR. We write

un =O(vn) [resp.un = o(vn)] when there exists an a.s. finite random variableC

[resp. a random sequence(Cn)n∈N converging to 0 a.s.] such that, for alln ∈ N,
un ≤ Cvn [resp.un ≤ Cnvn].

We write un � vn iff either lim sup|un| < ∞ and lim sup|vn| < ∞ or
un/vn→ 1, and writeun � vn iff, for all ε > 0, there existsk0 ∈ N such that,
for all n≥ k ≥ k0,

un − uk ≤ (1+ ε)(vn − vk)+ ε.

Note that, ifun andvn are random variables,k0 is a priori a random variable.
Similarly, givena ∈ R and another sequence(wn)n∈N that takes values inR,

we write un�wn≥avn when, for allε > 0, there existsk0 ∈ N such that, for all
n≥ k ≥ k0,

un− uk ≤ (1+ ε)(vn − vk)+ ε if wm ≥ a for all m ∈ [k,n].
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We writeun ≡ vn iff lim (un−vn) exists a.s. and is finite, and writeun
.= vn iff there

exists a randomk0 ∈N such that for alln≥ k0, un− vn = uk0 − vk0. In particular,
we write un

.= vn + o(wn) iff there existsα ∈ R (a priori random) such that
un−vn = α+o(wn). Givenu, v ∈R∗+∪{∞}, we writeu≈ v iff either u= v =∞
or max(u, v) <∞, and writeu� v iff either u=∞ or max(u, v) <∞.

We letE[·] andV[·] be the expectation and the variance of a random variable.
If G is a sub-σ -field of F , we letE[·|G] andV[·|G] be the expectation and variance
conditionally toG.

2.2. Sketch of the proof.Let us begin with some background on the study
of VRRWs. First recall that VRRW are non-Markovian processes. Define, for all
n ∈N, the vector of occupation densities of the random walk at timen as

V (n)=
(

Zn(v)

n

)
v∈V (G)

.

The works of Pemantle [8] and Benaïm [1] provide some methods to compare
the behavior ofV (n) with solutions of ordinary differential equations when the
graph is complete (i.e., any two vertices and adjacent). The heuristics of these
results is as follows.

Let L � 1. For all n ∈ N, try to compareV (n + L) to V (n). If n � L,
then the VRRW between these times behaves as thoughV were constant and,
hence, approximates a Markov chain which we callM(V (n)). Let π(V (n)) be
the invariant measure ofM(V (n)). If L is assumed to be large enough, then the
occupation measure between these times will be close toπ(V (n)). This means
that, approximately,

(n+L)V (n+L)= nV (n)+Lπ(V (n));(1)

hence

V (n+L)− V (n)= (L/n)
(
π(V (n))− V (n)

)
.(2)

Passing to a continuous time limit gives

d

dt
V (t)= 1

t

(
π(V (t))− V (t)

)
.(3)

Up to an exponential time change,V should behave like an integral curve for the
vector fieldπ − I .

If the graph is not assumed to be complete, then the relaxation time of the
Markov chainM(V (n)) depends onV (n), (1) and (2) do not make sense in
general, and it is difficult to deduce some results from this heuristics. In the critical
case where this relaxation time is on the order ofn, it may occur that the random
walk gets stuck with high probability in a proper subset of the graph.

Our work relies on the principle that, onZ, when this relaxation time is large,
there are some seldom visited vertices between some often visited vertices. In this
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case, the behavior of the occupation densities of the random walk can be studied
nearly independently to the left and to the right of each seldom visited vertex.

This notion of asymptotically seldom visited vertexx ∈ Z corresponds, in the
following notation, to eventϒ(x) defined below. Forx ∈ Z andn ∈N, denote

Z±n (x) :=
n∑

k=1

1{Xk−1=x,Xk=x±1},

Yn(x) :=
n∑

k=1

1{Xk−1=x}
1

Zk−1(x − 1)+Zk−1(x + 1)
,

Y±n (x) :=
n∑

k=1

1{Xk−1=x,Xk=x±1}
1

Zk−1(x ± 1)
,

α±n (x) := Zn(x ± 1)

Zn(x − 1)+Zn(x + 1)
, β±n (x) := Zn(x ± 1)

Zn(x)
,

Ỹ±n (x) :=
n∑

k=1

1{Xk−1=x±1,Xk=x}
1

Zk−1(x ± 1)
,

�Y±n (x) :=
n∑

k=1

1{Xk=x}
Zk(x)

α±k (x).

Since, for any fixedx ∈ Z, the sequencesZn(x), Yn(x), Y±n (x), Ỹ±n (x) and�Y±n (x)

are monotone nondecreasing inn, it makes sense to denote

Z∞(x) := lim
n→∞Zn(x), Z±∞(x) := lim

n→∞Z±n (x),

Y∞(x) := lim
n→∞Yn(x), Y±∞(x) := lim

n→∞Y±n (x),

Ỹ±∞(x) := lim
n→∞ Ỹ±n (x), �Y±∞(x) := lim

n→∞
�Y±n (x).

Let us define the probability events

ϒ(x) := {Y∞(x) <∞},
ϒ−(x) := {Y−∞(x) <∞}, ϒ+(x) := {Y+∞(x) <∞}.

Let us enumerate a few properties about these eventsϒ(x), x ∈ Z. First, for all
x ∈ Z, ϒ(x) coincides a.s. with the setϒ+(x) on which there are a small number
of visits fromx to x + 1 and, by symmetry, with the setϒ−(x). This property is
stated in the following lemma.

LEMMA 2.1. For all x ∈ Z,

ϒ(x)=ϒ+(x)=ϒ−(x).
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PROOF. Using the conditional Borel–Cantelli lemma [Lemma A.1(i)],

ϒ±(x)=
{ ∞∑

k=1

1{Xk−1=x,Xk=x±1}
1

Zk−1(x ± 1)
<∞

}

=
{ ∞∑

k=1

E

[
1{Xk−1=x,Xk=x±1}

Zk−1(x ± 1)

∣∣∣Fk−1

]
<∞

}

=
{ ∞∑

k=1

1{Xk−1=x}
1

Zk−1(x − 1)+Zk−1(x + 1)
<∞

}
=ϒ(x).

�

Second, there are at most two consecutive infinitely often visited sitesx ∈ Z on
whichϒ(x) holds, as implied by Lemma 2.2.

LEMMA 2.2. For all x ∈ Z,

ϒ(x − 1)∩ϒ(x + 1)= {Z∞(x) <∞}.
PROOF. Indeed, by Lemma 2.1,

ϒ(x − 1)∩ϒ(x + 1)

=ϒ+(x − 1)∩ϒ−(x + 1)

⊂
{

lnZ∞(x)≈
∞∑

k=1

1{Xk=x}
Zk−1(x)

= Y+∞(x − 1)+ Y−∞(x − 1) <∞
}

= {Z∞(x) <∞}.
The reverse inclusion is straightforward.�

Third, if ϒ(x) holds, we can give some information on the behavior of
α−n (x + 2) (since there are a small number of visits fromx to x + 1) as stated
in Corollary 3.1(ii). Note that the entire Corollary 3.1 is stated (and proved) in
Section 3.1.

COROLLARY 3.1(ii). For all x ∈ Z,

ϒ(x)⊂
{
∃α∓∞(x ± 2) := lim

n→∞α∓n (x ± 2) ∈ [0,1)

}
.

Fourth, we can claim a kind of propagation rule on seldom visited sites as given
by the following proposition.

PROPOSITION2.1. For all x ∈ Z,

ϒ(x)⊂ϒ(x + 1)∪ϒ(x + 4).
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This result is closely related to the dynamics inherent to the random walk. We
cannot directly use the methods of comparison with the dynamical system, since
there is no tool that gives a control on the behavior of the random walk on more
than a few vertices.

The heuristic of the proposition is that there is a kind of competition between
the numbers of visits to pointsx+ 1 andx+ 4. Its proof is divided into two cases.
If α−∞(x + 2) is positive, thenx + 4 loses, which implies thatϒ(x + 4) holds. On
the other hand, ifα−∞(x + 2) is equal to zero, thenx + 1 loses, which implies that
ϒ(x + 1) holds. These two results are implied, respectively, by Corollary 3.1(iii)
and Lemma 2.3:

COROLLARY 3.1(iii). For all x ∈ Z,

ϒ(x)∩ {α−∞(x + 2) > 0} ⊂ϒ(x + 4).

LEMMA 2.3. For all x ∈ Z,

ϒ(x)∩ {α−∞(x + 2)= 0} ⊂ϒ(x + 1).

Recall that Corollary 3.1 is proved in Section 3.1. Lemma 2.3 is equivalent to
the statement that the random set

ϒ0(x)=ϒ(x)∩ {α−∞(x + 2)= 0} ∩ϒ(x + 1)c

is of probability 0. Before proving this lemma, we prove in Lemma 2.4 (proved in
Section 3.3) thatϒ0(x) is a.s. a subset ofϒ ′0(x) (defined hereafter), on which we
have a rough control on the behavior of the random walk on sitesx to x+ 5. Then
Lemma 2.5 (stated hereafter and proved in Section 5.1) completes the proof.

Let e := exp(1). Let, for allx ∈ Z,

ϒ ′0(x)=
{
lim sup

Zn(x + 4)

Zn(x + 1)
≤ e

}
∩
{

lim sup
(

sup
k≥n

α−k (x + 2)

α−n (x + 2)

)
≤ 1
}

∩
{

lim
lnZn(x + 1)

lnZn(x + 2)
= lim

lnZn(x + 4)

lnZn(x + 2)
= 1
}

∩ {Z∞(x)=Z∞(x + 4)=∞}
∩
{

lim
Zn(x + 3)

Zn(x + 2)
= 1

}

∩
{

lim sup
Zn(x + 5)

Zn(x + 3)
≤ 1
}
∩
{

lim sup
Zn(x)

Zn(x + 2)
≤ 1
}
.

LEMMA 2.4. For all x ∈ Z, ϒ0(x)⊂ϒ ′0(x).
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LEMMA 2.5. For all x ∈ Z, P(ϒ0(x)∩ϒ ′0(x))= 0.

The case ofϒ0(x)∩ϒ ′0(x) considered in Lemma 2.5 corresponds to an unstable
set in the dynamical systems setting. To prove the nonconvergence to this set
without a complete control on the behavior of the empirical density of occupation,
we use a partial order on a certain class of random walks onZ and prove an
appropriate result in some unstable situations (Section 4).

Let us now go back to the description of seldom visited sites. Theorem 1.1
implies that there exists a.s. a leftmost infinitely visited sitex0. By definition,
Z∞(x0−1) <∞, which implies thatϒ(x0−1) andϒ(x0)=ϒ−(x0) hold (using
Lemma 2.1). Accordingly, Proposition 2.1 and Lemma 2.2 lead us to a pavement
of the set of infinitely often visited vertices (which is connected) by sites on which
ϒ(x) holds.

More precisely, let us denote, for any finite sequence(xi)1≤i≤n taking values
in Z, the event

ϒ
(
(xi)1≤i≤n

)= ⋂
1≤i≤n

ϒ(xi).

Let us define the events

�(x)= {x = inf R′},
�0(x)=�(x) ∩ {Z∞(x + 5) <∞},
�1(x)=ϒ(x, x + 4, x + 8)∩ {Z∞(x + 1)= Z∞(x + 7)=∞},
�2(x)=ϒ(x − 1, x, x + 4, x + 5, x + 9, x + 10)

∩ {Z∞(x + 1)= Z∞(x + 8)=∞}.
We can state the following lemma.

LEMMA 2.6. For all x ∈ Z,

�(x)⊂�0(x)∪�1(x)∪�1(x + 5)∪�2(x).

PROOF. First, for ally ∈ Z,

ϒ(y − 1, y)∩ {Z∞(y)=∞}⊂ϒ(y + 4),(4)

since, by Proposition 2.1,

ϒ(y)⊂ϒ(y + 1)∪ϒ(y + 4)
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and, by Lemma 2.2,

ϒ(y − 1)∩ϒ(y + 1)⊂ {Z∞(y) <∞}.
This implies

�(x) ∩�0(x)c

⊂ϒ(x − 1, x)∩ {Z∞(x)=Z∞(x + 5)=∞}
⊂ϒ(x − 1, x, x + 4)∩ {Z∞(x)=Z∞(x + 5)=∞}
⊂ (ϒ(x − 1, x, x + 4, x + 5)∪ϒ(x, x + 4, x + 8)

)
∩ {Z∞(x)=Z∞(x + 7)=∞},

where we use (4) withy := x in the second inclusion and use Proposition 2.1 with
x := x + 4 in the third inclusion [Z∞(x + 7)=∞ follows from the convergence
of α−n (x + 6) onϒ(x + 4), by Corollary 3.1(ii), together withZ∞(x + 5)=∞].

Now

ϒ(x − 1, x, x + 4, x + 5)∩ {Z∞(x + 5)=∞}
⊂ϒ(x − 1, x, x + 4, x + 5, x + 9)

⊂ϒ(x − 1, x, x + 4, x + 5, x + 9, x + 10)

∪ϒ(x − 1, x, x + 4, x + 5, x + 9, x + 13),

where we use (4) withy := x+5 in the first inclusion and use Proposition 2.1 with
x := x + 9 in the second inclusion.

Putting together these two equations, we obtain

�(x)∩�0(x)c ∩�1(x)c

⊂ϒ(x − 1, x, x + 4)∩ {Z∞(x + 1)=Z∞(x + 7)=∞}
∩ (ϒ(x + 5, x + 9, x + 10)∪ϒ(x + 5, x + 9, x + 13)

)
⊂�2(x)∪�1(x + 5),

where we note in the second inclusion thatZ∞(x + 8)=∞ if ϒ(x + 8) does not
hold and, similarly,Z∞(x + 10)=Z∞(x + 12)=∞ [sinceα−∞(x + 11) ∈ [0,1)]
onϒ(x + 9) if ϒ(x + 10) does not hold. �

Now, for all x ∈ Z, �1(x) and�2(x) are of probability 0, as stated in Lemmas
2.7 and 2.8. These results complete the proof of the conjecture.

LEMMA 2.7. For all x ∈ Z, P(�1(x))= 0.

LEMMA 2.8. For all x ∈ Z, P(�2(x))= 0.
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Let us explain in a few words the proofs of these lemmas. Lemma 2.7 relies on
the fact that there is a kind of competition between the numbers of visits to points
x + 1, x + 2 andx + 3 on the left-hand side ofx + 4, andx + 5, x + 6 andx + 7
on the right-hand side ofx + 4. We first prove the following lemma.

LEMMA 2.9. For all x ∈ Z, �1(x)⊂ {lim Zn(x + 6)/Zn(x + 2)= 1}.

The heuristic of Lemma 2.9 is that ifZn(x + 6)/Zn(x + 2) did not converge
to 1, then it would converge to 0 or to∞, and that these convergences would be so
fast thatZ∞(x+ 6) <∞ in the first case andZ∞(x + 2) <∞ in the second case.

The proof of Lemma 2.7 therefore reduces to the study of the unstable case
Zn(x + 6)/Zn(x + 2)→ 1. The methods used for this proof in Section 5.2 rely,
similarly as in the proof of Lemma 2.5, on the tools introduced in Section 4.

The proof of Lemma 2.8 has roughly the same heuristic as Lemma 2.7, but
we have to face the problem explained at the beginning of this section, that is,
we have to discriminate between the case{α−∞(x + 7) > α−∞(x + 2)}, where the
random walk regularly visits the set{x, . . . , x + 9}, and the case{α−∞(x + 7) ≤
α−∞(x + 2)}, where the random walk eventually gets stuck in a strict subset [i.e.,
Z∞(x + 4) <∞ or Z∞(x + 5) <∞]. This study corresponds to Lemma 2.10,
stated subsequently and proved in Section 3.5.

LEMMA 2.10. For all x ∈ Z,

�2(x)⊂ {α−∞(x + 7) > α−∞(x + 2)}.

Next, we prove in Lemma 2.11 thatZn(x+7)/Zn(x+2)→ 1 on�2(x) and we
finish the proof of Lemma 2.8 in Section 5.3, using again the methods introduced
in Section 4.

LEMMA 2.11. For all x ∈ Z, �2(x)⊂ {lim Zn(x + 7)/Zn(x + 2)= 1}.

2.3. Outline of contents. Section 3 gives some preliminary results, based on
martingales techniques. This section is divided into six parts. In Section 3.1, we
prove results related to the Pólya and Friedman urn models. In Section 3.2 we give
a comparison tool (Lemma 3.1) and prove an estimate that gives conditions for a
site to be finitely often visited (Lemma 3.2). Finally, we deduce Lemmas 2.4, 2.9,
2.10 and 2.11, respectively, in Sections 3.3, 3.4, 3.5 and 3.6. In Section 4, we prove
a result of nonconvergence in unstable situations, using a partial order on a certain
class of random walks onZ. This result is useful to the proofs of Lemmas 2.5, 2.7
and 2.8. In Section 5, we apply this result to the proofs of Lemmas 2.5, 2.7 and
2.8 (resp. in Sections 5.1, 5.2 and 5.3). In the Appendix, we state some general
martingale results and, in particular, recall a generalized version of the conditional
Borel–Cantelli lemma.
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3. Preliminary results.

3.1. Martingale results. The following Proposition 3.1 and its Corollaries
3.1 and 3.2 provide us with some local properties of the VRRW, relating the
quantitiesYn(x), Y±n (x), Ỹ±n (x) and�Y±n (x) defined in Section 2.2. These results
enable us to describe the behavior of the random walk on the first few points
following x when one event likeϒ0(x), �1(x) or �2(x) holds.

Let us focus on the two key properties of this part, namely Proposition 3.1(a)
and Corollary 3.2(i), which are related to the Pólya and Friedman urn models.
Note that a detailed survey on the relationships between these urn models and
reinforcement processes can be found in [9].

Proposition 3.1(a) can be explained by studying first the case of a VRRW on
three consecutive points{x − 1, x, x + 1}. Under this assumption, the walk is half
of the time in sitesx − 1 or x + 1, and comes back tox at the next step; the other
half of the time, the walk is in sitex and moves tox±1 with a probability equal to
the number of timesx ± 1 has been visited up through timen divided by the total
number of visits tox − 1 andx + 1 [with the convention that the sitesx ± 1 have
been visitedZ0(x ± 1) at time 0].

This construction is equivalent to a Pólya urn model with two colorsx − 1 and
x + 1, with Zn(x − 1) andZn(x + 1) balls of colorsx − 1 andx + 1 at timen.
Indeed, this corresponds to the process of picking, half of the time, a ball at random
in the urn and replacing it with a ball of the same color.

A classical result claims that the proportion of balls of colorx − 1 converges
toward a randomα ∈ (0,1). The random variableα has a beta distribution of
parametersZ0(x − 1) andZ0(x + 1) (see, e.g., [5], Vol. 2, Chapter VII), but this
result is difficult to use in our context, where, in the general case, we have to
deal with visits fromx + 2 to x + 1 and fromx − 2 to x − 1. Observe that this
convergence can be proved by Proposition 3.1(a). Indeed, it implies thatY+n (x)−
Y−n (x) converges, and we deduce from the convergence ofY±n (x)− lnZn(x ± 1)

(approximation of log by the harmonic series) that ln(Zn(x + 1)/Zn(x − 1))

converges.
Let us now return to the study of the VRRW onZ. The equivalence between

the weighted numbers of visits fromx to x + 1 and fromx to x − 1, Y+n (x) and
Y−n (x), claimed in Proposition 3.1(a), enables us to estimate in Corollary 3.1(i) the
variation of lnZn(x + 1)/Zn(x − 1), with respect toY−n (x + 2) andY+n (x − 2).
Corollary 3.1(ii)–(iv) is a direct consequence of this claim.

Let us now explain the heuristic of Corollary 3.2(i). Let us consider the case
where, givenx ∈ Z, the event

R′ = {x − 2, x − 1, x, x + 1, x + 2}
holds. Thenϒ−(x − 2) = ϒ(x − 2) and ϒ(x + 2) hold. This implies by
Corollary 3.1(ii) thatα−n (x) converges toα−∞(x) ∈ (0,1) (see also Remark 3.1).
Let us study the behavior of the random walk on the border pointx − 2.
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Let us denote bytn the nth visit time to sitex − 1. We again observe an urn
model with two colorsx − 2 andx, Ztn(x − 2) andZtn(x) being the numbers of
balls of colorx− 2 andx at thenth iteration. Indeed, at timetn, we move tox− 2
with probabilityα−tn (x−1); this operation is equivalent to picking a ball at random
in the urn, and similarly forx. Now, if we move tox−2, we come back tox−1 at
the next step (unless we move tox − 3, which occurs only finitely often). On the
other hand, if we move tox, the expected number of visits tox before returning
to x − 1 is on the order of 1/α−∞(x) [expectation of a geometric random variable
with success probabilityα−∞(x)].

In the urn model, this means that if we pick a ball of colorx − 2, we
replace it with a ball of the same color, and that if we pick a ball of colorx,
we replace it, on average, by 1/α−∞(x) balls of colorx. This corresponds to a
generalized Pólya–Friedman urn model (see, e.g., [9]), and a classical result claims
that this impliesZtn(x) ≈ Ztn(x − 2)1/α−∞(x). We obtain the same conclusion by
Corollary 3.2(i) and (iv):

lnZn(x − 2)≡ �Y−n (x)≡
n∑

k=1

1{Xk=x}
Zk(x)

α−k (x)≡ α−∞(x) lnZn(x).

This gives an intuition for this Corollary 3.2, which is needed here instead
of generalized Pólya–Friedman urn results since the corresponding martingale
technique is more adaptable to the case of visits fromx − 3 to x − 2.

Note that these methods provide the asymptotic behavior of the VRRW onZ,
conditional on the event that we eventually get stuck on five points. Indeed, we
obtain that events 2–6 (defined in Section 1) hold, conditional on to event 1.
Another proof of this result was given by Bienvenüe in his Ph.D. dissertation [3],
using ideas related to the construction of continuous reinforced random walks
(see [10]).

PROPOSITION3.1. For all x ∈ Z andν < 1/2,

(a) Y±n (x)
.= Yn(x)+ o(Zn(x ± 1)−ν),

(b) lnZn(x)
.= Y+n (x − 1)+ Y−n (x + 1)+O(Zn(x)−1),

(c) Y±n (x)
.= Ỹ±n (x) − 1{±Xn≤±x}/(Zn−1(x ± 1))

.= �Y∓n (x ± 1) + o(Zn(x ±
1)−ν).

PROOF. Let us first prove statement (a). Givenν0 < 1/2, we apply
Lemma A.1(iii) with


k = {Xk−1= x,Xk = x ± 1}, ξk = 1/Zk(x ± 1), βk = Zk(x ± 1)2ν0,

to conclude that

Y±n (x)− Yn(x)
.=O

(
Zn(x ± 1)−ν0

)
.(5)
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Indeed, using the notation of this lemma,
∞∑

k=0

βkδk =
∞∑

k=0

α−k (x)α+k (x)
1{Xk=x}

Zk(x ± 1)2(1−ν0)

≤
∞∑

k=0

α±k (x)
1{Xk=x}

Zk(x ± 1)2(1−ν0)
≈
∞∑

k=0

1{Xk=x,Xk+1=x±1}
Zk(x ± 1)2(1−ν0)

<∞,

the last equivalence being a consequence of the conditional Borel–Cantelli lemma,
Lemma A.1(i). Therefore, the conditions of Lemma A.1(iii) are statisfied and (5)
holds.

Statement (a) follows directly ifZ∞(x ± 1) = ∞, by choosingν0 > ν.
Otherwise, by Lemma A.1(i),Y∞(x) � Y±∞(x) <∞, which also enables us to
conclude (a).

Statement (b) follows from

Y+n (x − 1)+ Y−n (x + 1)=
n∑

k=1

1{Xk=x}
Zk−1(x)

=
Zn(x)−1∑

j=1+1{X0=x}

1

j

= lnZn(x)+Cst(x, v0)+�
(
Zn(x)−1)

whenZn(x)≥Cst.
Let us now prove statement (c) forY+n (x); the proof forY−n (x) is similar. For

all n ∈N∗, let un (resp.vn) be the time of thenth visit fromx to x + 1 (resp. from
x + 1 to x), that is,

un = inf{k ∈N∗/Z+k (x)= n}, vn = inf{k ∈N∗/Z−k (x + 1)= n}.
Recall that the number of visitsZ±k (x) from x to x ± 1 at timek is defined in
Section 2.1.

Assume, for instance,v1 < u1 (the other case is similar). Then, for alln ∈ N∗,
un < vn+1 < un+1 (with the convention that∞ < ∞) and Zvn−1(x + 1) =
Zun−1(x + 1). Therefore,

Y+un
(x)− Y+u1

(x)=
un∑

k=u1+1

1{Xk−1=x,Xk=x+1}
1

Zk−1(x + 1)

=
n∑

j=2

1

Zuj−1(x + 1)

=
n∑

j=2

1

Zvj−1(x + 1)
=

vn∑
k=v2

1{Xk−1=x+1,Xk=x}
1

Zk−1(x + 1)

=
un∑

k=u1+1

1{Xk−1=x+1,Xk=x}
1

Zk−1(x + 1)
= Ỹ+un

(x)− Ỹ+u1
(x).
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This gives the first equivalence of (c) whenun <∞ for all n ∈ N∗. Otherwise,
Y+k (x) − Ỹ+k (x) is constant for large enoughk ∈ N, which also gives the
equivalence.

Let us prove the second equivalence of (c). IfZ∞(x ± 1) <∞, then�Y±∞(x)�
Ỹ±∞(x) <∞ by Lemma A.1(i), which enables us to conclude. Otherwise, apply
Lemma A.1(iii) and use its notation, with


k = {Xk−1= x ± 1,Xk = x}, ξk = 1/Zk(x ± 1), βk =Zk(x ± 1)2ν,

where we note that
∞∑

k=0

βkδk ≤
∞∑

k=0

1{Xk=x±1}
Zk(x ± 1)2(1−ν)

<∞.
�

COROLLARY 3.1. For all x ∈ Z andν < 1/2:

(i) ln(Zn(x − 1))/(Zn(x + 1))
.= Y+n (x−2)−Y−n (x+2)+o(Zn(x−1)−ν)+

o(Zn(x + 1)−ν);
(ii) ϒ(x)⊂ {∃α∓∞(x ± 2) := limn→∞ α∓n (x ± 2) ∈ [0,1)};
(iii) ϒ(x)∩ {α∓∞(x ± 2) > 0} ⊂ϒ(x ± 4);
(iv) ϒ(x)⊂ {∃β∓∞(x ± 2) := limn→∞ β∓n (x ± 2) ∈ [0,∞)};
(v) ϒ(x)∩ {Z∞(x ± 2)=∞}⊂ {β∓∞(x ± 2)= α∓∞(x ± 2)}.

REMARK 3.1. Corollary 3.1 implies that a.s. onϒ(x, x + 4), α±n (x + 2)

[resp.β±n (x + 2)] converges toα±∞(x + 2) ∈ (0,1) [resp.β±∞(x + 2) > 0] and
thatβ±∞(x+ 2)= α±∞(x+ 2) if, moreover,Z∞(x + 2)=∞. This follows from an
application of statements (ii) and (iv)–(v) successively tox with − instead of∓
and tox + 4 with+ instead of∓, and fromα+∞(x + 2)+ α−∞(x + 2)= 1.

PROOF OFCOROLLARY 3.1. It follows from statement (b) of Proposition 3.1,
applied tox − 1 andx + 1 that, for allν < 1/2,

Y−n (x)
.= lnZn(x − 1)− Y+n (x − 2)+ o

(
Zn(x − 1)−ν),

Y+n (x)
.= lnZn(x + 1)− Y−n (x + 2)+ o

(
Zn(x + 1)−ν).

These equivalences remain true in the casesZ∞(x−1) <∞ andZ∞(x+1) <∞.
It also follows from statement (a) of the proposition that, for allν < 1/2,

Y−n (x)
.= Y+n (x)+ o

(
Zn(x − 1)−ν

)+ o
(
Zn(x + 1)−ν

)
,

which completes the proof of (i). Let us now prove (ii) and (iii) forα−n (x+ 2); the
case ofα+n (x + 2) is similar. Apply (i) forx + 2: Onϒ(x),

ln
Zn(x + 1)

Zn(x + 3)
≡ Y+n (x)− Y−n (x + 4)≡−Y−n (x + 4)

andY−n (x + 4) is nondecreasing inn, which completes the proof.
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Let us now prove (iv) and (v) forβ−n (x+ 2); the proof forβ+n (x− 2) is similar.
Assume thatϒ(x) holds: By statements (a) (applied tox + 2) and (b) (applied
to x + 1) of the proposition,

lnZn(x + 1)≡ Y+n (x)+ Y−n (x + 2)

≡ Y−n (x + 2)≡ Yn(x + 2)=
n−1∑
k=0

1{Xk=x+2}
Zk(x + 2)

α−k (x + 2)

β−k (x + 2)
,

and, therefore,

lnβ−n (x + 2)= ln
Zn(x + 1)

Zn(x + 2)
≡

n−1∑
k=0

1{Xk=x+2}
Zk(x + 2)

(
α−k (x + 2)

β−k (x + 2)
− 1
)
.(6)

Now,Zk(x+2)≤ Zk(x+1)+Zk(x+3) impliesα−k (x+2)≤ β−k (x+2). Hence
the right-hand side of the equation is nonincreasing inn, which implies (iv). Let us
further assume thatZ∞(x+ 2)=∞. If β−∞(x + 2) > 0 andβ−∞(x+ 2) �= α−∞(x+
2), thenα−k (x + 2)/β−k (x + 2) − 1 converges to a negative real and (6) implies
lnβ−∞(x + 2) = −∞, so thatβ−∞(x + 2)= 0, which leads to a contradiction. If
β−∞(x+2)= 0, thenα−∞(x+2)≤ β−∞(x+2)= 0. This completes the proof of (v).

�

COROLLARY 3.2. For all x ∈ Z, γ ∈ (0,1) andν < 1/2:

(i) ϒ(x − 1)⊂ {lnZn(x)≡ Y−n (x + 1)
.= �Y−n (x + 2)+ o(Zn(x)−ν)};

(ii) ϒ(x−1)∩{lim supα−n (x+2)≤ γ } ⊂ϒ(x−1)∩{ln Zn(x)� γ lnZn(x+
2)} ⊂ϒ(x − 1, x);

(iii) {lim inf α−n (x + 2)≥ γ } ⊂ {lnZn(x)� γ lnZn(x + 2)};
(iv) ϒ(x−1, x, x+4, x+5)⊂ {∃ δ > 0/α−n (x+2)−α−∞(x+2)= o(Zn(x+

2)−δ)} ∩ {lnZn(x)≡ α−∞(x + 2) lnZn(x + 2)≡ α−n (x + 2) lnZn(x + 2)}.

PROOF. Let us first prove (i). Assume thatϒ(x − 1) holds and apply
Proposition 3.1(a), (b) and (c): For allν < 1/2,

lnZn(x)≡ Y−n (x + 1)
.= Y+n (x + 1)+ o

(
Zn(x)−ν

)+ o
(
Zn(x + 2)−ν

)
.= �Y−n (x + 2)+ o

(
Zn(x)−ν

)+ o
(
Zn(x + 2)−ν

)
(7)

.= �Y−n (x + 2)+ o
(
Zn(x)−ν

)
,

where we use in the last equation thatα−n (x + 1) converges toα−∞(x + 1) ∈ [0,1)

by Corollary 3.1(ii) and, therefore, thato(Zn(x + 2)−ν) is upper bounded by
o(Zn(x)−ν). The first inclusion of statement (ii) and statement (iii) follow directly.

Let us prove the second part of (ii). Assumeϒ(x−1)∩{lnZn(x)� γ lnZn(x+
2)} holds. We prove the stronger statement that there existsδ > 0 such that (8)
holds, which completes the proof by Lemma 2.1 [ϒ(x) = ϒ+(x)] and also is
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useful in the proof of (iv). IfZ∞(x+1) <∞, thenY+∞(x) <∞, which proves the
statement. Otherwise, for allε > 0, for sufficiently largek ∈N, usingZk(x+1)≤
Zk(x)+Zk(x + 2),

α−k (x + 1)= Zk(x)

Zk(x)+Zk(x + 2)

= o
((

Zk(x)+Zk(x + 2)
)γ+ε−1)= o

(
Zk(x + 1)γ+ε−1),

which implies, for allδ < min(1/2,1− γ ) and ε < 1− γ − δ, using Proposi-
tion 3.1(c),

Y+n (x)
.= �Y−n (x + 1)+ o

(
Zn(x + 1)−δ

)
=

∞∑
k=n

1{Xk=x+1}
Zk(x + 1)

α−k (x + 1)+ o
(
Zn(x + 1)−δ)(8)

.= o
(
Zn(x + 1)γ+ε−1)+ o

(
Zn(x + 1)−δ) .= o

(
Zn(x + 1)−δ).

Note that, conversely, (8) always holds onϒ(x − 1, x) for all δ < α+∞(x + 2)∧
1/2, since lim supα−n (x + 2)= α−∞(x + 2) < 1 onϒ(x) by Corollary 3.1(ii).

Let us now assume thatϒ(x − 1, x, x + 4, x + 5) holds and prove (iv).
First observe that bothα−∞(x + 2) and α+∞(x + 2) are strictly positive, using
Remark 3.1. For allδ < α+∞(x + 2) ∧ 1/2, Y+n (x)

.= o(Zn(x + 1)−δ) by (8), and
for all δ < α−∞(x + 2)∧ 1/2 symmetrically (with respect tox + 2), Y−n (x + 4)

.=
o(Zn(x + 3)−δ).

Accordingly, using Corollary 3.1(i) withx := x+2, there existsδ > 0 such that

ln
Zn(x + 1)

Zn(x + 3)

.= Y+n (x)− Y−n (x + 4)+ o
(
Zn(x + 1)−δ)+ o

(
Zn(x + 3)−δ)

(9)
.= o
(
Zn(x + 1)−δ

)+ o
(
Zn(x + 3)−δ

)= o
(
Zn(x + 2)−δ

)
,

where the last equality uses the observation thato(Zn(x + 1)−δ) ando(Zn(x +
3)−δ) are upper bounded byo(Zn(x + 2)−δ), sinceβ±∞(x + 2)= α±∞(x + 2) > 0
by Remark 3.1.

Equation (9) implies

α−n (x + 2)− α−∞(x + 2)= o
(
Zn(x + 2)−δ

)
.

Using (7), we deduce that

lnZn(x)≡ �Y−n (x + 2)=
n∑

k=1

1{Xk=x+2}
Zk(x + 2)

α−k (x + 2)≡ α−∞(x + 2) lnZn(x + 2).

�
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3.2. Comparison results.The following lemma considers the case of a
sequenceun repelled bya on its right-hand side, where the repulsion depends
on a functionf of un and on another sequencevn. It yields, whenun does not
asymptotically remain in(−∞, a], an estimate ofun asn goes off to infinity.

LEMMA 3.1. Letf :R→R be a nondecreasing function, positive on(a,∞),
and let (un)n∈N and (vn)n∈N be sequences that take values, respectively, in
R andR+. Then{

un �
un≥a

n−1∑
k=0

f (uk)vk

}
∩
{

lim sup
n→∞

un > a

}
⊂
{

lim inf
n→∞

un − a

1+∑n−1
k=0 vn

> 0
}
.

PROOF. Assume thatun�un≥a

∑n−1
k=0 f (uk)vk and lim supn→∞ un > a. Let

ε > 0 be such that lim supun ≥ a + 3ε (ε exists by the second assumption). The
first assumption implies there existsk0 ∈N such that, for alln > k ≥ k0, if um ≥ a

for all m ∈ [k,n],

un ≥ uk + (1+ ε)−1

(
n−1∑
j=k

f (uj )vj

)
− ε.(10)

By definition, there existsk1 ≥ k0 such thatuk1 ≥ a + 2ε. We easily prove by
induction, using (10) withk := k1 that, for alln≥ k1, un ≥ a + ε. It follows from
this claim that, for alln > k1,

un− a ≥ ε+ (1+ ε)−1f (a + ε)

n−1∑
j=k1

vj

≥min
(
ε, (1+ ε)−1f (a + ε)

)(
1+

n−1∑
j=k1

vj

)
,

which enables us to conclude the proof.�

The comparison result stated in Lemma 3.2 gives us a tool which allows us
to estimate the behavior ofZn(x + 6)/Zn(x + 2) [resp.Zn(x + 7)/Zn(x + 2)]
on �1(x) [resp. on�2(x)]. In particular, part (ii), which provides a sufficient
condition for a site to be visited finitely often, implies on�1(x) that if Zn(x +
6)/Zn(x + 2) does not converge to 1, then eitherx + 3 or x + 5 will be visited
finitely often [and a similar result on�2(x)], which allows us to conclude that it is
a.s. impossible. The assumption thatA(x) holds is technical and easy to check in
the cases of application.

LEMMA 3.2. For all x ∈ Z, define the stopping time

Tn(x)= inf{m≥ n/Xm = x}
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and the event

A(x)=ϒ(x)∩
{
∃ δ > 0

/ Zn(x − 2)

Zn(x − 1)Zn(x)
= o

(
min

(
Zn(x − 1)−δ,Zn(x)−δ

))
,

sup
n∈N

Zn(x − 2)

Zn(x − 1)+Zn(x + 1)
<∞,

ZTn(x)(x − 2)

Zn(x − 2)
− 1= o

(
Zn(x − 2)−δ

)}
.

Then

(i) A(x)⊂
{

lnZn(x − 1)≡
n−1∑
k=0

1{Xk=x}
Zk(x)

Zk(x − 2)

Zk(x − 1)+Zk(x + 1)

}
,

(ii) A(x)∩
{
lim sup

lnZn(x − 2)

lnZn(x + 1)
< 1
}
⊂ {Z∞(x − 1) <∞}.

PROOF. Assume thatA(x) holds. Let us prove that

lnZn(x − 1)≡
n∑

k=1

1{Xk−1=x−1}
Zk−1(x − 1)

≡
n∑

k=1

1{Xk−1=x−1,Xk=x}
Zk−1(x − 1)

Zk−1(x − 2)+Zk−1(x)

Zk−1(x)

≡
n∑

k=1

1{Xk−1=x−1,Xk=x}
Zk−1(x − 1)

Zk−1(x − 2)

Zk−1(x)

≡
n∑

k=1

1{Xk−1=x,Xk=x−1}
Zk−1(x)

Zk−1(x − 2)

Zk−1(x − 1)

≡
n∑

k=1

1{Xk−1=x}
Zk−1(x)

Zk−1(x − 2)

Zk−1(x − 1)+Zk−1(x + 1)
.

Indeed, the second equivalence follows from Theorem A.1(i), with

Mn =
n∑

k=1

1{Xk−1=x−1,Xk=x}
Zk−1(x − 1)

Zk−1(x − 2)+Zk−1(x)

Zk−1(x)
−

n∑
k=1

1{Xk−1=x−1}
Zk−1(x − 1)

.

Indeed,(Mn)n∈N∗ is a square integrable martingale and

〈M〉∞ ≤
∞∑

k=1

1{Xk−1=x−1}
Zk−1(x − 1)2

Zk−1(x − 2)+Zk−1(x)

Zk−1(x)

≤
∞∑

k=1

1{Xk−1=x−1}
Zk−1(x − 1)2

+
∞∑

k=1

1{Xk−1=x−1}
Zk−1(x − 1)

Zk−1(x − 2)

Zk−1(x − 1)Zk−1(x)
<∞,
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since A(x) holds. The third equivalence follows from the fact thatϒ(x) =
{Ỹ−∞(x) <∞} (by Proposition 3.1) holds. The fourth equivalence follows from
an argument similar to the proof of Proposition 3.1(c), using the assumption

ZTn(x)(x − 2)

Zn(x − 2)
− 1= o

(
Zn(x − 2)−δ

)
,

and observing that, by Lemma A.1(i), for allδ > 0, if A(x) holds,

n∑
k=1

1{Xk−1=x,Xk=x−1}
Zk−1(x)

Zk−1(x − 2)1−δ

Zk−1(x − 1)

�
n∑

k=1

1{Xk−1=x}
Zk−1(x)

Zk−1(x − 2)1−δ

Zk−1(x − 1)+Zk−1(x + 1)

�
n∑

k=1

1{Xk−1=x}
Zk−1(x)1+δ

(
Zk−1(x − 2)

Zk−1(x − 1)+Zk−1(x + 1)

)1−δ

<∞,

where the second part of the equation follows fromZk−1(x) ≤ Zk−1(x − 1) +
Zk−1(x + 1).

To prove the fifth equivalence, we observe that the process

Rn =
n∑

k=1

1{Xk−1=x,Xk=x−1}
Zk−1(x)

Zk−1(x − 2)

Zk−1(x − 1)

−
n∑

k=1

1{Xk−1=x}
Zk−1(x)

Zk−1(x − 2)

Zk−1(x − 1)+Zk−1(x + 1)

is a martingale and that

〈R〉∞ ≤
∞∑

k=1

1{Xk−1=x}α−k−1(x)

Zk−1(x)2

Zk−1(x − 2)2

Zk−1(x − 1)2

≤
∞∑

k=1

1{Xk−1=x}
Zk−1(x)

Zk−1(x − 2)

Zk−1(x)Zk−1(x − 1)

Zk−1(x − 2)

Zk−1(x − 1)+Zk−1(x + 1)
<∞

if A(x) holds, and we conclude by Theorem A.1(i). Statement (ii) is a direct
consequence of (i).�

3.3. Proof of Lemma2.4: ϒ0(x) ⊂ ϒ ′0(x). We supposex := 0 for simplicity
(the problem is translation-invariant, since the initial pointv0 of the VRRW is
arbitrary). The inclusion

ϒ0(0)⊂
{

lim sup
(

sup
k≥n

α−k (2)/α−n (2)

)
≤ 1
}
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follows directly from Corollary 3.1(i) applied to site 2, that is,

ln
Zn(1)

Zn(3)
≡ Y+n (0)− Y−n (4)≡−Y−n (4).

We first prove the inclusion

ϒ0(0)⊂ {lim supZn(4)/Zn(1)≤ e}.(11)

Let us assume thatϒ0(0) holds. It follows from Corollary 3.1(iv)–(v) that
β−n (2)→ 0. Fixε > 0 andk0 ∈N, and assume that for alln≥ k0, β−n (2)≤ ε (ε > 0
is chosen in the proof ). Letµ > e and assume, givenp ≥ k0, thatZp(4)≥ µZp(1).
Let (Hn) denote the property

∀ k ∈ [p,n], Zk(4)

Zk(2)
≥ β−p (2)= Zp(1)

Zp(2)
(Hn).

We prove that ifp has been chosen large enough, then for alln ≥ p, (Hn+1)

holds when(Hn) holds. This implies that(Hn) holds for alln≥ p and, therefore,
that lim supα−n (3) < 1, and subsequently by Corollary 3.2(ii) thatϒ(1) holds,
which leads to a contradiction by definition ofϒ0(0).

Let

α̃+p =
β−p (2)

1+ β−p (2)
≥ (1+ ε)−1β−p (2).

This proof is based on the following two inequalities, obtained on one hand by
Corollary 3.1(i) (applied tox := 3) and Proposition 3.1(c) [Y+n (1)≡ �Y−n (2)] and
on the other hand by Corollary 3.2(i) applied to site 1: Ifp has been chosen large
enough, then for alln≥ p,

ln
Zn(4)

Zn(2)
≥ ln

Zp(4)

Zp(2)
− (�Y−n (2)− �Y−p (2)

)− ε,(12)

lnZn(1)≤ lnZp(1)+ �Y−n (3)− �Y−p (3)+ ε.(13)

Recall that

�Y−n (3)− �Y−p (3)=
n∑

j=p+1

1{Xj=3}
Zj (3)

α−j (3).

We use the following heuristic: As long as(Hn) holds, α−n (3) remains far
enough from 1, which implies by (13) thatZn(1) grows slowly in comparison
with Zn(3), which implies that�Y−n (2)− �Y−p (2) remains small, and subsequently
by (12) thatα−n (3) remains far enough from 1.

If (Hn) holds, then for allj ∈ [p,n], α−j (3)≤ 1− α̃+p , which implies

�Y−j (3)− �Y−p (3)≤ (1− α̃+p ) ln
Zj (3)

Zp(3)
+ ε,
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which implies by (13)

Zj (1)

Zp(1)
≤ e2ε

(
Zj (3)

Zp(3)

)1−α̃+p
,

and, therefore,

α−j (2)= Zj (1)

Zj (1)+Zj (3)

≤ e2ε Zp(1)

Zp(3)1−α̃+p

1

(Zj (1)+Zj (3))α̃
+
p

≤ e2ε Zp(1)

Zp(3)1−α̃+p

1

Zj (2)α̃
+
p

,

where we useZj (2)≤ Zj (1)+Zj (3) in the second inequality. This implies

�Y−n (2)− �Y−p (2)≤ e2ε Zp(1)

Zp(3)1−α̃
+
p

n∑
j=p+1

1{Xj=2}
Zj (2)1+α̃

+
p

≤ e3ε Zp(1)

Zp(3)1−α̃+p

1

α̃+p
1

Zp(2)α̃
+
p

≤ e4ε

α̃+p
Zp(1)

Zp(2)
= e4ε

β−p (2)

α̃+p
≤ (1+ ε)e4ε,

where the third inequality follows fromZp(2) ≤ Zp(1) + Zp(3) ≤ eεZp(3) for
large enoughp [recall thatα−n (2)→ 0]. Therefore, using (12),

Zn+1(4)

Zn+1(2)
≥ Zp(4)

Zp(2)
exp
(−ε− (1+ ε)e4ε

)≥ Zp(1)

Zp(2)

if ε < Cst(µ), which completes the proof of (11).
The fact that limZn(3)/Zn(2) = 1 a.s. onϒ0(0) follows from (11) and

α−∞(2)= 0, usingZn(2)≤ Zn(1)+Zn(3), andZn(3)≤ Zn(2)+Zn(4).
Corollary 3.2(ii) and (iii) implies on one hand

ϒ0(0)⊂ϒ(0)∩ {lim α−n (3)= 1} ⊂
{
lim

lnZn(1)

lnZn(2)
= 1
}

(14)

and on the other hand

ϒ0(0)⊂ {lim inf α+n (2)= 1} ⊂
{

lim inf
lnZn(4)

lnZn(2)
= 1
}
,(15)

which gives the third part of the inclusion.
Let us now prove that the lim sup ofZn(5)/Zn(3) is less than or equal to 1.

Assumeϒ0(0) holds. Let

un = ln
Zn(5)

Zn(3)
.
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By Corollary 3.1(i),

un = ln
Zn(5)

Zn(3)
≡ Y−n (6)− Y+n (2).

For alla > 0, using Proposition 3.1(c) and the result given by (11),

Y−n (6)≡ Ỹ−n (6)=
n∑

k=1

1{Xk−1=5,Xk=6}
Zk−1(5)

�
un≥a

n∑
k=1

1{Xk−1=5,Xk=6}
Zk−1(6)

(16)
= Y+n (5)≡ �Y+n (4).

The� inequality comes fromZn(6) ≥ Zn(5)− Zn(4)�un≥0Zn(5), sinceZn(4)/

Zn(5)= e−unZn(4)/Zn(3)→un≥0 0, as a consequence of (11) andα−∞(2)= 0.
We prove similarly thatY+n (2)�un≥a

�Y−n (4), which implies, together with (16),

un �
un≥a

�Y+n (4)− �Y−n (4)=
n∑

k=1

1{Xn=4}
Zn(4)

Zn(5)−Zn(3)

Zn(3)+Zn(5)

≡
n−1∑
k=0

1{Xn=4}
Zn(4)

Zn(5)−Zn(3)

Zn(3)+Zn(5)
.

Let us apply Lemma 3.1 withf (x)= 1− e−x and

vn = 1{Xn=4}
Zn(4)

Zn(5)

Zn(3)+Zn(5)
≥

un≥0

1{Xn=4}
2Zn(4)

.

Note that
∑n−1

k=0 vk �un≥0 lnZn(4)/2.
Using (15), we obtain that for alla > 0, lim supun > a implies

lim inf
lnZn(5)

lnZn(4)
= lim inf

lnZn(5)

lnZn(3)
= 1+ lim inf

ln(Zn(5)/Zn(3))

lnZn(4)
> 1

and, accordingly, thatϒ(4) holds. Remark 3.1 impliesα−∞(2) > 0, which leads to
a contradiction onϒ0(0). The proof concerningZn(0)/Zn(2) is similar.

The statementZ∞(0) = Z∞(4) = ∞ follows from Z∞(0) � Y−∞(1) ≈
Y∞(1) = ∞ a.s. on ϒ0(0) ⊂ ϒ(1)c [by Proposition 3.1(a)], which implies
Z∞(4)=∞ by the other statements of this lemma.

3.4. Proof of Lemma2.9. We supposex := 0 for simplicity. Let us prove that,
on �1(0), the lim sup ofZn(6)/Zn(2) is less than or equal to 1. The symmetrical
statement (with respect to site 4) completes the proof. Our goal is to describe the
evolution of the quantityZn(6)/Zn(2); this description is obtained in (18). Assume
in the sequel that�1(0)⊂ϒ(0,4,8) holds.

First, we apply Lemma 3.2(i). Let us use its notation forx := 4 and prove
that A(4) holds. Using Remark 3.1 and Corollary 3.2(iii), we obtain that
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α+n (2) and β+n (2) converge toα+∞(2) > 0 and that lnZn(4) � α+∞(2) lnZn(2).
Hence, on one hand,

lim sup
Zn(2)

Zn(3)+Zn(5)
≤ lim β+n (2)−1 <∞,

Zn(2)

Zn(3)Zn(4)
� (α+∞(2)

)−1
Zn(4)−1=O

(
Zn(4)−1)=O

(
Zn(3)−α+∞(2)

)
.

On the other hand, let us prove that there exists a.s.δ > 0 such that

ZTn(4)(2)

Zn(2)
− 1= o

(
Zn(2)−δ

)
.(17)

Indeed, for alln ∈N∗, let tn be thenth visit time to site 4. For allm ∈N anda > 0,
let T m,a := inf{n≥m s.t.α+n (2)≤ a}. There exists a.s.a > 0 andm ∈N such that
T m,a =∞.

Givena, ε > 0 andn ∈N, let


n+1 := {Ztn+1(2)−Ztn(2) > Ztn(2)nε−1}∪ {T m,a ≤ tn+1}.
Letn ∈N be such thattn ≥m and assumen≥Cst. Givent ≥ tn such thatt < T m,a ,
Xt = 2 andZt(2) ≤ Ztn(2)(1+ nε−1), the probability to reach site 4 in two steps
starting from site 2 at timet is greater thanan/(2Ztn(2)) and, therefore,

P
(

c

n+1|Ftn

)≤ (1− an

2Ztn(2)

)Ztn (2)nε−1/2

≤ exp
(
−anε

4

)
.

Accordingly, ∑
n∈N∗

P(
c
n) <∞ a.s.

and the Borel–Cantelli lemma implies that
c
n occurs only finitely often. This

gives (17), using lnZn(4)� α+∞(2) lnZn(2).
Therefore, Lemma 3.2(i) implies, together withβ+n (2)→ α+∞(2) > 0,

lnZn(2)≡ lnZn(3)≡
n−1∑
k=0

1{Xk=4}
Zk(4)

Zk(2)

Zk(3)+Zk(5)
.

The situation being symmetrical with respect to site 4, we have a similar estimate
for lnZn(6). Hence,

ln
Zn(6)

Zn(2)
≡

n−1∑
k=0

1{Xk=4}
Zk(4)

Zk(6)−Zk(2)

Zk(3)+Zk(5)
.(18)

Let us apply Lemma 3.1 witha = 0, un = ln(Zn(6)/Zn(2)), f (x) = 1− e−x

and

vn = 1{Xn=4}
Zn(4)

Zn(6)

Zn(3)+Zn(5)
≥

un≥0

(
β+n (2)+ β−n (6)

)−11{Xn=4}
2Zn(4)

,
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using that Zn(3) + Zn(5) = β+n (2)Zn(2) + β−n (6)Zn(6). We obtain, if
lim supZn(6)/Zn(2) > 1,

lim inf
lnZn(6)

lnZn(2)
= 1+ lim inf

ln(Zn(6)/Zn(2))

lnZn(4)

lnZn(4)

lnZn(2)
> 1,

using the estimate lnZn(4)� α+∞(2) lnZn(2).
Now, Lemma 3.2(ii) completes the proof. Indeed,

�1(0)∩
{

lim sup
Zn(6)

Zn(2)
> 1
}

⊂�1(0)∩A(4)∩
{
lim sup

lnZn(2)

lnZn(5)
< 1

}
⊂�1(0)∩ {Z∞(3) <∞}=∅ a.s.,

where we use in the first inclusion thatβ−n (6)→ α−∞(6) > 0, by Remark 3.1.

3.5. Proof of Lemma2.10. Supposex := 0 for simplicity. We use Lemma A.2
in the Appendix. Let us introduce a some notation first. Let, for alln ∈N∗,

Tn := inf{k ∈N s.t.Zk(3)= n or Zk(6)= n}
and letG := (Gn)n∈N∗ := (FTn)n∈N∗ . We easily prove by induction that, for all
n ≥ 2, XTn ∈ {3,6} andZTn(XTn) = n =max(ZTn(3),ZTn(6)). For all n ≥ 2, let
us define�XTn := 5 if XTn = 3 and:= 4 if XTn = 6. Let 
0 = 
1 = 
2 := ∅ and,
for all n≥ 2,


n+1= {Tn <∞}∩ {XTn+2= �XTn

}
.

Assume that�2(0)∩{α−∞(7)≤ α−∞(2)} holds. Let us apply Lemma A.2 to prove
that 
n holds only finitely often a.s., which implies thatZ∞(4) ∧ Z∞(5) <∞
or Z∞(3) ∧ Z∞(6) <∞ (if ∃n ∈ N s.t. Tn = ∞) and, therefore, enables us to
conclude.

We settle upon the notation of LemmaA.2. Let us choose the sequence(γn) that
satisfies the upper bound ofP(
n+1|Ftn ). Givenδ > 0 andm ∈N, let

Aδ,m := {∀n≥m, |α−∞(2)−α−n (2)| ≤ Zn(3)−δ and|α+∞(7)−α+n (7)| ≤ Zn(6)−δ}.
By Remark 3.1 [β+∞(2) = α+∞(2) > 0 andβ−∞(6) = α−∞(6) > 0] and Corol-

lary 3.2(iv), there exists a.s.δ > 0, m ∈N such thatAδ,m holds. We fixδ > 0, m ∈
N and supposeAδ,m holds. We chooseγn := (α−Tn

(2)− n−δ)1XTn=3+ (α+Tn
(7)−

n−δ)1XTn=6. Note thatγn ≤ α−∞(2)1XTn=3+ α+∞(7)1XTn=6 by definition ofAδ,m.
By Remark 3.1 and Corollary 3.2(iv), there exists a.s.h > 0 such that, for

all n ∈ N, Zn(4) ≤ hZn(3)α
+∞(2) andZn(5) ≤ hZn(6)α

−∞(7). Then, if n ≥ m and
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XTn = 3, usingZTn(6)≤ τn andZTn(3)= n,

P
(

n+1|FTn

)= α+Tn
(3)α+Tn

(4)≤ β+Tn
(3)α+Tn

(4)≤ZTn(4)ZTn(5)/ZTn(3)2

≤ h2ZTn(6)α
−∞(7)ZTn(3)α

+∞(2)−2≤ h2τ
α−∞(2)
n /n1+α−∞(2)

≤ h2τ
γτn
n /n1+γτn ,

usingα−∞(7) ≤ α−∞(2) in the fourth inequality and using, in the last inequality,
thatγτn ≤ α−∞(2) and thatx �→ τ x

n /n1+x is nonincreasing onR+ (sinceτn ≤ n).
The estimate ofP(
n+1|FTn) is very similar whenXTn = 6, which enables us to
conclude.

3.6. Proof of Lemma2.11. We supposex := 0 for simplicity. Let us prove
that, on �2(0), the lim sup ofZn(7)/Zn(2) is less than or equal to 1. The
symmetrical statement (with respect to the number 4.5) completes the proof.
Assume subsequently that�2(0) holds. Letun = ln(Zn(7)/Zn(2)). Similarly as
in the proof of Lemma 2.9, we try to describe the evolution of the quantityun; this
description is obtained in (20).

Let us begin with some elementary properties. By Remark 3.1,α±∞(2) =
β±∞(2) ∈ (0,1) and α±∞(7) = β±∞(7) ∈ (0,1). By Corollary 3.2(iv), there exist
a.s.γ 1∞, γ 2∞ > 0 such thatZn(4)� γ 1∞Zn(2)α

+∞(2) andZn(5)� γ 2∞Zn(7)α
−∞(7).

Now, we can adapt the proof of Lemma 3.2(i) forx := 5 to show that

lnZn(4) �
un≥0

n∑
k=1

1{Xk=5}
Zk(5)

Zk(3)

Zk(4)+Zk(6)
.(19)

Indeed, there exists a.s.δ > 0 such that

Zn(3)

Zn(4)Zn(5)
� β+∞(2)Zn(2)

γ 1∞γ 2∞Zn(2)α
+∞(2)Zn(7)α

−∞(7)

=
un≥0

O
(
Zn(7)−δ∞) =

un≥0
O
((

Zn(4)∨Zn(5)
)−δ)

,

letting δ∞ := α−∞(7)− α−∞(2) (>0 by Lemma 2.10) and, on the other hand,

Zn(3)

Zn(4)+Zn(6)
≤ Zn(3)

Zn(6)
� β+∞(2)

β−∞(7)
e−un = α+∞(2)

α−∞(7)
e−un,

ZTn(5)(3)

Zn(3)
− 1= o

(
Zn(3)−δ).

The last equality comes from the fact that whenun ≥ 0, the probability to go from
3 to 5 is greater than a term on the order ofZn(3)ε−1 for ε > 0, using Lemma 2.10,
and its proof is very similar to the proof of (17) in Section 3.4.
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Inequality (19) follows, which implies with the upper bound ofZn(3)/(Zn(4)+
Zn(6)) that

lnZn(4)≡ α+∞(2) lnZn(2) �
un≥0

n∑
k=1

1{Xk=5}
Zk(5)

α+∞(2)Zk(2)

α−∞(7)Zk(7)
.

Hence

ln
Zn(7)

Zn(2)
�

un≥0

n−1∑
k=0

1{Xk=5}
α−∞(7)Zk(5)

(
1− Zk(2)

Zk(7)

)
(20)

since, by Corollary 3.2(iv),

lnZn(7)≡ lnZn(5)

α−∞(7)
≡

n−1∑
k=0

1{Xk=5}
α−∞(7)Zk(5)

.

Now, Lemma 3.1 witha = 0, un defined below,

vn = 1{Xk=5}
α−∞(7)Zk(5)

, f (x)= 1− e−x,

implies that lim infun/ lnZn(5) > 0 and, therefore, lim sup lnZn(3)/ lnZn(6) < 1,
since

lim inf
lnZn(6)

lnZn(3)
= lim inf

lnZn(7)

lnZn(2)
= 1+ lim inf

un

lnZn(5)

lnZn(5)

lnZn(2)
> 1.

Hence we can conclude, again by inequality (19) [as in Lemma 3.2(ii) forx := 5],
thatZ∞(4) <∞, which is a.s. impossible [on�2(0)].

4. Nonconvergence toward unstable situations.

4.1. Introduction. The aim of this section is to provide a result that ensures
nonconvergence in the unstable situations that correspond to Lemmas 2.5,
2.7 and 2.8, which are proved, respectively, in Sections 5.1, 5.2 and 5.3. This result
makes use of the particular structure of reinforced random walks to overcome the
fact that, in general, we can only obtain partial information on the behavior of
the random walk. Indeed, as explained in the Introduction, it is not, in general,
possible to describe the behavior of the density of occupation of the random walk
by the differential equation (3), which would enable us to interpret these unstable
situations by unstable sets of the corresponding dynamical system and, therefore,
allow us to use the classical results of nonconvergence toward these sets. For this
reason, we provide a result that requires only an equation of evolution of the
considered unstable quantity. This information is sufficient when the evolution
involved is in some sense compatible with a partial order constructed on a
certain class of random walks onZ. More precisely, we study the behavior of a
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(Gn)n∈N-adapted sequence(zn)n∈N that takes values inR and we try to prove that
its behavior around 0 is unstable, so that convergence to 0 is a.s. impossible.

The evolution of(zn)n∈N is given by an equation of the form

zn+1− zn = yn + εn+1+ rn,(21)

where(yn)n∈N, (εn)n∈N∗ and(rn)n∈N are(Gn)n∈N-adapted and

E(εn+1|Gn)= 0.

Let us, for instance, consider the case discussed in Lemma 2.5:(zn)n∈N and
(yn)n∈N correspond to

zn = ln
Ztn(3)

Ztn(2)
and yn = Rtn

Ztn(2)Ztn(3)
,

where

tn = inf{m ∈N/Z+m(2)≥ n},
Rn = Zn(4)+Zn(2)− (Zn(1)+Zn(3)

)
,

and

E(ε2
n+1|Gn)� α−tn (2)/n2, |rn| =O(1/n2−ε) for all ε > 0.

If zn andyn were of the same sign, we would be able to conclude (see, e.g., [8],
[11] and [12], Chapter 3) that the unstable pointz= 0 is a.s. avoided, namely that

P

(
lim

n→∞zn = 0
)
= 0.(22)

This is not the case here and, in fact,yn does not depend only onzn. However, we
can observe that the termRtn increases only with visits from 5 to 4 and decreases
with visits from 0 to 1. Indeed, it is easy to prove by induction that, for alln ∈N,

Rn =Z−n (5)−Z+n (0)+ (1{Xn=2 or Xn≥4} −1{Xn≤1 or Xn=3}
)
/2+Cst(v0),(23)

so that

Rtn =Z+tn (4)−Z−tn (1)+Cst(v0),(24)

using thatZ−tn (5)=Z+tn (4)+Cst(v0) andZ+tn (0)= Z−tn (1)+Cst(v0).
Heuristically, whenzn tends to increase (resp. to decrease), the random walk

tends to go more to the right (resp. to the left), which implies thatyn also tends to
increase. The precise tool behind these remarks is the definition of a partial order
on the random walks. Lemma 4.1 claims the following result.

Assume we deal with two random walksM andM′ such that at each point
j ∈ Z, for the same number of visits toj , if M′ has more visitedj + 1 thanM
and less visitedj − 1, thenM′ has a greater probability thanM to go right. Then
we can coupleM andM′ so that for allj ∈ Z, for the same number of visits toj ,
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M′ has more visitedj + 1 thanM and less visitedj − 1. In this case, we write
thatM′ �M.

It is easy to prove that, given two random walksM andM′ such thatM′ �M,
if we keep the same notation forM and add a superscript prime forM′, then, for
all n ∈N,

R′t ′n ≥Rtn .

Having put down this partial order on random walks onZ, we observe in the
considered cases that a significant part of the noise inherent in the behavior ofzn

is generated by the uncertainty on the visits from a certain vertexv to v − 1 (in
the case of Lemma 2.5,v := 2). This leads us to define, concurrent to the VRRW
calledM, a random walkM′ as follows. Starting from all points except fromv,
M′ has the same conditional probabilities asM. Fromv the conditional probability
to visit v − 1 is the probability designed forM minus a term on the order of the
standard deviation of this probability on a large time interval. This new random
walk is constructed in Definition 4.12.

Lemma 4.1 implies that we can coupleM and M′ so thatM′ � M. This
property has the consequence that, roughly,y′n is greater thanyn; more precisely,
Assumption (H3) of Proposition 4.1 is satisfied. Furthermore, the different moving
probabilities fromv imply here thatzn in z′n undergoes a drift toward the
right significant enough to cover the noise, which corresponds to Assumptions
(H1) and (H2) [W(k) is of the order of the standard deviation ofzn starting at
time tk ]. The probabilities of a same group of paths forM and forM′ being of
the same order (stated in Lemma 4.2), these properties imply that the conditional
probability not to converge to 0 is always greater than a positive constant. This
enables us to conclude thatzn a.s. does not converge to 0.

The section is divided as follows. In Section 4.2, we introduce some notation,
and state and prove a coupling result for nearest-neighbor random walks onZ. In
Section 4.3, we state the nonconvergence result Proposition 4.1, which is applied
in Sections 5.1–5.3. Proposition 4.1 is proved in Section 4.4.

4.2. Notation and a coupling result.

DEFINITION 4.1. Givenk ∈ N ∪ {∞} andv ∈ Zk+1, for all n ≤ k, we letvn

be the(n+ 1)th coordinate ofv. We say thatv is ak path (or a path, when there
is no ambiguity) onZ iff, for all 0 ≤ n≤ k − 1, there existsεn ∈ {−1,1} such that
vn+1− vn = εn. Let Pk be the set ofk paths. LetP := P∞. Giveni ∈N∗, j ∈ Z

andv ∈ Pk , we letni,j (v) be the time the sequence(vn)0≤n≤k makes itsith visit
to sitej , with the convention thatni,j (v)=∞ if j is visited less thani times.

We make use of the notation introduced in Sections 1 and 2.2, that is,Zn(x)(v),
Yn(x)(v), . . . , for all n≤ k, replacing the underlying(Xj )j∈N in these definitions
by (vj )j∈N.
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DEFINITION 4.2. For all k ∈ N, let Tk be the smallestσ -field on P that
contains the cylindersCv = {w ∈ P /w0 = v0, . . . ,wk = vk}, v ∈ Pk . Let T :=
∨k∈NTk . Let us define the filtrationT := (Tk)k∈N.

DEFINITION 4.3. On a probability space(�,F ,P), we call a random walk
a process(Xk)k∈N taking values inZ, starting from a fixed pointX0 := v0 ∈ Z,
satisfying the following conditions: for a.e.ω ∈ �, (Xi(ω))i∈N ∈ P and, for all
k ∈N∗ andv ∈Pk such thatv0= v0, P((Xi)0≤i≤k = v) > 0.

DEFINITION 4.4. LetM := (Xk)k∈N be a random walk on a probability space
(�,F ,P). Let IM : (�,F ) → (P ,T ) be the measurable functionω ∈ � �→
(Xi(ω))i∈N. Note thatIM defines naturally a probability onP by, for all C ∈ T ,
PM(C) := P(I−1

M (C)). For alln ∈N, let EM
n := I−1

M (Tn)= σ(X0, . . . ,Xn). Let us
define the filtrationEM := (EM

n )n∈N. Given aT -measurable random variableu,
let us define theF -measurable random variableuM := u ◦ IM.

Note that, if T is a T stopping time, thenT M is a EM stopping time. If
(tn)n∈N is a nondecreasing sequence ofT stopping times and ifT [resp.(an)n∈N]
is a (Ttn)n∈N stopping time (resp. adapted process), thenT M [resp.(aM

n )n∈N] is
a (EM

tMn
)n∈N stopping time (resp. adapted process).

DEFINITION 4.5. LetM := (Xk)k∈N be a random walk on a probability space
(�,F ,P), starting fromv0 ∈ Z. For all k ∈ N ∪ {∞}, v ∈ Pk such thatv0 = v0
andn≤ k, let qM(v, n) := PM(C(v0,...,vn,vn+1))/PM(C(v0,...,vn)) be the conditional
probability to go to the right at timen, knowingX0 = v0, . . . ,Xn = vn. For all
v ∈ P , i ∈ N∗, j ∈ Z such thatni,j (v) <∞, let pM

i,j (v) := qM(v, ni,j (v)) be the
conditional probability to go to the right just after theith visit to sitej , knowing
X0= v0, . . . andXni,j (v) = vni,j (v).

Subsequently, we fix the probability space(�,F ,P), on which we take i.i.d.
uniform [0,1] random variables(ωi,j )i∈N∗,j∈Z.

DEFINITION 4.6. We construct (and settle) the random walks on(�,F ,P) by
the following method. Given the initial pointv0 and the conditional probabilities
of moveqM(·, ·) of a random walkM, we letM := (Xk)k∈N on � be as follows:
X0 := v0 and, for alln ∈N, given(X0, . . . ,Xn),

Xn+1=
{

Xn + 1, if ωZn(Xn)(X0,...,Xn)−1,Xn ≤ qM
((

X0, . . . ,Xn

)
, n
)
,

Xn − 1, otherwise.

DEFINITION 4.7. LetM := (Xk)k∈N be a random walk [on the probability
space(�,F ,P)]. Let, for all n ∈ N, F M

n := σ(ωi,j )(i,j )∈N∗×Z/ni,j (IM(ω))≤n =
σ({ωi,j ∈ I } ∩ {ni,j (IM(ω)) ≤ n}, i ∈ N∗, j ∈ Z, I ⊂ [0,1] interval). Note that
EM

n ⊂F M
n . Let us define the filtrationFM := (F M

n )n∈N.
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DEFINITION 4.8. Givenv, v′ ∈P , let us define, for alli ∈N∗ andj ∈ Z, the
propertyEi,j (v,v′) as

Zni,j (v′)(j + 1)(v′)≥ Zni,j (v)(j + 1)(v) and

Zni,j (v′)(j − 1)(v′)≤ Zni,j (v)(j − 1)(v)

with the convention thatEi,j (v,v′) holds wheneverni,j (v)=∞ or ni,j (v′)=∞.

DEFINITION 4.9. Let M andM′ be two random walks on(�,F ,P). Let
M′ � M denote the following property: for a.e.ω ∈ �, Ei,j (IM(ω),IM′(ω))

holds for alli ∈N∗ andj ∈ Z.

ThusM′ �M means that, for the same numberi of visits toj , M′ has visited
sitej + 1 (right hand fromj ) more often thanM and has visitedj − 1 less often
thanM.

LEMMA 4.1. Let M and M′ denote two random walks onZ [on the
probability space(�,F ,P)], starting from the same pointX0=X′0= v0. Suppose

that for all v, v′ ∈P , for all i ∈N∗, j ∈ Z, pM′
i,j (v′)≥ pM

i,j (v) wheneverEi,j (v,v′)
holds andmax(ni,j (v), ni,j (v′)) <∞. ThenM′ �M.

PROOF. Consider an arbitrary elementω ∈ �. Let v := IM(ω) and v′ :=
IM′(ω), pi,j := pM

i,j (v), p′i,j := pM′
i,j (v′) andEi,j := Ei,j (v,v′). We want to prove

that, for alli ∈N∗, j ∈ Z, Ei,j holds. Observe the following facts:

• One hasv0= v.

• For allp ∈N, there existsi ∈N∗ andj ∈ Z such thatp = ni,j (v):
– if ωi,j ≤ pi,j , thenvp+1= vp + 1;
– if ωi,j > pi,j , thenvp+1= vp − 1.

The same remark holds, withv′ andp′i,j instead ofv andpi,j .
Let us introduce the property

Pk = {∀ i ∈N∗, j ∈ Z, s.t.ni,j (v)≤ k andni,j (v′)≤ k,Ei,j holds}.
Let us prove by induction onk thatPk holds for allk ∈ N. Note thatP0 follows
from X0 = X′0 = v0. SupposePk−1 holds. We want to deducePk , which is
different from Pk−1 if there exists(i, j) ∈ N∗ × Z such that [ni,j (v) = k and
ni,j (v′)≤ k] or [ni,j (v′)= k andni,j (v)≤ k]. Select such a couple(i, j).

If i = 1, then suppose, for instance, thatj > v0 = v0 (the casej < v0 is anal-
ogous, andj = v0 is obvious). ThenZni,j (v′)(j + 1)(v′)=Zni,j (v)(j + 1)(v)= 1
and we aim to prove thatZni,j (v′)(j − 1)(v′) ≤ Zni,j (v)(j − 1)(v). Suppose the
contraryZni,j (v′)(j − 1)(v′) > Zni,j (v)(j − 1)(v). Let a = Zni,j (v)(j − 1)(v)− 1.
SincePk−1 holds,Ea,j−1 holds and, therefore,p′a,j−1≥ pa,j−1. Now vna,j−1+1=
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vna,j−1 + 1 sincea = Zni,j (v)(j − 1)(v)− 1; this impliesv′na,j−1+1 = v′na,j−1
+ 1

and leads to a contradiction.
If i > 1, takev at timeni−1,j (v) and takev′ at timeni−1,j (v′). We make use

of the notationM or M′ → l or r to indicate thatv (resp.v′) goes to the left
or to the right at this timeni−1,j (v) [resp.ni−1,j (v′)]. SinceEi−1,j is satisfied,
p′i−1,j ≥ pi−1,j and it is impossible thatM→ r andM′ → l. Hence, there are
three cases:

• M→ l andM′ → r , and the conclusion follows;
• M → r andM′ → r , and the conclusion follows from a proof similar to the

casei = 1.
• M→ l andM′ → l, and the conclusion follows from an analogous argument.

�

DEFINITION 4.10. LetM = (Xn)n∈N be the VRRW onZ [on (�,F ,P)

according to Definition 4.6] defined in the Introduction, that is, defined byX0 := v0
and the transition probabilities, for allv ∈P andn ∈N,

qM(v, n) := α+n (vn)(v)= 1− α−n (vn)(v).

DEFINITION 4.11. For all x ∈ Z, k ∈ N and M > 1, let us define the
T stopping timeUx,k,M by, for all v ∈P ,

Ux,k,M := inf{n≥ k s.t.Zn(x)(v) > MZk(x)(v) or α−n (x)(v) > Mα−k (x)(v)}.

DEFINITION 4.12. Letx ∈ Z andM ∈ R∗+. Let us define, for allT stopping
timesk andV , andg ∈R∗+, the modified VRRWM′

k,V,g [on (�,F ,P) according
to Definition 4.6] byX′0 := v0 and the transition probabilities, for allv ∈ P and
n ∈N,

qM′
k,V,g

(v, n)

:= 1− α−n (vn)(v)
(
1− γk(v)1{vn=x andn∈[k,Ux,k,M∧V )}∩{γk(v)<1,α−k (x)(v)<1/4M}

)
,

whereγk(v) := g/
√

Zk(x)(v)α−k (x)(v).

Observe that, for allk ∈N andg ∈R∗+, M′
k,V,g �M by Lemma 4.1.

4.3. Nonconvergence result.Let c, d , M ∈ R∗+ andx ∈ Z. Let (tn)n∈N be an
increasing sequence ofT stopping times. Let(yn)n∈N, (zn)n∈N and(W(n))n∈N be
(Ttn )n∈N-adapted random processes taking values, respectively, inR, in R and in
R∗+, and letT be a(Ttn)n∈N stopping time such thatn < T impliestn <∞. LetM
be the random walk in Definition 4.10. By a slight abuse of notation, for alln ∈N,
we let tn := tMn , T := T M , yn := yM

n , zn := zM
n andFn :=F M

n .
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ASSUMPTION (H1). There existsn0 ∈ N (deterministic) and(Ftn)-adapted
processes(εn)n∈N∗ and(rn)n∈N such that, for alln≥ n0,

zn+1− zn = yn+ εn+1+ rn if n+ 1 < T(25)

and, ifn < T ,

E
(
εn+1|Ftn

)= 0, E

( ∞∑
j=n

ε2
j+1

∣∣∣Ftn

)
≤ d2W(n)2,

(26) ∞∑
j=n

|rj | ≤ dW(n).

Let us use again the notation of Definition 4.12 (x ∈ Z and M ∈ R∗+ are

already fixed). For allk, n ∈N andg ∈R∗+, let t ′n,k,g := t
M′

tk ,t2k ,g

n , T ′ := T
M′

tk ,t2k ,g ,

y′n,k,g := y
M′

tk ,t2k ,g

n , z′n,k,g := z
M′

tk ,t2k ,g

n andF ′
n :=F

M′
tk ,t2k ,g

n . Note thatF ′
t ′k,k,g

=Ftk ,

since the random walksM andM′
tk,t2k,g

are the same up to timetk .

ASSUMPTION (H2). For all g > 0, there existsn0 (deterministic, but
dependent ong) and(F ′

t ′n,k,g
)-adapted processes(ε′n)n∈N∗ and(r ′n)n∈N such that,

for all k ≥ n0 andn≥ n0,

z′n+1,k,g−z′n,k,g ≥ y′n,k,g+
cgW(k)

k
1n∈[k,2k)+ε′n+1+ r ′n if n+1 < T ′(27)

and, ifn < T ′,

E
(
ε′n+1|F ′

t ′n,k,g

)= 0, E

( ∞∑
j=n

ε′2j+1

∣∣∣F ′
t ′n,k,g

)
≤ d2W(n)2,

(28) ∞∑
j=n

|r ′j | ≤ dW(n).

Note thatT ′, F ′
n, ε′n andr ′n also depend onk andg, but we omit it for simplicity.

ASSUMPTION (H3). For all g ∈ R∗+, there existsn0 ∈ N such that, for all
n≥ k ≥ n0,

y′n,k,g − yn ≥−d|yn|[|z′n,k,g − zn| +W(k)].(29)

PROPOSITION 4.1. Let c, d , M ∈ R∗+ and let x ∈ Z. Let (tn)n∈N be an
increasing sequence ofT stopping times. Let (yn)n∈N, (zn)n∈N and (W(n))n∈N

be (Ttn)n∈N-adapted random processes that take values, respectively, in R, in R
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and inR∗+, and letT be a(Ttn )n∈N stopping time such thatn < T impliestn <∞.
Suppose Assumptions(H1)–(H3)hold. Then

P

[{
lim

n→∞ zn = 0
}
∩
{∑

n<T

|yn|<∞
}
∩ {T =∞}

]
= 0.(30)

NOTATION. In the remainder of the paper (except Lemma 4.2 and its
proof ), we letM′ :=M′

tk,t2k,g
, forgetting the dependence onk andg. For any

T-measurable random variableu, we writeu (resp.u′) instead ofuM (resp.uM′
).

In particular, we use notationα−n (x) [resp.α′−n (x)] for α−n (x)M [resp.α−n (x)M
′
],

Z+n (x) [resp.Z′+n (x)] for Z+n (x)M [resp.Z+n (x)M
′
] and so on. The notationt ′n,k,g ,

y′n,k,g andz′n,k,g is used in this current section to emphasize the link with variables
k andg [especially in (27)], but is replaced subsequently byt ′n, y′n andz′n.

REMARK 4.1. Assume thatyn can be written, whenn < T , as

yn = Rtn

Stn

[where(Rn)n∈N and(Sn)n∈N areT-adapted processes, taking values, respectively,
in R andR∗+] and that, whenn < T ∧ T ′,

R′t ′n ≥Rtn.

Then a sufficient condition for Assumption (H3) is that, whenn ∈ [n0, T ∧ T ′),∣∣∣∣Stn

S′
t ′n
− 1
∣∣∣∣≤ d[|z′n− zn| +W(m)].

Indeed,

y′n =
R′

t ′n
S′

t ′n
≥ Rtn

S′
t ′n
= yn

Stn

S′
t ′n

,

which implies

y′n− yn ≥ yn

(
Stn

S′
t ′n
− 1
)
.

REMARK 4.2. In the conclusion of Proposition 4.1 [equation (30)],
∑ |yn|<

∞ can be replaced by
∑

y±n <∞ or by
∑ |yn|1ynzn≤0 <∞. Indeed, assume (H1)

holds andzn → 0. Let us prove that
∑

y+n < ∞ implies
∑

y−n < ∞ (and
thus

∑ |yn|<∞); the proof of the converse implication is very analogous.
Summing (25) fromn :=m to p, if m≥ n0,

zp − zm =
p−1∑
k=m

(y+k − y−k )+
p−1∑
k=m

(εk+1+ rk)
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and, therefore,

∞∑
k=m

y−k ≤ zm +
∞∑

k=m

y+k + sup
p≥m

∣∣∣∣∣
p−1∑
k=m

εk+1

∣∣∣∣∣+
∞∑

k=m

|rk|<∞

using (26) and Doob’s inequality [W(m) <∞].
Similarly,

∑ |yn|1ynzn≤0 < ∞ implies
∑ |yn|1ynzn≥0 < ∞ (and thus∑ |yn|<∞), using

|zn+1| − |zn| ≥ |yn|1ynzn≥0− |yn|1ynzn≤0+ sign(zn)(εn+1+ rn),

where, for allx ∈R, sign(x) denotes the sign ofx.

4.4. Proof of Proposition4.1. The following lemma is useful in the proof of
Proposition 4.1.

LEMMA 4.2. Let x ∈ Z andM ∈ R∗+. For all T stopping timesk andV , and
g ∈ R∗+, let M andM′

k,V,g be the two random walks on(�,F ,P) introduced in
Definitions4.6, 4.10and4.12.Then, for all η > 0 andC ∈ T ,

PM′
k,V,g

(C|Tk)≤Cst(g,M,η)PM(C|Tk)+ η.

PROOF. For simplicity, letM′ :=M′
k,V,g = (X′n)n∈N and, for anyT-measu-

rable r.v. u, u := uM and u′ := uM′
. Given n ∈ N and v ∈ P , let Iv(n) :=

PM′
k,V,g

(C(v0,...,vn))/PM(C(v0,...,vn)). If γk(v) ≥ 1 or α−k (x)(v) ≥ 1/4M , then
Iv(n)= 1. Otherwise,

Iv(n)=
n∧V∧Ux,k,M (v)∏

j=k+1

[(
1− γk(v)1{vj−1=x,vj=x−1}

)

×
(

1+ γk(v)1{vj−1=x,vj=x+1}α−j−1(x)(v)

α+j−1(x)(v)

)]
.

Let us upper bound lnIv(n), using ln(1+ x)≤ x for all x >−1. We obtain

ln Iv(n)≤Rn(v),

where(Rn)n≥k is the (Tn)n≥k-adapted process defined byRk = 0 and, forn ≥
k + 1,

Rn(v)= γk(v)

n∧V∧Ux,k,M∑
j=k+1

1{vj−1=x}
[
−1{vj=x−1} +

1{vj=x+1}α−j−1(x)(v)

α+j−1(x)(v)

]
.

Our goal is to overestimate supn Rn(v) [≥ supn ln Iv(n)] on aT -measurable subset
of P of large probability forM′. To this end, we now analyze the behavior of
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the (F ′
n)n∈N-measurable processR′n := RM′

n , depending on the random walkM′
(recall thatF ′

n =F M′
n ).

Let (R̃′n)n≥k be the compensator of(Rn)n≥k , that is, the(F ′
n)n≥k-predictable

process such that the processR̂′n :=R′n − R̃′n is a martingale. For alln≥ k,

R̃′n+1− R̃′n

= γk1{X′n=x}1{n<V ′∧U ′x,k,M }
[
−α′−n (x)(1− γk)+ α′+n (x)+ γkα

′−
n (x)

α′+n (x)
α′−n (x)

]

= γ 2
k 1{X′n=x}1{n<V ′∧U ′x,k,M }α

′−
n (x)

[
1+ α′−n (x)

α′+n (x)

]
.

Therefore, for alln≥ k, usingα′−j (x)≤Mα−k (x)≤ 1/4 andZ′j (x)≤MZk(x) for
all j < U ′x,k,M ,

R̃′n ≤ 2γ 2
k (M − 1)Zk(x)Mα−k (x)= 2g2M(M − 1).(31)

Now, for all n≥ k,

V[R̂′n+1|F ′
n] ≤ E[(R′n+1−R′n)2|F ′

n] ≤ γ 2
k 1{X′n=x,n<U ′x,k,M }2α′−n (x)

≤ 1{X′n=x,n<U ′x,k,M }2Mα−k (x)γ 2
k ,

whereV[·|Fn] is the variance conditional onFn.
Successively using the Bienaymé–Tchebycheff and Doob inequalities, for all

A ∈R∗+,

P

(
sup
n≥k

R̂′n ≥A
∣∣∣F ′

k

)
≤ E

(
sup
n≥k

R̂′2n
∣∣∣Fk

)/
A2≤ 4E

[
R̂′2

V ′∧U ′x,k,M
|Fk

]
/A2

≤ 8Mα−k (x)γ 2
k (M − 1)Zk(x)/A2= 8M(M − 1)g2/A2.

Hence, by letting
 be theT -measurable event


 :=
{
sup
n≥k

Rn(v)≥√8M(M − 1)g2/η+ 2g2M(M − 1)

}
,

we deduce, usingR′n = R̃′n+ R̂′n and (31), that

PM′(
|Tk)≤ η.

On the other hand, for any pathv ∈P ∩ 
c, for all n ∈N,

PM′
(
C(v0,...,vn)|Tk

)≤Cst(g,M,η)PM
(
C(v0,...,vn)|Tk

)
,

which enables us to conclude.�
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Let us now prove Proposition 4.1. Givenε > 0, which is chosen subsequently,
let us define the stopping timeZm = inf{n ≥ m/

∑n
i=m |yi | > ε}. Let, for all

m ∈N,


m := {lim zn �= 0} ∪ {T ∧Zm <∞}, Cm := I−1
M (
m).

It suffices here to prove that there existsg =Cst(c, d,M) such that ifk ≥m∨ n0,
then P[Cm|Ftk ] ≥ Cst(c, d,M). Indeed, by a standard martingale convergence
theorem,P[Cm|Ftk ] = E[1Cm |Ftk ] →k→∞ 1Cm since Cm ∈ Ft∞ = σ(

⋃
Ftn).

Therefore,1Cm ≥Cst(c, d,M) > 0 a.s. andP(Cm)= 1 for all m ∈N. We conclude
thatP({lim zn �= 0} ∪ {∑ |yn| =∞} ∪ {T <∞})= P(

⋂
m∈N Cm)= 1.

Let g ∈ R∗+ be fixed later. Let us introduce the random walkM′
tk,t2k,g

(see
Definition 4.12) and use the notation introduced in Section 4.3. Let us consider,
for all k ∈N,

�=
{

sup
n≥k

∣∣∣∣∣
n∑

i=k

εi+1

∣∣∣∣∣≤ 4dW(k),sup
n≥k

∣∣∣∣∣
n∑

i=k

ε′i+1

∣∣∣∣∣≤ 4dW(k)

}
.

Let us apply the Bienaymé–Tchebycheff and Doob inequalities, and use Assump-
tions (H1) and (H2): For allk ≥ n0,

P
(
�c|Ftk

)≤ E(supn≥k(
∑n

i=k εi+1)
2|Ftk )

16d2W(k)2
+ E(supn≥k(

∑n
i=k ε′i+1)

2|Ftk )

16d2W(k)2

≤ 8

16
= 1

2
.

We want to prove that on�, T ∧ T ′ ∧ Zm <∞ or zn �→ 0. From now on, we
suppose that� holds and thatT ∧ T ′ ∧Zm =∞.

Observe that Assumptions (H1)–(H3) imply, for alli ≥ k andn≥ i,

z′n − zn ≥ z′i − zi − dε sup
j∈[i,n−1]

|z′j − zj | − d(10+ ε)W(k)(32)

and that for alln≥ 2k (usingz′k = zk, the coupled random walksM andM′ being
identical up to timetk),

z′n− zn ≥ [cg − d(10+ ε)]W(k)− dε sup
j∈[k,n]

|z′j − zj |.(33)

Supposen≥ 2k and let

u(n) := sup
{
i ∈ [k,n] s.t.|z′i − zi | = sup

j∈[k,n]
|z′j − zj |

}
, τn = z′u(n) − zu(n).

On one hand, using (33),

|τn| ≥ τn ≥ [cg − d(10+ ε)]W(k)− dε|τn|.
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We takeg := 24d/c and supposeε < Cst(d); hence|τn|> 12dW(k). On the other
hand, using (32) withi := k andn := u(n),

τn ≥−dε|τn| − d(10+ ε)W(k).

Therefore τn < 0 implies |τn|(1 − dε) ≤ d(10+ ε)W(k) and hence|τn| ≤
12dW(k) [if we supposeε < Cst(d)], which leads to a contradiction. Therefore
τn ≥ 12dW(k). For alln≥ 2k, (32) with i := u(n) implies

z′n − zn ≥ τn(1− dε)− d(10+ ε)W(k)≥ dW(k) > 0

if we assumeε < Cst(d). Therefore,

PM
(

m|Ttk

)+ PM′
(

m|Ttk

)
= (P(I−1

M (
m)|Ftk

)+ P
(
I−1

M′(
m)|Ftk

)) ◦ I−1
M

≥ P

(
lim

n→∞ zn �= 0 or lim
n→∞z′n �= 0 orT ∧ T ′ ∧W <∞|Ftk

)
◦ I−1

M

≥ P
(
�|Ftk

) ◦ I−1
M ≥ 1/2.

In the equality, we use thatFtk = F ′
t ′k

and, for allC ∈P andn ∈N, PM(C|Ttn)=
P(I−1

M (C)|Ftn ) ◦ I−1
M [for all v ∈ P , P(I−1

M (C)|Ftn) is constant onI−1
M (v)];

similarly PM′(C|Ttn ) = P(I−1
M′(C)|Ft ′n) ◦ I−1

M′ . We also use that for allv ∈ P ,

I−1
M (v) and I−1

M′(v) have the same projections on thetk first coordinates (the
coupled random walksM andM′ are the same up to timetk).

Now, Lemma 4.2 implies that for allη > 0,

PM′
(

m|Ttk

)≤Cst(g,M,η)PM
(

m|Ttk

)+ η

and, therefore,

P
(
Cm|Ftk

)= PM
(

m|Ttk

) ◦ IM ≥ 1/2− η

1+Cst(g,M,η)
=Cst(c, d,M)

if we takeη= 1/4 (recall that we have choseng = 24d/c).

5. Proofs of Lemmas 2.5, 2.7 and 2.8.

5.1. Proof of Lemma2.5.

5.1.1. Notation. It suffices to prove thatP(ϒ0(0) ∩ ϒ ′0(0)) = 0, because the
problem is translation-invariant. We apply Proposition 4.1 to show it (as explained
in Section 4.1) and use its notation. Let us first introduce our choice of the variables
that appear in this lemma.

Let us define a sequence(tn)n∈N by

tn := inf{m ∈N s.t.Z+m(2)≥ n}.
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Let, for all n ∈N,

Rn =Zn(2)+Zn(4)− (Zn(1)+Zn(3)
)
.

Let (yn)n∈N and(zn)n∈N be the(Ttn)-adapted processes defined by

yn := Rtn

Ztn(2)Ztn(3)
, zn := ln

Ztn(3)

Ztn(2)

if tn <∞, andyn = zn := 0 else.
Given ε > 0, for all m ∈ N, let T

m,ε
1 andT

m,ε
2 be theF(tn)n∈N

stopping times
defined by

T
m,ε
1 := inf

{
n≥m s.t.Ztn(4)≥ e(1+ ε)Ztn(1) or α−tn (2)≥ (1+ ε) inf

m≤j≤n
α−tj (2)

or Ztn(1)∧Ztn(4) /∈ [(Ztn(2)∨Ztn(3)
)1−ε

, εZtn(2)∧Ztn(3)
]}

,

T
m,ε
2 := inf

{
n≥m s.t.tn =∞ or ∃y ∈ [1,4] s.t.Ztn(y)−Ztn−1(y)≥ Ztn−1(y)ε

}
andT m,ε := T

m,ε
1 ∧ T

m,ε
2 .

LEMMA 5.1. For all ε > 0,

ϒ0(0)∩ϒ ′0(0)⊂ {lim zn = 0} ∩
{∑

y−n <∞
}
∩
( ⋃

m∈N

{T m,ε =∞}
)
.

PROOF. Observe that a.s. onϒ0(0)∩ϒ ′0(0),∑
n∈N

y−n �
∑
n∈N

Ztn(0)

Ztn(2)Ztn(3)

≈∑
n∈N

Ztn(0)

Ztn(0)+Ztn(2)

Ztn(1)

Ztn(1)+Ztn(3)

1

Ztn(1)

�∑
n∈N

α−n (1)
1{Xn=2,Xn+1=1}

Zn(1)

�∑
n∈N

α−n (1)
1{Xn=1}
Zn(1)

≈∑
n∈N

1{Xn=1,Xn+1=0}
Zn(1)

�∑
n∈N

1{Xn=0,Xn+1=1}
Zn(1)

<∞,

where we use (23) in the first relationship, the definition ofϒ0(0) ∩ϒ ′0(0) in the
second and seventh relationships, Lemma A.1(i) in the third and fifth relationships,
Proposition 3.1(c) in the sixth relationship and, finally,ϒ(0)= {Y+∞(0) <∞} by
Lemma 2.1.

The fact that there exists a.s. onϒ0(0)∩ϒ ′0(0), m ∈N such thatT m,ε
2 =∞ can

be proved as follows: For instance, forZtn(1)− Ztn−1(1), the probability to visit
3 starting from 1 in two steps is asymptotically greater than 1/4, so we can use
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a method very similar to the proof of (17) to estimate the number of visits to 1
between timestn−1 andtn. The other points follow from the definitions.�

Lemma 5.1 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1,m and ε being fixed, with (tn)n∈N, (yn)n∈N and (zn)n∈N as
defined below, to conclude thatP(ϒ0(0) ∩ ϒ ′0(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma (the choice is justified
afterward):c := 1/64, d := 8

√
1+ e, M := 4, x := 2, W(n) := √α−tn (2)/n and

T := T m,ε . We chooseε in the following text. We check in Sections 5.1.2–5.1.4
that Assumptions (H1)–(H3) hold.

5.1.2. Assumption(H1) of Proposition4.1 holds. Let n ∈ N be such that
n < T . We need to define a continuation ofzn+1 on n+ 1= T , so that conditions
(25) and (26) hold. Let us define

Z̃tn+1(2) := inf
{
i ≥ Ztn(2)+ 1 s.t.ωi−1,2≤max

(
α+ni−1,2

(2), α+tn (2)−Ztn(1)ε−1)},
whereni,j , i ∈ N∗, j ∈ Z, is theith visit time to sitej , as in Definition 4.1. We
apply the convention thatα+ni−1,2

(2)= 0 wheneverni−1,2=∞.

Note that Z̃tn+1(2) is Ftn+1-measurable and that̃Ztn+1(2) = Ztn+1(2) when
n + 1 < T . Indeed,Ztn+1(1) ≤ Ztn(1) + Ztn(1)ε implies, for all k ∈ [tn, tn+1],
α−k (2)≤ α+tn (2)+Ztn(1)ε−1 [henceα+k (2)≥ α+tn (2)−Ztn(1)ε−1].

Let Vn+1 := Z̃tn+1(2) − Ztn(2). Then Vn+1 is lower and upper bounded by
two geometric random variables with success probabilitiesα+tn (2)−Ztn(1)ε−1 and
α+tn (2), and, therefore, assumingε < Cst andn≥Cst [note thatZtn(2)≥ n],

E
(
Vn+1|Ftn

) ∈ [α+tn (2)−1,
(
α+tn (2)−Ztn(1)ε−1)−1]

(34)
⊂ [α+tn (2)−1, α+tn (2)−1+ 2Ztn(1)ε−1]

and

E
(
(Vn+1− 1)2|Ftn

)≤ 3
(
α−tn (2)+Ztn(1)ε−1)≤ 6α−tn (2).(35)

Indeed, ifζ is a geometric r.v. with success probabilityp and if 1− p < Cst,

E(ζ )= 1/p, E
(
(ζ − 1)2)= (1− p)(2− p)/p2≤ 3(1− p).

Let us definẽZtn+1(3) similarly so that ifWn+1 := Z̃tn+1(3)−Ztn(3),

E
(
Wn+1|Ftn

) ∈ [α−tn (3)−1, α−tn (3)−1+ 2Ztn(4)ε−1]
and such that the estimate analogous to (35) holds forWn+1. Let

z̃n+1 := ln
Z̃tn+1(3)

Z̃tn+1(2)
, rn := E

(
z̃n+1− zn|Ftn

)− yn,

εn+1 := z̃n+1− zn−E
(
z̃n+1− zn|Ftn

)
.
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Note that ifε < Cst andn≥Cst(ε), using notation� in Section 2.1,

E

(
ln

Z̃tn+1(2)

Ztn(2)

∣∣∣Ftn

)
= E(Vn+1|Ftn)

Ztn(2)
+�

(
E(V 2

n+1|Ftn )

2Ztn(2)2

)

= α+tn (2)−1

Ztn(2)
+�

(
2Ztn(1)ε−1

n

)
+�

(
1

n2

)
(36)

= α+tn (2)−1

Ztn(2)
+�

(
1

2n2−3ε

)
,

using | ln(1+ x) − x| ≤ x2/2 for x ≥ 0 in the first equation,E(V 2
n+1|Ftn)≤ 2,

Ztn(2) ≥ n and (34) in the second equation, andZtn(1)ε−1 ≤ n−(1−ε)2 ≤
1/(4n1−3ε) in the third equation.

Using a similar estimate forE(ln Z̃tn+1(3)/Ztn(3)|Ftn), we obtain

E
(
z̃n+1− zn|Ftn

)= yn +�(1/n2−3ε).(37)

Therefore,rn =�(1/n2−3ε) is such that

∞∑
j=n

|rj | =�
( ∞∑

j=n

1

j2−3ε

)
≤ 1

(1− 3ε)(n− 1)1−3ε
≤ 2

√
α−tn (2)

n
= 2W(n),

usingα−tn (2)≥ 1/n2ε, if ε < Cst andn≥Cst(ε).
Let us now estimateE(ε2

n+1|Ftn ):

V

(
ln

Z̃tn+1(2)

Ztn(2)

∣∣∣Ftn

)

≤ E

([
ln
(

1+ Vn+1

Ztn(2)

)
− ln

(
1+ 1

Ztn(2)

)]2∣∣∣Ftn

)

≤ E

([
ln
(

1+ Vn+1− 1

Ztn(2)+ 1

)]2∣∣∣Ftn

)
≤ E[(Vn+1− 1)2|Ftn ]

n2
≤ 6α−tn (2)

n2
,

using (35) (note that the second inequality is an equality). Using a similar estimate
of conditional variance of log̃Ztn+1(2)/Ztn(2), we obtain, ifε < Cst andn≥ k ≥
Cst(ε),

E
(
ε2
n+1|Ftn

)≤ 12(α−tn (2)+ α+tn (3))

n2
(38)

≤ 24α−tn (2)(1+ e)

n2 ≤ 48(1+ ε)(1+ e)α−tk (2)

n2 ,

usingα+tn (3)≤ 2eα−tn (2), sincen < T
m,ε
1 . Indeed,Ztn(2) ∈ [(1+ ε)−1Ztn(3), (1+

ε)Ztn(3)] [Ztn(3) ≤ Ztn(2) + Ztn(4) ≤ (1+ ε)Ztn(2) and the other inequality is
similar].
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We conclude from (37) and (38) that (26) holds and, therefore, that Assump-
tion (H1) is satisfied whenε < Cst andn≥Cst(ε).

5.1.3. Assumption (H2) of Proposition 4.1 holds. Note that γtk :=
g/
√

Ztk (2)α−tk (2) < 1 if k ≥ Cst(g) and ε < Cst. Let us prove that 2k < T im-
plies t2k < U2,tk,M so that in Definition 4.12 for the transition probabilities of
M′ :=M′

tk,t2k ,g
(in the statement of Proposition 4.1),t2k ∧ U2,tk,M = t2k . This

implies that if 2k ≤ T ′, the probabilities of moving from site 2 to site 1 forM′ are
the VRRW probabilities multiplied by the factor 1− γtk from time tk to time t ′2k .
First, α−tn (2) ≤ (1+ ε)α−tk (2) ≤ 2α−tk (2) as long asn < T by definition ofT , if
ε ≤ 1. Second, ifn≤ 2k < T , thenZtn(2)≤ Z+tn (2)+Ztn(1)≤ Z+tn (2)+ εZtn(2),
so thatZtn(2)≤ (1− ε)−1Z+tn (2)= (1− ε)−1n≤ 4k if ε ≤ 1/2.

Let n ∈N be such thatn < T ′. We define

Z̃′
t ′n+1

(2) := inf
{
i ≥ Z′t ′n(2)+ 1 s.t.

1−ωi−1,2≥ (1− γtk1n∈[k,2k)

)
min

(
α′−

n′i−1,2
(2),α′−

t ′n (2)+Z′t ′n(1)ε−1)},
with the convention thatα′−

n′i−1,2
(2)= 1 whenevern′i−1,2=∞.

Similarly as in Section 5.1.2,̃Z′
t ′n+1

(2) is F ′
t ′n+1

-measurable and̃Z′
t ′n+1

(2) =
Z′

t ′n+1
(2) whenn + 1 < T ′. We defineZ̃′

t ′n+1
(3) in the same way (but the factor

1−γtk does not appear, since the probabilities of moving are only changed starting
from 2, according to Definition 4.12).

Instead of (36), we obtain

E

(
ln

Z̃′
t ′n+1

(2)

Z′
t ′n(2)

∣∣∣F ′
t ′n

)
=
[1− (1− γtk )1n∈[k,2k)α

′−
t ′n (2)]−1

Z′
t ′n(2)

+�
(

1

2n2−3ε

)

and whenn ∈ [k,2k ∧ T ′),

[1− (1− γtk )α
′−
t ′n (2)]−1

Z′
t ′n(2)

−
α′+t ′n (2)−1

Z′
t ′n(2)

=
α′+

t ′n (2)−1

Z′t ′n(2)

[(
1+

γtkα
′−
t ′n (2)

α′+
t ′n (2)

)−1

− 1
]

≤−
γtkα

′−
t ′n (2)

2Z′
t ′n(2)α′+

t ′n (2)2
≤−γtkα

−
tk

(2)

32k
≤−gW(k)

64k
,
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using in the first inequality that(1+ x)−1 ≤ 1− x/2 for x ∈ [0,1] and using
in the second inequality thatZ′

t ′n(2) ≤ 4k (see the first paragraph of this section,

and similarlyZ′
t ′n(3) ≤ 4k, which impliesα′−

t ′n (2) ≥ α−tk (2)/4 [recall thatα−tk (2)=
α′−

t ′k
(2)]. The rest of the proof is analogous to the proof of Assumption (H1), so

that we obtain (27) and (28).

5.1.4. Assumption(H3) of Proposition4.1holds. Let us use Remark 4.1, with
Rn := Rn andSn := Zn(2)Zn(3). First observe thatR′

t ′n ≥ Rtn , sinceM′ �M.

This comes from the fact thatM′ tends to go more to the right thanM, so thatRtn ,
which increases only with visits from 5 to 4 and decreases with visits from 0 to 1,
is larger forM′ than forM. More precisely,M′ �M implies on one hand that
Z′+

t ′n (4)≥ Z+tn (4) andZ′−
t ′n (1)≤ Z−tn (1), and on the other hand by (24) thatRt ≤R′

t ′
for all t , t ′ ∈N such thatXt =X′

t ′ , Z
′+
t ′ (4)≥ Z+t (4) andZ′−

t ′ (1)≤ Z−t (1). Second,
if ε < Cst,∣∣∣∣Ztn(2)Ztn(3)

Z′
t ′n(2)Z′

t ′n(3)
− 1
∣∣∣∣≤ 2

∣∣∣∣ ln Ztn(2)Ztn(3)

Z′
t ′n(2)Z′

t ′n(3)

∣∣∣∣
≤ 2
(

ln
Z′

t ′n(3)

Ztn(3)
+ ln

Ztn(2)

Z′t ′n(2)

)
= 2|z′n − zn|.

The first inequality follows from|x| ≤ 2| ln(1+ x)| for |x| < 1: Indeed,Ztn(2),
Ztn(3), Z′

t ′n(2) andZ′
t ′n(3) are close ton (e.g.,Ztn(2) ∈ [Z+tn (2),Z+tn (2)+ εZtn(2)]

and Ztn(2) = n; see Section 5.1.3), so thatZ′
t ′n(2)/Ztn(2) and Z′tn(3)/Ztn(3)

are close to 1. The second inequality is a consequence ofZ′t ′n(3) ≥ Ztn(3) and

Z′
t ′n(2)≤ Ztn(2), which follows again fromM′ �M.

5.2. Proof of Lemma2.7. It suffices to prove thatP(�1(0))= 0, because the
problem is translation-invariant. We prove a preliminary result in Section 5.2.1 and
then show the result in Section 5.2.2, using Proposition 4.1.

5.2.1. A preliminary result. The following lemma implies that a.s. on�1(0),
Zn(0)∨Zn(4)∨Zn(8)/Zn(2)∧Zn(6) tends to 0.

LEMMA 5.2. One has

�1(0)⊂ ⋂
i=0,4,8

{
lim

n→∞
Zn(i)

Zn(2)
= 0
}
.

PROOF. Let us prove, for instance, thatZn(0)/Zn(2) → 0 on �1(0); the
proofs of the other statements are similar (using also Lemma 2.9). Observe that,
by Proposition 3.1(c) and Remark 3.1,

�1(0)⊂ϒ(0,4)∩ {Z∞(2)=∞} ⊂ {�Y−∞(1) <∞}∩ {β−∞(2)= α−∞(2) > 0}.
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Assume that�1(0) holds. It suffices to proveZn(0)/Zn(1)→ 0. There exist a.s.
a ∈ (0,1) andp ∈ N such that, for alln ≥ p, Zn(1) ≥ aZn(2). This implies, for
all n≥ p,

�Y−∞(1)− �Y−n−1(1)=∑
k≥n

1Xk=1

Zk(1)

Zk(0)

Zk(0)+Zk(2)
≥∑

k≥n

1Xk=1

Zk(1)

Zn(0)

Zn(0)+Zk(2)

≥ aZn(0)
∑
k≥n

1Xk=1

(Zk(1)+Zn(0))2 ≥ a
Zn(0)

Zn(0)+Zn(1)+ 1
.

�

5.2.2. Application of Proposition4.1. We apply Proposition 4.1 and use its
notation to proveP(�1(0))= 0. Let us first introduce our choice of variables that
appear in this lemma. Let us define a sequence(tn)n∈N:

tn := inf{m ∈N s.t.Zm(4)≥ n}.
Forn≥ 2, tn is the time of the(n− 1)th visit to site 4.

For alln ∈N, let

Rn =Zn(5)+Zn(7)− (Zn(1)+Zn(3)
)
.

Let (yn)n∈N and(zn)n∈N be the(Ttn )-adapted processes defined by

yn := Rtn

n(Ztn(3)+Ztn(5))
, zn := ln

Ztn(6)

Ztn(2)

if tn <∞ and byyn = zn := 0 otherwise. Givenε, a > 0, for all m ∈N, let T a,m,ε
1

andT
m,ε
2 be theF(tn)n∈N

stopping times defined by

T
a,m,ε
1 := inf

{
n≥m s.t.Ztn(6)/Ztn(2) /∈ [1− ε,1+ ε]

or sup
j∈{0,4,8}

Ztn(j) > εZtn(2) or α+tn (2)∧ α−tn (6)≤ a

or inf
j∈[m,n]

[
ln
(
Ztn(5)/Ztj (5)

)− 2a−1 ln
(
Ztn(4)/Ztj (4)

)]≥ ε

}
,

T
m,ε
2 := inf

{
n≥m s.t. tn =∞

or ∃y ∈ [1,7] s.t.Ztn(y)−Ztn−1(y)≥ Ztn−1(y)nε−1}
andT a,m,ε := T

a,m,ε
1 ∧ T

m,ε
2 .

LEMMA 5.3. For all ε′ > 0,

�1(0)⊂ {lim zn = 0} ∩
{∑

n∈N

|yn|1ynzn≤0 <∞
}
∩
( ⋃

a>0, m∈N

ε<ε′∧2−2a−1−3

{T a,m,ε =∞}
)
.
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PROOF. Let ε > 0 and suppose�1(0) holds. The existence ofm ∈ N, a > 0
andε < ε′ ∧ 2−2a−1−3 such thatT a,m,ε

1 =∞ follows from Lemmas 2.9 and 5.2,
Remark 3.1 and Corollary 3.2(iii). The proof of the existence ofm ∈ N such that
T

m,ε
2 =∞ follows from an argument very similar to the proof of (17) [which gives

the estimate ofZtn(y)−Ztn−1(y) for y = 2].
To estimate the sum of|yn|1ynzn≤0, observe thatynzn ≤ 0 impliesRtn(Ztn(6)−

Ztn(2))≤ 0; hence,∣∣Rtn

∣∣≤ ∣∣Rtn −
(
Ztn(6)−Ztn(2)

)∣∣≤Ztn(0)+Ztn(4)+Ztn(8).

Therefore, it suffices to prove that∑
n∈N

1{Xn=4}
Zn(4)

Zn(0)

Zn(3)+Zn(5)
<∞,

∑
n∈N

1{Xn=4}
Zn(4)

Zn(8)

Zn(3)+Zn(5)
<∞,

since the sum involvingZtn(4) is obviously finite on�1(0) ⊂ {Y∞(4) < ∞}.
Whereas�1(0) is symmetric with respect to 4, let us prove the first inequality:∑

n∈N

1{Xn=4}
Zn(4)

Zn(0)

Zn(3)+Zn(5)

≈∑
n∈N

1{Xn=4,Xn+2=2}
Zn(4)

Zn(0)

Zn(3)
≈∑

n∈N

1{Xn=2,Xn+2=4}
Zn(4)

Zn(0)

Zn(3)

≈∑
n∈N

1{Xn=2}
Zn(2)

Zn(0)

Zn(1)+Zn(3)
≈∑

n∈N

1{Xn=0}
Zn(0)

Zn(0)

Zn(−1)+Zn(1)

=∑
n∈N

1{Xn=0}
Zn(−1)+Zn(1)

.

In the second equivalence, we use an argument similar to the proof of Proposi-
tion 3.1(c). In the last equivalence, we use the same principle as in the previous
arguments. �

Lemma 5.3 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1,a, m and ε < ε′ < Cst being fixed, with(tn)n∈N, (yn)n∈N and
(zn)n∈N as defined below, to conclude thatP(�1(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma:c := 1/8, d := 4a−1,
M := 22a−1+1, x := 5, W(n) := 1/

√
n andT := T a,m,ε.

We leave to the reader the proof that Assumption (H1) holds, since it is very
similar to the proof of the same fact in Section 5.1.2. Concerning the proof of
Assumption (H2), let us show that 2k < T impliest2k < U5,tk,M . It follows directly
from 2k =Zt2k

(4)=Ztk (4) thatα−tn (5)≤ 2α−tk (5) for all n≤ 2k. On the other hand,
if n ≤ 2k < T , then ln(Ztn(5)/Zt2k

(5)) ≤ 2a−1 ln 2+ 1 if ε ≤ 1, which implies

Ztn(5)≤ 22a−1+1Ztk (5). The rest of the proof that Assumption (H2) is fulfilled is
left to the reader.
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Let us check Assumption (H3), using Remark 4.1. First,M′ � M implies
R′

t ′n ≥Rtn . Second, we need an estimate of∣∣∣∣Ztn(3)+Ztn(3)

Z′
t ′n(3)+Z′

t ′n(5)
− 1
∣∣∣∣≤ ∣∣∣∣Ztn(3)+Ztn(5)− (Z′

t ′n(3)+Z′
t ′n(5))

Z′
t ′n(3)+Z′

t ′n(5)

∣∣∣∣.
Note that

Ztn(3)+Ztn(5)= n+Z−tn (3)+Z+tn (5)+Cst(v0),

Z′t ′n(3)+Z′t ′n(5)= n+Z′−
t ′n (3)+Z′+

t ′n (5)+Cst(v0)

and

Z′+t ′n (5)−Z+tn (5)≤ Z′t ′n(6)−Ztn(6), Z−tn (3)−Z′−t ′n (3)≤Ztn(2)−Z′t ′n(2).

Indeed, the first inequality follows, for instance, from

Ztn(6)=Z+tn (5)+Z+tn (6)+Cst(v0), Z′t ′n(6)= Z′+
t ′n (5)+Z′+

t ′n (6)+Cst(v0),

which implies

Z′t ′n(6)−Ztn(6)= Z′+
t ′n (5)−Z+tn (5)+Z′+

t ′n (6)−Z+tn (6)≥ Z′+
t ′n (5)−Z+tn (5),

where the last inequality follows fromZ′
t ′n(y) ≥ Ztn(y) andZ′+

t ′n (y) ≥ Z+tn (y) for

y ≥ 4, andZ′
t ′n(y) ≤ Ztn(y) and Z′−

t ′n (y) ≤ Z−tn (y) for y ≤ 4, as a consequence

of M′ �M.
To summarize, as long asn < T ∧ T ′, if ε < Cst,∣∣∣∣Ztn(3)+Ztn(5)

Z′
t ′n(3)+Z′

t ′n(5)
− 1
∣∣∣∣≤ Z′

t ′n(6)−Ztn(6)

Z′
t ′n(3)+Z′

t ′n(5)
+

Ztn(2)−Z′
t ′n(2)

Z′
t ′n(3)+Z′

t ′n(5)

≤ 3a−1
(

Ztn(2)

Z′
t ′n(2)

− Ztn(6)

Z′
t ′n(6)

)
≤ 4a−1|z′n − zn|.

5.3. Proof of Lemma2.8. It suffices to prove thatP(�2(0))= 0, because the
problem is translation-invariant. We prove a preliminary result in Section 5.3.1 and
then prove the result in Section 5.3.2, using Proposition 4.1.

5.3.1. A preliminary result. Let, for all n ∈N,

�n := 1

Z+n (4)

Zn(4)Zn(5)

Zn(2)
.

LEMMA 5.4. One has

�2(0)⊂
{
∃�∞ := lim

n→∞�n

}
.
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PROOF. Suppose�2(0) holds. ThenZn(7)/Zn(2)→ 1 by Lemma 2.11 and
β+n (2) → α+∞(2) > 0 by Remark 3.1. Using Corollary 3.2(iv), we obtain that
Zn(5)/Zn(2)α

−∞(7) andZn(4)/Zn(2)α
+∞(2) converge to a positive value. Note that

these statements implyZn(5)/Zn(3)= β+n (2)−1Zn(5)/Zn(2)→ 0.
Therefore, there exist a.s. finite random variablesγ i∞, i ∈ {1,2,3,4,5}, such

that

Z+n+1(4)=
n∑

k=0

1{Xk=4,Xk+1=5}

�
n∑

k=0

1{Xk=4}
Zk(5)

Zk(3)+Zk(5)
�

n∑
k=0

1{Xk=4}
Zk(5)

Zk(3)

� γ 1∞
n∑

k=0

1{Xk=4}Zk(2)α
−∞(7)−1� γ 2∞

n∑
k=0

1{Xk=4}Zk(4)α
+∞(2)−1(α−∞(7)−1)

� γ 3∞Zn(4)α
+∞(2)−1(α−∞(7)−1)Zn(4)

� γ 4∞Zn(2)α
−∞(7)Zn(4)

Zn(2)
� γ 5∞

Zn(4)Zn(5)

Zn(2)
,

where we use the conditional Borel–Cantelli lemma, Lemma A.1(i), in the first
equivalence and useα+∞(2)−1(α−∞(7) − 1) > −1 [since α−∞(2) < α−∞(7) by
Lemma 2.10] in the fifth equivalence.�

5.3.2. Application of Proposition4.1. We apply Proposition 4.1 and use its
notation to proveP(�2(0))= 0. Let us first introduce our choice of variables that
appear in this lemma. Let us define a sequence(tn)n∈N by

tn = inf{m ∈N/Z+m(4)= n}.
For alln ∈N, let

Rn :=Zn(6)+Zn(8)− (Zn(1)+Zn(3)
)
.

Let (yn)n∈N and(zn)n∈N be the(Ttn)-adapted processes defined by

yn := Rtn

Ztn(4)Ztn(5)
, zn := ln

Ztn(7)

Ztn(2)

if tn <∞ and byyn = zn := 0 otherwise.
Givenε, a, b > 0, for all m ∈ N, let T a,b,m,ε

1 andT
m,ε
2 be theF(tn)n∈N

stopping
times defined by

T
a,b,m,ε
1 := inf

{
n≥m s.t.Ztn(7)/Ztn(2) /∈ [1− ε,1+ ε]

or �tn/b /∈ [1− ε,1+ ε] or α+tn (2)∧ α−tn (7)≤ a
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or sup
m≤k≤n

α−tn (5)/α−tk (5)≥ 2

or sup
m≤k≤n

(
Ztn(5)/na−1)

/
(
Ztk /ka−1)≥ 2

or sup
v∈{0,4,5,9}

Ztn(v) > εZtn(2)

or sup
m≤k≤n

√
k
∣∣(Y+tn (6)− Y−tn (6)

)− (Y+tk (6)− Y−tk (6)
)∣∣≥ 1

}
,

T
m,ε
2 := inf

{
n≥m s.t. tn =∞

or ∃y ∈ [1,8] s.t.Ztn(y)−Ztn−1(y)≥ Ztn−1(y)nε−1}
andT a,b,m,ε := T

a,b,m,ε
1 ∧ T

m,ε
2 .

LEMMA 5.5. For all ε′ > 0,

�2(0)⊂ {lim zn = 0}∩
{∑

n∈N

|yn|1ynzn≤0 <∞
}
∩
( ⋃

a,b>0, m∈N

ε<ε′∧a2−2a−1−3

{T a,b,m,ε =∞}
)
.

PROOF. Let ε′ > 0 and suppose�2(0) holds. Thentn <∞ for all n ∈ N and
zn → 0. Let us prove the existence ofm ∈ N, a, b > 0 andε < ε′ ∧ a2−2a−1−3

such thatT a,b,m,ε
1 = ∞. Lemma 2.11, Remark 3.1 and Lemma 5.4 imply that

Zn(7)/Zn(2)→ 1, α+n (2)→ α+∞(2) ∈ (0,1), α−n (7)→ α−∞(7) ∈ (0,1) and�n→
�∞ > 0. Moreover, Corollary 3.2(iv) implies

lnZn(4)≡ α+∞(2) lnZn(2), lnZn(5)≡ α−∞(7) lnZn(7),

and similar estimates for lnZn(0) and lnZn(9), so that supv∈{0,4,5,9}Ztn(v)/

Ztn(2)→ 0 and supn≥k α−n (5)/α−k (5)→ 1 [there exists a.s.γ∞ > 0 s.t.α−n (5) �
γ∞Zn(2)α

−∞(7)−1].
There exist random variablesγ 1∞, γ 2∞ > 0 such that

Ztn(7)� γ 1∞n(α−∞(7)+α+∞(2)−1)−1

[using�tn =Ztn(4)Ztn(5)/(nZtn(2))→�∞] and

Ztn(5)� γ 2∞nα+∞(2)(α−∞(7)+α+∞(2)−1)−1
.

Hence, there exists a.s.a′ > 0 such that supn≥k(Ztn(5)/na−1
)/(Ztk (5)/ka−1

)→ 1
for all a ∈ (0, a′).
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Next, observe thatα+∞(2)(α−∞(7)+ α+∞(2)− 1)−1 > 1 implies that there exists
ν < 1/2 such thatZtn(5)ν/

√
n→∞. Accordingly, using Proposition 3.1(a),

Y+tn (6)
.= Y−tn (6)+ o

(
Ztn(5)−ν) .= Y−tn (6)+ o(n−1/2).

The proof of the existence ofm ∈ N such thatT m,ε
2 = ∞ relies on the

observation that ift > tn is such that, for ally ∈ [1,9], Zt(y) − Ztn(y) ≤
Ztn(y)nε−1, then the probability to visit 4 at timet + |Xt − 4| if Xt ∈ [5,9] (resp.
to visit 5 at timet +|Xt −5| if Xt ∈ [1,4]) is greater than a constant multiplied by
n/Ztn(Xt ) (using�tn →�∞). The result follows from an argument very similar
to the proof of (17) in Section 3.4.

To estimate the sum of|yn|1ynzn≤0, observe thatynzn ≤ 0 impliesRtn(Ztn(7)−
Ztn(2))≤ 0; hence,∣∣Rtn

∣∣≤ ∣∣Rtn −
(
Ztn(7)−Ztn(2)

)∣∣≤ Ztn(0)+Ztn(4)+Ztn(5)+Ztn(9),

which enables us to conclude the proof using

∑ supv∈{0,4,5,9}Ztn(v)

Ztn(4)Ztn(5)
�∑ supv∈{0,4,5,9}Ztn(v)

Ztn(2)

1

n
<∞. �

Lemma 5.5 implies, together with Remark 4.2, that it suffices to apply
Proposition 4.1,a, b, m andε < ε′ < Cst being fixed, with(tn)n∈N, (yn)n∈N and
(zn)n∈N as defined below, to conclude thatP(�2(0)) = 0. Let us choose here the
other constants that appear in the application of this lemma:c := √a/(4b3/2),
d := 20∨ 4b−1, M := 2a−1+1, x := 5, W(n) := 1/

√
n andT := T a,b,m,ε.

We leave to the reader the proof that Assumption (H1) holds, since it is very
similar to the proof of the same fact in Section 5.1.2.

Concerning the proof of Assumption (H2), let us show that 2k < T impliest2k <

U5,tk,M . For alln≤ 2k < T , α−tn (5)≤ 2α−tk (5) andZtn(5)≤ 2(2k)a
−1

Ztk (5)/ka−1≤
2a−1+1Ztk (5) by definition ofT . The rest of the proof that Assumption (H2) is ful-
filled is left to the reader.

Let us check Assumption (H3), using Remark 4.1 withRn := Rn andSn :=
Zn(4)Zn(5). First,M′ �M impliesR′

t ′n ≥Rtn . Second, we need an estimate of

∣∣∣∣Ztn(4)Ztn(5)

Z′t ′n(4)Z′t ′n(5)
− 1
∣∣∣∣≤ 2

(
ln

Ztn(4)

Z′t ′n(4)
+ ln

Z′
t ′n(5)

Ztn(5)

)
.

Let us, for instance, upper bound lnZ′
t ′n(5)/Ztn(5). Assumen ≥ k ≥ Cst and

let δk := Y−tk (6) − Y+tk (6). The proofs of Proposition 3.1(b) and (c) imply
[using Ztn(5) ≥ Z+tn (5) ≥ n, Ztn(7) ≥ (1 − ε)Ztn(2) ≥ (1 − ε)Ztn(5)/ε ≥ n
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andn < T
a,b,m,ε
1 ] that

lnZtn(5)−Cst(x, v0)

= Y+tn (4)+ Y−tn (6)+�
(
Ztn(5)−1)

= Y+tn (4)+ Y+tn (6)+ δk +�
(
2/
√

k
)

= Y+tn (4)+ Ỹ+tn (6)+ δk +�
(
3/
√

k
)

and, similarly,

lnZ′t ′n(5)−Cst(x, v0)= Y ′+
t ′n (4)+ Ỹ ′+

t ′n (6)+ δk +�
(
2/
√

k
)

(recall thatM andM′ are the same until timetk). Therefore,

ln
Z′t ′n(5)

Ztn(5)
≤ Y ′+

t ′n (4)− Y+tn (4)+ Ỹ ′+
t ′n (6)− Ỹ+tn (6)+ 4√

k
.(39)

Now Y ′+
t ′n (4)≤ Y+tn (4) sinceM′ �M. Let un (resp.u′n) be thenth visit time to

site 7 forM (resp.M′):

Ỹ+tn (6)=
Ztn(7)∑
k=1

1{Xuk+1=6}
k

,

Ỹ ′+t ′n (6)=
Z′

t ′n(7)∑
k=1

1{X′
u′
k
+1
=6}

k
≤

Z′
t ′n (7)∑
k=1

1{Xuk+1=6}
k

.

In summary, (39) implies, assumingk ≥Cst andε < Cst,

ln
Z′

t ′n(5)

Ztn(5)
≤

Z′
t ′n (7)∑

k=Ztn(7)+1

1

k
≤ ln

Z′
t ′n(7)

Ztn(7)
+ 1

Ztn(7)
+ 4√

k
≤ ln

Z′
t ′n(7)

Ztn(7)
+ 5√

k
.

APPENDIX: GENERAL MARTINGALE RESULTS

Let us recall the following theorem: The first part is due to Doob, while the
second part is due to Neveu (see [6], Propositions VII-2.3 and VIII-2.4).

THEOREM A.1. Let (Mn)n∈N be a square integrable martingale. Let

αn = E
(
(Mn+1−Mn)

2|Fn

)
<∞, 〈M〉n =

n∑
k=0

αi.

Then, for all r > 1/2:

(i) {〈M〉∞ <∞}⊂ {∃M∞ ∈R/Mn→M∞} a.s.;
(ii) {〈M〉∞ =∞}⊂ {Mn = o(〈M〉1/2

n−1(ln〈M〉n−1)
r )} a.s.
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We make use of the following generalized version of the conditional Borel–
Cantelli lemma at various steps of the proof.

LEMMA A.1. Let G = (Gn)n∈N be a filtration. Let (ξn)n∈N [resp. (βn)n∈N]
be a G-adapted sequence of random variables that take values inR+ and are
bounded[resp. nondecreasing]. Let (
n)n∈N∗ be a sequence ofG-adapted random
sets. Let

pk−1= P(
k|Gk−1),

�n =
n∑

k=1

ξk−11
k
, �∗n =

n∑
k=1

ξk−1pk−1,

δk = ξ2
k pk(1− pk), �n =

n∑
k=1

δk−1.

Then:

(i) �n ��∗n;
(ii) {�∞ <∞}⊂ {�n ≡�∗n};
(iii) {∑k∈N βkδk <∞}⊂ {�n−�∗n

.=O(1/
√

βn )}.
PROOF. First observe that

Mn =�n −�∗n
is a martingale and that�n = 〈M〉n−1. This implies claims (i) and (ii), using
Theorem A.1 [note that�n =O(�∗n), since(ξn)n∈N is bounded].

Let us now prove (iii). Let us define theG-adapted random processes

�n =
n∑

k=1

β
1/2
k−1ξk−11
k

, �∗n =
n∑

k=1

β
1/2
k−1ξk−1pk−1, Rn =�n −�∗n,

with the convention thatR0= 0. Observe thatRn is a martingale and that

〈R〉∞ =
∞∑

k=0

βkδk <∞,

which implies by Lemma A.1 thatRn converges a.s. toward a r.v.R∞ ∈ R. Now,
observe that

Mn =
n∑

k=1

β
−1/2
k−1 (Rk −Rk−1)

and, therefore,

M∞ −Mn =
∞∑

k=n+1

β
−1/2
k−1 (Rk −Rk−1)

=
∞∑

k=n+1

(β
−1/2
k−1 − β

−1/2
k )Rk − β−1/2

n Rn =O
(
1/
√

βn

)
. �
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The following lemma has some similarity to the conditional Borel–Cantelli
lemma, although its proof is based on different arguments. Assuming some upper
bounds on conditional probabilities for events
n, depending on the number of
times 
n has arisen,
n a.s. holds only finitely often. The result is used in the
proof of Lemma 2.10.

LEMMA A.2. Let G = (Gn)n∈N be a filtration, let (γn)n∈N be aG-adapted
sequence that takes values inR such thatlim inf γn > 0 a.s. and let(
n)n∈N∗ be a
sequence ofG-adapted events. For all n ∈N, let

τn = sup{k ≤ n s.t. 
k holds}.
Then {

∃a ∈R∗+,m ∈N s.t. ∀n≥m,P(
n+1|Gn)≤ aτ
γτn
n

n1+γτn

}
⊂
{ ∞∑

n=0

1
n <∞
}
.(40)

PROOF. For all a, ε ∈ R∗+ and m ∈ N, let Ta,ε,m be the stopping time
Ta,ε,m := inf{n≥m s.t.γn < ε or P(
n+1|Gn) > aτ

γτn
n /n1+γτn }. For alln ∈ N, let

�
a,ε,m
n+1 := 
n+1∩ {Ta,ε,m > n} andVa,ε,m = {∑∞n=11�

a,ε,m
n

<∞}.
Let us prove that, for alla, ε ∈ R∗+ andn ≥m, P(Va,ε,m|Gn) ≥ Cst(a, ε) > 0.

This enables us to conclude. Indeed, suppose this inequality holds. By a stan-
dard martingale theorem,P(Va,ε,m|Gn)= E(1Va,ε,m |Gn)→n→∞ E(1Va,ε,m |G∞)=
1Va,ε,m sinceVa,ε,m ∈ G∞. Therefore,1Va,ε,m ≥ Cst(a, ε) a.s. andP(Va,ε,m)= 1
(for all a, ε ∈ R∗+ and m ∈ N). We deduce that a.s. on{∃a, ε ∈ R∗+,m ∈
N s.t.Ta,ε,m =∞}, 
n only occurs finitely often, which proves the lemma.

Fix a, ε ∈ R∗+, andm ∈ N. For simplicity, we assumem ≥ 2 sup(1, a), and
γn ≤ 1 for all n ∈N [the overestimate ofP(
n+1|Gn) remains true if we replaceγn

by γn ∧ 1]. Givenn≥m, let us estimate

P(Va,ε,m|Gn)≥ P

( ∞⋂
k=n+1

(�
a,ε,m
k )c

∣∣∣Gn

)
≥
∞∏

k=n

(
1− anγτn

k1+γτn

)

≥ exp

(
−2anγτn

∞∑
k=n

1

k1+γτn

)
≥ exp

(
− 2anγτn

γτn(n− 1)γτn

)

≥ exp
(
−4a

ε

)
> 0,

where we use that 1−x ≥ exp(−2x) for all x ∈ [0,1/2] (with x = anγτn /k1+γτn ≤
an−1≤ 1/2 sincem≥ 2a) and(n− 1)/n≥ 1/2 (sincem≥ 2). This enables us to
conclude. �
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