About a theorem of Pemantle et Volkov

Pierre Tarrès¹

13th November 2002

Abstract: Vertex-Reinforced Random Walk (VRRW), defined by Pemantle (1988,[5]), is a random process taking values in the vertex set of a graph G, which is more likely to visit vertices it has visited before. Pemantle and Volkov (1997,[7]) proved that, when the underlying graph is the one-dimensional integer lattice \mathbb{Z} , the random walk eventually gets stuck in a finite set containing at least five points and, with positive probability, in exactly five points. We give here a short proof of these results.

1 Introduction

Let (Ω, \mathcal{F}, P) be a probability space. Let G be a locally finite graph, \sim be its neighbor relation, and V(G) be its vertex set.

Let $(X_n)_{n\in\mathbb{N}}$ be a process taking values in V(G). Let $\mathbb{F}=(\mathcal{F}_n)_{n\in\mathbb{N}}$ denote the filtration generated by the process, i.e $\mathcal{F}_n=\sigma(X_0,\ldots,X_n)$ for all $n\in\mathbb{N}$.

For any $v \in V(G)$, let $Z_n(v)$ be the number of times plus one that the process visits site v up through time $n \in \mathbb{N} \cup \{\infty\}$, i.e

$$Z_n(v) = 1 + \sum_{i=0}^n \mathbb{1}_{\{X_i = v\}}.$$

Then $(X_n)_{n\in\mathbb{N}}$ is called Vertex-Reinforced Random Walk (VRRW) with starting point $v_0 \in V(G)$ if $X_0 = v_0$ and, for all $n \in \mathbb{N}$,

$$\mathbb{P}(X_{n+1} = x \mid \mathcal{F}_n) = \mathbb{I}_{\{x \sim X_n\}} \frac{Z_n(x)}{\sum_{w \sim X_n} Z_n(w)}.$$

These non-Markovian random walks were introduced in 1988 by Pemantle ([5]), in the spirit of the model of Edge-Reinforced Random Walks introduced by Coppersmith and Diaconis in 1987 in an unpublished manuscript ([3], the weights being accumulated on edges rather than vertices).

¹Laboratoire de Statistique et Probabilités, UMR CNRS C5583, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex 4, tarres@math.ups-tlse.fr

Similar processes are useful in models involving self-organization or learning behavior, and in economics. For more details, we refer the reader to the articles of Pemantle ([6]), Pemantle and Volkov ([7]) and Skyrms and Pemantle ([9]).

Vertex-reinforced random walks on finite graphs, with reinforcements weighted by factors associated to each edge of the graph, have been studied by Pemantle (1992,[6]) and Benaïm (1997,[1]).

Pemantle and Volkov (1997,[7]) have obtained, when the underlying graph is \mathbb{Z} , very precise results on the asymptotic behavior of the random walk, recalled hereafter.

Define the two random sets

$$R = \{ v \in \mathbb{Z} / \exists n \in \mathbb{N}, \ X_n = v \},$$

$$R' = \{ v \in \mathbb{Z} / X_n = v \text{ infinitely often} \}$$

and, given $v \in \mathbb{Z}$ and $\alpha \in (0,1)$, the six events:

(i)
$$R' = \{v - 2, v - 1, v, v + 1, v + 2\};$$

(ii)
$$\ln Z_n(v-2)/\ln n \to \alpha$$
;

(iii)
$$\ln Z_n(v+2) / \ln n \to 1 - \alpha$$
;

(iv)
$$Z_n(v-1)/n \to \alpha/2$$
;

(v)
$$Z_n(v+1)/n \to (1-\alpha)/2$$
;

(vi)
$$Z_n(v)/n \to 1/2$$
.

Theorem 1.1 $(/7/) \mathbb{P}(|R| < \infty) = 1.$

Theorem 1.2 ([7]) $\mathbb{P}(|R'| \leq 4) = 0$.

Theorem 1.3 ([7]) $\mathbb{P}(|R| = 5) > 0$. Further, for any open set $I \subset [0,1]$ and any integer $v \in \mathbb{Z}$ there exists, with positive probability, $\alpha \in I$ such that events (i) to (vi) occur.

Conjecture 1 ([7]) There exist almost surely $v \in \mathbb{Z}$ and $\alpha \in (0,1)$ such that events (i) to (vi) occur.

We prove this conjecture in [10]. The purpose of this paper is to give a short proof of theorems 1.1, 1.2 and 1.3.

We partly use the heuristics of the article of Pemantle and Volkov ([7]). However, we provide here a new method (introduced in [10]) to describe the local behavior of the random walk, based on a symmetry property observed on a logarithmic scale (claimed in lemma 2.2). This result enables us to prove some local a.s. properties of the VRRW (corollary 2.1), and to yield a condition ensuring that, with large probability,

the random walk remains right-hand or left-hand from a point (corollary 2.2). We deduce theorems 1.1, 1.2 and 1.3 from these corollaries.

NOTATIONS: Let $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Let $\mathsf{Cst}(a_1, \ldots, a_p)$ denote a positive constant depending only on $a_1, a_2 \ldots a_p$. Let ξ denote a random positive constant.

We write $u_n \equiv v_n$ iff $\lim (u_n - v_n)$ exists a.s. and is finite, and $u_n \approx v_n$ iff $\lim u_n/v_n = 1$.

2 Proof of the results

Given $x \in \mathbb{Z}$, $n \in \mathbb{N} \cup \{\infty\}$, and $j, k \in \mathbb{N}$ such that $k \geqslant j$, denote

$$Y_n(x) := \sum_{i=1}^n \mathbb{I}_{\{X_{i-1} = x\}} \frac{1}{Z_{i-1}(x-1) + Z_{i-1}(x+1)}$$

$$Y_n^{\pm}(x) := \sum_{i=1}^n \mathbb{I}_{\{X_{i-1} = x, X_i = x \pm 1\}} \frac{1}{Z_{i-1}(x \pm 1)}$$

$$\alpha_n^{\pm}(x) := \frac{Z_n(x \pm 1)}{Z_n(x-1) + Z_n(x+1)}, \ \beta_n^{\pm}(x) := \frac{Z_n(x \pm 1)}{Z_n(x)},$$

$$Y_{j,k}(x) := Y_k(x) - Y_j(x), \ Y_{j,k}^{\pm}(x) := Y_k^{\pm}(x) - Y_j^{\pm}(x).$$

Let us define, given $x \in \mathbb{Z}$, the event

$$\Upsilon(x) = \{Y_{\infty}(x) < \infty\}$$

on which x is seldom visited in comparison with its neighbors x-1 and x+1. Let us define, given $x \in \mathbb{Z}$, $n \in \mathbb{N}^*$ and t > 0, the probability events

$$\Lambda_n^{\pm}(x,t) := \left\{ \sup_{k \geqslant n} \left| Y_{n,k}^{\pm}(x) - Y_{n,k}(x) \right| < t \right\}, \ \Lambda^{\pm}(x,t) := \bigcup_{n \in \mathbb{N}} \Lambda_n^{\pm}(x,t).$$

 $Y_n^{\pm}(x)$ estimates the contribution -on a logarithmic scale- of the visits starting from x to the number of visits to $x\pm 1$. This contribution $Y_n^{\pm}(x)$ is almost independent of the sign of \pm : the probability of visit to $x\pm 1$ starting from x is $Z_n(x\pm 1)/(Z_n(x-1)+Z_n(x+1))$, so that $Y_n^{\pm}(x)$ increases in average of approximately $1/(Z_n(x-1)+Z_n(x+1))$, like $Y_n(x)$. Lemmas 2.1 and 2.2 rely on these two remarks.

2.1 Preliminary results

Lemma 2.1

$$\ln Z_n(x) \equiv Y_n^+(x-1) + Y_n^-(x+1).$$

PROOF:

$$\ln Z_n(x) \equiv \sum_{i=1}^n \frac{\mathbb{I}_{\{X_i = x\}}}{Z_{i-1}(x)} = \sum_{i=1}^n \frac{\mathbb{I}_{\{X_{i-1} = x-1, X_i = x\}}}{Z_{i-1}(x)} + \frac{\mathbb{I}_{\{X_{i-1} = x+1, X_i = x\}}}{Z_{i-1}(x)}$$
$$= Y_n^+(x-1) + Y_n^-(x+1). \qquad \Box$$

Lemma 2.2

(a)
$$Y_n^{\pm}(x) \equiv Y_n(x)$$

(b)
$$\mathbb{P}(\Lambda_n^{\pm}(x,t) \mid \mathcal{F}_n) \geqslant 1 - \frac{8}{Z_n(x\pm 1)t^2}$$

PROOF: Let us first prove the following inequality

$$\mathbb{P}(\Lambda_n^{\pm}(x,t)^c \mid \mathcal{F}_n) \leqslant \frac{8\mathbb{P}(Z_{\infty}(x\pm 1) \neq Z_n(x\pm 1) \mid \mathcal{F}_n)}{Z_n(x\pm 1)t^2},\tag{1}$$

which will in particular imply statement (b).

Observe that $M_n = Y_n^{\pm}(x) - Y_n(x)$ is a martingale; using Doob's inequality, for all $k \ge n$,

$$\mathbb{E}(\sup_{k \geq n} (Y_{n,k}^{\pm}(x) - Y_{n,k}(x))^{2} \mid \mathcal{F}_{n}) \leq 4\mathbb{E}\left(\sum_{i=n}^{\infty} \mathbb{E}((M_{i+1} - M_{i})^{2} \mid \mathcal{F}_{i}) \mid \mathcal{F}_{n}\right)$$

$$\leq 4\mathbb{E}\left(\sum_{i=n}^{\infty} \frac{\mathbb{I}_{\{X_{i}=x\}}}{Z_{i}(x \pm 1)^{2}} \alpha_{i}^{\pm}(x) \mid \mathcal{F}_{n}\right) = 4\mathbb{E}\left(\sum_{i=n}^{\infty} \frac{\mathbb{I}_{\{X_{i}=x, X_{i+1}=x\pm 1\}}}{Z_{i}(x \pm 1)^{2}} \mid \mathcal{F}_{n}\right)$$

$$\leq 4\mathbb{P}(Z_{\infty}(x \pm 1) \neq Z_{n}(x \pm 1) \mid \mathcal{F}_{n})\left(\sum_{p=Z_{n}(x\pm 1)}^{\infty} \frac{1}{p^{2}}\right) \leq \frac{8\mathbb{P}(Z_{\infty}(x \pm 1) \neq Z_{n}(x \pm 1) \mid \mathcal{F}_{n})}{Z_{n}(x \pm 1)},$$

which implies inequality (1) by Bienaymé-Tchebychev inequality.

Let us now prove that inequality (1) implies statement (a). It suffices to prove that, for all t>0, we a.s. belong to $\Lambda^{\pm}(x,t)$. Using the fact that $\mathbb{P}(\Lambda^{\pm}(x,t)\mid\mathcal{F}_n)$ converges a.s. to $\mathbb{I}_{\Lambda^{\pm}(x,t)}$, it is sufficient to prove that $\mathbb{P}(\Lambda^{\pm}_n(x,t)\mid\mathcal{F}_n)$ converges a.s. to 1. This last statement follows from (1) on $\{Z_{\infty}(x\pm 1)=\infty\}$, and remains true on $\{Z_{\infty}(x\pm 1)<\infty\}$, since

$$\{Z_{\infty}(x\pm 1) = \infty\} \subset \bigcup_{k\in\mathbb{N}} \{Z_{\infty}(x\pm 1) = Z_k(x\pm 1)\}$$

$$\subset \{\lim_{n\to\infty} \mathbb{P}(Z_{\infty}(x\pm 1) \neq Z_n(x\pm 1) \mid \mathcal{F}_n) = 0\}.$$

Corollary 2.1

(a)
$$\Upsilon(x \pm 2) \subset \{\exists \alpha_{\infty}^{\pm}(x) := \lim_{n \to \infty} \alpha_n^{\pm}(x) \in [0, 1)\}$$

(b)
$$\Upsilon(x-3) \cap \Upsilon(x-2) \cap \Upsilon(x+2) \cap \Upsilon(x+3) \cap \{Z_{\infty}(x+2) = Z_{\infty}(x-2) = \infty\}$$

$$\subset \left\{ \frac{\ln Z_n(x\pm 2)}{\ln Z_n(x\pm 1)} \longrightarrow \alpha_{\infty}^{\pm}(x) = \lim_{n\to\infty} \beta_n^{-}(x) \right\}$$

(c) Conditionally to event (i), events (ii) to (vi) hold.

A. Bienvenüe proved part (c) of this corollary in his PhD dissertation (1999,[2]) using different ideas related to the theory of continuous vertex-reinforced random walks (see Sellke,[8]).

Let us explain parts (a) and (b) of corollary 2.1, in the case $\pm := -$.

In part (a), the quantity $\ln Z_n(x-1)/Z_n(x+1)$ does not change significantly over the visits from x-2 (we belong to $\Upsilon(x-2)$), and its contribution over the visits from x is $Y_n^+(x)-Y_n^-(x)$, which remains stable by lemma 2.2; lastly, this quantity decreases over the visits from x+2. In summary, $\ln Z_n(x-1)/Z_n(x+1)$ decreases in average, and therefore converges towards a value $\lambda \in \mathbb{R} \cup \{-\infty\}$.

In part (b), the term $\ln Z_n(x-2)$ remains stable over the visits from x-3 (we belong to $\Upsilon(x-3)$); starting from x-1, the probability of visit to x-2 is $\alpha_n^-(x-1) \approx Z_n(x-2) \times \beta_n^-(x)/Z_n(x-1)$, so that the average variation is $\beta_\infty^-(x)/Z_n(x-1)$ (in the concerned case, $\alpha_n^-(x-2) \to 0$, and $\beta_n^-(x)$ converges). Therefore, for large n, $\ln Z_n(x-2)$ behaves like $\beta_\infty^-(x) \ln Z_n(x-1)$.

PROOF: We will consider the case $\pm := -$, the study of the other case being similar. Let us assume we belong to $\Upsilon(x-2)$, and prove (a): using lemmas 2.1 and 2.2,

$$\ln Z_n(x-1) \equiv Y_n^+(x-2) + Y_n^-(x) \equiv Y_n^-(x) \equiv Y_n(x) \equiv Y_n^+(x). \tag{2}$$

Equation (2) and lemma 2.1 imply

$$\ln \frac{Z_n(x-1)}{Z_n(x+1)} \equiv Y_n^+(x) - \ln Z_n(x+1) \equiv -Y_n^-(x+2), \tag{3}$$

which completes the proof, since $Y_n^-(x+2)$ is nondecreasing in n.

Let us assume we belong to the left-hand side of (b). First, this implies that we belong to $\Upsilon(x+1)^c$, since otherwise we would belong to

$$\Upsilon(x+1) \cap \Upsilon(x+3) = \{Y_{\infty}^{+}(x+1) < \infty\} \cap \{Y_{\infty}^{-}(x+3) < \infty\} \subset \{\ln Z_{\infty}(x+2) < \infty\}$$

by lemmata 2.1 and 2.2. Therefore, using equation 3 for x := x - 1, $\alpha_n^-(x - 1)$ tends to 0 (using $Y_{\infty}^-(x+1) = \infty$). Similarly, $\alpha_{\infty}^+(x+1) = 0$. Hence, using equation (2) for x := x - 1,

$$\ln Z_n(x-2) \equiv Y_n(x-1) = \sum_{i=0}^{n-1} \frac{\mathbb{I}_{\{X_i = x-1\}}}{Z_i(x-2) + Z_i(x)} \approx \sum_{i=0}^{n-1} \frac{\mathbb{I}_{\{X_i = x-1\}}}{Z_i(x-1)} \beta_i^-(x)$$

$$\approx \alpha_{\infty}^-(x) \ln Z_n(x-1).$$
(5)

Let us now prove (c): by lemma 2.2 (a), we belong to $\{Y_{\infty}^{-}(v-2) < \infty\} = \Upsilon(v-2)$, and similarly to $\Upsilon(v+2)$, and to $\Upsilon(v-3) \cap \Upsilon(v+3)$. We can conclude by (a) and (b).

Given $x \in \mathbb{Z}$, let $t_n(x)$ be the *n*-th visit time to site x. Given $a \in \mathbb{N}^*$ and $\zeta < 1$, let $\mathcal{E}_n^{\pm}(x, a, \zeta)$ denote the following property

$$\mathcal{E}_n^{\pm}(x, a, \zeta) := \left\{ X_n = x, \ \beta_n^{\pm}(x) \leqslant \zeta, \ Z_n(x \pm 2) \leqslant Z_n(x \pm 1)^{\zeta}, \ Z_n(x \pm 3) \leqslant a \right\}.$$

Corollary 2.2 Fix $a \in \mathbb{N}^*$ and $\zeta < 1$. Then, for all $c \in (0,1)$, if $Z_n(x \pm 1) \geqslant \operatorname{Cst}(a,c,\zeta)$,

$$\mathbb{P}(\{Z_{\infty}(x\pm 3) = Z_n(x\pm 3)\} \mid \mathcal{F}_n) \geqslant c \, \mathbb{1}_{\mathcal{E}_n^{\pm}(x,a,\zeta)}.$$

The proof of corollary 2.2 is given in subsection 2.3.

2.2 Proof of theorems 1.1, 1.2 and 1.3

2.2.1 Proof of theorem 1.1

Let us prove there exists a constant $\delta > 0$ such that, for all $v \in \mathbb{Z}$ such that $v \leq v_0$,

$$\mathbb{P}(v-3\in R\mid v\in R)\leqslant 1-\delta. \tag{6}$$

This completes the proof of the theorem: (6) implies $\mathbb{P}(v_0 - 3n \in R) \leq (1 - \delta)^n$, which goes to zero as $n \to \infty$. Hence inf $R' > -\infty$ a.s.; similarly, sup $R' < \infty$ a.s.

Observe that $\mathbb{P}(\mathcal{E}_{t_n(v-1)+1}^-(v, 1, 1/2) \mid v \in R) \geqslant \mathsf{Cst}(n)$, with the convention that $\mathcal{E}_{t_n+1}^-$ holds whenever $t_n = \infty$. Therefore, using corollary 2.2, there exists a universal constant $n \in \mathbb{N}^*$ such that

$$\mathbb{P}(v-3 \notin R \mid v \in R) \geqslant \mathbb{P}(\{Z_{\infty}(v-3)=1\} \cap \mathcal{E}_{t_{n}(v-1)+1}^{-}(v,1,1/2) \mid v \in R)$$

$$\geqslant \mathbb{E}(\mathbb{P}(\{Z_{\infty}(v-3)=1\} \mid \mathcal{F}_{t_{n}(v-1)+1}) \ \mathbb{I}_{\mathcal{E}_{t_{n}(v-1)+1}(v,1,1/2)} \mid v \in R) \geqslant \mathsf{Cst}(n)/2.$$

2.2.2 Proof of theorem 1.2

Theorem 1.1 implies that there exists a.s. $x \in \mathbb{Z}$ such that $\inf R' = x > -\infty$. Now, for all $x \in \mathbb{Z}$, using successively lemma 2.2 (a), corollary 2.1 (a) and conditional Borel-Cantelli lemma (see for instance [4], t.2, th.2.7.33, p.76),

$$\begin{cases}
\inf R' = x \} \subset \{Y_{\infty}^{-}(x) < \infty \} = \Upsilon(x) \cap \{Z_{\infty}(x+1) = \infty \} \\
\subset \{\exists \alpha_{\infty}^{-}(x+2) := \lim_{n \to \infty} \alpha_{n}^{-}(x+2) \in [0,1) \} \cap \{Z_{\infty}(x+3) = \infty \} \\
\subset \left\{ \sum_{k=1}^{\infty} \mathbb{I}_{\{X_{k} = x+3\}} \mathbb{P}(X_{k+1} = x+4 \mid \mathcal{F}_{k}) \geqslant \sum_{k=1}^{\infty} \frac{\mathbb{I}_{\{X_{k} = x+3\}}}{1+Z_{k}(x+2)} \geqslant \xi \sum_{k=1}^{\infty} \frac{\mathbb{I}_{\{X_{k} = x+3\}}}{Z_{k}(x+3)} = \infty \right\} \\
\subset \left\{ \sum_{k=1}^{\infty} \mathbb{I}_{\{X_{k} = x+3, X_{k+1} = x+4\}} = \infty \right\} \subset \{\sup R' \geqslant x+4 \}.$$

2.2.3 Proof of theorem 1.3

Assume without loss of generality $I = (\overline{\alpha} - 2\epsilon, \overline{\alpha} + 2\epsilon) \subset (0, 1)$, with $\overline{\alpha} \in (0, 1)$ and $\epsilon > 0$. Let $t_n := t_n(v)$ for simplicity.

There exists $n_0 \in \mathbb{N}^*$ such that, for all $n \geq n_0$,

$$\mathbb{P}(\mathcal{E}_{t_n}^-(v,2,\overline{\alpha}+\epsilon)\cap\mathcal{E}_{t_n}^+(v,2,1-\overline{\alpha}+\epsilon))>0,$$

therefore, using corollary 2.2 successively for $\pm := +$ and -, if $n \geqslant \mathsf{Cst}(a,\zeta)$, letting

$$\Lambda = \{ Z_{\infty}(v-3) = Z_{t_n}(v-3), \ Z_{\infty}(v+3) = Z_{t_n}(v+3) \},$$

$$\mathbb{P}(\Lambda) \geqslant \mathbb{E}(\mathbb{P}(\Lambda \mid \mathcal{F}_{t_n}) \ \mathbb{I}_{\mathcal{E}_{t_n}^-(v,2,\overline{\alpha}+\epsilon)\cap\mathcal{E}_{t_n}^+(v,2,1-\overline{\alpha}+\epsilon)}) \geqslant \frac{1}{2}\mathbb{P}(\mathcal{E}_{t_n}^-(v,2,\overline{\alpha}+\epsilon)\cap\mathcal{E}_{t_n}^+(v,2,1-\overline{\alpha}+\epsilon)).$$

On the other hand, $\Lambda \subset \{R' = \{v-2, v-1, v, v+1, v+2\}\}$ by lemma 2.2. Corollary 2.1 (c) completes the proof. The case $v = v_0$ gives $\mathbb{P}(|R| = 5) > 0$.

2.3 Proof of corollary 2.2

We give the proof for $\pm := -$, and let $t_k := t_k(x-1)$ for simplicity. Assume we belong to $\mathcal{E}_n^-(x,a,\zeta)$. Set $\mu = (1+1/\zeta)/2 \in (1,1/\zeta)$; let us define the stopping times

$$T_1 = \inf\{k \ge n/ \ Z_k(x-3) \ne Z_n(x-3)\},\$$

 $T_2 = \inf\{k \ge n/ \ \beta_k^-(x) > \mu\zeta \text{ or } Z_k(x-2) > Z_k(x-1)^{\mu\zeta}\},\$

and consider the two events

$$\Omega_1 = \{T_1 = T_1 \land T_2 < \infty\}, \ \Omega_2 = \{T_2 = T_1 \land T_2 < \infty\}.$$

It suffices to prove that $\mathbb{P}(\Omega_1^c \cap \Omega_2^c \mid \mathcal{F}_n) \geqslant c$.

First, at each time $t_k \ge n$ such that $t_k < T_1 \wedge T_2$, the probability to visit x-3 at time t_k+2 is

$$\mathbb{P}(X_{t_k+2} = x - 3 \mid \mathcal{F}_{t_k}) \leqslant \frac{Z_{t_k}(x-2)}{Z_{t_k}(x-1)} \frac{Z_{t_k}(x-3)}{Z_{t_k}(x-1)} \leqslant \frac{a}{Z_{t_k}(x-1)^{2-\mu\zeta}}.$$

Therefore, if $Z_n(x-1) \geqslant \mathsf{Cst}(a,c,\zeta)$,

$$\mathbb{P}(\Omega_1 \mid \mathcal{F}_n) \leqslant \sum_{i \in \mathbb{N}^*} \frac{a}{(Z_n(x-1)+i)^{2-\mu\zeta}} \leqslant \frac{a}{1-\mu\zeta} \frac{1}{Z_n(x-1)^{1-\mu\zeta}} \leqslant \frac{1-c}{2}.$$
 (7)

We will now prove that, if $t \leq \mathsf{Cst}(\zeta)$,

$$\Omega_2^c \supset \Gamma_n(x,t) = \Lambda_n^-(x,t) \cap \Lambda_n^-(x-1,8(1-c)^{-1/2}) \cap \Lambda_n^+(x-2,t), \tag{8}$$

which will complete the proof of the corollary since, by lemma 2.2 (b), for all t > 0, if $Z_n(x-1) \ge \mathsf{Cst}(c,t)$, $\mathbb{P}(\Gamma_n(x,t) \mid \mathcal{F}_n) \ge 1 - (1-c)/2$.

Assume we belong to $\Gamma_n(x,t)$, and let $k\geqslant n$ such that $k\leqslant T_1\wedge T_2$; then, if $Z_n(x-1)\geqslant \mathrm{Cst}(\mu\zeta,t)=\mathrm{Cst}(\zeta,t)$,

$$Y_{n,k}(x-2) \leqslant \sum_{i=n}^{k-1} \frac{\mathbb{1}_{\{X_i = x-2\}}}{Z_i(x-1)} \leqslant \sum_{i \leqslant k-1} \frac{\mathbb{1}_{\{X_i = x-2, Z_i(x-2) \geqslant Z_n(x-1)^{\mu\zeta}\}}}{Z_i(x-2)^{\mu^{-1}\zeta^{-1}}} + \frac{Z_n(x-1)^{\mu\zeta}}{Z_n(x-1)} \leqslant t$$

and, similarly as in lemmas 2.1 and 2.2, since we belong to $\Gamma_n(x,t)$,

$$\ln \frac{Z_k(x-1)}{Z_n(x-1)} \leqslant t + Y_{n,k}^+(x-2) + Y_{n,k}^-(x) \leqslant 3t + Y_{n,k}(x-2) + Y_{n,k}(x) \leqslant 5t + \ln \frac{Z_k(x)}{Z_n(x)};$$
 (9)

hence

$$\ln \beta_k^-(x) = \ln \frac{Z_k(x-1)}{Z_k(x)} \leqslant 5t + \ln \frac{Z_n(x-1)}{Z_n(x)} \leqslant 5t + \ln \zeta \leqslant \ln \mu \zeta$$

if $t \leq \mathsf{Cst}(\mu) = \mathsf{Cst}(\zeta)$.

Now, an equation similar to (4) occurs: letting $t' = t + 8(1-c)^{-1/2}$,

$$\ln \frac{Z_k(x-2)}{Z_n(x-2)} \leqslant t + Y_{n,k}^-(x-1) \leqslant t' + Y_{n,k}(x-1) = t' + \sum_{i=n}^{k-1} \frac{\mathbb{I}_{\{X_i = x-1\}}}{Z_k(x-1)} \beta_k^-(x)$$

$$\leqslant t' + \mu \zeta \left(t + \ln \frac{Z_k(x-1)}{Z_n(x-1)} \right).$$

Hence

$$\ln Z_k(x-2) \leqslant \zeta \ln Z_n(x-1) + t' + \mu \zeta t + \mu \zeta \ln \frac{Z_k(x-1)}{Z_n(x-1)} \leqslant \mu \zeta \ln Z_k(x-1)$$

since $\zeta \ln Z_n(x-1) + t' + \mu \zeta t \leq \mu \zeta \ln Z_n(x-1)$ if $Z_n(x-1) \geq \mathsf{Cst}(c,t,\zeta)$. Therefore $k < T_2$; this completes the proof of (8).

Acknowledgements. I wish to thank Michel Benaïm, Marie Duflo and an associate editor of Annals of Probability for their very helpful comments.

References

- [1] M. Benaïm. Vertex-reinforced random walks and a conjecture of Pemantle. *Annals of probability*, 25:No.1,361–392, 1997.
- [2] A. Bienvenüe. Contribution à l'étude des marches aléatoires avec mémoire. Doctoral dissertation, Université Claude Bernard-Lyon 1, 1999.
- [3] D. Coppersmith and P. Diaconis. Random walks with reinforcement. *Unpublished manuscript*, 1986.
- [4] D. Dacunha-Castelle et M. Duflo. Probabilités et statistiques, volume 2. Masson, 1993.
- [5] R. Pemantle. Random processes with reinforcement. Massachussets Institute of Technology doctoral dissertation, 1988.
- [6] R. Pemantle. Vertex-reinforced random walk. *Probability Theory and Related Fields*, 92:117–136, 1992.
- [7] R. Pemantle and S. Volkov. Vertex-reinforced random walk on \mathbb{Z} has finite range. Annals of probability, 27:No.3,1368–1388, 1999.
- [8] T. Sellke. Reinforced random walk on the d-dimensionnal integer lattice. Technical report, no.94-26, Department of statistics, Purdue university, 1994.
- [9] B. Skyrms and R. Pemantle. A dynamic model of social network formation. Proc. NAS, 97:9340–9346, 2000.
- [10] P. Tarrès. Vertex-reinforced random walk on \mathbb{Z} eventually gets stuck at a set of five points. Preprint, submitted to Annals of Probability, 2002.