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Abstract: Vertex-Reinforced Random Walk (VRRW), defined by Pemantle (1988,[5]),
is a random process taking values in the vertex set of a graph G, which is more likely to
visit vertices it has visited before. Pemantle and Volkov (1997,[7]) proved that, when the
underlying graph is the one-dimensional integer lattice Z, the random walk eventually gets
stuck in a finite set containing at least five points and, with positive probability, in exactly
five points. We give here a short proof of these results.

1 Introduction

Let (2, F, P) be a probability space. Let G be a locally finite graph, ~ be its neighbor
relation, and V(G) be its vertex set.

Let (X,)nen be a process taking values in V(G). Let F = (F,),en denote the
filtration generated by the process, i.e F,, = 0(Xo,...,X,) for all n € N.

For any v € V(G), let Z,(v) be the number of times plus one that the process visits
site v up through time n € NU {o0}, i.e

Zn(’l)) =1 + Z ]I{Xi:v}-
1=0

Then (X, )nen is called Vertex-Reinforced Random Walk (VRRW) with starting
point vy € V(G) if Xy = vy and, for all n € N,

Zn(x)

P X1 =2 | F, .
( +1 | ) — Zn(w)

= Igenxa) 5

These non-Markovian random walks were introduced in 1988 by Pemantle ([5]), in
the spirit of the model of Edge-Reinforced Random Walks introduced by Coppersmith
and Diaconis in 1987 in an unpublished manuscript ([3], the weights being accumulated
on edges rather than vertices).
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Similar processes are useful in models involving self-organization or learning behav-
ior, and in economics. For more details, we refer the reader to the articles of Pemantle
([6]), Pemantle and Volkov ([7]) and Skyrms and Pemantle ([9]).

Vertex-reinforced random walks on finite graphs, with reinforcements weighted by
factors associated to each edge of the graph, have been studied by Pemantle (1992,[6])
and Benaim (1997,[1]).

Pemantle and Volkov (1997,[7]) have obtained, when the underlying graph is Z,
very precise results on the asymptotic behavior of the random walk, recalled hereafter.

Define the two random sets

R={veZ/3IneN, X,=uv},
R' = {v € Z/ X,, = v infinitely often}

and, given v € Z and « € (0, 1), the six events:

() RR={v—-2,v—1,v,v+1,v+2};

(ii) nZ,(v —2)/Inn — «;
(ili) n Z,(v+2)/Inn - 1 — «;
(iv) Zn(v—1)/n—= a/2;

v) Z,(v+1)/n— (1—a)/2;
(vi) Z,(v)/n—1/2.
Theorem 1.1 ([7]) P(|R| < o0) = 1.
Theorem 1.2 ([7]) P(|R'| < 4) =0.

Theorem 1.3 ([7]) P(|R| = 5) > 0. Further, for any open set I C [0,1] and any
integer v € Z there exists, with positive probability, o € I such that events (i) to (vi)
occur.

Conjecture 1 ([7]) There exist almost surely v € Z and « € (0,1) such that events
(i) to (vi) occur.

We prove this conjecture in [10]. The purpose of this paper is to give a short proof
of theorems 1.1, 1.2 and 1.3.

We partly use the heuristics of the article of Pemantle and Volkov ([7]). However,
we provide here a new method (introduced in [10]) to describe the local behavior
of the random walk, based on a symmetry property observed on a logarithmic scale
(claimed in lemma 2.2). This result enables us to prove some local a.s. properties of the
VRRW (corollary 2.1), and to yield a condition ensuring that, with large probability,



the random walk remains right-hand or left-hand from a point (corollary 2.2). We
deduce theorems 1.1, 1.2 and 1.3 from these corollaries.

NotATIONS: Let N* = N\{0}. Let Cst(ay, ..., ap) denote a positive constant depending
only on ai, as ... a,. Let £ denote a random positive constant.
We write u,, = v, iff lim(u,, —v,) exists a.s. and is finite, and u,, < v, iff limu, /v, = 1.

2 Proof of the results

Given x € Z, n € NU {0}, and j, k € N such that k£ > j, denote
1

Yul@ ;H{Xﬂm}z (@ =1+ Zi 1(z+1)
1
Yo (a Z Lix, y=o.x; =) 7 1)
=1
Zn(x £ 1) Zn(wil)
() — n (g

Viale) = Vile) — Yy(a), YA () = Vi) - VE().

Let us define, given x € Z, the event

T(z) = {Yoo(2) < 00}

on which x is seldom visited in comparison with its neighbors x — 1 and = + 1.
Let us define, given x € Z, n € N* and ¢ > 0, the probability events

AE(z,t) = {sup ‘Ynik(x) = Yn,k(m)‘ } AE(z,t) U AE(z, ).
k>n neN
Y (x) estimates the contribution -on a logarithmic scale- of the visits starting from
z to the number of visits to z41. This contribution Y,*(z) is almost independent of the
sign of +: the probability of visit to z+1 starting from z is Z,(x£1)/(Z,(x—1)+Z, (x+
1)), so that Y, *(z) increases in average of approximately 1/(Z,(z — 1) + Z,(z + 1)),
like ¥,,(z). Lemmas 2.1 and 2.2 rely on these two remarks.

2.1 Preliminary results

Lemma 2.1
InZ,(z) =Y, (z—1)+Y, (z+1).

PROOF:
“ Tixima) x= Dyxiima-txima) - Lixioi—a+1,Xi—0}
ln Zn :L_ E (] — 2 y<r + 2 1<
D=2 70 ~ 2" Z.@ 7 (@)
=Y, (z-1)+Y, (z+1). O



Lemma 2.2

(a)  Y;i(z) = Ya(z)
8

(b) IP(AT:Lt(m’t) | Fo) 21— m

PROOF: Let us first prove the following inequality

8P(Zoo(x £ 1) # Zn(z £1) | Fn)

+ Cc <

(1)

which will in particular imply statement (b).
Observe that M,, = Y,*(z) — Y, (z) is a martingale; using Doob’s inequality, for all
k>n,

E(sup (Y3, (2) — Yox(2))” | Fr) < 4E (Z B((Mis1 — M;)* | F) | fn>

- ]I{X-:;c} + > ]I{X-:z Xit1=z£1}
< 4]E I Gl Sne? P n — 4]E 1 s g+4+1 -
(Z Ziw £ 12 @ 15 2 Zwt |

- ) -
="

=N

S PR e EEACED I

SAP(Zoo(x 1) # Zn(x £ 1) | Fp) 2] S Zo(z £1) ’

p=Zn(xtl)

which implies inequality (1) by Bienaymé-Tchebychev inequality.

Let us now prove that inequality (1) implies statement (a). It suffices to prove
that, for all £ > 0, we a.s. belong to A(z,t). Using the fact that P(A%(z,t) | F,)
converges a.s. to Tpx(yy), it is sufficient to prove that P(Af(z,t) | F,) converges a.s.
to 1. This last statement follows from (1) on {Z,(z £ 1) = oo}, and remains true on
{Zx(z £1) < 00}, since

{Zoo(z £1) =00} C | J{Zw(z £1) = Z(x £1)}
C {lim P(Zso(z £1) # Zy(z £ 1) | F,) = 0}. O

n—o0

Corollary 2.1
(a) Y(z +2) C {FoZ (z) := lim oF(2) € [0,1)}
n—oo

M) Yxz-3)NTx—-2)NT(x+2)NT(z+3)N{Zx(z+2) = Zp(x —2) = 0}

InZ,(z £ 2) N . _
{m — a(r) = lim 5, (37)}

(c) Conditionally to event (1), events (ii) to (vi) hold.



A. Bienveniie proved part (c) of this corollary in his PhD dissertation (1999,[2])
using different ideas related to the theory of continuous vertex-reinforced random walks
(see Sellke,[8]).

Let us explain parts (a) and (b) of corollary 2.1, in the case + := —.

In part (a), the quantity In Z,(z — 1)/Z,(z + 1) does not change significantly over
the visits from  — 2 (we belong to Y(z — 2)), and its contribution over the visits from
z is Y, (z) = Y,  (x), which remains stable by lemma 2.2; lastly, this quantity decreases
over the visits from z + 2. In summary, In Z,,(x — 1)/Z,(x + 1) decreases in average,
and therefore converges towards a value A € RU {—o0}.

In part (b), the term In Z,(z — 2) remains stable over the visits from z — 3 (we
belong to Y (z — 3)); starting from x — 1, the probability of visit to z —2 is o, (z — 1) <
Zn(x —2) x B (x)/Z,(x — 1), so that the average variation is 8 (x)/Z,(z — 1) (in
the concerned case, a,, (x —2) — 0, and S, (x) converges). Therefore, for large n,
In Z,(x — 2) behaves like 5 (z)In Z,(z — 1).

PROOF: We will consider the case £+ := —, the study of the other case being similar.
Let us assume we belong to Y(xz — 2), and prove (a): using lemmas 2.1 and 2.2,
nZ,(z—1)=Y(z—-2)+Y, (z) =Y, (z) =Ya(z) =Y, (2). (2)

Equation (2) and lemma 2.1 imply

Zn(x—1)

n _—

Zn(x + 1)

which completes the proof, since Y, (x + 2) is nondecreasing in n.

Let us assume we belong to the left-hand side of (b). First, this implies that we
belong to T(x + 1), since otherwise we would belong to

=Y Hz)—InZ,(z+1)=-Y, (z+2), (3)

Y(z+1)NYT(z+3)={V(z+1) <o} N{Y_(z+3) <o} C{lnZy(z+2) < oo}

by lemmata 2.1 and 2.2. Therefore, using equation 3 for z := z — 1, a;,; (x — 1) tends
to 0 (using Y5 (z + 1) = 00). Similarly, ot (z + 1) = 0. Hence, using equation (2) for
T:=x—1,

n—1

Tix;=e—1 Tix;=e—1y
InZy(z —2) =Y, (z — 1) zOZfC—QJfZ ;sz_lﬂ() (4)
< a(z)In Z,(z — 1). (5)

Let us now prove (c): by lemma 2.2 (a), we belong to {Y(v—2) < o0} = T(v—2),
and similarly to Y(v + 2), and to T(v — 3) N Y (v + 3). We can conclude by (a) and
(b). O

Given z € Z, let t,(x) be the n-th visit time to site z. Given a € N* and ¢ < 1, let
E*(z,a,() denote the following property

EX(2,0,0) = {Xp =1, BE(2) < Zu(z£2) < Zu(z£1)%, Zo(z£3) <a}.



Corollary 2.2 Fiz a € N* and ( < 1. Then, for all ¢ € (0,1), if Z,(z £ 1) >
Cst(a, ¢, (),
P{Zo(z£3)=Zu(z £3)} | Fu) 2 ¢ Lgt(y 40

The proof of corollary 2.2 is given in subsection 2.3.

2.2 Proof of theorems 1.1, 1.2 and 1.3
2.2.1 Proof of theorem 1.1

Let us prove there exists a constant § > 0 such that, for all v € Z such that v < vy,
Pv-3€R|veR)<1-4. (6)

This completes the proof of the theorem: (6) implies P(vg —3n € R) < (1 —6)", which
goes to zero as n — oo. Hence inf R' > —o0o a.s.; similarly, sup R’ < oo a.s.

Observe that P(€, (,_;y,,(v,1,1/2) | v € R) > Cst(n), with the convention that

&, .1 holds whenever ¢, = oo. Therefore, using corollary 2.2, there exists a universal
constant n € N* such that

Plv—3¢R|veER)>P{Zo(v—3)= 1}05;(%1)“(1),1,1/2) | v € R)

2 ]E(]P({ZOO (U - 3) = 1} | ftn(v—l)‘f'l) ]Igtn(u—l)+1(va]-71/2) ‘ v e R) 2 CSt(n)/Q'

2.2.2 Proof of theorem 1.2

Theorem 1.1 implies that there exists a.s. x € Z such that inf R’ = z > —o0. Now,
for all x € Z, using successively lemma 2.2 (a), corollary 2.1 (a) and conditional
Borel-Cantelli lemma (see for instance [4], t.2, th.2.7.33, p.76),

{inf R =z} C{Y (z) < o0} =T(z) N{Zx(z + 1) = 0}
C {Ja(z+2):= lim a, (z+2)€[0,1)} N {Zx(z+3) = oo}

o ]I{X =z+3} - ]I{X =z+3}
C LIix, -zt P(Xp1 =2 +4 | Fr) 2 — AT > R e
{g; Fima3) PNy =2 +4| Fi) 221+de+@ §§;ZMx+$ >

C {Z ]I{Xk:g;+3,)(k+1:$+4} = oo} C {sup R >z+ 4}.

k=1

2.2.3 Proof of theorem 1.3

Assume without loss of generality I = (& — 2¢,a + 2¢) C (0,1), with @ € (0,1) and
e > 0. Let t, := t,(v) for simplicity.
There exists ng € N* such that, for all n > ng,

P& (v,2,a+€¢)NEF (v,2,1—a+€)) >0,

6



therefore, using corollary 2.2 successively for + := + and —, if n > Cst(a, (), letting

A={Zw(v—3) =2, (v—3), Zoo(v+3)=Z,(v+3)},

1

P(A) 2 E(P(A | ftn) ]1811(0,2,64—6)05;;(0,2,1764—6)) 2 §P(5t; (U, 2’a+€)m‘€t—: (U’ 2, 1—54—6)).

On the other hand, A C {R' = {v—2,v—1,v,v+1,v+2}} by lemma 2.2. Corollary
2.1 (c) completes the proof. The case v = vy gives P(|R| = 5) > 0.

2.3 Proof of corollary 2.2

We give the proof for + := —, and let t; := tx(x — 1) for simplicity. Assume we belong
to &, (z,a,(). Set p=(1+ 1/()/2 € (1,1/¢); let us define the stopping times

n/ Zx(x —3) # Zn(x = 3)},

T, = inf{ n/ By (#) > p¢ or Zy(x — 2) > Zy(x — 1)},

and consider the two events
Ql = {T1 T1 A T2 < OO} QQ {T2 T1 A T2 < OO}

It suffices to prove that P(Q§ N QS | F,) > ¢
First, at each time ¢, > n such that ¢, < T7 AT, the probability to visit + — 3 at
time 7 + 2 is

Zy (x —2) Zy (v — 3) a

Therefore, if Z,(x — 1) > Cst(a, ¢, (),

a a 1 1—c¢
< E < < .
A S L e R STz S 2 g

1EN*

We will now prove that, if t < Cst(¢),
Q5 D Doz, 1) = Ay (2, 8) N AL (@ — 1,8(1 = ¢) T2 N A (z — 2,1), (8)

which will complete the proof of the corollary since, by lemma 2.2 (b), for all ¢ > 0, if
Zn(x — 1) > Cst(e,t), P(Tp(x,t) | Fp) 21— (1—c)/2.

Assume we belong to I';(z,t), and let k& > n such that £ < Ty A Ty; then, if
Zn(x — 1) > Cst(ud,t) = Cst((, 1),

k—1

Yor(z —2) < X2} o Z Kize-2,2i(e-2)>Zn(z=1) | w(z —1)

~ Zi(z — 1) Zi(x — 2)w ¢ Zp(x —1)

<t
i<k—1



and, similarly as in lemmas 2.1 and 2.2, since we belong to I',(z, ),

Zk(x — 1) _ Zk(IL')
hence Zi( 0 7. 0
IngB_ (x :lnLéﬁ—l—lnLg&—l—ln <In

if ¢ < Cst(p) = Cst(().

Now, an equation similar to (4) occurs: letting ¢’ = ¢ + 8(1 — )12,

Zk(:c - 2)

2\ T« - _ < oy {X;=z— 1}
ann(x—2) St+ Y (o —1) <t + Yop(o - t+ZZ o) B, (2)
Zk($—1)
<t In2B= 1)
t—i—u{(t-i— nZn(x—l))

Hence
Zp(x—1
InZy(z —2) < {InZ,(z— 1)+t +u§t+u§ln% < uCln Zy(z — 1)
n\T —
since (InZ,(z — 1)+t + pu¢t < uCIn Z,(x — 1) if Z,(x — 1) > Cst(c,t, (). Therefore
k < Ty; this completes the proof of (8).
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