
Some dynamics of signaling games
Simon M. Huttegger, B. Skyrms, Pierre Tarrès, and Elliott O. Wagner
and

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Information transfer is a basic feature of life that includes signal-
ing within and between organisms. Due to its interactive nature,
signaling can be investigated by using game theory. Game the-
oretic models of signaling have a long tradition in biology, eco-
nomics and philosophy. For a long time the analyses of these
games has mostly relied on using static equilibrium concepts
such as Pareto optimal Nash equilibria or evolutionarily stable
strategies. More recently signaling games of various types have
been investigated with the help of game dynamics, which includes
dynamical models of evolution and individual learning. A dy-
namical analysis leads to more nuanced conclusions as to the
outcomes of signaling interactions. Here we explore different
kinds of signaling games that range from interactions without
conflicts of interest between the players to interactions where
their interests are seriously misaligned. We consider these games
within the context of evolutionary dynamics (both infinite and
finite population models) and learning dynamics (reinforcement
learning). Some results are specific features of a particular dy-
namical model, while others turn out to be quite robust across
different models. This suggests that there are certain qualitative
aspects that are common to many real world signaling interac-
tions.

signaling games | costly signaling games | evolutionary dynamics | learn-
ing dynamics

Introduction
The flow of information is a central issue across biological and so-
cial science. In both of those domains, entities have information that
can be communicated, wholly or partly, to other entities by means of
signals. Signaling games are abstractions that are useful for studying
general aspects of such interactions. The simplest signaling games
model interactions between two individuals: a sender and a receiver.
The sender acquires private information about the state of the world,
and contingent on that information selects a signal to send to the re-
ceiver. The receiver observes the signal, and contingent on the signal
observed chooses an action. Payoffs for sender and receiver are func-
tions of state of the world, action chosen, and (possibly) signal sent.
Where payoffs only depend on state and act, interests of sender and
receiver may be coincident, partially aligned, or totally opposed. An-
other layer of complexity is added when payoffs reflect differential
costs to the sender, of different signals in different states.

The baseline case is given by signaling when the interests of
the sender and the receiver are fully aligned. This scenario was in-
troduced by the philosopher David Lewis in 1969 in order to ana-
lyze conventional meaning (25). We thus call them Lewis signaling
games. In the simplest case the action chosen by the receiver is ap-
propriate for exactly one state of the world. If the appropriate action
is chosen, then the sender and the receiver get the same payoff of,
say, 1; otherwise they get a payoff of 0.

By varying these payoffs, the sender’s and the receiver’s incen-
tives may change quite radically (6). Sometimes the sender might
have an incentive to not inform the receiver about which of several
states is the true one because the action that would be best for the
sender does not coincide with the action that would be best for the
receiver in a certain state. An extreme form that will be discussed
briefly below is arrived at when this is always the case so that the
signaling interaction is essentially zero-sum.

Misaligned interests lead to the question of how reliable or hon-
est signaling is possible in such cases (45; 10; 26). The resulting

games are known as costly signaling games because in these games
each signal may have an associated cost. Costly signaling games are
studied in economics, starting with the Spence game (37), and in bi-
ology (e.g. 10). The Spence game is a model of job market signaling.
In a job market, employers would like to hire qualified job candi-
dates, but the level of a job candidate’s qualification is not directly
observable. Instead, a job candidate can send a signal about her qual-
ification to the employer. However, if signals are costless, then job
candidates will choose to signal that they are highly qualified regard-
less of their qualification. If, on the other hand, signals are costly so
that only job candidates of high qualification can afford to send it,
signaling can be honest in equilibrium whenever the cost of signals
is sufficiently high. In this case employers get reliable information
about a job candidate’s quality.

The models of costly signaling in theoretical biology have a sim-
ilar structure. They model situations as diverse as predator-prey sig-
naling, sexual signaling, or parent-offspring interactions (35). A sim-
ple example of the latter kind of situation is the so-called Sir Philipp
Sidney game, which was introduced by John Maynard Smith in order
to capture the basic structure of costly signaling interactions (26). In
the Sir Philipp Sidney game there are two players, a child (sender)
and a parent (receiver). The sender can be in one of two states, needy
or not needy, and would like to be fed in either state. The receiver
can choose between feeding the sender or abstaining from doing so.
She would like to feed the sender provided that the sender is needy.
Otherwise the receiver would rather eat herself. This creates a partial
conflict of interest between the sender and the receiver. If the sender
is needy, then the interactions between the two players is similar to
matching a states and an act in the Lewis signaling game. However,
if the sender is not needy, then the payoffs of sender and receiver
diverge.

Now, it is assumed that the a needy sender profits more from be-
ing fed than a sender that is not needy. In addition, the sender is
allowed to send a costly signal. If the cost of the signal is sufficiently
high, then there is again the possibility that in equilibrium the sender
signals need honestly and the receiver feeds the sender upon receipt
of the signal.

In costly signaling games, signaling costs realign the interests of
sender and receiver by making it disadvantageous for certain types
of senders to use signals. This captures quite precisely the so-called
handicap principle (45), which states that there must be a significant
differential cost in order for honest signaling to be possible.

Much of the analysis in the literature on these games has focused
on the most mutually beneficial (Pareto optimal) equilibria of the
games under consideration. This would lead one to expect perfect
information transfer in partnership games, partial information trans-
fer in games of partially aligned interests, and no information trans-
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fer in games of totally opposed interests. Perfect information transfer
might be restored in problematic cases by the right differential sig-
naling costs.

But we do not want to simply rely on faith that Pareto optimal
equilibria will be reached. What is required is an investigation of an
adaptive dynamic that may plausibly be operative. Many dynamic
processes deserve consideration. Here we focus on some dynamics
of evolution and of reinforcement learning, where sharp results are
available.

Replicator dynamics
The replicator dynamics is the fundamental dynamical model of evo-
lutionary game theory (17). It describes evolutionary change in terms
of the difference between a strategy’s average payoff and the overall
average payoff in the population. If the difference is positive, the
strategy’s share will increase; if it is negative, it will decrease. This
is one way to capture a basic feature of any selection dynamics. Not
surprisingly, the replicator dynamics can be derived from various first
principles which describe selection more directly (43).

The two most common varieties of replicator dynamics are the
one population and the two population replicator dynamics. The
one population replicator dynamics can be used for symmetric two
player games (i.e. two-player games where the player roles are in-
distinguishable). Let s1, . . . , sn denote the n pure strategies that are
available to each player. Let πi(sj , sk) be the payoff that player i re-
ceives from choosing sj when the other player is choosing sk. Since
the game is symmetric, π1(sj , sk) = π2(sj , sk). This allows us to
drop the indices referring to a player’s payoff when considering sym-
metric games. Let x = (x1, . . . , xn) denote a mixed strategy. Then
π(si,x) is the expected payoff that a player gets when choosing s1
against x:

π(si,x) =
∑
j

π(si, sj)xj

Furthermore, π(x,x) is the expected payoff from choosing x against
itself:

π(x,x) =
∑
j

π(sj ,x)xj

Suppose now that there is a population consisting of n types, one
for each strategy. Then a mixed strategy x describes the relative fre-
quency of strategies in that population. The state space of the popu-
lation is the n− 1 dimensional unit simplex. The population evolves
according to the replicator dynamics if its instantaneous change is
given by

ẋi = xi(π(si,x)− π(x,x)) for 1 ≤ i ≤ n. [1]
Here, the payoff π(si,x) is interpreted as the fitness of an i strategist
in the population state x, and π(x,x) is the average fitness of that
population. Since these fitnesses are expected payoffs, the replicator
dynamics requires the population to be essentially infinite.

The two population replicator dynamics can be applied to asym-
metric two-player games. Let s1, . . . , sn be player one’s pure strate-
gies and t1, . . . , tm player two’s pure strategies. The mixed strategies
x = (x1, . . . , xn) and y = (y1, . . . , ym) can be identified with the
states of two populations, one corresponding to player one and the
other to player two. The state space for an evolutionary dynamics of
the two populations is the product space of the n−1-dimensional unit
simplex and them−1-dimensional unit simplex. The two population
replicator dynamics defined on this state space is given by

ẋi = xi(π1(si,y)− π1(x,y)) for 1 ≤ i ≤ n and [2a]
ẏj = yj(π2(tj ,x)− π2(y,x)) for 1 ≤ j ≤ m. [2b]

Here, π1(si,y) is the fitness (expected payoff) of choosing strategy
si against population state (mixed strategy) y, and π1(x,y) is the av-
erage fitness in population one; likewise for π2(tj ,x) and π2(y,x).

Both the two population and the one population replicator dy-
namics are driven by the difference between a strategy’s fitness and

the average fitness in its population. This captures the mean field ef-
fects of natural selection, but it disregards other factors such as muta-
tion or drift. In many games these factors will only play a minor role
compared to selection. But as we shall see, the evolutionary dynam-
ics of signaling games often crucially depends on these other factors.
The reason is that the replicator dynamics of signaling games is gen-
erally not structurally stable (11). This means that small changes in
the underlying dynamics can lead to qualitative changes in the solu-
tion trajectories.

This makes it important to study the effect of perturbations of the
replicator dynamics. One plausible deterministic perturbation that
has been studied is the selection mutation dynamics (14). We shall
consider this dynamics in the context of two population models. If
mutations within each population are uniform, the selection mutation
dynamics is given by

ẋi = xi(π1(si,y)− π1(x,y)) + ε(1− nxi) for 1 ≤ i ≤ n and
[3a]

ẏj = yj(π2(tj ,x)− π2(y,x)) + δ(1−myj) for 1 ≤ j ≤ m.
[3b]

The non-negative parameters ε and δ are the (uniform) mutation rates
in population one and two, respectively. Instantaneously, every strat-
egy in a population is equally likely to mutate into any other strategy
at a presumably small rate. As ε and δ go to zero, the two population
selection mutation dynamics approaches the two population replica-
tor dynamics. If the replicator dynamics is structurally stable, there
will be no essential difference between the replicator dynamics and
the selection mutation dynamics as long as ε, δ are small. However,
the introduction of deterministic mutation terms can significantly al-
ter the replicator dynamics of signaling games.

Lewis signaling games. From the point of view of static game
theory, the analysis of Lewis signaling games seems to be straightfor-
ward. If the number of signals, states and acts coincide, then signal-
ing systems are the only strict Nash equilibria. It can also be shown
that they are the only evolutionarily stable states (42). However, other
Nash equilibria, despite being non-strict, are neutrally stable states (a
generalization of evolutionary stability)(30). This suggests that an
analysis of the evolutionary dynamics will reveal a more fine-grained
picture, as indeed it does.

Consider the one population replicator dynamics first. The Lewis
signaling game as given in the preceding section is not a symmetric
game. It can, however, be symmetrized by assuming that a player as-
sumes the roles of a sender and a receiver with equal probability and
receives the corresponding expected payoffs (7). If there are n sig-
nals, states and acts, the symmetrized signaling game will have n2n

strategies. This results in a formidable number of dimensions for
the state space of the corresponding dynamics [1] even for relatively
small n. A fairly complete analysis of this dynamical system is nev-
ertheless possible because the Lewis signaling game exhibits certain
symmetries. The assumption that both players get the same payoff
in every outcome makes it a partnership game, a class of games for
which it is known that the average payoff π(x,x) is a potential func-
tion (17). This implies that every solution trajectory converges to a
rest point, which need to be Nash equilibria. The stable rest points
are the local maximizers of π(x,x).

It is clear that signaling systems are locally asymptotically sta-
ble since they are strict Nash equilibria. The question is whether
there are any other locally asymptotically stable rest points. It can be
proved that this is essentially not the case for signaling games with
two states, signals and acts, where both states are equally probably
(20): every open set in the strategy simplex contains an x such that
the replicator dynamics with this initial condition converges to a sig-
naling system. This rather special case does not generalize, however.
If the states are not equi-probable in this signaling game, there is an
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open set of trajectories that does not converge to a signaling system.
Instead, they converge to states where receivers always choose the
act corresponding to the high-probability state (20).

If there are more than two signals, states and acts, there always is
an open set of trajectories that does not converge to a signaling system
(20; 30). The rest points to which they converge are often referred
to as ‘partial pooling equilibria’ (21). Partial pooling equilibria share
three features: (i) some, but not all, signals are unequivocally used for
states; (ii) some, but not all acts are unequivocally chosen in response
to a signal; and (iii) no signal is unused. The last feature makes it im-
possible for mutants who use a signaling system strategy to invade
by exploiting an unused signal. A set of partial pooling equilibria P
is not an attractor since for any neighborhood N of P there exists
a solution trajectory that leaves N . A partial pooling equilibrium is
Liapunov stable, though. In addition, in any sufficiently small neigh-
borhood of a partial pooling equilibrium all solution trajectories that
do not start at a pooling equilibrium converge to one. As is shown
in (30), partial pooling equilibria coincide with those neutrally stable
states that are not also evolutionarily stable states.

A result that holds for all Lewis signaling games concerns the in-
stability of interior rest points. At an interior rest point, every strategy
is present, creating a ‘tower of Babel’ situation. It can be shown that
any such rest point is linearly unstable. This implies that the unstable
manifold of these rest points has a dimension of at least one. Hence
there is no open set of trajectories converging to the set of interior
rest points (20).

These results carry over to the case of two populations. The game
is again a partnership game. It follows that π1(x,y) = π2(y,x) is
a potential function of [2] and that every trajectory must converge.
Signaling systems are asymptotically stable by virtue of being strict
Nash equilibria. For signaling games with two signals, states and acts
where the states are equiprobable essentially all trajectories converge
to a signaling system. This result fails to hold when the states are not
equiprobable (15). Furthermore, partial pooling equilibria are stable
for [2] as in the one population case.

The selection mutation dynamics [3] of Lewis signaling games
was studied computationally in (21) and analytically in (15; 16). The
main reason for studying selection mutation dynamics [3] is that par-
tial pooling equilibria are not isolated. They constitute linear mani-
folds of rest points. It is well known that this situation is not struc-
turally stable. Introducing mutation terms as in [3] will destroy the
linear manifolds of rest points and create a topologically different
dynamics in that region of state space.

For other games this topic was studied in (5). In (15) it is shown
that the function

π1(x,y) + ε
∑
i

log xi + δ
∑
j

log yj

is a potential function for the selection mutation dynamics of the
Lewis signaling game. Hence all trajectories converge. There are
two additional general results. The first says that rest points of the
perturbed dynamics [3] must be close to Nash equilibria of the sig-
naling game. There are thus no ‘anomalous’ rest points that are far
away from any Nash equilibrium. Second, there is a unique rest point
close to any signaling system that is asymptotically stable. Signaling
systems remain evolutionarily significant.

There are no further general results. In (15) the case of two states,
two signals and two acts is explored in more detail. If the states are
equally probable, the overall conclusions are similar to the results of
the replicator dynamics. There are three rest points: two are close to
signaling systems (perturbed signaling systems), and the third is the
barycenter of the state space. The latter is linearly unstable while the
perturbed signaling systems are linearly stable. So, although there are
only finitely many rest points for the selection mutation dynamics (as
opposed to the replicator dynamics) of this game, the basic conclu-
sion is that for every open set in the state space there is an x such

that the selection mutation dynamics of [3] with this initial condition
converges to a signaling system.

Things are more nuanced if the two states are not equiprobable.
In this case the dynamic behavior depends on the ratio of the muta-
tion parameters δ/ε. If δ/ε is above a certain threshold, which in-
cludes the important case δ = ε, then almost all trajectories converge
to one of the signaling systems. If δ/ε is below the threshold, then
there exists an asymptotically stable rest point where nearly all mem-
bers of the receiver population choose the act that corresponds to the
more probable signal. Thus outcomes with basically no communica-
tion are robust under the introduction of mutation into the replicator
equations [2],

It is very difficult to analyze the selection mutation dynamics [3]
of Lewis signaling games for the case of three states, acts and signals.
The main reason is the rapidly increasing dimensionality of the state
space. In a two-population model, there are 27 types of individu-
als in each population, resulting in the product of two simplexes that
has 52-dimensions. By exploiting the underlying symmetry of the
Lewis signaling game and by introducing certain simplifications, it
is nonetheless possible to prove some results (16). The main results
concern the existence of rest points close to Nash equilibria other
than the signaling systems. Most notably, at least one rest point ex-
ists close to each component of partially pooling Nash equilibria. It
can be shown that for all mutation parameters this rest point is lin-
early unstable.

Costly signaling games.Several costly signaling games were
studied with the help of the replicator dynamics: the Spence game
and the Sir Philipp Sidney game. Additionally, simplified versions of
the Sir Philip Sidney game and related games were analyzed recently
(46). For all these games, the replicator dynamics leads very similar
results, which can differ quite markedly to those obtained in finite
population models (see the subsequent section ‘finite population dy-
namics’).

The dynamics of Spence’s model for job market signaling is
explored in (28) for a dynamic process of belief and strategy revi-
sion that is different from the dynamical models considered here, al-
though the analysis leads to somewhat similar results. In (39) the
two-population replicator dynamics [2] of Spence’s game is investi-
gated. (Strictly speaking, it is a discretized variant of Spence’s orig-
inal game which has a continuum of strategies.) For all parameter
settings there exists a pooling equilibrium where senders don’t send a
signal and receivers ignore the signal. If signaling cost is sufficiently
high, then a separating equilibrium exists; the separating equilibrium
can be viewed as the analogue to a Lewis signaling system where
signals are used for revealing information about the sender. If sig-
naling cost is not high enough, a so-called hybrid equilibrium exists
where senders mix between using signals reliably and unreliably, and
where receivers sometimes respond to a signal and sometimes ignore
it. As is pointed out in (39), the hybrid equilibrium has been almost
completely ignored in the large literature on costly signaling games,
although it provides an interesting low-cost alternative to the standard
separating equilibrium (46).

It can be shown that the pooling equilibrium in this version of
Spence’s game is always asymptotically stable for the replicator dy-
namics [2]. The same is true for the separating equilibrium, provided
that it exists. The dynamic behavior of the hybrid equilibrium is par-
ticularly interesting. It is Liapunov stable. More precisely, it is a spi-
raling center. It lies on a plane on the boundary of state space. With
respect to the plane, the eigenvalues of the Jacobian matrix evaluated
at the hybrid equilibrium have zero real part, which makes it into a
center when we restrict the dynamics to the plane. More precisely, on
the plane the trajectories off the rest point are periodic cycles. With
respect to the interior of the state space, the eigenvalues of the Ja-
cobian evaluated at the hybrid equilibrium are negative. Hence from
the interior trajectories approach the hybrid equilibrium in a spiraling
movement.
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The same is true for other costly signaling models such as the
well known Sir Philipp Sidney game (23; 46). In particular, hybrid
equilibria exist and are dynamically stable for [2] in the same way as
for the job market signaling game. This suggests that hybrid equilib-
ria can be evolutionarily significant outcomes. Both (39; 23) present
numerical simulations that reinforce this conclusion in terms of the
relative sizes of basins of attraction. According to these simulations,
the basin of attraction of hybrid equilibria is quite significant, while
the basin of attraction for separating equilibria is surprisingly small.

A question that has only recently been investigated is whether
the hybrid equilibrium continues to be dynamically stable under per-
turbations of the dynamics [2]. The question of structural stability is
important here as well because a spiraling center is not structurally
stable. Small perturbations of the dynamics will push the eigenval-
ues with zero real part to having positive or negative real part. So
it seems possible that by introducing mutation as in [3] the hybrid
equilibrium might cease to be dynamically stable.

That this is not so for sufficiently small mutation parameters is
shown in (22). First, it follows from the implicit function theorem
that there exists a unique rest point of [3] close to the hybrid equi-
librium (46). Second, it can be proved that all eigenvalues of the
Jacobian matrix of [3] evaluated at this perturbed rest point are neg-
ative. Thus the rest point corresponding to the hybrid equilibrium is
not a spiraling center anymore but is asymptotically stable instead.
This actually reinforces the qualitative point made above, namely,
that hybrid equilibria should be considered as theoretically signifi-
cant evolutionary outcomes.

Another question is whether the hybrid equilibrium is also empir-
ically significant. One of the most robust findings in costly signaling
experiments and field studies is that observed costs are generally too
low in order to validate the hypothesis that the handicap principle is
at work (35). The hybrid equilibrium is in certain ways an attractive
alternative to the handicap principle. It allows for partial information
transfer at low costs. For this reason it was suggested that hybrid
equilibria could be detected and distinguished from separating equi-
libria in real world signaling interactions (46).

Opposed Interests.The possibility of signaling when interests
conflict has also been studied in a rather extreme setting where the
interests of senders and receivers are completely opposed (40). There
is no signaling equilibrium possible in this case. However, in the two-
population replicator dynamics [2] there is information transfer off
equilibrium to varying degrees since there exists a strange attractor
in the interior of the state space. By information transfer we under-
stand that signals have information in the sense of Kullback-Leibler
entropy: Conditioning on the signal changes the probability of states
so that on average information is gained (for details on applying in-
formation theory to signaling games see 36).This result reinforces
the diagnosis that a dynamical analysis is unavoidable if one wants to
understand the evolutionary significance of signaling phenomena.

Finite population dynamics
Consider a small finite population of fixed size. Each step of the dy-
namics works as follows. First, everyone plays the base game with
everyone else in a round robin fashion. Each individual’s fitness is
given by a combination of her background fitness and her average
payoff from the round robin tournament. Following (27) we will take
the fitness to be

1− w + w × u(si,x)

where w ∈ [0, 1] is a parameter that measures the intensity of se-
lection and u(si,x) is the expected payoff of strategy i against the
population x, just as in the case of the replicator dynamics.

The background fitness w is the same for everyone. If w = 0 the
game’s payoffs do not matter to an individual’s fitness. If w = 1 the
game’s payoffs are all that matter. Next, one individual is selected

at random to die (or to leave the group) and a new individual is born
(or enters the group). The new individual adopts the strategy of an
individual chosen from the population with probability proportional
to its fitness. Successful strategies are more likely to be adopted and
will therefore spread through the population. This dynamics, known
as the frequency-dependent Moran process, is a Markov chain with
the state being the number of individuals playing each strategy. Due
to the absence of mutation or experimentation all monomorphic pop-
ulation compositions are absorbing states of this process.

Lewis signaling games. Pawlowitsch (29) studies symmetrized
Lewis signaling games under this dynamics. Let N be the number of
individuals all playing strategy sj . Imagine that one spontaneously
mutates to si. The probability that strategy si goes on to take over
the entire population is given by the fixation probability

ρsjsi =
1

1 +
∑N−1
k=1

∏k
l=1

gl(si,sj)

fl(si,sj)

where fl(si, sj) is the fitness of an si agent in a population of l
individuals playing strategy si and N − l individuals playing sj
and gl(si, sj) is the fitness of an sj individual in that same pop-
ulation. If the mutation is neutral then its probability of fixation
is 1/N . Pawlowitsch (29) uses this neutral threshold to assess the
evolutionary stability of monomorphic population compositions. In
Lewis signaling games under the Moran process with weak selec-
tion (wN � N ) Pareto optimal strategies—i.e., perfectly informa-
tive signaling strategies—are the only strategies for which there is
no mutant type that has a fixation probability greater than this neu-
tral threshold. For this reason Pawlowitsch argues that finite popula-
tions will choose an optimal language in Lewis signaling games. This
highlights an important difference between the behaviors of infinite
and finite populations in these games.

Costly signaling games. But what about signaling games where
interests conflict? To address this question we can consider a slight
variation of the frequency dependent Moran process described above.
In particular, suppose that with small probability, ε, the new individ-
ual mutates or decides to experiment and chooses a strategy at ran-
dom from all the possible strategies–including those not represented
in the population–with equal probability. The presence of this mu-
tation makes the resulting Markov process ergodic. Fudenberg and
Imhof (9) show that it is possible to use a so-called embedded Markov
chain to calculate the proportion of time that the population spends
in each state in the limiting case as ε goes to zero. The states in this
embedded Markov chain are the monomorphic population composi-
tions, and the transition probability from the monomorphic popula-
tion in which all individuals play sj to the monomorphic population
in which all individuals play si is given by the probability that a type
si mutant arises (ε) multiplied by the probability that this mutant fixes
in the population (ρsjsi ). The stationary distribution of this embed-
ded chain gives the proportion of time that the population spends in
each monomorphic state in the full Moran process as ε goes to zero.
Intuitively, this is because when ε is very small the system will spend
almost all of the time in a monomorphic state waiting for the next
mutation event, and after an event the Moran process will return the
population to a monomorphic state before the next mutant arises.

Consider the 2 state, 2 signal, 2 act signaling game with pay-
offs given in figure 1. The receiver prefers the act high in the high

Act High Act Low
State High 1, 1 0, 0
State Low 1, 0 .8, 1

Fig. 1. The payoff structure underlying a signaling game. If the state is High,
then the sender’s and the receiver’s interest coincide. If the state is Low, then
the sender prefers the receiver to choose High, while the receiver would want to
choose Low.
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state and low in the low state, whereas the sender always prefers the
act high. This game is structurally similar to the Sir Philip Sidney
game, but here we will assume that both signals are costless. In this
game there is no Nash equilibrium in which the signals discriminate
between the states. The only Nash equilibria are pooling, where the
sender sends signals with probabilities independent of the states and
the receiver acts low.

The Moran process is a one-population setting, so we will con-
sider the symmetrized version of this game (7). We then let our
round robin phase match each pair both as (sender, receiver) and
(receiver, sender). Suppose that selection is strong (i.e., w = 1),
and that the probability of state high is .4. Then in the small mutation
limit the process spends 57% of its time in states with perfect signal-
ing and 19% of its time in Nash equilibria (41). In other words, this
small population spends most of its time communicating perfectly
even though such information transfer is not a Nash equilibrium of
the underlying signaling game. This phenomenon is robust over a
wide range of selection intensities and state probabilities, but as the
population size is increased the proportion of time spent signaling di-
minishes. This is to be expected because as the population size tends
to infinity the behavior of the Moran process tends toward the behav-
ior of the payoff-adjusted replicator dynamic (38), which does not
lead to information transfer in this game.

The importance of non-Nash play in the rare mutation limit is
also evident in the case of cost-free pre-play signaling. Two players
play a base game, but before they do so each sends the other a cost-
free signal from some set of available signals, with no pre-existing
meaning. The small population, rare mutation limit for a related dy-
namics is investigated in (34) for the cases where the base game is
(i) Stag Hunt and (ii) Prisoner’s Dilemma. Like the Moran process,
this related dynamics is composed of two steps. First, all individu-
als play the base game with each other in a round robin fashion to
establish fitness. Second, an individual is randomly selected to up-
date her strategy by imitation. This agent randomly selects another
individual and imitates that other individual with a probability that
increases with an increase in the fitness difference between the two
agents. In particular, this probability is given by the Fermi distribu-
tion from statistical physics so that the probability that an individual
using strategy si will imitate an individual using strategy sj is given
by the function

[1 + e−β[π(si,x)−π(sj ,x)]−1.

where β should be interpreted as noise in the imitation process. For
high values of β a small payoff difference translates into a high prob-
ability of imitation, whereas when β tends to zero selection is weak
and the process is dominated by random drift (38).

In the case where the base game is the Prisoner’s Dilemma, the
only Nash equilibrium is non-cooperation. But if the population is
small and the set of signals is large, the population may spend most
of its time cooperating. If the base game is the Stag Hunt, where
there are both co-operative and non-cooperative equilibria, pre-play
signals enlarge the amount of time spent cooperating, with the more
signals the better.

Why is it that dynamics in finite populations with rare mutations
can favor informative signaling even when such behavior is not a
Nash equilibrium? Consider again the game in figure 1. In a pooling
equilibrium the sender’s expected payoff is .48 and the receiver’s is
.6. Jointly separating, however, garners the sender an expected pay-
off of .88 and the receiver an expected payoff of 1. Signaling Pareto
dominates pooling, and this means that a small population is likely to
transition from a monomorphic pooling state to a monomorphic sig-
naling state. Of course, if the receiver discriminates, then the sender
can gain by always sending whichever signal induces act high. Such
behavior will net the sender an expected payoff of 1. But note that
there is a smaller difference in payoff for the sender between this
profile and the separating profile than there is between the separating

profile and the pooling equilibrium. Consequently, the probability of
transitioning away from a monomorphic separating population to the
monomorphic population in which the senders always induce the re-
ceivers to perform act high is less than the probability of transitioning
from a monomorphic pooling population to a monomorphic separat-
ing population. For this reason, in the long run the population will
spend more time signaling informatively than it will spend pooling.
A similar story explains why finite population dynamics can favor
informative signaling and cooperation in prisoner’s dilemma games
with cost-free pre-play signaling (34).

Reinforcement learning
In models from evolutionary game theory—such as the replicator
dynamics—“learning” occurs globally since the size of populations
with more fitness increases faster. However, in the reinforcement
learning model it is the individuals’ behavior that evolves itera-
tively: the players tend to put more weight on strategies that have
enjoyed past success, as measured by the cumulative payoffs they
have achieved. This linear response rule corresponds to Herrnstein’s
“matching law” (13).

Reinforcement learning is one of a variety of models of strategic
learning in games, where players adapt their strategies with the aim to
eventually maximize their payoffs: no-regret learning, fictitious play
and its variants, and hypothesis testing, are other examples of such
procedures analyzed in game theory (44).

However, reinforcement learning is a particularly attractive and
simple model of players with bounded rationality. The amount of in-
formation used in the procedure is small: players need only observe
their realized payoffs, and may not even be aware that they are play-
ing a game with or against others. It accumulates inertia, since the
relative increase in payoff decreases with time. On the one hand this
might be expected from a learning procedure, although on the other
it could be exploited by other players in certain games.

In Erev and Roth (33; 8) reinforcement learning is proposed and
tested experimentally as a realistic model for the behavior of agents
in games—see Harley (12) for a similar study in a biological context.

Formally, in a game played repeatedly by N players, each hav-
ing M strategies, each individual i is assumed at a time step n to
have a propensity qijn for each strategy j, and plays the strategy with
probability proportional to its propensity,

qijn∑m
k=1 q

i
kn

. [4]

Each individual i is endowed with an initial vector of positive
weights (qij0)j at time 0. At each iteration of the learning process,
the strategy j taken by any player i results in a non-negative pay-
off, Uj(i), and the weights are updated by adding that payoff to the
weight of the act taken:

qij,t+1 = qij,t + Uj(i), [5]

with the weights of strategies not taken remaining the same.
This process can be exemplified by an urn model. Each individ-

ual starts with an urn containing some balls of different colors, one
for each potential strategy. Drawing a ball from the urn (and then re-
placing it) determines the choice of strategy. After receiving a payoff,
the number of balls of the same color equal to the payoff achieved are
added to the urn.

As balls pile up in the urn, jumps in probabilities become smaller
and smaller in such a way that the stochastic process approximates a
deterministic mean field dynamics, which is known as the adjusted or
Maynard-Smith version of the replicator dynamics (2; 18). However,
classical stochastic approximation theory (32; 3; 4) does not allow
to deduce much in general, since this ordinary differential equation
takes place in an unbounded domain.

Beggs shows in (2) that, if all players apply this rule, then iter-
atively strictly dominated strategies are eliminated; and the long-run
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average payoff of a player who applies it cannot be forced perma-
nently below its minmax payoff. He also studies two person con-
stant sum games, where precise results can be obtained. Hopkins and
Posch (18) show convergence with probability 0 towards unstable
fixed points of the Maynard-Smith replicator dynamics, even if they
are on the boundary, which solves earlier questions raised in partic-
ular in (24). This second result is however not relevant in signaling
games, where the unstable fixed points are not isolated and consist of
manifolds of finite dimension (1; 19).

Consider the simplest Lewis signaling game. The reinforcement
learning model proposed in (1) considers, in equations [4]-[5], each
state possibly transmitted by the sender as a player whose strategies
are the signals and, similarly, each signal as a player whose strate-
gies are the (guessed) states. Now a state i which “plays” signal j
gets a payoff of 1 if, conversely, j “plays” i and Nature chooses i. In
practice, at each time step, only the state chosen by Nature will play
along with its chosen signal, so that this reinforcement procedure can
be simply explained from a Sender-Receiver perspective.

Let us first consider the case of two states 1 and 2: Nature flips
a fair coin and chooses one of them. The sender has an urn for state
1 and a different urn for state 2. Each has balls for signal A and sig-
nal B. The sender draws from the urn corresponding to the state, and
sends the indicated signal. The receiver has an urn for each signal,
each containing balls for state 1 and for state 2. The receiver draws
from the urn corresponding to the signal and guesses the indicated
state. If correct, both sender and receiver are reinforced and each
adds a duplicate ball to the urn just exercised. If incorrect, there is
no reinforcement and the urns are unchanged for the next iteration of
the process.

There are now four interacting urns contributing to this reinforce-
ment process. However, the dimensionality of the process can be re-
duced because of the symmetry resulting from the strong common
interest assumption. Since the receiver is reinforced if and only if the
sender is, the numbers of balls in the receiver’s urns are determined
by the numbers of balls in the sender’s urns. Consider the four num-
bers of balls in the sender’s urns: 1A, 1B, 2A, 2B. Normalizing
these, 1A/(1A + 1B + 2A + 2B) etc., gives four quantities that
live on a tetrahedron. The mean field dynamics may be written in
terms of these. There is a Lyapunov function that rules out cycles.
The stochastic process must then converge to one of the zeros of the
mean field dynamics. These consist of the two signaling systems and
a surface composed of pooling equilibria. It is possible to show that
the probability of converging to a pooling equilibrium is zero. Thus,
reinforcement learning converges to a signaling system with proba-
bility one (1).

This raises several questions. Does the same result hold for N
states, N signals, and N acts? What happens if there are too few sig-
nals to identify all the states or if there is an excess of signals—that
is, N states, M signals, N acts? Nature now rolls a fair die to choose
the state, the sender has N urns with balls of M colors and the receiver
has M urns with N colors.

This reinforcement process is analysed in (19). Common inter-
est allows a reduction of dimensionality, as before. The sender is
reinforced for sending signal m in state s just in case the receiver is
reinforced for guessing state s when presented with signalm. Again,
for a state i and a signal j, consider the number ij of balls of color
j in the sender’s urn i. As in the 2 × 2 case, the dynamics of the
normalised vector of sender-receiver connections ij/

∑
ij is stud-

ied, as stochastic approximation of a noncontinuous dynamics on the
simplex.

The expected payoff can be shown to be a Lyapunov function for
the mean field dynamics; convergence to the set of rest points is de-
duced, with a technically involved argument: this is required because
of the discontinuities of the dynamics, and since not all Nash equilib-

ria are rest points for this dynamics, contrary to what we have in the
standard replicator dynamics.

The stability properties of the equilibria of this mean field dy-
namics can be linked to static equilibrium properties of the game,
which are described by Pawlowitsch in (30): the zeros of the gradient
of the payoff, the linearly stable equilibria as well as the asymptot-
ically stable equilibria of the mean field dynamics correspond, re-
spectively, to the Nash equilibria, neutrally stable strategies and evo-
lutionarily stable strategies of the signaling game.

Finally, the following result can be stated in terms of a bipartite
graph between states and signals, such that there is an edge between
a state and a signal if and only if that signal is chosen infinitely of-
ten in that state. It is shown that any such graph with the following
property, P, has a positive probability of being the limiting result of
reinforcement learning:

P: (i) Every connected component contains a single state or a
single signal and (ii) each vertex has an edge.

In the event where property P holds, if there is an edge between a
state and a signal, then the limiting probability of sending that signal
in that state is positive.

When M = N , property P is exemplified by signaling systems,
where each state is mapped with probability one to a unique signal.
But even in this case it is also exemplified by configurations that con-
tain both synonyms and information bottlenecks as in figure 2. Evo-
lution of optimal signaling has positive probability, but so does evolu-
tion of this kind of suboptimal equilibrium. The case ofM = N = 2
is very special. This corresponds closely to the replicator dynamics
of signaling games, where partially pooling equilibria (which contain
synonyms and bottlenecks) can be reached by the replicator dynam-
ics.

Discussion
The results on the replicator dynamics suggest that for large popula-
tions the emergence of signaling systems in Lewis signaling games
with perfect common interest between sender and receiver is guaran-
teed only under special circumstances. The dynamics also converges
to states with imperfect information transfer. Introducing mutation
can have the effect of making the emergence of perfect signaling
more likely, though this statement should be taken with a grain of
salt since the precise outcomes may depend on the mutation rates.

When interests are diametrically opposed in signaling games,
there is no information transmission in equilibrium. But the equi-
librium may never be reached. Instead senders and receivers may
engage in a mad “Red Queen” chase, generating cycles or chaotic
dynamics. In well-known costly signaling games, where interests
are mixed, this “Red Queen” chase is a real possibility. Along the
trajectories describing such a chase there are periods with significant
information transfer from senders to receivers. Those interactions are

Fig. 2. Synonyms and information bottlenecks in a signing game with four
states and four signals. The third states is represented by two signals (synonym),
while the fourth signal represents two states (bottleneck). Under reinforcement
learning such a configuration is reached asymptotically with positive probability.
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undermined because of the underlying conflicts of interest, resulting
in periods of low information transfer, from which a new period of
higher information transfer can start.

Unlike large populations, a small population may spend most of
its time efficiently signaling, even when the only Nash equilibrium
does not support any information transfer. A small population en-
gaged in “cheap talk” costless pre-play signaling may spend most of
its time cooperating even when the only Nash equilibrium does not
support cooperation.

A similar difference between small and large populations may
be at work in costly signaling games. In the small population, small
mutation limit costless signaling is possible even in games where the
handicap principle claims that it should not be. In large populations
this is not true, but there are alternatives to the costly signaling equi-
libria where signaling cost can be low while in equilibrium there is
partial information transfer.

We encounter a similarly nuanced picture for models of indi-
vidual learning. Herrnstein-Roth-Erev reinforcement learning leads
to perfect signaling with probability one in Lewis signaling games
only in the special case of 2 equiprobable states, 2 signals, 2 acts.
In more general Lewis signaling games, the situation is much more
complicated. To our knowledge, nothing is known about reinforce-
ment learning for games with conflicts of interest and costly signaling
games. This would be a fruitful area for future research.

We conclude that the explanatory significance of signaling equi-
libria depends on the underlying dynamics. Signaling games have
multiple Nash equilibria. One might hope that natural dynamics al-
ways selects a Pareto Optimal Nash equilibrium, but this is not al-
ways so. On a closer examination of dynamics, in some cases, Nash
equilibrium recedes in importance and other phenomena are to be
expected.
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