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We generalize a result from Volkov [Ann. Probab. 29 (2001) 66-91] and
prove that, on a large class of locally finite connected graphs of bounded
degree (G, ~) and symmetric reinforcement matrices a = (a;, )i jeG, the
vertex-reinforced random walk (VRRW) eventually localizes with positive
probability on subsets which consist of a complete d-partite subgraph with
possible loops plus its outer boundary.

We first show that, in general, any stable equilibrium of a linear symmetric
replicator dynamics with positive payoffs on a graph G satisfies the property
that its support is a complete d-partite subgraph of G with possible loops,
for some d > 1. This result is used here for the study of VRRWSs, but also
applies to other contexts such as evolutionary models in population genetics
and game theory.

Next we generalize the result of Pemantle [Probab. Theory Related Fields
92 (1992) 117-136] and Benaim [Ann. Probab. 25 (1997) 361-392] relating
the asymptotic behavior of the VRRW to replicator dynamics. This enables
us to conclude that, given any neighborhood of a strictly stable equilibrium
with support S, the following event occurs with positive probability: the walk
localizes on S U 9§ (where 95§ is the outer boundary of S) and the density of
occupation of the VRRW converges, with polynomial rate, to a strictly stable
equilibrium in this neighborhood.

1. General introduction. Let (2, 7, P) be a probability space. Let (G, ~)
be a locally finite connected symmetric graph, and let G be its vertex set, by a slight
abuse of notation. Let a := (a;,j);, jec be a symmetric (i.e., a; j = a; ;) matrix with
nonnegative entries such that, for all i, j € G,

i~j & a,-,j>0.

Let (X,,)nen be a process taking values in G. Let F = (F;,),en denote the filtration
generated by the process, that is, 7, = o (Xp, ..., X,) forall n € N.
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For any i € G, let Z,(i) be the number of times that the process visits site i up
through time n € N U {oo}, that is,

n
Zo(i) = Zo@) + 3 Lx,=i)
m=0
with the convention that, before initial time 0, a site i € G has already been visited
Zo(i) € Ry \ {0} times.

Then (X,,),en is called a Vertex-Reinforced Random Walk (VRRW) with starting
point vo € G and reinforcement matrix a := (a; ;)i jec if Xo = v and, for all
neN,

ax,,jZn(j)
P, @,k Zn )

These non-Markovian random walks were introduced in 1988 by Pemantle [13]
during his PhD with Diaconis, in the spirit of the model of Edge-Reinforced Ran-
dom Walks by Coppersmith and Diaconis in 1987 [4], where the weights accumu-
late on edges rather than vertices.

Vertex-reinforced random walks were first studied in the articles of Pemantle
[14] and Benaim [2] exploring some features of their asymptotic behavior on fi-
nite graphs and, in particular, relating the behavior of the empirical occupation
measure to solutions of ordinary differential equations when the graph is complete
(i.e., when all vertices are related together), as explained below. On the integers
7, Pemantle and Volkov [16] showed that the VRRW a.s. visits only finitely many
vertices and, with positive probability, eventually gets stuck on five vertices, and
Tarres [18] proved that this localization on five points is the almost sure behavior.

On arbitrary graphs, Volkov [23] proved that VRRW with reinforcement co-
efficients a; j = 1;~, i, j € G (again, i ~ j meaning that i and j are neighbors
in the nonoriented graph G), localizes with positive probability on some specific
finite subgraphs; we recall this result in Theorem 4 below, in a generalized ver-
sion. More recently, Limic and Volkov [8] study VRRW with the same specific
type of reinforcement on complete-like graphs (i.e., complete graphs ornamented
by finitely many leaves at each vertex) and show that, almost surely, the VRRW
spends positive (and equal) proportions of time on each of its nonleaf vertices.

The VRRW with polynomial reinforcement [i.e., with the probability to visit a
vertex proportional to a function W(n) = n® of its current number of visits] has
recently been studied by Volkov on Z [24]. In the superlinear case (i.e., p > 1),
the walk a.s. visits two vertices infinitely often. In the sublinear case (i.e., p < 1),
the walk a.s. either visits infinitely many sites infinitely often or is transient; it is
conjectured that the latter behavior cannot occur, and that, in fact, all integers are
infinitely often visited.

The similar Edge-Reinforced Random Walks and, more generally, self-interact-
ing processes, whether in discrete or continuous time/space, have been exten-
sively studied in recent years. They are sometimes used as models involving
self-organization or learning behavior, in physics, biology or economics. We pro-

P(Xnt1 = jI1Fn) = 1j~x,
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pose a short review of the subject in the introduction of [12]. For more detailed
overviews, we refer the reader to surveys by Davis [5], Merkl and Rolles [10], Pe-
mantle [15] and Té6th [19], each analyzing the subject from a different perspective.

Let us first recall a few well-known observations on the study of Vertex-
Reinforced Random Walks, and, in particular, the heuristics for relating its be-
havior to solutions of ordinary differential equations when the graph is finite and
complete (i.e., when all vertices are related together), as done in Pemantle [14] and
Benaim [2].

Let us introduce some preliminary notation, without any further assumption on
(G, ~) locally finite connected symmetric graph, possibly infinite. For all x =
(xi)ieg € RY, let

Sx):={ieG/x; #0}
be its support. For all x € RY such that S(x) is finite, let
(D Ni(x) = Z aj jxj, H(x) = Z aj jxXiXj = inNi(X)

j€G, j~i i,je€G,i~j ieG
and, if H(x) # 0, let
) 7(x) = (x’ l(x)) .
H(x) /icc
Let
O :={x e RY s.t. |S(x)| < 00},
and let

A= {xe]RJGrﬂ@)s.t. Zx,-:l}
ieG
be the nonnegative simplex restricted to elements x of finite support.
Foralln e N, let

eO®NA
ieG

(2,0
*n) = (n + no)iec’

where ng := ZjeG Zo(j) > 0: x(n) [resp. y(n)] is the vector of density of occupa-
tion of the random walk at time », with the convention that site i has been visited
Zo(i) (resp., 0) times at time O.

Assume, for the sake of simplicity in the following heuristic argument, that G
is a finite graph. Let L > 1. For all n € N, the goal is to compare x(n + L) to
x(n). If n > L, then the VRRW between these times behaves as though x(k),
n <k <n+ L, were constant, and hence approximates a Markov chain which we
call M (x(n)).

ymy:<zaw;ZMo)

and, if G is finite, let
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Then m(x(n)) € A is the invariant measure of M (x(n)), which is reversible
[trivially H (x(n)) > O since x(n); > 0 for all i, so that w(x(n)) is well defined].
If L is large enough, then, by the ergodic theorem, the local occupation density
between these times will be close to 7w (x(n)). This means that

(3) (n+ L)x(n+ L) ~nx(n) + L7 (x(n)),
hence,

4) X(n+L)—X(n)%mF(X(n)),
where

) F(x) = (x;i[N;i(x) — H(x)Diec-

Up to an adequate time change, (x(k))ren should approximate solutions of the
ordinary differential equation on A,

(©) L rw
- = X s
dt
also known as the linear replicator equation in population genetics and game the-

ory.

However, the requirement that L be large enough so that the local occupation
measure of the Markov Chain approximates the invariant measure 7 (x(n)) com-
petes with the other requirement that L be small enough so that the probability
transitions of this Markov Chain still match the ones of the VRRW, so that the
heuristics breaks down when the relaxation time of the Markov Chain is of the
order of n, which can happen in general on noncomplete graphs and is actually
consistent with the fact that the walk will indeed eventually localize on a small
subset. An illustration of how such a behavior can occur is given in the proof of
Lemma 2.8 in Tarres [18]. The study of the a.s. asymptotic behavior of the VRRW
on an infinite graph is even more involved in general.

Let us yet study the replicator differential equation (6) associated to the random
walk on A for general locally finite symmetric graphs (G, ~).

It is easy to check that H is a strict Lyapounov function for (6) on A, that
is, strictly increasing on the nonconstant solutions of this equation: if x(¢) =
(xi (t))iec is the solution at time ¢, starting at x (0) := xo, then

L= ¥ P ae)Fao)=160)
7 X _ies(x) ox; X X i=Jx ,
where, for all x € A,
() JE):=2 ) N@Fi =2 Y x(Ni(x) — H)™
ieS(x) i€S(x)

Note that the restriction of H to the equilibria of (6) takes finitely many values if
G is finite (see [14], e.g.).
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Let us now deal with the equilibria of this differential equation: a point x =
(xi)iec € A is called an equilibrium if and only if F(x) = 0. An equilibrium is
called feasible provided H (x) # 0.

On a finite graph G, any equilibrium point x € A of (x(n)),cn is feasible: for
almeNandi e G, Z,>i) < iji Z,(j) + nog, so that x would satisfy N;(x) >
(minj~; a; j)x; forall i € G, hence,

Ming jes(x),j~i) i, j
IS(x)|

(8) H(x) > min _ a; ; x>
({i,jesm,jw'} ”)iesz(x) ’
by the Cauchy—Schwarz inequality.
By a slight abuse of notation, we let DF (x) = (0F;/dx;);, jec denote both the
Jacobian matrix of F at x, and the corresponding linear operator on ®. Since A is
invariant under the flow induced by F, the tangent space

TA:= {ye@/Zy,-=0}
ieG
is invariant under D F (x). We let D F (x)|r A denote the restriction of the operator
DF(x)to TA.

When x is an equilibrium, it is easily seen that D F(x) has real eigenvalues
(see Lemma 1). Such an equilibrium is called hyperbolic (resp., a sink) provided
DF(x)|Ta has nonzero (resp., negative) eigenvalues. It is called a stable equi-
librium if DF (x)|T A has nonpositive eigenvalues. Note that every sink is stable.
Furthermore, by Theorem 1 below, every stable equilibrium is feasible.

We will sometimes abuse notation and identify arbitrary subsets H of G to the
corresponding subgraph (H, ~). Given i € G and a subset A of G, we write i ~ A
if there exists j € A such that i ~ j. Given two subsets R and S of G, we let

OR={jeG\R:j~R}, dsR={jeS\R:j~R);

d R is called the outer boundary of R.

Given e, ¢ € E(G), we write e ~ ¢ if e and ¢ have at least one vertex in
common.

A site i € G will be called a loop if i ~ i, and we will say that a subset H
contains a loop iff there exists a site in it which is a loop.

We will say that x is a strictly stable equilibrium if it is stable and, furthermore,
for all i € 3S(x), N;(x) < H(x). We let & be the set of strictly stable equilibria
of (6) in A. Note that x stable already implies N;(x) < H(x) for all i € 4S(x), by
Lemma 1.

Given d > 1, subgraph (S, ~) of (G, ~) will be called a complete d-partite
graph with possible loops, if (S, ~) is a d-partite graph on which some loops have
possibly been added. That is,

S=ViuU...UVy
with:
1) Vpe{l,...,d},Vi,jeV,,ifi # j theni +# j.
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(i) Vp,ge{l,....,d}, p#q,VieV, VjeV,i~]j.
For all S C G, let (P)s be the following predicate:

(P)s(a) (S, ~) is a complete d-partite graph with possible loops.

(P)s(b) Ifi ~i for some i € S, then the partition containing i is a singleton.

(P)s(c) If V,, 1 < p <d are its d partitions, then for all p,q € {1,...,d} and
i, i/ S Vp, j, j' c Vq, a,‘,j :a,‘/,j/.

In the following Theorems 1-4 and Propositions 2 and 3, we only assume the
graph (G, ~) to be symmetric and locally finite, without any further conditions
than the ones mentioned in the statements.

THEOREM 1. If x € A is a stable equilibrium of (6), then x is feasible and
(P)S(x) holds.

In the case a = (a;,j)i,jec = (Li~j)i,jec the following Theorem 2 provides
a necessary and sufficient condition for x € A being a stable equilibrium. Theo-
rems 1 and 2 are proved in Section 2.2.

THEOREM 2. Assume a; j =1;~; foralli, j € G, and let x = (x;)icG € A.
If (S(x), ~) contains no loop, then x is a stable (resp., strictly stable) equilib-
rium if and only if there exists d > 2 such that:

(1) (S(x),~) is a complete d-partite subgraph, with partitions =: V1, ..., Vg,
(ii) Zievpxi =1/dforall pefl,...,d},
(iii) Vi € 0S(x), N;(x) < (resp., <) 1 —1/d.

If (S(x), ~) contains a loop, then x is a stable (resp., strictly stable) equilibrium
if and only if (S(x), ~) is a clique of loops [resp., with the additional assumption:
Vj€dS(x), Nj(x) <1 or, equivalently, 3{j} 2 S(x)].

REMARK 1. Jordan [6] independently shows, in the context of preferential
duplication graphs, that conditions (i)—(iii) in Theorem 2 are indeed sufficient for
x € A being a stable equilibrium when loops are not allowed.

REMARK 2. A connection between the number of stable rest points in the
replicator dynamics [or of patterns of evolutionary stable sets (ESS’s)] and the
numbers of cliques of its graph was made by Vickers and Cannings [21, 22],
Broom et al. [3] and Tyrer et al. [20], motivated by the study of evolutionary dy-
namics in biology.

A consequence of Theorem 1 is that supports of stable equilibria are generically
cliques of the graph G. More precisely, assume that the coefficients (a; ;)i jeG
are distributed according to some absolutely continuous distribution w.r.t. the
Lebesgue measure on symmetric matrices. Then the supports of stable equilib-
ria are a.s. cliques of the graph G (i.e., any two different vertices are connected),
as a consequence of (P)g(,)(a) and (c).



2184 M. BENAIM AND P. TARRES

The following Theorem 3 states that, given any neighborhood A/ (x) of a strictly
stable equilibrium x € &, then, with positive probability, the VRRW eventually
localizes in

T(x):=Sx)UoaSx),

and the vector of density of occupation converges toward a point in A/ (x), which
will not necessarily be x (there may exist a submanifold of stable equilibria in the
neighborhood of x). Note that this will imply, using Remark 2, that the VRRW
generically localizes with positive probability on subgraphs which consist of a
clique plus its outer boundary.

More precisely, let us first introduce the following definitions. For all R C G,
let

S(R):=S""R)NA={xeAst Skx)=R).
For any open subset U of A containing x € A, let £L(U) be the event

LWU):= { y(00) := nll)rgo y(n) exists (coordinatewise) and belongs to

ENSES@)NUY.
Let R be the asymptotic range of the VRRW, that is,
R:={i € Gs.t. Zoo(i) = 00}.

For any random variable x taking values in A, let

Zn (i)

Ap(x) == Vi € 3S(x), —rt—
2(x) {’ R e YEIE)

converges to a (random) limit € (0, oo) }
THEOREM 3. Let x € A be a strictly stable equilibrium. Then, for any open
subset U of A containing x,

P{R =T x)}NLWU) N Ay(y(c0))) > 0.

Moreover, the rate of convergence is at least reciprocally polynomial, that is, by
possibly restricting the neighborhood U of x, there exists v := Cst(x, a) such that,
a.s.on L(U),

Tim (y(n) — y(c0))n” =0.

Theorem 3 is proved in Section 2.3. It naturally leads to the following questions.

First, are all the trapping subsets always of the form 7 (x) for some x € &?
The answer is negative in general: let us consider, for instance, the graph (Z, ~)
of integers, to which we add a loop 0 ~ 0 at site 0, with a; ; := 1;~;. Then
x := (1{;=0))iez 1s a stable equilibrium, but is not strictly stable since N_1(x) =
Ni(x) =1 = H(x). However, Proposition 1 (proved in Appendix A.2) shows that
y(n) converges to x with positive probability, by combining an urn result from
Athreya [1], Pemantle and Volkov [16] (Theorem 2.3) with martingale techniques
from Tarres [18] (Section 3.1).
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PROPOSITION 1. Let (G, ~) be the graph of integers defined above, and let
a;,j := 1;~j. Then, with positive probability, the VRRW localizes on {—2,—1,0,
1, 2}, and there exist random variables o € (0, 1), C and C' > 0 such that

o 29
n

(i) (Zp(=1), Z,(1)) (] —a),
n/logn

(i) (Zn(—2)’ Z,(2) ) e (C.C.

(logn)*’ (logn)!=
We conjecture that, conditionally on a localization of the VRRW on a finite subset,
its vector of density of occupation on the subset converges to a stable equilibrium
x of (6), that the asymptotic range R is a subset of S(x) UdS(x) U d(dS5(x)), and
isequal to T(x) = S(x) UdS(x) if x € &, which occurs generically on a (in the
sense given in the paragraph after Remark 2).

A proof would require a deeper understanding of the dynamics of (Z (i));ec
(see Lemma 4). Note that, on the integers Z with standard adjacency—unlike
Proposition 1—and with g; ; = 1;~, the result that the VRRW a.s. localizes on
five sites [18] implies that only equilibria in & are reached with positive proba-
bility. More precisely, in this case there exist a.s. k € Z and x € A with x; =1/2,
Xp—1=0a/2, xp+1 = (1 —a)/2, « € (0, 1) (thus, x € &) such that Z,(i)/n — x;
as n — oo for all i € Z, Ay(x) holds and R = T (x); see [18]. Stable equilibria
which are not in & correspond to cases « = 0 or 1, which would lead to localiza-
tion on six vertices if they were possible, similarly to Proposition 1. This result on
Z can be related to the property that every neighborhood of any stable equilibrium
X contains a strictly stable one.

Second, which subsets are of the form 7' (x) = S(x) U 3.5(x) for some x € &?
We know from Theorem 1 that subsets S(x) satisfy (P)s(y) and thus always con-
sist of a complete d-partite subgraph with possible loops and its outer boundary
for some d > 2. But (P)g(y) is not sufficient, and the occurrence of such sub-
sets also depends on the reinforcement matrix a = (a;, )i, jec- Even in the case
a=(a;,j)i,jeG = (Li~j)i, jec Theorem 2 provides explicit criteria for x € &, but
the corresponding condition (iii) [when (S(x), ~) has no loops] is on x, thus not
explicitly on the subgraph.

We introduce in the following Definition 1 the notion of strongly trapping sub-
sets, which we prove in Theorem 4 to always be such subsets 7' (x) for some
x € &. As a consequence, by Theorem 3, the VRRW localizes on these subsets
with positive probability. The result is thus a generalization to arbitrary reinforce-
ment matrices of Theorem 1.1 by Volkov [23] when a; j := 1;~j}, in which case
the assumptions of Definition 1 obviously reduce to (c) or (c)'.
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DEFINITION 1. A subset T C G is called a strongly trapping subset of (G, ~)
if T =SU0JS, where:

(@) (i, j) +> a;j is constant on {(i, j) € S2 st i~ j}, with common value =:
as,
(b) max;cs, jessai,j < as,and

either

(c)(1) S is a complete d-partite subgraph of G for some d > 2, with partitions
Vla DR} Vd9
(i) VjeaS,Apefl,...,d}andi € S\ V) such that j »* V, U {i},

or

(c) S isacligue of loops, andVj € 3§, 3{j} 2 S.

THEOREM 4. Let T be a strongly trapping subset of (G, ~); then the VRRW
has asymptotic range T with positive probability.

More precisely, assume T = S U dS, where S satisfies conditions (a)—(c) or (c)’
of Definition 1, and let us use the corresponding notation. Let

Y= {x €S(S)s.t. Y xi=1/d forall1<q §d},

ieVy
rg:=d/(d—1)

if (S, ~) contains no loops, and ¥ := §(S), rq := 1 otherwise.
Then, for any x € ¥ and any neighborhood N (x) of x in X, there exist random
variables y € N'(x) and Cj > 0, j € 3S such that, with positive probability:

(i) VRRW eventually localizes on T , that is, R=T,
() Z,(@)/n — -0 yi foralli € S,
(i) Z,(J) ~n—o0 Cjnr" Yi~jaijyi/as forall j €9S.

Theorem 4 is proved in Section 2.2.3. We provide in Example 1 (illustrated in
Figure 1) a counterexample showing that Theorem 3 is stronger, even in the case
a=1i~j)i jeG-

Third, which conditions on the graph and on the reinforcement matrix a do
ensure the existence of at least one strictly stable equilibrium x € &, thus implying
localization with positive probability on 7 (x)? First note that, trivially, this does
not always occur, for instance, on Z when ¢ (n) := a, 41y is strictly monotone,
in which case we believe the walk to be transient.

In the case a = (1;~;);, jec, Volkov [23] proposed the following result, using
an iterative construction on subsets of the graph.
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PROPOSITION 2 (Volkov [23]). Assume that a = (1;~j); jeG, and that (G, ~)
does not contain loops. Then, under either of the following conditions, there exists
at least one strongly trapping subset:

(A) (G, ~) does not contain triangles;
(B) (G, ~) is of bounded degree;
(C) the size of any complete subgraph is uniformly bounded by some number K .

PROOF. Start, for some d > 2, with any complete d-partite subgraph (S, ~) of
G with partitions Vi, ..., V; (e.g., a pair of connected vertices, d = 2). Let x € 9,
S=ViU---UVg

(1) First assume that x ~ V), forall 1 < p <d. Then, forall 1 <p <d,let j, €
V) be such that x ~ j,; iterate the procedure with the subgraph U <, <4{jp} U{x},
which is a clique, and thus a complete (d + 1)-partite subgraph.

(2) Now assume there exists p such that x * V,,, with d{x} 2 S\ V,,. Then we
iterate the procedure with the complete d-partite subgraph S U {x} with partitions
V],...,VPU{X},..., V.

(3) Otherwise we keep the same subgraph S and try another x € 9.

The construction eventually stops if (A), (B) or (C) holds. When it does, that
is, when § has remained unchanged for all x € 95, then T = S U 9S is a strongly
trapping subgraph in the sense of Definition 1. [J

Using a similar technique, we can obtain the following necessary condition for
the existence of a strongly trapping subset in the case of general reinforcement ma-
trices a, when the graph does not contain triangles or loops. Let us first introduce
some notation. Let ¢ be the distance on E(G) edges of G defined as follows: for
all e, ¢’ € E(G), let c(e, €') be the minimum number of edges necessary to connect
e to ¢ plus one (0 if e=¢’, and 1 if e ~ ¢’). For all e = {i, j}, let C(2, ¢) be the
set of maximal complete 2-partite subgraphs S € G such that i, j € S and, for all
k,leSwithk~1, ar;=a;;.

PROPOSITION 3. Assume the graph does not contain triangles nor loops. If,
for some e € E(G),

9 min  max ax; <de,
SeC(2,e) keS,ledS

then there exists at least one strongly trapping subset.
Note that (9) holds if

max d, <d,.
c(e,e)<2

REMARK 3. If, for all e € E(G), (9) does not hold, then there exists, for all
e € E(G), an infinite sequence of edges (e,)qen, such that eg =e, e, ~ ¢, and,
forall n €N, a,, <a,,, and a., < a.,.,. However, even in this case, there can
exist a strictly stable equilibrium x € & (but no strongly trapping subset).
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PROOF OF PROPOSITION 3. By assumption, there exist e = {i, j} and a max-
imal complete 2-partite subgraph S € G containing i and j, with partitions V; and
V>, and satisfying conditions (a), (b) and (c)(i) of Definition 1. For all k € 3, k is
adjacent to at most one of two partitions, say, V1, since otherwise G would contain
a triangle; if k were adjacent to all vertices in Vi, then it would be in V5, since S is
assumed maximal. Hence, (c)(ii) holds as well, and § is a strongly trapping subset.

g

When the graph contains triangles, the property outlined in Remark 3, that is, the
existence of an infinite sequence of edges with increasing labels when there is no
strongly trapping subset, does not hold anymore. The maximum of the Lyapounov
function on a complete subgraph with more than two vertices takes a nontrivial
form, which can lead to counterintuitive behavior.

We show, for instance, in Example 2 a case where the reinforcement matrix a
has a strict global maximum at a certain edge, but where, however, there is no
stable equilibrium at all. We believe the walk to be transient in this example.

EXAMPLE 1. Let us show, in the case a = (1;~;); jec, that Theorem 3 is
stronger than Theorem 4. Consider a graph G on six vertices A, B, C, D, E and
F, with a neighborhood relation ~ defined as follows (see Figure 1): A~ B ~ C ~
D~A,C~E~Dand E ~ F (recall that the graph G is symmetric). Let x =
(xa,xp,xc,xp,xg,xF) := (3/8,3/8,1/8,1/8,0,0), then S(x) = {A, B,C, D}
and 0S5(x) = {E}. Also, x is an equilibrium of (6), (P)s(y) is satisfied with V| =
{A,C}, Vo, ={B, D}, and Ng(x) =1/4 < H(x) = 1/2, which implies that x is a

A 3/8 D8
®
EY F
u
B 3/8 C /8

FI1G. 1. We show in Example 1 that T :={A, B, C, D, E} does not satisfy the assumptions of The-
orem 4, but is a trapping subgraph with positive probability by Theorems 2 and 3. The numbers
indicated in superscript of vertices represent the limit proportions of visits to these vertices if x(n)
were to converge to the equilibrium x in the example. In this case the walk would asymptotically
spend most of the time in the bipartite subgraph S := V| U V,, where V| :={A, C}, V, :={B, D},
evenly divided between partitions V| and V,, and vertex E would be seldom visited, of the order of
/1 times at time n.
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strictly stable equilibrium by Theorem 2, hence subsequently by Theorem 3 that
‘R = T (x) with positive probability.

Now let us prove by contradiction that 7' (x) with such x does not satisfy the
assumptions of Theorem 4 above. Indeed, if T (x) = SUJS, then S C {A, B, C, D}
since, otherwise, F' would belong to 7 (x). Now the condition that, for all i €
0S,dpef{l,...,d}and j € S\ V), such thati * V, U{j} implies, in particular,
that a vertex in 9.5 is not connected to at least two other vertices in S, so that
i € 05 cannot be A, B, C or D, which are connected to all other but one vertex
in {A, B, C, D}. Hence, S = {A, B, C, D}, but then i := E is connected to both
partitions of S, and does not satisfy the condition mentioned in the last sentence,
bringing a contradiction.

EXAMPLE 2. Let us first study the case of a triangle (G, ~), G := {0, 1,2},
0~1~2~0, with reinforcement coefficients a := agp,1, b 1= aj2, ¢ =
ap2 > 0.

If a < b + ¢, then the equilibrium x = (xg, x1, x2) = (1/2, 1/2, 0) is not stable,
since Na(x) = (b +¢)/2 > H(x) =a/2. Hence, if we assume that

(10) a<b+ec, b<a+c, c<a-+b,

then a stable equilibrium has to belong to the interior of the simplex A. A simple
calculation shows that there is only one such equilibrium:

cla+b—c) bla+c—>b) alb+c—a)
x=(Xo,X1,Xz):=< , ) )
) ) )
where
S:=(a+b+c)—2a*+b*+ ),

8 > 0, which can be shown by adding up inequalities (b — a)? < ¢?, (c — a)* < b?
and (¢ — b)? < a®. Then H (x) = 2abc/s.

Let N :=Z,. Let us now consider the following graph (G, ~) with vertices
G :={i,i,i € N} and adjacency i ~i+1,i~i+1,i~iandi~i+1, for all
i € N, as drawn in Figure 2.

Fix e, n, p,q > 0, u € (0, 1), which will be chosen later. Let, for all n € N,

n—1 n—1
(1 poi=p[la—pbe),  gui=q[]a+u*n.
k=0 k=0

Note that, for all n € N,

p(l— ¢ )Spnfp, g <qn<qeV171,
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V]

0 q1 1 P2

qo0 qo0 P1 q1 q2 q2

0 Do 1 G 2 D2 3

FIG. 2. On the infinite graph on the figure, with reinforcement coefficient sequences (pn)p>0
strictly decreasing and (qn)y>0 Strictly increasing, we show in Example 2 that, even if
PO = SUP,>(0 Pn > SUP,>( gn, We can choose these sequences in such a way that there is no sta-

ble equilibrium in A, and therefore no trapping subgraph.

Now assume that the reinforcement matrix (ax )k 1ec 18 defined as follows,
depending on (p;,)nen and (g,)nen, forall i € N:

ai2i+1 = P2i, A3 1,2G+1) = P2G+1)s
a5 i1 — A2i41.2(i+1) ‘= q2i+1

yi 27 = %7 2i+1 = 4q2i

A2i+1,2i+1 -= P2i+1

A% 1,2(i+1) “= 42i+1-
Let x € A be a stable equilibrium of (6). Then, by Theorem 1, (P)g(y) holds, so
that S(x) consists of two vertices or a triangle [it cannot be made of four vertices,
because of (P)s(x)(c)]. Assume

(12) p<2q,  nge"™H <p(1— ; : )
—u

Then, foralli e N,
pi <2qi, Pi+1 <qi +qi+1, qi+1 <qi + pi+1,

so that S(x) has to be a triangle.
Assume S(x) :={2i, 2i,2i + 1} for some i € N; the argument is similar in other

cases. Then

~_HW) __H(X)z _ H()
X537 = 2 X5 = ——(2qi — pi), X241 = 20

’

and
Nyi(x) = gixs; + pix2i+1 = H(x),
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and, therefore,

Ny (%) = git1X5; + pit1X2i41

H(x)
= H(x)+ 20 [(gi+1 —qi)2qi — pi) + (pi+1 — Pi)qil
H(x) i
=H(x)+ 20 w'[ngi 2qi — pi) — epiqil > H(x)
if
p
13 ,
(13) n> 82q -

using that p/(2qg — p) > pi/(2q; — p;) foralli e N.
Hence, x is not a stable equilibrium, which leads to a contradiction.

2. Introduction to the proofs.

2.1. Notation. WeletN:=7,, N*:=N\ {0}, R* :=R4 \ {0}.
For all y = (¥;)icg € RY and for any finite subset A of G, let

YA = Zyi-

icA
Given r € N*, let (-, -) (resp., | - |, || - lloo) be the scalar product (resp., the canon-
ical norm, the infinity norm) on R”, defined by

r
(a7b): § aibi9 |a|: \% (ava)v ||a||OO: lrila<x |al|
L=r
i=1 -

ifa=(ay,...,a;)and b= (by,...,b,).

Given areal r x r matrix M with real eigenvalues, we let Sp(M) denote the set
of eigenvalues of M. When M is symmetric we let M[-] denote the quadratic form
associated to M, defined by M[a] = (Ma, a) for alla e R".

Given yy, ..., yr, we let Diag(yy, ..., ) be the diagonal r x r matrix of diag-
onal terms yi, ..., y,.

For all u, v € R, we write u = [(v) if |u| < v. Given two (random) sequences
(Un)n>k and (v,),> taking values in R, we write u, = v, if u, — v, converges
a.s., and u, ~p— o0 Uy iff u, /v, —p— oo 1, with the convention that 0/0 = 1.

LetCst(ay, a2, ..., ap) denote a positive constant depending only on ay, az, ...,
ap, and let Cst denote a universal positive constant.

2.2. Proof of Theorems 1,2 and 4. Theorems 1 and 2 are a consequence of
the more general three following Lemmas 1, 2 and 3 below.
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2.2.1. Lemmas 1, 2 and 3, and proof of Theorem 1. By the following
Lemma 1, if an equilibrium x € A is stable, then the eigenvalues of [a; ; —
2H (x)]i jes(x), which depend only on a, S(x) and H(x), are nonpositive. This
property will subsequently imply (P)s(y), by Lemmas 2 and 3.

LEMMA 1. Letx = (xj)icg € A be an equilibrium. Then:

(a) DF(x) has real eigenvalues.
(b) The three following assertions are equivalent:
(1) x is stable,
(i) maxSp(DF(x)) <0,
(i) max(Sp(lai,j —2H (x)]i, jesx) U{Ni(x) — H(x),i € 35(x)}) < 0.
(c) If x is stable, then it is feasible.

Lemma 2 yields an algebraically simpler characterization of assertion (P)g for
S C G; recall that, given subsets S and R of G, dsR, defined in Section 1, is the
outer boundary of R inside S.

LEMMA 2. The statement (P)g is equivalent to
(P)s If j,k € S are such that j #* k, then, foralli € S, a; j = a; i (so that 9s{j} =

ds{k} in particular).

Lemma 3 states that (P)g(y) holds if the eigenvalues of [a; j — 2H (x)]; jes()
are nonpositive, with equivalence if a = (1;~ )i, jeG-

LEMMA 3. Let x = (xj)icg € A be a feasible equilibrium. Then
max Sp([a;,j —2H (X)]i jes) <0 = (P)gy.-

If, for some ¢ > 0, a; j = clj~; for all i, j € S(x), then the above implication is
an equivalence.

Lemmas 1, 2 and 3 are proved, respectively, in Sections 3.1, 3.2 and 3.3. They
obviously imply Theorem 1.

2.2.2. Proof of Theorem 2. Suppose a = (1;~;); jeG,and let x € A.

First assume that (S(x), ~) contains no loop. If x is a stable equilibrium, then
(P)s(x) and, thus, (i) holds by Theorem 1; let Vi, 1 < k < d be the partitions of
S(x). Then d > 2 [otherwise H(x) = 0 and x is not feasible, thus not stable by
Lemma 1] and, forall 1 <k <d, j € Vg,

=Y xi=1-N;j(x)=1-H(x),

ieVy
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so that vy = 1/d (since ), vy = 1) and H(x) =1 — 1/d, and, subsequently, (ii)—
(iii) hold by Lemma 1. Conversely, assume (i)—(iii) hold; then N;(x) =1 —1/d
for all i € S(x), so that H(x) = > _;cg()XiNi(x) =1 —1/d and x is a feasible
equilibrium. Now (i) implies (P)g(y) and thus (P)/S(x) by Lemma 2. Hence, using
Lemmas 1 and 3, x is a stable equilibrium.

Now assume on the contrary that (S(x), ~) contains one loop i ~i. If x is
a stable equilibrium, then (P)g(y) again holds by Theorem 1: (P)g()(b) implies
N;(x) = 1= H(x) (x equilibrium). Hence, for all j € S(x), Nj(x) =1and j ~k
for all k € S(x), thatis, (S(x), ~) is a clique of loops. Conversely, if (S(x), ~) is
a clique of loops, then (P)g() obviously holds so that, by Lemmas 1 and 3, x is
stable [since H(x) =1, then N;(x) < H(x) for alli € G].

2.2.3. Proof of Theorem 4. First observe that
2 =808 NE;.

Indeed, the proof of Theorem 2 implies that ¥ 2 S§(S) N & and, conversely, that
if x € X, then x is a equilibrium and, by (c)(ii), for all j € 3S(x), N;(x) < H(x)
[=as(1—1/d)if (S(x), ~) contains no loops, = as otherwise], using assumptions
(a)—(b) and (c)(ii) or the second part of (c)'. Also, (P)s(y) holds by (c) or (c)’, and,
therefore, x is strictly stable by Lemmas 1-3. The rest of the proof follows from
Theorem 3.

2.3. Proof of Theorem 3. First, we provide in Lemma 4 a rigorous mathe-
matical setting for the stochastic approximation of the density of occupation of
the VRRW x(n) by solutions of the ordinary differential equation (6) on a finite
graph G, heuristically justified in Section 1 [see (4)]. Second, we make use of
this technique and of an entropy function originally introduced in [9] to study the
VRRW on the finite subgraph 7 (x) when its density of occupation is in the neigh-
borhood of a strictly stable equilibrium x, in Lemmas 5-10. Third, we focus again
on a general graph G—possibly infinite—and prove in Proposition 4, assuming
again that the density of occupation is in the neighborhood of an element x € &;,
that the walk eventually localizes in T (x) with lower bounded probability.

In the first step, we make use of a technique originally introduced by Métivier
and Priouret in 1987 [11] and adapted by Benaim [2] in the context of vertex rein-
forcement when the graph is complete (Hypothesis 3.1 in [2]). In Sections 4.1-4.3,
we generalize it and show that a certain quantity z(n), depending only on a, x(n),
X, and n and defined in (36), satisfies the recursion (37):

1 F(z(n))
z(n+1)=z(n)+ n ot IHxM) + Ent1 + It
where E(g,,+1]F,) = 0. The following Lemma 4, proved in Section 4.3, provides
upper bounds on the infinity norms of &,41, ry,4+1 and z(n) — x(n), and on the
conditional variances of (¢,+1);,1 € G.
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More precisely, let us break down the set of vertices of G as G = SU 9., where
(S, ~) is finite, connected and not a singleton unless it is a loop. Let, for all o €

R4\ {0},
(14) Ay :={x =(xj)jec € As.t.x; >aforall j €S§}.

LEMMA 4. Foralln > Cst(x) andi € G, if x(n) € Ay, then

Cst(a, a, |G|) ) Cst(a, a, |G|)x(n);
@ lensilloo < Tno’ (b) E((8n+1)i |Fn) < (n + no)z
Cst(a, a, |G|) Cst(a, a, |G))
©)  Nrasilloo < W, @ llz(m) —x(M)|lec < —n ¥ o .

Note that if G were a complete d-partite finite graph for some d > 1 or,
more generally, if G were without loop and, for all i,j € G with i ~ j,
{i, j}Ua{i, j} = G, then the constants in the inequalities of Lemma 4 would not
depend on o > 0 and, as a consequence, the stochastic approximation of z(n) by
(6) would hold uniformly a.s. Indeed, for all n € N, by the pigeonhole principle,
there exists at least one edge {i, j} i, j € G, i ~ j, on which the walk has spent
more than n/|G|2 times, so that x(n); Ax(n); > ﬁ #ﬂo and, under the assump-
tion on G, Lemma 4 with § := {i, j} would yield the claim.

In the second step, we define an entropy function V(-), measuring a “distance”
between ¢ and an arbitrary point [as can be seen by (15) below], originally intro-
duced by Losert and Akin in 1983 in [9] in the study of the deterministic Fisher—
Wright—Haldane population genetics model, and to our knowledge so far only used
for the analysis of deterministic replicator dynamics. Note that it is not mathemati-
cally a distance, however, since it does not satisfy the triangle inequality in general.

In the following, until after the statement Lemma 10—and, in particular, in
Lemmas 5-10—we assume that x € & and G = T'(x) = S(x) U 3.5(x); this choice
will be justified later in the proof. Note that if g € N'(x) N &, where NV (x) is
an adequately chosen neighborhood of x, then ¢ € S(S(x)) since x € &;, so that
T(g)=T(x).SetS:=8x), T:=T(x),and S :=S(S(x)) for simplicity.

Lemmas 5 and 6 below will imply that, given any stable equilibrium ¢q €
N(x) N&; as a reference point, V,(z(n)) decreases in average when z(n) is close
enough to x. Therefore, martingale estimates will enable us to prove in Lemma 7
that, starting in the neighborhood of x, x(n) remains close to x with large prob-
ability if n is large, and converges to one of the strictly stable equilibria in this
neighborhood.

For all ¢ = (¢i)ieg € S and y € RY, let

— > gilog(yi/qi) +2yss.  ify;>0,VieS,
Vg (y) = ieS
00, otherwise.
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Let, forallg € Sand r > 0,
By, (r) :=={y e As.t. Vy(y) <r}, Bxo(q.r):={y e Ast |y =gl <r}

Then, we will prove in Section 4.4 that, for all g € S, there exist increasing
continuous functions u1 g4, u2 4 : Ry — Ry such that u 4(0) = u3 4(0) =0 and,
for all r > 0,

15) Beo(q,u1,4(r)) S By, (r) € Boo(q, u2,4(r)).
Let, for all ¢, z € RO,
(16) I;(2) ==Y qilNi(z) = H(@)]+2 ) _ zi[Ni(z) — HQ)].
ie§ i€ds
The following Lemma 5, also proved in Section 4.4, provides the stochastic

approximation equation for V,(z(n)), ¢ € S N &;; we make use of notation u =
O(v) <= |u| < v, introduced in Section 2.1.

LEMMA 5. Let g € S N &;. There exist an adapted process (Cn)nen (not
depending on q and a), and constants ny| and ¢ (depending only on q and a)
such that, if n > ny and x(n) € By, (&), then V4 (z(n)) < o0, Vy(z(n + 1)) < 00,
E(¢n+11Fn) =0 and

1;(x(n))
(n+no+ DHH(x(n))
Cst(g, a) )
(n+ngp)?/)

Vy(2(n+ 1) = Vg (zm) +
(17)
— (g, Cny1) +2(ent1)as + D<

Lemma 6, proved in Section 3.4, provides estimates of the Lyapounov func-
tion H, and of 1.(-), in the neighborhood of a strictly stable equilibrium. It will not
only be useful in the proof of Lemma 7, stating convergence of x(n) with large
probability, but also for Lemma 8 on the rate of this convergence.

LEMMA 6. There exists a neighborhood N (x) of x in A such that, for all
g eNX)NE,yeN),

(18) (@) Cst(x,a)J(y) = H(q) — H(y) = Cst(x,a)J (y),
(b) —[H(q) — H(y) + Cst(x,a)yas]
<1Iy(y) = —[H(q) — H(y) + Cst(x, a)yys] < 0.

(19)

REMARK 4. Lemma 6 implies that y € AV/(x) is an equilibrium iff H(y) =
H (x). Also note that the maximality of H at x € & is not global in general. For
instance, in the counterexample at the end of Section 1, x := (3/8,3/8,1/8,1/8,
0) € &, but, letting y := (0,0, 1/3,1/3,1/3), H(y) =2/3 > H(x) = 1/2.
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The proof of Lemma 7 is shown in Section 5.1. A key point in its proof is that the
martingale term —(q, {n+1) + 2(en+1)as, in Lemma 5, is a linear function of &, 41
and &, which do not depend on ¢, so that the two corresponding convergence
results of these martingales will apply from any reference point g € £ NN (x). It
will enable us to prove that, if r is a accumulation point of x(n), then V,(x(n)) a.s.
converges to 0 if r € N'(x) although r is random.

LEMMA 7. There exist g9 := Cst(x, a) and ny := Cst(x, a) such that, if for
some € <epandn >ny, x(n) € By, (g/2), then

P(L(By, (£))|Fn) = 1 — exp(—&>Cst(x, a) (n + ng)).

Next, we provide in Lemma 8 some information on the rate of convergence of
x(n) to x(c0), which will be necessary for the asymptotic estimates on the frontier
Aj(x(00)) in Lemma 10.

LEMMA 8. There exist ¢, v := Cst(x, a) such that, a.s. on L(By, (¢)),

nli)ngo(x(n) —x(00))n" =0.

The proof of Lemma 8, given in Section 5.2, starts with a preliminary estimate
of the rate of convergence of H (x(n)) to H(x(o0)). To this end, we make use of
Lemma 9 below, giving the stochastic approximation equation of H (z(n)). It im-
plies, together with Lemma 6(a), that the expected value of H(z(n+ 1)) — H (z(n))
is at least Cst(x, a)(H (x) — H(z(n)), so that we can then estimate the rate of
H (x(n)) to H(x) by a one-dimensional technique.

Finally, this estimate implies similar ones for the convergence of J(x(n)) and
Iy (00)(x(n)) to 0 by Lemma 6, so that we conclude using entropy estimates for
the rate of convergence of Vy () (z(n)), using again that only two martingales es-
timates are necessary, given the linearity of the perturbation in (17) with respect to
the reference point g € & NN (x).

LEMMA 9. Foralln e N,

1 J
Q0 HE0+ 1) - HGm) =~y H((i(& )))) b+ s,

where E(&,+1]|F,) = 0 and, if for some o > 0, x(n) € Ay and n > Cst(w), then
Cst(a, a, |G|) Cst(a, a, |G])

1 <—") 2 <
(D N&ntilloo = n+ o 2)  lsnt1lloo = (n+n0)2

Lemma 9 is proved in Section 4.5.
Lemma 10 yields the asymptotic behavior on the border sites 9.S. This behavior
is similar to the one one would obtain without perturbation [i.e., with (¢,)en+ =0
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in (37)]. Indeed, if i € 9§, then N;(x) — H(x) < 0 is the eigenvalue of the Jaco-
bian matrix of (6) in the direction (J; ;) jec (see the proof of Lemma 1), and the
renormalization in time is approximately in H (x)~! logn [see equation (37)], so
that the replicator equation (6) would predict that i € 9 is visited of the order of
nNi)/H @) times at time n. This similarity with the noiseless case is due to the fact
that the perturbation (&;,),en+ is weak near the boundary [see Lemma 4(b)].

LEMMA 10. There exists ¢ := Cst(x,a) such that, a.s. on L(By,(¢)),
Ay (x(00)) occurs a.s.

The proof of Lemma 10, given in Section 5.3, makes use of a martingale tech-
nique developed in [18], Section 3.1, and in [7] in the context of strong edge re-
inforcement. We could have shown Lemma 10 by a thorough study of the border
sites coordinates of the stochastic approximation equation (37), but it would lead
to a significantly longer—and less intuitive—proof.

Now we do not assume anymore that G = T (x) for some x € A, in other words,
we let the graph (G, ~) be arbitrary, possibly infinite.

Let, for all n,k € NU {oo}, n > k, R, x be the range of the vertex-reinforced
random walk between times n and k, that is,

Rk :=1{i € Gs.t. Xj =i for some j € [n, k]};

note that, foralln e N, R C Ry 0.

PROPOSITION 4. Let x € &. There exists ¢ := Cst(x, a) such that, for all
n>Cst(x,a),if X, € T (x) and x(n) € By, (¢/2), then

P({Ru,00 = T (x)} N L(By, (£)) N Ay (y(00)|Fy) > 0.

Moreover, the rate of convergence is at least reciprocally polynomial, that is, there
exists v := Cst(x, a) such that, a.s. on L(By,_(¢)),
lim (y(k) — y(c0))k" =0.
k— 00
Proposition 4 is proved in Section 5.4. It obviously implies Theorem 3: indeed,
given U a neighborhood of x, there exists ¢ > 0 such that By (¢) C U, and X, €
T (x) and x(n) € By, (¢/2) occurs with positive probability if n is large enough.
Observe that, if G = T (x), then this Proposition 4 is a direct consequence of
Lemmas 7, 8 and 10. The localization with positive probability in this subgraph
T (x) results from a Borel-Cantelli type argument: the probability to visit 97 (x) at
time 7 starting from S(x) is, by Lemma 10, upper bounded by a term smaller than
n®~2, where a ~ max;cys N; (x)/H(x) < 1, and Y neN n“"2 < oo. Technically,
the proof is based on a comparison of the probability of arbitrary paths remaining
in T (x) for the VRRWs defined, respectively, on the graphs 7'(x) and G.
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2.4. Contents. Section 3 concerns the results on the deterministic replicator
dynamics: Lemmas 1-3 and Lemma 6 are proved, respectively, in Sections 3.1-
3.3 and 3.4.

Section 4 develops the framework relating the behavior of the vector of den-
sity of occupation x(n) to the replicator equation (6): we write the stochastic ap-
proximation equation (37) in Section 4.1, establish in Section 4.2 some prelimi-
nary estimates on the underlying Markov Chain M (x), prove Lemma 4 in Sec-
tion 4.3, prove Lemmas 5 and 9 [stochastic approximation equations for V, (z(n))
and H (z(n))] and inclusions (15) in Sections 4.4 and 4.5.

Section 5 is devoted to the proofs of the asymptotic results for the VRRW:
Lemma 7 in Section 5.1 on the convergence of x(n) with positive probability,
Lemma 8 in Section 5.2 on the corresponding speed of convergence, Lemma 10 in
Section 5.3 on the asymptotic behavior of the number of visits on the frontier of
the trapping subset, and Proposition 4 in Section 5.4 on localization with positive
probability in the trapping subsets.

Finally, we show in Appendix A.l a lemma on the remainder of square-bounded
martingales, which is useful in the proofs of Lemma 8 and Proposition 1, whereas
Appendix A.2 is devoted to the proof of Proposition 1.

3. Results on the replicator dynamics.

3.1. Proof of Lemma 1. Note that DF(x)v=—Hx)v=0if Sw)NT(x)=
J, so that it is sufficient to study the eigenvalues of D F'(x) on {v € RY s.t. S(v) C
T (x)}; hence, we can assume that G is finite [equal to 7' (x)] w.L.o.g.

Let S := S(x) for convenience. For all i, j € G,

Ni(x) — H(x), ifx;=0and j =i,
IF _ )0, if x; =0and j #1i,
ax; | xilai; —2HW),  ifx #0andx; #0,

xilai j —2N;j(x)], if x; #0and x; = 0.

Let us now consider matrix D F(x) by taking the following order on the indices:
we take first the indices i, j € G \ §, and second the indices i, j € S,

Diag(Ni (x) — H(x))ieG\S )
(%) DB )’
where
B =la;;; —2H (x)]; jes, D = Diag(x;)ies-

The matrix D B is easily seen to be self-adjoint with respect to the scalar product
(u,v)p-1:= (D~ 'u, v). Hence, DB has real eigenvalues. This proves the first
statement of the lemma.

Note that if we consider (6) as a differential equation on RY, then

d ,1
(F(X),l)=% 00 =—((x, 1) = 1)H(x).
t=0,x(0)=x
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Therefore, if x € A [which implies (x, 1) = 1], for all vector u € RY,
21 (DF(x)u,1)=—H(x)(u, 1).

Hence, p:u > (u, 1) is an eigenvector of ' DF (x) with eigenvalue —H (x). This
makes —H (x) an eigenvalue of D F(x) and, more precisely,

Sp(DF(x)) ={—H(x)} USp(DF(x)|Ta);

indeed, by (21), an eigenvector u of D F'(x) with eigenvalue A # — H (x) belongs to
Kerp = T A. Therefore, the stability of an equilibrium x of (6) on RY is equivalent
to the stability restricted on A, which completes the proof of the first equivalence
in statement (b).

CLAIM. LetM = Diag(yy,...,y,)beadiagonal r x r matrix, with yy, ..., y, €
R%, and let N be a symmetric » x r matrix. Then minSp(N) > 0 <=
min Sp(M N) > 0 and, under this assumption,

minSp(M N) > minSp(N) min{y; }1<j<,-

PROOF. It suffices to prove that min Sp(N) > 0 implies min Sp(M N) > 0 and
the corresponding inequality, since the coinverse statement is symmetrical.

Recall that, for any » x r symmetric matrix R with nonnegative eigenvalues,
there exist a diagonal matrix D and an orthogonal matrix Q such that R = 0'Do,
hence,

minSp(R) = inf (Dt,t) = inf (DQt, Ot) = inf (Rt,1).
l7]=1 7]>1 l7]=1
Let us define L = Diag(/y1, ..., +/yr). Observe that L?> =M. Now MN =

L(LNL)L™" implies Sp(MN) = Sp(LNL).
LN L is symmetric; therefore,

minSp(MN) =minSp(LNL) = |i|nf1(LNLt, t)
)=

= inf (NLt, Lt) > inf (Nu, u)

[t]>1 lu|=mini <; <, /i
= min y; inf (Nu,u) = min y; Sp(N). O
1<i<r™ |u|>1 1<i<r

To complete the proof of statement (b), we apply the claim to M := D and
N :=—B.

It remains to prove that a stable equilibrium in A is feasible. Let x € A be such
an equilibrium. Assume that H (x) = 0. If x; = 0 for some i then, by Lemma 1(b),
Ni(x) =0, so that x; = 0 for all j ~ i. Hence, x = 0, which is contradictory.
Now, if x; # 0 for all i, then G is necessarily finite (by definition of A), and
a = (a;,j)i, jec = 0 since its eigenvalues are nonpositive [Lemma 1(b) again] and
its trace is nonnegative. This is again contradictory.
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3.2. Proof of Lemma?2. Letd:= g, (P) :=(P)g and (P) := (P)’s for simplic-
ity.

Assume (P) holds for some d > 1. Let us prove that, if i, j, kK € S are such that
i~ j+k,then aij.j =4ajk-

If i = j, then i = j +* k implies, by (P)(a)—(b), that k ¢ S—and therefore a
contradiction—since if £ were in S, it would be in the partition of i, which is
a singleton. If i # j # k, then j and k are in the same partition of S. Hence,
a;,j = aj . by (P)(c), which completes the proof of (P)'.

Assume now (P)’. Let us prove that the relation R defined on S by

iRj & i#tjori=j
is an equivalence relation on S. It is clearly symmetric and reflexive. Let us prove
that it is transitive: let 7, j, k € S be such that i Rj and j Rk, and prove i Rk. This is
immediate if i = j or j = k; hence, assume that i # j and j # k; then (P)’ implies
ds{i} = ds{j} = as{k}. If we had i ~ k, then it would imply k € ds{i} = ds{j},
and, therefore, j ~ k, which leads to a contradiction.

Now let us prove that there is only one element in the partition of a loop. Assume
that iRj,i ~i and j #i for i, j € S; (P)’ implies in this case that a; ; = aj j >0,
so that i ~ j, hence, i = j since i Rj holds, which leads to a contradiction.

Let V,, p=1,...,d be the partitions of R: elements of different partitions are

connected, by definition, and (P)(a)—(b) holds for some d > 1. Let us prove (P)(c):
let p,q €{1,...,d} be such that p # g, and assume i € V,, j € V. Let

Wi,j = {(i/, ]/) € 52 s.t.aj jr = a,-,j}.
By applying (P)’ twice, we first obtain that W; ; D {i} x V,, and second that W; ; 2
V), x V,;, which enables us to conclude.
3.3. Proof of Lemma 3. Let S:=S(x) and (P)":= (P)},, for simplicity. Let
B =la;j —2H(x)]; jes-
Now max Sp(B) <0 <= Vt € RS, B[r] <0. Observe that, for all = (;);es €
RS,
2
Blt]l= ) (aij —2H@))tit; =H(t) — 2H(x)<2 zi) :
i,jeS ieS

Let us assume that (P)’ does not hold, and deduce that B[7] > O for some ¢ € RS,
which will prove the first statement.

There exist i, j, k € S such that j »* k and a; ; # a;  [otherwise (P)’ would be
satisfied]. Let, for all A € R,

t = (Lp=i) + Ap=jy — (1 + VL p=t}) yes € R,
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then
B[1,] > 2)(ai,j — ai ) — 2ai i,

so that B[t,] > 0 for some A € R, which yields the contradiction.
Let us now assume that (P)" holds, and that g; j = c1;~, with ¢ = 1 for simplic-
ity. First assume S contains no loop. Then, by Lemma 2, S is a d-partite subgraph

for some d > 1 [(P)g¢(a) holds]; let V1, ..., V4 be its partitions, then
2
B[t] = Z (:ﬂ.iwj — 2H()C))l‘itj = —2H(x)<zti) + Z ﬂiwjtl'l‘j
i,jes ieS i,jes
d 2 d 2 d
= —2H(x)(2 vk> + (Z vk) =Y v,
k=1 k=1 k=1
where, foralli € {1,...,d}, vy = Zier t;. Therefore,
d 2 d
Blt]=—(2H (x) — 1)(2 vk> Y v <0,
k=1 k=1

where we use the fact that H(x) > 1/2, since H(x) =1 —1/d and d > 2 (see
proof of Theorem 2, Section 2.2.2).

Now assume that S contains one loop; then, again by the proof of Theorem 2,
Section 2.2.2, it is a clique of loops and H (x) = 1; thus,

BU]:—Q<§:n>2+(}:n>2=—(§:n>250

ieS ieS ieS

3.4. Proof of Lemma 6. Let us first prove (a) in the case ¢ := x, which will
imply H(q) = H (x) for any equilibrium ¢ € N (x) and therefore imply (a) in the
general case. Let x € &, andlet y € TA be such that x +y € A. Let § := S(x) for
simplicity.

Recall that G = S U 9S. We have

(22) Hx+y)= Y aijxi+y)&xj+y)=Hx)+2Y Nix)yi+H(y)

i.jeG ieG
=H(x)+2 Z(Ni(x) —Hx))yi + Z (ai,j —2H (x))yiy;
ieG i,jeG
=H(x)+2 ) (Ni(x) — H(x))yi
(23) i€edS
+ Y (@i —2H@®)yiyi+ > wi(y)
i,jes i€ds

<H@X)+2) (Ni(x)—H@)yi + Y wi(y).

i€ds i€dS
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In the third equality, we make use of the identity ) ;,.; y; = 0, whereas in the
fourth equality we notice that N;(x) = H(x) for all i € S and that the reinforce-
ment matrix a := (a;, )i, jec 1S symmetric, and let

wi (y) i=Yi (2 > (aij —2H@)yj+ Y (aij— 2H(x)))’j>

jes jeas
= 0}y|-0(¥i) = 0}y|-0(Yas),

using that, for all j € 35, y; > 0. Finally, we apply in the inequality that B :=
(ai,j —2H (x));, jes is a negative semidefinite matrix by Lemma 1.

Using that, for all i € 95, N;(x) < H(x) (and y; > 0), we deduce that there
exists a neighborhood A/ (x) of x in A such that, if x +y € N'(x), then H(x +y) <
H(x).

In order to obtain the required estimate of H(x + y) — H (x), we observe that,
if 7 := (yi)ies, then, by semidefiniteness of the symmetric matrix B,

(24) —Cst(x,a)|Bz|> < (Bz,z) = Z (@i j —2H(x))yiy; < —Cst(x,a)|Bz|*.

i,jes
But
Bo= (M) = 2HW X 31) = (M) + 2H(6)3a5) s
ieS ieS
where we use that y;5 = —ygs in the second equality, since y € T A. Hence,

25)  IBzP =Y (N;(») +2H®)yas)" = Y Ni()? + 0pyi—0(yas)
ieS ieS

and, if we let

KO) =Y Ni(»?*+ yas.

ieS
then, by combining identities (23), (24) and (25) [and using that w;(y) =
0|y|—-0(yas) for all i € 9S], restricting N (x) if necessary,

(26) —Cst(x,a)K(y) < H(x +y) — H(x) < —Cst(x,a) K (y).
On the other hand, let

L) =Y (Ni(x +y) — Hx +))” + yas.

ieS
Then, again by restricting A/ (x) if necessary,

(27) Cst(x,a)L(y) < J(x +y) = Cst(x,a)L(y),
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where we use again that N;(x) < H(x) foralli € 0S. But
L(y) =Y [Ni() — (Hx +y) — H@)] + yas
ieS
= K(y) +ojy»o(lHx +y) — Hx)I).

Combining inequalities (26), (27) and (28), and further restricting A/ (x) if nec-
essary, we obtain inequality (18) as required.
Let us now prove (b). If ¢ € S(S(x)) and y € A, then

=Y qiIN;(y)—HMI=H») =Y _qiNi(y)

ieS ieS

(28)

and
Y aiNi(») =) qiNi(y»)=> yiNi(@)=H(@) + Y yi[Ni(g) — H(@)],
ieS ieG ieG i€dS

where we use that (a;,j); jec 1s symmetric in the second equality, and that g is an
equilibrium in the third equality. Therefore,

29 IL,W=H—-H@+ Y y[2(N;(y) — H(») — (Ni(q) — H(@)].
icds
If g, y € N(x), then [by restricting N (x) if necessary] x € & implies that, for all
ie€ads,
—Cst(x,a) <2(Ni(y) — H(y)) — (Ni(q) — H(g)) < —Cst(x, a).

Inequality (19) follows.
4. Stochastic approximation results for the VRRW.

4.1. The stochastic approximation equation. We assume in this section that G
is finite. The main idea is to modify the density of occupation measure

L Za)
x(m) = (n +n0)ieG

into a vector z(n) that takes into account the position of the random walk, so
that the conditional expectation of z(n + 1) — z(n) roughly only depends on
z(n) and not on the position X,,. This expectation will actually approximately be
F(z(n))/(n 4+ no), where F is the map involved in the ordinary differential equa-
tion (6).

For all x € A, let M (x) be the following matrix of transition probabilities of the
reversible Markov chain:

(30) M(x)(@, j):1

ai jX;
=
> k~i Qi kXk
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M (x(n)) provides the transition probabilities from the VRRW at time n. Recall
that 77 (x) in (2) is the invariant probability measure for M (x).

Let us denote by G (resp., H) the set of functions on G taking values in R (resp.,
in RY). Let 1 be the function identically equal to 1. Let M (x) and I1(x) denote
the linear transformations on G defined by

(1) M) @) = 3 M@, ),
jeG
(32) M) (f) = (Zn(x)(i)f(i))ﬂ-
ieG

Note that, by a slight abuse of notation, M (x) equally denotes the Markov chain
defined in (30) and its transfer operator in (31); I1(x) is the linear transformation
of G that maps f to the linear form identically equal to the mean of f under the
invariant probability measure 7 (x).

Any linear transformation P of G [and, in particular, M (x) and I1(x)] also
defines a linear transformation of H: for all f = (f)ieg € H,

(33) Pf:=(Pfiicc.

Let us now introduce a solution of the Poisson equation for the Markov chain
M (x). Let us define, for all t € R,

o :
Gi(x) 1= "M = g1 3" My

0

’

i!

which is the Markov operator of the continuous time Markov chain associated with
M (x).Forall x € Int(A), M(x) is indecomposable so that G;(x) converges toward
[1(x) at an exponential rate, hence,

0(x):= /OOO(G,(x) —I(x))dt

is well defined. Note that

Q(x)1=0,
and that Q(x) is the solution of the Poisson equation
(34) (I =Mx)Q(x)=Q0x)(I —Mx))=1—-TI(x),

using that M(x)IT(x) f =TI (x) f = (x)M(x) f forall f € G (or f € H).
Let us now expand x(n 4+ 1) — x(n), using (34). Let (e;);cc be the canonical
basis of RY, that is, ¢; := (1j=)jec foralli € G. Let: € H be defined by

t:G—)RG,

I —> e;.
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First note that, for all x € A, IT(x)t = m(x)1 since, for all j € G,
H()e(j) = (X)) (GNrec = (T () (K1) (j)kec = 7 (x).
Therefore,
(n+no+Dx(n+1) —xn) = (Lx,,,= — X(0)i);cc = t(Xn+1) — x ()
=1(Xpq1) =7 (x(n)) + F(x(n))
=[I = I(x(n)](Xnt1) + F(x(n)),

where F is the function defined in (5).

Now,
[l — T(x(n)]e(Xn+1) _ (Q(x(n)) — M(x(n) Q(x(m))t(Xp+1)
(35 n+no+1 n+no+1
=&pt1 + Mu+1 +Tutr1,1 +7nt1,2,
where
o Qxm)(Xpt1) — M(x(n)) Q(x(n)t(Xy)
n+l -=— n + o +1 s
1 1
Fag11 = (n - +n0)M(x(n))Q(x(n>)a(Xn>
_ MG&@)Q(x(n)u(Xn)
 (m+n)m+ng+1)
_ ME@)Oxm)uX,) Mxn+1)0x 0+ 1D))i(Xnq1)
NMn+1 = n+n0 n+n0+1 ’
M+ D)0+ 1) — M(x(n) Q(x(n))]e(Xn+1)
Fn41,2 -\ = .
n+ng+1
Let, foralln e N,
(36) 2(n) = x(n) + M(x(n))Q(x(n))(Xy)
n—+ng

and

1 F(x(n)) — F(z(n))
n+no+1 H(x(n))
Tntl ‘= Tn+1,1 + 7412 + Fut1,3.

"n+1,3 =

Then, for all n € N, it follows from equation (35) that

(37) )=z 4 —FC@)
n4ng+ 1 H(x(n)) =il
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Note that E(g,41|F,) =0, since
E(Qxm) (X 1) Fn) = M(x(n) Q(x () (X,);
also observe that

Sz =Y x(n)i + (MOx(m) QUrmD(Xn) _

n—+ng

ieG ieG
We provide in Section 4.2 estimates of the conditional variance of €,41 and of
rn+1, which will be sufficient to prove localization of the vertex-reinforced random
walk with positive probability.

4.2. Estimates on the underlying Markov chain M (x). For convenience we
assume here that G = SU 9.5, where (S, ~) is finite, connected and not a singleton
unless it is a loop. Let @ :=max; jec,i~j @i, j, @ :=MiN; jeG,i~j di,j.

Let us first introduce some general notation on Markov chains. Let K be a
reversible Markov chain on the graph (G, ~), with invariant measure . Let (-, -),
be the scalar product defined by, for all f, g € G,

(f &)= fx)gX)u(x).

xeG
On G, we define the £”(u) norm, 1 < p < oo by

1/p
1 flergo = (Z |f<x)|Pu<x>) ,

xeG

and the infinity norm
Il flloo :=max | f (x)].
xeG
We also define the infinity norm on H: if f = (fi)icg € H,
(38) I flloo = max || filloo = max | f;(x)|.
ieG i,xeG
Let E,, be the expectation operator

Euf =) f@ux) ={f 1)y,

xeG

where 1 is the constant function equal to 1.
We let £k be the Dirichlet form of K,

Ex () =(U = K)f. 8
and let Var, be the variance operator,
Var, (f) == I1f = Euflpg = 1 £ 174, — Buh)*.
Simple calculations yield that

1
Ex(f. =5 S (F@ = FODY K G ),

i~
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and
1
Var, (f) =5 3 (f@) = ) mi)nl).
i,jeG
Let A(K) be the spectral gap of the Markov chain K,
Ex (. )
Var, (f)

The following Lemma 11 states that the spectral gap of the Markov chain M (x)
is lower bounded on A, [defined in (14)].

MK) = min{ s.t. Var, (f) # O}.

LEMMA 11. Forall x € Ay, A\(M(x)) > Cst(a, a, |G]).

PROOF. Let M := M(x) and 7 := m(x) for simplicity. Let us first observe
that, for alli € G, j € S such thati ~ j,

M@, j)=ax;j/a>aa/a and
(39) ,
where the second inequality comes from
a; jxj xiNi(x)  ajjxix; gozz
= > —1jes.

Ni(x) H(x) H (x) a

Now, by connectedness of (S, ~), for all i, j € G, there exists [ < |G| and a
path (ny)1<k<; € G x $'=2 x G such that i = n;, j=mny, ng~ngy forall k €
{1,...,1—1}.

Hence, for all k € {1, ..., 1}, using inequalities (39),

. . . 2
r @O (@ = f())

<izm() Y. (fw) = fousn)

ke{l,....I—1)
<Ir()(f) — F0)) +ir ) G) — )
+Y (fu) — flugn)’

M@, j)m (i) =

al
< LM )7 ) (f @) — f(n2)?
au

+ MG, DT (H(FG) = Fu-)’]
[
+ Y (F) = ) M (g, miy )7 ()
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al
<Y (f0w — f ) Mg, ni )7 ()

ac” et -1y
2a|G
<2 s )
ad
Therefore,
1 N 2 _alG|?
Varz (f) =3 Y w@r()(fG) — f()) < —Eu(f ).

i,jeG

Lemma 12 provides upper bounds on the norms of Q(x), M (x)Q(x) and their
partial derivatives on A, which will be needed in the estimates of 7,11 and of the
conditional variance of &, in Lemma 4.

The norm on linear transformations of G will be the infinity norm

IAf oo
reg. f#0 I1f lloo

Note that, for any linear transformation A of G, the corresponding linear transfor-
mation of H (still called A) defined in (33) still has the same infinity norm [the
I - lloo on H is defined by (38)],

[Alloo ==

I Af lloo
[Alloc = sup -
rer. f#0 1 flloo

LEMMA 12. Forallx € Ay,i,j€G, f€G:
27 (x)(j)
ol

Vary ) (f) - Iflle2 e o))

®) 1) [l < M) = A

© 1)l =Cst(a, a, |G]), M (x) Q(x)|loo < Cst(ex, a, |G]),

) H 90 (x) H (M (x)Q(x)) H
dx; 00

ox;

a

@ M@, )< (é)

9

= Cst(a, a, |GJ),

o0

< Cst(a, a, |G]).

PROOF. Let M :=M(x), Q :=Q(x), m :=m(x), A := A(M(x)) for simplic-
lty'Inequality (a) is obvious: for all j € G,
ai jXj _ XjNj(x) a;jH(x) - (g)zw
Ni(x) H(x) Ni(x)N;j(x) ~\a/ o’
Let us now prove (b). For all f € G,
G f =72y < €2 Varz (f),

M@, j)=
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by definition of the spectral gap (see, e.g., Lemma 2.1.4, [17]), so that

100 2, < H [ Gieor = neopyar H

()

(40) 5/0 (G ) f = LX) £) | 2y 2
00 Warr (1) Il
At _
< Var7,(f)/0 e Mdt= . < ) .

Inequality (c) translates this upper bound of the ¢>(;r) — £2(;r)-norm of Q(x) into
one involving the infinity norm for M Q, using (a):

MOfOl=|3 M. J)Qf(])‘
jeG
1 a2 10f i
s;(g) meQf(m—( ) J;“)

jeG

- < )2||Qf||52(n) <§)2 £ o2
~\a a? a raz

Hence, using Lemma 11,

2
||MQf||oos(§) ”f”ﬂs(a) 17N Gstia. a, 1611 1.

A2

Then the same upper bound for || Q(x) f |l follows from the Poisson equation
(34):
Q) =M(x)Q(x) + I —IT(x).
Let us now prove (d). Given i € G, let us take the derivative of the Poisson
equation Q(x)(I — M(x)) = I — I1(x) with respect to x;:
30 (x) 8M(x) _ OM(x)
(I - M) = Q(x) .
0x; Xi 0x;

This equality, multiplied on the right by Q(x), ylelds, using now the Poisson equa-
tion (I — M(x))Q(x) =1 —T(x),

0 0 oM oIl
@1 aQ(x) W) (1 _ ) = (Q(x) ) _ (x))Q( ),
X; 0x; 0x; 0x;
where we use that, for all f € G,
0 0
Q(x)m Y = (f, Do g(x) o0,

l

since Q(x)1 =0 forall x € A.
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Equality (41) implies the required upper bound of || %}g) lloo- Indeed, the fol-
lowing estimates hold: for all i, j, k€ G, j ~ k,

IB[M(X)(J T (%,m)‘
| ox; Nj(x)

d
_ 0xx ajk Ak IN;(x)
0x; Nj(x) Nj(x)2 0X;
2a Za
N (x)

where we use that a; ;xx < N;j(x) and 9N;/dx;(x) = a;;, and that there exists
I € S with [ ~ j, given the assumptions on S. Also,

’871(96)(1)‘ (x,N (x))’
ox; H(x)
_'a(xij(x)) 1 xjNj(x)0H (x)
N Ax; H(x) Hx)? dx;
4a 4a
< < —
~ H(x) ~ ao?’

where we note that |24 (x)| = 2N;(x) < 2a. The upper bound of || {MO) (g;iQ(x)) lloo
follows directly. [

4.3. Proof of Lemma 4. The estimates (a) and (d) readily follow from the def-
initions of &,41 and z(n), and from Lemma 12(c).

Let M := M(x(n)), Q := Q(x(n)), m :=m(x(n)), » := A(M(x(n))) for sim-
plicity. Let us prove (b):

(n +n0)*E((ens )71 Fn) < E([Qei (Xnr )1 Fn)
= Y M(Xp, H[Qe;i (NI

J~Xn
1

a\’ , -
5—2(5) S 2 ()[Qei())]

x"\a jeG

— a ? 1 2
- é ;” Qel Hﬁz(n(x(n))

where we use Lemma 12(a) and (b), respectively, in the second and in the third
inequality.
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In order to prove (c), let us first upper bound ||7,+1,1]lc0 using Lemma 12(c):

| M (x(n)) Q(x(n)t(Xn)lloo - Cst(a, a, |G|)
(n 4+ np)? ~  (n+np)?

||rn+1,1”oo =<

Let us now bound ||7,+1.2]lc0:

IMQ)Ox(n)+ (1 —-0)x(n+1)) ”
a0 00

(n+no)llrnt1,2llo0 < sup

0¢€[0,1]
= 3 J(xn 4 1)~ )|
ieG
o IMQ)Ox(n)+ (1 —-0)x(n+1)) H
i€G,0€l0,1] 0x; 00
- Cst(a, a, IGI),
- n—+ng

where we use Lemma 12(d) in the last inequality.
It remains to upper bound ||r,+1,3||cc- First observe that, for all y = (yi)ieq,

7=(zi)iec €A,i €G,

dF;(x)
X

|Fi(z) — Fi(y)| < Z |zj —yjl sup
jEG kGG,xGA

<2a) |z —yil,

ieG
where we use the explicit computations of dF;/dx; in the proof of Lemma 1.
Hence,

1F(z) = F(M oo =2alGllIz = yllco,
which implies

Gl sa1611x (1) = 2(m) o < 221D
—2zd xn) — n _—
n+ng a oo = (n +no)?

where we use that, by inequality (8), H(x) > a/|G| for all x € A.

141,300 <

4.4. Proof of Lemma 5 and inclusions (15). Let us first prove inclusions (15).
If we let g: R4 \ {0} — R, be the function defined by g(u) :=u — log(u + 1),
nonnegative by concavity of the log function, then, for all y € A such that y; > 0
foralli € S,

Vi — qi Yi — qi
@) V) =Y aitog(1+ - D)+ 205 = Yaie - ) s

ieS ! ieS !
which implies the inclusions.
Let us now prove Lemma 5; let, for all n € N,

Cnt1 = ((8n+1)i ]lieS) s
z(n); ieG
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with the convention that ¢,41 = 0 if z(n); = 0 for some i € S. Fix ¢ > 0 such
that By, (2¢) C Aq for some o = Cst(g) > 0, and assume x(n) € By, (¢) for some
n > ny. Thus, ||z(n) — x(n)|lcc < Cst(q,a)/(n + ng) by Lemma 4(d); we assume

in the rest of the proof that ¢ < Cst(q) and ng > Cst(q, a) so that, using (42),

z(n) € By, (2e) C Ay
Note that [|x(n) — x(n + 1)|leo < (n + ng)~!, which implies, using Lemma 4,

that ||[z(n) —z(n + 1) ||co < Cst(g,a)(n + no)~!. Hence, using that z(n) € Ay,

1)
Vol + D) = Vyc) = = Y g log(%) +2[2(n + Das — 2(n)s]
i€S l
Di —z(n);
——y g +Z()n). XL 2en + Das — 2]
ieS !
Cst(g, a)
+D<<n+no>2)’

where we again make use of notation u = [1(v) <= |u| < v from Section 2.1.
Hence, using identity (37) and Lemma 4(c)—(d), we obtain subsequently [recall
that 7, (-) is defined in (16)]

Ve(z(n + 1)) — V4 (z(n)

_ 1 Ijz(m) Cst(g, a)
 ndng+ 1 H(x(n)) @ Gut1) o+ 2Ens1)as + D((n + n0)2>
1 I;(x(n))

Cst(gq, a) )

- (@ G) + 2Ens o +D( e

n+no+1H(Mxm))
4.5. Proof of Lemma 9. Using identities (22) and (37) [recall that J is defined
in (7)],
H(z(n+1)) — H(z(n)) =2)_ Niz(n) - (z(n + 1) — z(n)),
ieG
+ H(z(n+ 1) — z(n))
L JGm)
~ n+4nog+1 H(x(n))

+ ‘i"n—i—l + Sn+1,

where
Eng1: =2 Ni(z(n))(ent1i,
ieG
Sn1 =2 ) Ni(zm)(ras1)i + H(z(n + 1) — 2(n)).
ieG
Let o > 0, and assume x(n) € A,,. Inequalities (1) and (2) of our lemma follow

from Lemma 4(a)-(c), and from ||z(n + 1) — z(n)|lc0 < Cst(x, a, |G|)/(n + ng)
(see, e.g., the beginning of the proof of Lemma 5).
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5. Asymptotic results for the VRRW.

5.1. Proof of Lemma 7. Fix € > 0 such that By (¢) € A, for some o > 0
depending on x, and assume x(n) € By, (¢/2) for some n > ny.

Let (¢kx)k>2 be defined as in Section 4.4, and let us define the martingales
(A)k=n> (Bi)k=n and (kx)x=n by

k k
Ap = Z {j]l{vx(x(j_l))fg}, By = Z (Sj)BS]l{Vx(X(j—l))SS}’
j=n+1 j=n+l

ki = —(q, Ax) + 2Bk,

with the convention that A, := 0 and B,, = x,, := 0. Using Lemma 4(a), it follows
from Doob’s convergence theorem that (Ag)k>n, (Bk)k>n and (ki)g>n converge
a.s. and in £2.

Let us briefly outline the proof: we first show that, on an event of large proba-
bility Y, where «, k > n, remains small, x (k) remains in the neighborhood of x
and the stochastic approximation (17) remains valid. This implies, together with
(19), the existence of a subsequence ji such that (x(jx))k>0 converges to a ran-
dom r € & [see (44)]. Using the linearity of the martingale part of (17) in ¢
and ¢, we can conclude from the a.s. convergence of (Ax)ix>n and (By)k>, that
x(k) — 00 I a.8. [see (45) and (46)].

The upper bound |kx —kx—1| < I'/(k+ng) a.s., for some I' := Cst(x, a), implies
that, forallk >n+1and 0 € R,

rz g2
E@mw@%—mqﬂﬂﬁﬂfem<jjfi%?>

On the other hand, (exp(8«x))k>n 1s a submartingale since (ki )x>, 1S @ martingale,
so that Doob’s submartingale inequality implies, for all 6 > 0,

P(sup/ck > c|_7-‘n) = P(Supe9/<k > €0C|7n> < O R (| F)

k>n k>n
0°1?
< exp(—@c + m)
Choosing 6 := c(n + ng)/ I'? yields
2
3) P(supis = el < exp( 55 1+ 10)).

Let

€
T:= — 0
{sup/ck < 12}

k>n
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inequality (43) implies that
P(Y|F,) > 1 — exp(—¢e*Cst(x, a)(n + no)).
Now assume that T holds, and let 7' be the stopping time
T :=inf{k > n s.t. Vi (z(k)) > 2¢/3}.

Note that, using Lemma 4(d), if n > Cst(x,a), then for all k € [n,T),
Vi (x(k)) < e. We upper bound V, (x(T)) — Vi (x(k)) by adding up identity (17) in
Lemma 5 with g := x, from time n to T — 1: this yields, together with Lemma 6,
that V,(z(T)) <2¢/3 if T < oo, if we assume n > n; := Cst(x, a) large enough
and € < gg := Cst(x, a) small enough.

Therefore, Vi (x(k)) < ¢ for all k > n. Using again identity (17) [and
Lemma 6(b)], we obtain subsequently that

liminf[H (x) — H(x(k) +x(k)as] =0 as.

since, otherwise, the convergence of (kx) as k — oo would imply
limg_ o0 Vi (z(k)) = limg_ oo Vi (x(k)) = —o0, which is in contradiction with
Vi(x(k)) = 0.

Hence, there exists a (random) increasing sequence (jx)x>0 such that

(44) lim H@x(jo)=HE).  lim x(jss =0.

Let r be an accumulation point of (x (jk))k>0. Then H(r) = H(x) and rys =0.

Note that V, (r) = limg_ Vi (z(jk)) < €. By possibly choosing a smaller &g :=
Cst(x, a), we obtain by Lemma 6 that  is an equilibrium, and by Lemma 1 that it
is strictly stable.

Let, forall j e N,

e &
o= g < oo < 5)
There exists a.s. j € N such that A ; holds; let [y be such a j (/o is random, and
is not a stopping time).
Let k € N be such that j; > Ilp and V,(z(jx)) < €/2. Then Lemma 5 applies to
r € SN &, and a similar argument as previously shows that, for all j* > j > ji,
Vi(x(j)) <& and

. . Cst(g, a)
(45) Vo (z(j) < Vi (z(j)) +sup|Ar — Aj| +2sup| By — Bj| + .761,
k>j k>j Jt+no
if n1 := Cst(x, a) was chosen sufficiently large.
Now, liminf;_, » V;(z(j)) =0 and
Cst

(46) lim sup|Ax —Aj| = hm sup|Bk — Bj| = lim ° (q)

J=0 k> 00 k> j—0o j4ng

hence, lim;_, o V,(x(j)) = 0 which 1mphes lim;_, o x(j) =r and completes the
proof.
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5.2. Proof of Lemma 8. Let us start with an estimate of the rate of convergence
of H(z(n)) to H(x). Let, forall n e N,

J(z(n))
Xn:=Hx)—H(@zn), vy =,
" " H @) x
with the convention that v, := 0 if x, =0.
By Lemma 6 there exist ¢, A, i := Cst(x, a) such that, for all n € N such that
x(n) € By_(2¢), v, € [A, u]. On the other hand, for all n € N, using Lemma 9 and
the observation that J(z(n)) =0 if x, =0 by Lemma 6,

(1=
=l-— - —s
Xn+1 n+no+ 1 Xn n+1 n+1
47) )

=< (1 - m)h — &t +S,/1+1,
where

S;H_l = —=Sp+1 + (v — A)max(—xu, 0)/(n +no + 1).
If x(n) € By, (2¢) for sufficiently small ¢ := Cst(x, a), then, by Lemma 9,

(48) iilloo < 0Dy < 20D
77 S J— 7?
n+llloo = 7 + 1o n+11loo (n-i—no)z
where we use in the second inequality that max(—y,, 0) < Cst(x,a)/(n +no+1),
since ||x(n) — z(n)|lco < Cst(x,a)/(n + ng+ 1) by Lemma 4(d), and H (x(n)) <
H (x) by Lemma 6.
Let, foralln e N,

Note that 8,n* converges to a positive limit. Inequality (47) implies by induction
that, for all n € N,

n f X n s/‘
anﬂn(XO_Z—j+Z—j).
=P 5P
Assume L(By, (¢)) holds so that, in particular, x(n) € L(By, (2¢)) for large n €
N. The upper bounds (48) yield, assuming w.l.o.g. A < 1/2, that 2?21 s}/ﬁj < 00
and Z’}:l E(é}) / ,3]2. < 00; the latter implies, by the Doob convergence theorem in
L2, that Z’}:] &;/B; converges a.s. Therefore, xnn” is bounded a.s.

We deduce subsequently, by Lemma 6(a), that for all A < Cst(x,a), J(x (n))n*
converges a.s. to 0, so that lim,, s 00 X (n)ysn” = 0 in particular. This implies that
limy,— 00 Lx(00) (x (n))n* = 0 by Lemma 6(b).
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Now apply Lemma 5 with g := x(c0): for large n € N,

o0 Ix oo k o0 o]
Vi) @(m) ==Y k(++:-(|—)l) + (x(oo), > gk) -2 ) (s
k=n

k=n+1 k=n+1

ad 1
+ Cst(x, G)D (]Z;l m)

= o(n_A) a.s.,
if we still assume w.l.o.g. A < 1/2, so that Z/ch;nﬂ((?k)as =o(n™*) as by Lem-
mas 4(a) and A.1. This completes the proof of the lemma, using (42).

5.3. Proof of Lemma 10. Let,forallneNandi, j € G,i~ j,
n
P Vixp_ =i, Xk=J} Lixy_ =i
Yl,_]:: k17.k], _ k—1
" ,; Zi-1()) ZZ,~,61“ZI< 1)
Then, by definition of the vertex-reinforced random walk,
M’f —Y’f —a,,Y’

is a martingale, and

w . . . .
> E(M = Ml )?)
k=1
1 =i i iZk—1(J i iZrk—1(J
(49) :E<Z {Xk—lf; aj,j L l(]) : <1_ aj,j L 1(]) ' >)
i Zk—1()* X jmia)i Zie—-1()) >j~i@jiZk—1())

-E i Lot =i =11\ _ o
- Zi-1(j)?

k=1

so that, by the Doob convergence theorem in £2, My’ converges a.s.

Hence, foralli € 9S,

1 i
loan(i)_Z {)jk(l) Z Y= Zaj,iyr{

k=1 Jj~i j~i
Lixe=j) x(k—1);
_;a”z; Zi—1(j) Nj(x(k = 1))
X(00); Lixe i=j) _ Ni(x(00))
= l 1 ’
J~12];é85 JN (X(OO)),; Zi1(j)  H(x(c0)) ogn

using Lemma 8, the symmetry of a and N;(x(c0)) # 0 for all j € G =T (x)
in the third equivalence, and H (x(00)) = N;(x(00)) for all j € § in the fourth
equivalence [x(co) being an equilibrium].
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5.4. Proof of Proposition 4. 'We will compare the probability of arbitrary paths
remaining in 7 (x) for the VRRWs defined, respectively, on the graphs 7' (x) and G.
Let x(n) [and its limit x(oc0)] denote the vector of occupation density defined in
the Introduction, on the (finite) subgraph 7 (x).

Let us introduce some notation. For all k € N and A C G, let P4 := AN be the
set of infinite sequences taking values in A, and let ’Z;A be the smallest o-field on
P4 that contains the cylinders

kazz{wePA s.t. wyg =g, ..., Wy = Ui}, v e A,

Let T4 := \/ ey 7. Finally, let (X A) j=n be the VRRW on A after time n, con-
ditionally to X, € A (and be constant equal to X,, otherwise).
For all k > n and v € T (x),

P((Xnt1, ... X) = v|Fn) = P(X1 o X ) = vl F) Y,

n+1>
where
k—1
~ Ay v Zn(y)
50 Yor:=[] T] (1 g DLV SGT ) o ! ) €, 1),
j=nacdS(x) 2 pradapZj(B)
and Y;EUIZ denotes the value of Yy ¢ at (X, 11, ..., X) :=v, where Z;(w), w € G,

n < j <k — 1, assumes the corresponding number of visits of X. to w.
We easily deduce that, for all E € TT®),

P((Xj4n) jen € EIFn) =B(Liyre) | pYiool ).

Let us now apply this equality with E := {R, 0o = T(x)} N L(By, (¢)) N
Ajy(x(00)) and prove that, a.s. on E, Y, o > 0, which will complete the proof
of the proposition: for all @ € 3S(x), a.s. on E, if ¢ is sufficiently small, then

oo

)3 Lix=)  _ onZjle) = Zj1(@)
j=k Zﬁwx ag,pZj(B) =k Zﬂwa ag,pZi(B)

0o 1 1
2 (C()<Z'3~aaaﬁz (B8) Zﬁwaaaﬁzj—i-](ﬁ))

Zj(a)
Y pa e pZj(B))?

IA
Q|

Il{Xj+1~0<}

x](a)

JNa G2 =

where we use that, since Aa (x(00)) holds, x(j)a ~j-oo CjNax()/H@~1 for

X(Pa ~. jNOt(X(OO))/H(x)—Z
TN i~ C R Gy and Na(x(00)) <

H (x(00)) = H(x) is ¢ is sufficiently small.

A
Q|

some random C > 0, so that
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APPENDIX

A.1. Remainder of square-bounded martingales. The following lemma
provides an almost sure estimate of M,, — M, for large n, when M, is a mar-
tingale bounded in LZ(Q, F,P).

LEMMA A.1. Let (M,)n>0 be a bounded martingale in L? andlet f:R, —
R be a nondecreasing function such that fol (f(x))"%dx < oco. Then

M, — M = o(f (BE((My — Mx)?)))  as.

PROOF. Foralln >0, lets, :=E(M, — Ms)?) and let

= My — My
N, = _ Ny :=0.
=2 f(sk=1)

k=1
Then, for all n > 0,

n

RN = $ Skl 8 % dx '
N = 2 Sy <) (Fo? =

Therefore, (M,),>0 and (N,),>0 are martingales bounded in L2, and thus con-
verge a.s.
Now, letting O, := N,, — N, forall n > 0,

My — Moo =) f(si)(Ok — Or1) = f(s)On+ D (f(sk) — f(sk—1)) Ok

k=n k=n+1

=o0(f(sp)) a.s. Il

A.2. Proof of Proposition 1. Assume Xg := 0 for simplicity. Let, for all
neN,

An = Zn(=1) + Zu(D), oy = Zn(£1)/Ap,

o o (Za=DY (o
wi=2,(0)/A, —log A, Sp :=log Z.(D) =log o)

Letae(0,1),e <[aA(1—a)l/2.Given ng € N with Z,(0) sufficiently large
and X, = 0, assume that Z,,,(—2)/log Z,,,(—1), Z,,,(2)/log Z,,,(1) € (1/3,1/2),
Zpy(£3) < Cst, o, € (a —¢/3,a+¢/3) and Ry, € (—¢/3, ¢/3), which trivially
occurs with positive probability.

Let us define the following stopping times:

To :=inf{n > ng s.t. X, € {—3,3}or X,, = X, € {—2,2}},

T :=inf{n > no s.t. Z,(2) v Z,(—2) > log Z,(0)},

T :=infln >npst.a, ¢(a—¢c/2,a+¢/2)or R, & (—¢/2,¢/2)},
T:=TornTH AT,.
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For all n € N, let ¢, be the nth return time to 0, and let t,é =t, ANT.

Aslongasng<t,<T, Z,(0) = A,(log A, +U(e/2)), which implies, for suf-
ficiently large Z,,(0), A;, < n by contradiction, hence, A;, > n/(logn + &/2)
and, subsequently, A; < n/(log(m) — ¢/2). Therefore, Z; (—1) € ((a —
e)n/logn, (a+¢)n/logn)and Z; (1) € (1 —a—e)n/logn, (1 —a+e)n/logn),
if Z,,(0) > Cst(a, ¢).

We successively upper bound P(Ty < T1 A Ta|Fy,), P(T1 < To A T2]F,,) and
P(T> < To A T1|Fy,), which will enable us to conclude that P(T = oo|F,,) > 0
for large Z,,(0).

First, for sufficiently large Z,,(0),

P(To < Th A T2 | Fny)

= Z P(Xy,4+2= X143 F 1 = Xy 44 = £2|Fpy)
niZ,,O(O):t,1<T

(51) + P(thz+3 = i3|fn0)
< Cst(a, &) Z [ 1 (logn>2 + 1 logn Zn()(3) + Zn()(—3)i|
n=Zn, (0) logn\ n logn n n/logn
logn 1
< Cst(a, —.
= (a,e) Z 2 < 3
n>Zp(0)

Let G := (.7-',,2),,2 Zuy(0)> and let us consider the Doob decompositions of the
G-adapted processes Ry and Sy, n > Z,,(0):
Rt;l:Rn0+An+lpn, St,; ::Sno‘i‘(bn"i‘En,
where A Zuy(0) = O] Zny(0) = \IIZnO 0 =2 Zuy(0) i= 0 and, for all n > Z,,(0),
Ap = Ap1:=ERy =Ry |Fy ), Py — Ppy =Ky =Sy | Fe ),

and (W)= FAN() and (E,),> Zyy(0) Are (G-adapted martingales.
Let us now estimate the expectation and variance of the increments of the pro-
cesses (Ry )nen: if n > Cst(e),

1 At/ n +1 1 1
E(R, — R/ \|Fy) = + . (_ __+D< >>
( tn"!‘l tn| tn) At,; Atrll +n A[’; (A[”I + 1) Af,/l (Atr/z)z

1 Ay 1 1
4 ( " >+D(Cst Ogn)

T Ay Ap+n\ Ag(A,+1) Ay n?
I
=- - + D(ost%”’)
Ay (Ay + D(Ay +n) n
1 3
:D(Cst(ngn) )
n
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logn /1 n+1
E(R, — Ru. JF,) =01 Cst
Ry = RulZe) < _— <At,1 +(Az,;+1)(At,2+2)))
1 3
:D(C t(ogzn) )
n
and

2 2 1 1 2
IR, (n+1) ~Cs (logn)
A[’; At;l (Atr/l + 1) n

— <
n+l1 Rtr/ll -

so that, in summary,

(logn)*
n?2

(logn)?
n2

(52) |A,— A,_1] <Cst E((Wy41 — Wy)*|Fy) < Cst

Let us do similar computations for (S;/ )sen: if n > Cst(a, ¢),

P = Prr = (Ztn(l—l) " Z,ﬂ(l—l)D(lofn) i D(m»

5 Z,(—1)
n+ Zy, (—1) + Z, (1)

1 1 logn> ( 1 >>
_ 0O of——
(ztn(1>+zt,l(1> ( ) Tz )2

" Z,(1)
n+Z7Z, (=) +Z,(1)

1
= 22 0(Cst(a. )).
n
and
1S, Sy <1 <1+ 2 )\/1 (1+ 2 )
’ —_ 4 O O ’
i ol =80T 7y ) TR Tz <
so that
logn
(53) |y — By | < Cstla, £)—5 -,
n

1 2
E((Zn1 — E0)°17y) = Cstia.e) (<o )

Hence, by Chebyshev’s and Doob’s martingale inequalities, for all § > 0,

00 4 4
% Z (logn) <E(loano(O))

P( max |¥ 8| Fny ) <
(;{zzno"@)' > 817 < 2 e T8 Zy(0)
7

and a similar inequality holds on the maximum of |E|, k > Z,,(0), so that, for
sufficiently large Z,,(0), P(T> < To A T1|Fy,) < 1/3.
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Let us now make use of notation Y,i’j , Yi and M,i’j from Section 5.3 (with
aij=1i~;),andlet UF := Y2, vE =y and Wi = MF £ =UF - VE.
Then the processes (U,fc)nzo are martingales and, using (49), for all n > ng,

1
fno) f Z )

. j2
JZZno(£2)

n
Lix, | =+1,X,=%2)
54 EWi_Wiz}— <E {kl s Ak
G B = Wy ) = k:%ﬂ Zi—1(£2)?

so that, if T := {maXi=n, |W; — Wi | <8.i € {+, —}}, then, for all § > 0,

1 1 1 1
P(T¢ = =
(T o) < 52(zn0(2) 1z = 1) =3

for sufficiently large Z,,(0).

Now, on Y, for all n < T, choosing § = (log2)/3, and again for sufficiently
large Z,,(0),

10g Zy (£2) <1og Zyy(£2) + Uy — U +8 <26 +log Zuy(£2) + V5 — Ve

n

<28 +logZy,(£2) + Y
k=nop+1

Lix, j=+1)
Zi—1(0)

Zy—1(£1)
<28 +1logZy(£2)+ Y.
k=Zpy(£1)

Zny(£2)
log Z,,(£1)
<log(log Z,(£1)) < log(log Z,(0)),

where we use in the fourth inequality that, if n < T, then T,, > —¢/2 and «,, €
(a—¢€/2,a+¢/2)sothat Z,(0) > Z,(£1)log Z,(£1) if Z,, > Cst(a, €), and in
the sixth inequality that Z,,(£2)/log Z,,(&1) < 1/2. This completes the proof,
as P(T1 < To A T2 | Fpy) < P(Y€|Fy,) < 1/3 for large Z,,(0).

The estimates (52)—(53) [resp., (54)] imply that the G (resp., F)-adapted mar-
tingales (W,,)n> Zuy(0) and (E,)n> Zuy(0) (resp., Wni) are bounded in L? and hence
converge a.s.

Therefore, on {T = oo}, (i)—(ii) hold, and (&,),>0 and (R;),>0 converge a.s.
Note that Lemma A.1 implies more precisely, forallv < 1/2, B, — Eqcc = 0(n™"),
hence, a;, — 0o = 0(Z,,(0)™"). Thus, on {T = oo},

1
klogk

<386+ log( ) +log(log Z,,(£1))

n—1

Tix=+13
log Z,(42) = U = v+ = Xk
08 Zn(ED = Uy =V, k;zk(izwzkm)
n—1
Tiy, — 1
+ {Xx==%1}
= 140 ———
““sz&l)logzk(il)( + <1ogzk<il>>>

k=0

= afo log(log Z,,(£1)) = afo log(logn),
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which proves (iii).
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