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de s’intéresser à ma recherche très tôt après ma thèse. Qu’ils aient accepté de rap-
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Chapter 1

Introduction

Self-interacting random processes evolve in an environment constantly modified by
their own behaviour. Depending on the nature of this self-interaction, they can be self-
repelling or self-attracting, in other words more likely to stay away from or to come
back to the places already visited before, or strategies that have been played before.
These non-Markov processes “learn” from their past behaviour, either localizing on
particular subsets or strategies or on the contrary scattering, as a consequence of the
interaction feature.

The first part on self-interacting random walks starts with a description of almost-
sure localization results I could obtain, namely the conjecture of Pemantle and Volkov
that the vertex-reinforced random walk (VRRW) on Z eventually gets stuck at five
(random) sites [A1], and Sellke’s conjecture (jointly with Limic [A3]) that the strongly
edge-reinforced random walk on general graphs eventually localizes in a single edge.
These proofs are based on the same technique combining carefully chosen “local” mar-
tingales to describe a global behaviour.

Then I describe a joint result with Benäım [A5] on localization with positive prob-
ability of the VRRW on general graphs, generalizing one of Volkov [90]: our proof is
based on a different technique, using an approximation of the occupation density by
the replicator dynamics invented by Fisher, Wright et Haldane in the 1920s to model
the evolution of populations submitted to natural selection [41, 80].

Our analysis shows that the set of dominating species in this replicator dynamics
has to be a complete d-partite subset for some d > 2 in the general case, and hence
that there is a strong “clustering” effect; we deduce localization results on our walk.

We finish that first part by a recent result with Sabot [A6], which represents the
edge-reinforced random walk (ERRW) introduced by Coppersmith-Diaconis [20], as
a vertex-reinforced jump process (VRJP, invented by Werner [25]) with independent
gamma conductances. We calculate the limit measure of the latter and show that it can
be interpreted as a supersymmetric hyperbolic sigma model introduced by Disertori,
Spencer and Zirnbauer [32] in quantum field theory, which enables us to deduce that
VRJP and ERRW with large reinforcement are strongly recurrent in any dimension.
The question of recurrence/transience of edge-reinforced random walks was initially

9



10 CHAPTER 1. INTRODUCTION

raised by Diaconis in 1986.
The second part is on Brownian polymers, which are a certain type of self-interacting

diffusions. It is dedicated to the proofs of two conjectures of Durrett-Rogers in 1992,
the first with Mountford [A7] on heavy-tailed interaction, and the second with Tóth
and Valkó [A8] on local interaction. The second result shows that a smoothed version
of the local time seen from the particle is a Markov process with Gaussian invariant
measure, which introduces a new tool for the analysis of these polymers.

The last part describes results on adaptive learning algorithms. The first one is the-
oretical and concerns criteria for nonconvergence towards “traps”, i.e. unstable subsets
of the associated deterministic dynamics. It was shown during my PhD [A9,A10], but
had a great impact on the rest of this work, in particular the study of self-interacting
walks, so I recall it for convenience.

The second one studies the Narendra two-armed bandit algorithm, and shows that
there is a phase transition in its behaviour, with respect to the “speed” of learning: if
it learns too fast it can get trapped into a bad strategy for ever. We describe under
which assumptions this behaviour can occur, first with Lamberton and Pagès [A11] in
the i.i.d. case, second with Vandekerkhove [A12] under ergodic assumptions.

The third one shows with Yao [A13] that inference from examples in statistical
learning can be achieved by “online” algorithms at the same speed as for classical
“batch” algorithms, through a careful choice of step sequences, using an analysis relying
on techniques from stochastic algorithms: the advantage of “online” procedures lies in
their flexibility and computational complexity.

The last one, with Hu and Skyrms [A14], analyzes a model describing how different
agents can learn to signal without direct communication, by reinforcing themselves
on state-signal connections that have worked out, originally introduced by Argiento,
Pemantle, Skyrms and Volkov, who solved the 2 agents 2 signals case[1]. We show
in general that, on the bipartite graph of states and signals, the state-signals choices
eventually concentrate with positive probability on any set of edges that have the
property that no signal can simultaneously be synonymic and polysemic.
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Chapter 2

Self-interacting random walks

Let (Ω,F , P) probability space. Let (G;∼) nonoriented locally finite graph; let V =
V (G) (resp. E = E(G)) be its set of vertices (resp. nonoriented edges). For any
e ∈ E(G), let We : R

∗
+ −→ R

∗
+ be a weight function. Let (Xn)n∈N be a random process

that takes values in V (G), and let Fn = σ(X0, . . . , Xn) be the filtration of its past. For
all v ∈ G, n ∈ N ∪ {∞}, let

Zn(v) =

n
∑

k=0

1{Xk=v} + 1 (2.1)

be the number of visits to v up to time n plus one.

Then (Xn)n∈N is a Vertex Self-Interacting Random Walk (VSIRW) with starting
point v0 ∈ G and weight functions We, e ∈ E(G), if X0 = v0 and, for all n ∈ N, if
Xn = i then

P(Xn+1 = j | Fn) = 1i∼j

W{i,j}(Zn(j))
∑

k∼i W{i,k}(Zn(k))
. (2.2)

An Edge Self-Interacting Random Walk (ESIRW) is defined similarly, replacing in
(2.2) the numbers of visits to vertices l ∼ i by those to the corresponding nonoriented
edges {i, l}:

Zn({i, l}) :=

n
∑

k=1

(1{Xk−1=i,Xk=l} + 1{Xk−1=l,Xk=i}); (2.3)

for notational reasons, we do not add one to that number, contrary to (2.1).

When the weight functions We are identical equal to W for all e ∈ E(G), the process
will simply be called VSIRW or ESIRW with weight function W .

We will define the Edge (resp. Vertex) Reinforced Random Walk (ERRW, resp.
VRRW) as an ESIRW (resp. VSIRW) with affine weight function W (n) = n + ∆,
∆ > 0 (resp. ∆ > −1); we will in later sections also consider the case of affine weight
functions depending on edges. These processes were introduced by Coppersmith and
Diaconis in 1986 [20].
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14 CHAPTER 2. SELF-INTERACTING RANDOM WALKS

My interest in these walks was triggered by the fact that they can eventually only
visit a finite consecutive subset of the graph, which we call here localization behaviour.
Note that the standard recurrence/transience dichotomy does not apply anymore, since
the self-interaction makes the process non-Markov.

This localization occurs both gradually and erratically, in the sense that the walk
first concentrates on several disconnected clusters -separated by seldom visited sites-
so that the relative numbers of visits follow a rather unpredictable dynamics, before
it finally settles in a small subset. This makes almost sure localization particularly
interesting to analyse.

Let us define the two following subsets of the graph, respectively called range and
asymptotic range of the process (Xn)n>0:

R := {v ∈ G s.t. Z∞(v) 6= Z0(v)} (2.4)

R′ := {v ∈ G s.t. Z∞(v) = ∞}. (2.5)

The equalities and inclusions of probability events are understood to hold almost surely.

I will present in Section 2.1 my results of almost sure localization [A1,A2], and [A3]
with Limic, whereas Section 2.2 will explain a theorem of localization with positive
probability with Benäım [A5], using different techniques.

Finally, I will discuss in Section 2.3 a recent result with Sabot [A6], which links
edge-reinforced random walk (ERRW) to the vertex-reinforced jump process (VRJP)
invented by Werner and introduced by Davis and Volkov [25], and to the supersymmet-
ric hyperbolic sigma model in quantum field theory introduced by Disertori, Spencer
and Zirnbauer [32].

2.1 Localization: almost sure results

2.1.1 Statement of the theorems

My first work on localization was on the vertex-reinforced random walk (VRRW) on
the integers Z. Pemantle and Volkov [70] had shown that the walk a.s. visits only
finitely many vertices, and that it localizes on any set of five consecutive sites with
positive probability; I proved that the latter is the a.s. behaviour.

Theorem 1 (Pemantle and Volkov, [70], VRRW on Z) |R′| < ∞ a.s. and, for
any x ∈ Z, P(R′ = {x − 2, x − 1, x, x + 1, x + 2}) > 0.

Theorem 2 ([A1,A2], VRRW on Z) |R′| = 5 a.s.

This localization of VRRW, i.e. VSIRW with linear weight function, corresponds
to the critical case in the scale of polynomial weights, as the following result of Volkov
shows.
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Theorem 3 (Volkov, [91], VSIRW on Z) Suppose that W (k)/kα converges to ξ ∈
(0,∞), α ∈ R. Then

(a) If α < 1, then R′ ∈ {0,∞}

(b) If α > 1, then |R′| = 2.

Schapira [81] further obtained a 0 − 1 law for the VSIRW with weight of order
W (k) = kα, α ∈ [0, 1/2), i.e. that the walk is either almost surely recurrent or almost
surely transient.

The first proof of Theorem 2, in my PhD thesis, was particularly long (75 pages);
I gradually simplified it until the end of 2003, which led to a shorter but still technical
version of 55 pages published in [A1]. The argument was based on the analysis of the
repartition of “seldom visited” sites x ∈ Z (on which Υ(x) holds, see (2.6)); this led
to study several types of unstable patterns of the dynamics, associated to the different
possibilities of repartitions of these sites. It is briefly explained in Section 2.1.2.

I later proposed a shorter argument [A2], introducing a new method of analysis
of the instability of the dynamics, based on a variant of Rubin construction, which
defines a time-continuous equivalent of the walk. This enables one to couple a VSIRW
with nondecreasing weights W , with a small modification of the walk which leans more
towards the right (see Definition 2.1.1 Section 2.1.4), and thus prove the impossibility
of certain unstable limit dynamics.

This latter technique was very recently used by Basdevant, Schapira et Singh [5] to
show a.s. localization of the VSIRW with weight W (n) := n log log n on 4 or 5 random
consecutive sites, these two patterns occuring with strictly positive probability.

Note that the new proof in [A2] interprets the timeline events as a Poisson point
process with constant intensity after a deterministic time change, using a result of
Kendall [46]; this point of view was further developed in recent work with Sabot [A6].

Let us now discuss edge self-interacting random walks (ESIRW): the next elemen-
tary Proposition 2.1.1 implies that we cannot expect localization anymore for linear
reinforcement.

Let (H) be the following condition on W :

∑

k∈N

1

W (k)
< ∞.

Proposition 2.1.1 (ESIRW on G connected) Assume that W is nondecreasing and
that (H) does not hold. Then

{|R′| 6= 0} = {R′ = G} a.s.

proof: Let tn := tn(x) be the n-th visit time to x, then

∑

z∼x

Ztn(x)({x, z}) = 2n + a,



16 CHAPTER 2. SELF-INTERACTING RANDOM WALKS

where a := 1{X0 6=x}. Hence, for all z ∼ x and n ∈ N,

P(Xtn+1 = z|Ftn)1{tn<∞} >
1{tn<∞}W (0)

NW (2n + a)
>
1{tn<∞}W (0)

2N

(

1

W (2n + 1)
+

1

W (2n + 2)

)

where N := |{w ∈ V : z ∼ x}|, using that W is nondecreasing.

Therefore, using conditional Borel-Cantelli Lemma,

{Z∞(x) = ∞} ⊆
{

∑

n∈N

P(Xtn+1 = z|Ftn)1{tn<∞} = ∞
}

=

{

∑

n∈N

1{Xtn+1=z}1{tn<∞} = ∞
}

⊆ {Z∞(z) = ∞} a.s.

2

Remark 2.1.1 The condition that W should be nondecreasing is important in Propo-
sition 2.1.1. The following counterexample was proposed by Sellke [82]: if

∑

W (2k)−1 =
∞ and

∑

W (2k + 1)−1 < ∞, G = R
d and X0 = 0, then

P(∀n ∈ N, X2n = 0) > 0.

This result can be shown easily, using the time-lines construction in Section 2.1.3.

Now it is easy to show that (H) implies localization on a single edge with positive
probability. Sellke [82] conjectured in 1994 that this should occur with probability one
on any graph of bounded degree, and proved the statement on Z

d, with an argument
that easily extends to bipartite graphs. Surprisingly, even the case of a triangle could
not be solved by that technique (see [A4]).

We showed the conjecture in the case of nondecreasing W with Limic [A3], who had
solved the case W (k) = (k + 1)ρ in 2003.

Theorem 4 (Sellke [82], Theorem 3) If (G,∼) is a bipartite graph of bounded de-
gree, then (H) implies |R′| = 2 a.s.

Theorem 5 ([A3], Corollary 3) If (G,∼) has bounded degree and W is nondecreas-
ing, then (H) implies |R′| = 2 a.s.

Theorem 4 is proved in Section 2.1.3, and the key steps of the proof of Theorem 5 are
explained in Section 2.1.5.
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2.1.2 First proof of the conjecture of Pemantle-Volkov [A1]

The aim of this section is to sketch the proof of Theorem 2 in [A1]. We assume for
convenience that ∆ = 0, i.e. that W (n) = n. For all n ∈ N0 and x ∈ Z, denote

Z±n (x) :=
n
∑

k=1

1{Xk−1=x,Xk=x±1},

α±n (x) :=
Zn(x ± 1)

Zn(x − 1) + Zn(x + 1)
,

Y ±n (x) :=
n
∑

k=1

1{Xk−1=x,Xk=x±1}
1

Zk−1(x ± 1)
,

also

Yn(x) :=

n
∑

k=1

1{Xk−1=x}
1

Zk−1(x − 1) + Zk−1(x + 1)
,

Ŷ ±n (x) := Y ±n (x) − Yn(x),

which are respectively the previsible and martingale part in the Doob decomposition
of Y ±n (x), and finally

Y ±∞(x) := lim
n→∞

Y ±n (x), Y∞(x) := lim
n→∞

Yn(x).

Given (an), (bn) random processes on R, we write an ≡ bn iff an − bn converges a.s.
Let us define the probability event

Υ(x) := {Y∞(x) < ∞} (2.6)

and, for any finite sequence (xi)16i6n taking values in Z, the event

Υ((xi)16i6n) =
⋂

16i6n

Υ(xi).

On the event Υ(x), x is “seldom” visited, which we represent by a cross on the
figure below, hence “neutral” with respect to its neighbours, in the following sense: the
respective visits to x + 1 and x + 3 starting from x + 2 evolve similarly as in a Pólya
urn model, with the exception that they are perturbed by the visits from x (negligible)
and x+4 (unknown), which is the heuristics of (a)-(b) in the following Corollary 2.1.1
of Proposition 2.1.2.

Another interpretation is that Υ(x) is the event on which the cumulative time of
the continuous-time counterpart of the VRRW is finite; see Sections 2.1.3 and 2.1.4.



18 CHAPTER 2. SELF-INTERACTING RANDOM WALKS

@� v v v v

x x + 1 x + 2 x + 3 x + 4

Proposition 2.1.2 ([A1], Proposition 3.1) For all x ∈ Z,

(a) Ŷ ±n (x) = Y ±n (x) − Yn(x) is a martingale, converging a.s. and in L2

(b) Y ±n (x) ≡ Yn(x)

(c) log Zn(x) ≡ Y +
n (x − 1) + Y −n (x + 1)

proof: It follows from its definition that (Ŷ ±n (x))n>0 is a martingale. Now

Var(Ŷ ±n+1(x)|Fn) = Var(Y ±n+1(x)|Fn) 6 E((Y ±n+1(x) − Y ±n (x))2|Fn)

= E

(1{Xn=x,Xn+1=x±1}

Zn(x ± 1)2
|Fn

)

Hence, for all n ∈ N,

E((Ŷ ±n (x))2) 6 E

(

∞
∑

k=0

1{Xk=x,Xk+1=x±1}

Zk(x ± 1)2

)

6

∞
∑

l=Z0(x±1)

1

l2
6

π2

6
.

Hence Ŷ ±n (x) is bounded in L2. This implies (a)-(b); (c) follows from definitions. 2

Corollary 2.1.1 ([A1], Corollary 3.1) For all x ∈ Z,

(a) Υ(x) ⊆ {∃α−∞(x + 2) := lim α−n (x + 2) ∈ [0, 1)}
(b) Υ(x) ∩ {α−∞(x + 2) > 0} ⊆ Υ(x + 4)

(c) Υ(x − 1, x + 1) ⊆ {Z∞(x) < ∞}

proof: By Proposition 2.1.2 (b)-(c), a.s. on Υ(x) = {Y +
∞(x) < ∞},

log Zn(x + 1) ≡ Y +
n (x) + Y −n (x + 2) ≡ Y +

n (x + 2) ≡ log Zn(x + 3) − Y −n (x + 4),

so that

log
Zn(x + 1)

Zn(x + 3)
≡ −Y −n (x + 4).

Now (c) is a direct consequence of Proposition 2.1.2 (b)-(c): a.s. on Υ(x−1, x+1),

log Z∞(x) ≡ Y +
∞(x − 1) + Y −∞(x + 1) < ∞.

2

Next we can claim a kind of “propagation rule” on seldom visited sites, given by
the following
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Proposition 2.1.3 ([A1], Proposition 2.1) For all x ∈ Z,

Υ(x) ⊆ Υ(x + 1) ∪ Υ(x + 4).

By Corollary 2.1.1 (b), in order to prove Proposition 2.1.3, it is sufficient to show that,
for all x ∈ Z,

Υ0(x) := Υ(x) ∩ {α−∞(x + 2) = 0} ⊆ Υ(x + 1). (2.7)

Let us sketch the proof of (2.7). Assume x := 0 for simplicity.
The argument relies on a thorough analysis of the following stochastic approxima-

tion recursion, see Section 4 [A1]. Let, for all n ∈ N0,

Sn := Zn(4) + Zn(2) − (Zn(1) + Zn(3))

tn := inf
{

m ∈ N0/ Z+
m(2) > n

}

,

zn := log
Ztn(3)

Ztn(2)
, yn :=

Stn

Ztn(2)Ztn(3)
.

Then we “almost” have
zn+1 − zn = yn + ǫn+1 + rn, (2.8)

where

E(ǫn+1 | Gn) = 0, E(ǫ2
n+1 | Gn) ≍ α−tn(2)/n2, |rn| = O(1/n2−ǫ) for all ǫ > 0.

First, it is possible to deduce from (2.8), through technical estimates, that, a.s. on
Υ0(x), lim sup Zn(4)/Zn(1) 6 e (see Lemma 2.4 in [A1]), and therefore zn −→

n→∞
0.

One the other hand, let us now show that

P

(

lim
n→∞

zn = 0
)

= 0, (2.9)

by an instability argument, using coupling techniques. First note that we cannot
directly use a standard result of nonconvergence towards repulsive traps (for instance
Theorem 15 Section 4.1), which would require yn to be a function of zn.

Instead, we define a partial order on self-interacting random walks: M′ ≫ M if for
each site j ∈ Z, for all n ∈ N, at the n-th return time to j, M′ has more visited j + 1
than M and less visited j − 1. Then it easy to show that M′ ≫ M implies

S ′t′n > Stn .

Next, we adequately perturb, from a certain time tn onwards, the VRRW M into M′,
in order on one hand to add, in the right-hand side of (2.8), a factor equivalent to
the standard deviation of

∑

k>tn
ǫk in the recursion (2.8), and on the other hand to

have comparable probabilities of paths for M and M′ (see Proposition 4.1 and Lemma
4.2, [A1]). This argument enables us to show that, conditionally to Ftn, zn does not
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converge to 0 with lower bounded probability, and hence to complete the proof of (2.9),
(2.7) and Proposition 2.1.3.

We are now ready to describe the repartition of seldom visited sites. Let, for all
x ∈ Z,

Ω(x) = {x = inf R′}.
Using Theorem 1, there exists a.s. x ∈ Z such that Ω(x) holds. The following Lemma
2.1.1 shows that, a.s. on Ω(x), only certain “pavements” of the lattice by events Υ(x)
can occur.

Let us define the events

Ω0(x) = Ω(x) ∩ {Z∞(x + 5) < ∞}
Ω1(x) = Υ(x, x + 4, x + 8) ∩ {Z∞(x + 1) = Z∞(x + 7) = ∞}
Ω2(x) = Υ(x − 1, x, x + 4, x + 5, x + 9, x + 10} ∩ {Z∞(x + 1) = Z∞(x + 8) = ∞}

Lemma 2.1.1 ([A1], Lemma 2.6) For all x ∈ Z,

Ω(x) ⊆ Ω0(x) ∪ Ω1(x) ∪ Ω1(x + 5) ∪ Ω2(x).

proof: First, for all y ∈ Z, using Proposition 2.1.3 and Corollary 2.1.1 (c),

Υ(y − 1, y) ∩ {Z∞(y) = ∞} ⊆ Υ(y + 4). (2.10)

Now Ω(x) ⊆ Υ(x − 1, x) by Proposition 2.1.2 (b). Hence

Ω(x) ∩ Ω0(x)c ⊆ Υ(x − 1, x) ∩ {Z∞(x) = Z∞(x + 5) = ∞}
⊆ Υ(x − 1, x, x + 4) ∩ {Z∞(x) = Z∞(x + 5) = ∞}
⊆ (Υ(x − 1, x, x + 4, x + 5) ∪ Υ(x, x + 4, x + 8)) ∩ {Z∞(x + 1) = Z∞(x + 7) = ∞}
⊆ Ω1(x) ∪ (Υ(x − 1, x, x + 4, x + 5) ∩ {Z∞(x + 1) = Z∞(x + 8) = ∞}).

In the third inclusion, we use (2.10) with y := x+4 and, in the fourth one, we note that
Z∞(x + 7) = ∞ since α−n (x + 6) converges on Υ(x + 4) by Corollary 2.1.1 (a). Finally,
we use in the last one that Z∞(x + 8) = ∞ on Ω(x) ∩ Ω0(x)c ∩ Ω1(x)c ⊆ Υ(x + 8)c.

Applying again (2.10) with y := x + 5 and Proposition 2.1.3,

Ω(x) ∩ Ω0(x)c ∩ Ω1(x)c

⊆ Υ(x − 1, x, x + 4, x + 5, x + 9) ∩ {Z∞(x + 1) = Z∞(x + 8) = ∞}
⊆ Ω2(x) ∪ Ω1(x + 5),

where we use in the last inclusion that Z∞(x + 10) = Z∞(x + 12) = ∞ on Υ(x + 9) ∩
Υ(x + 10)c, since α−∞(x + 11) ∈ [0, 1). 2

Now, for all x ∈ Z, Ω1(x) and Ω2(x) are of probability 0, as stated in Lemmas 2.1.2
and 2.1.3. These results complete the proof of the conjecture.

Lemma 2.1.2 ([A1], Lemma 2.7) For all x ∈ Z, P(Ω1(x)) = 0.
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Lemma 2.1.3 ([A1], Lemma 2.8) For all x ∈ Z, P(Ω2(x)) = 0.

The proofs of Lemmas 2.1.2 and 2.1.3 rely on an analysis of instability similar to
the one carried out for the proof of (2.7). They can be bypassed by the new proof,
presented in Section 2.1.4, which shows in particular that, for all x ∈ Z,

Υ(x) ⊆ {Z∞(x − 1) < ∞} ∪ {Z∞(x + 1) < ∞}.

2.1.3 Rubin continuous time-lines construction

In this section we construct a continuous-time process (X̃t)t∈R+ , equal in law to (Xn)n>0

for ESIRW at times of jumps, initially introduced by Rubin, Davis and Sellke [23, 82],
and explain how it can be used to show Theorem 4. We will introduce in Section 2.1.4
an alternative version of that timelines construction for VSRIW.

Let (τ e
i )e∈E,i∈N0 be a collection of i.i.d. exponential random variables of parameter

1. For each edge e ∈ E, we set up a clock with alarms at times

V e
k :=

k
∑

i=0

τ e
i

We(i)
, k ∈ N0 ∪ {∞}.

V e0
0 V e0

1

V e1
0 V e1

1

V e2
0 V e2

1

V e3
0 V e3

1

· · ·

· · ·

time-line of
e0

e1

e2

e3

The process starts at X̃0 := x0 at time 0:

• The clock of an edge e runs when the process (X̃t)t>0 is adjacent to e.

• Each time an edge e sounds an alarm, X̃t crosses it instantaneously.

Let ζn be the n-th jump time of (X̃t)t>0, with the convention that ζ0 := 0.

Lemma 2.1.4 (Davis [23], Sellke [82]) The processes (X̃ζn
)n>0 and (Xn)n>0 have

the same distribution.

proof: The proof is based on the memoryless property of exponentials, and on the
observation that, if A and B are two independent random variables of parameters a
and b, then P[A < B] = a/(a + b). 2

Let
G∞ := {e ∈ E(G) s.t. Z∞(e) = ∞}.

An immediate but important consequence of this construction is the following
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Proposition 2.1.4 (Davis [23], Sellke [82]) If, for all e ∈ E,
∑

n∈N
1/We(n) < ∞,

then G∞ contains no even cycle.

proof: For all e ∈ E, the assumption
∑

We(n)−1 < ∞ implies E(V e
∞) < ∞ (hence

V e
∞ < ∞ a.s.).

For simplicity, let us denote an even cycle by Z/ℓZ, ℓ even. Now

{Z/ℓZ ⊆ G∞} ⊆







L :=
∑

x∈Z/ℓZ

(−1)xV {x,x+1}
∞ = 0







.

Now L 6= 0 a.s., as τ
{0,1}
0 W{0,1}(0)−1 is independent from L− τ

{0,1}
0 W{0,1}(0)−1 and has

continuous density, which implies that

P (Z/ℓZ ⊆ G∞) = 0.

2

A similar argument can be used to show that, on a graph of bounded degree, under
the same assumption of reciprocally summable weight functions We, G∞ cannot be a
tree, unless it consists of a single edge. Then Theorem 4 follows readily, since cycles of
a bipartite graph are necessarily even.

Note that, heuristically, the proof of Proposition 2.1.4 exploits the idea that certain
limit configurations, such as even limit cycles, are unstable. The martingale technique
I contributed to develop in [A9,A10] can also be adapted to yield the same result, as
explained Section 2.1.5 (see also Section 3 [A4]); this is one of the building blocks in
the proof of Theorem 4 on strongly edge reinforced random walk, since this martingale
technique is more adaptable to small perturbations than the timelines technique.

2.1.4 New proof of the conjecture of Pemantle-Volkov [A2]

The aim of this section is to sketch the new proof of Theorem 2, developed in [A2].
The argument relies on the following two propositions.

Proposition 2.1.5 ([A2], Proposition 4.1) For all x ∈ Z,

Υ(x) ⊆ {Z∞(x − 1) < ∞} ∪ {Z∞(x + 1) < ∞} a.s.

Proposition 2.1.6 ([A2], Proposition 4.2) For all x ∈ Z, Ω(x) ⊆ Υ(x + 4) a.s.

These will imply Theorem 2, i.e. a.s. localization on the VRRW on five consecutive
vertices: a.s. on Ω(x), Z∞(x + 3) < ∞ or Z∞(x + 5) < ∞ by Propositions 2.1.5 and
2.1.6, and the former cannot occur since Υ(x) holds and α−∞(x + 2) < 1 by Corollary
2.1.1(a).

Let us now explain the proof of Proposition 2.1.5. Let ~E be the set of directed
edges of Z. For all e = (x, y) ∈ ~E , denote e := x, e := y, σ(e) := (y, x). For all
e = {j, j + 1} ∈ E, set e := j, e := j + 1.
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The argument makes use of a timelines construction for the VRRW but, instead of
putting a clock at each vertex as a natural counterpart would do, it sets up one clock at
each directed edge ~E. Indeed, this will enable us to introduce a coupling, by a simple
modification of the collection (τ e

i )e∈ ~E,i∈N0
.

Let us define a continuous time process (X̃t)t∈R+ taking values in Z; for all x ∈ V (G)
and t > 0, by a slight abuse of notation, let also denote by Zt(x) its number of visits
to x plus one at time t:

• Let (τ e
k )e∈ ~E,k∈N0

be a collection of independent exponential random variables with
expectation one.

• Each oriented edge e ∈ ~E has its own clock, which only runs when the process
(X̃t)t>0 is in e.

• Each time an edge e has just been crossed, the clock of σ(e) sets up an alarm at

distance τ
σ(e)
k /Zt(e), if σ(e) has been crossed k times so far. At time 0, we set up

an initial alarm, at time distance τ e
0 , for the edges (x, x + 1), x > x0, (x, x − 1),

x 6 x0.

• Each time an edge e sounds an alarm, X̃t crosses it instantaneously.

Let ζn be the n-th jump time of (X̃t)t>0, with the convention that ζ0 := 0.

Lemma 2.1.5 ([A2], Lemma 4.1) The processes (X̃ζn
)n>0 and (Xn)n>0 have the same

distribution.

The proof of Lemma 2.1.5 is similar to the one of Lemma 2.1.4.
Let us denote by M the function which maps a (deterministic) “collection of alarms”

T = (τ e
k)e∈ ~E,k∈N0

and an initial site x0 to the corresponding continuous-time (determin-
istic) walk M(T , x0) on the vertices of Z, with the convention that, if two alarms ring
simultaneously, the walk goes to the right (however this will occur with probability 0
in our setting).

Definition 2.1.1 ([A2], Definition 4.1) Given T = (τ e
k)e∈ ~E,k∈N0

and T ′ = (τ
′e
k )e∈ ~E,k∈N0

two collections of random variables on R+, we say that T ′ ≫ T if, for all k ∈ N0, x ∈ Z,

τ
′(x,x+1)
k 6 τ

(x,x+1)
k and τ

′(x,x−1)
k > τ

(x,x−1)
k a.s.

Given T = (τ e
k)e∈ ~E,k∈N0

and T ′ = (τ
′e
k )e∈ ~E,k∈N0

two collections of random variables

on R+ we let, by a slight abuse of notation, M = (X̃t)t∈R+ := M(T , x0) and M′ =

(X̃ ′t)t∈R+ := M(T ′, x0) be the continuous-time random walks starting at x0 associated
to T and T ′. They will satisfy M′ ≫ M with respect to the coupling discussed in
Section 2.1.2; however we need here a different property, described in Definition 2.1.2
and Lemma 2.1.6.

For all i ∈ N0, j ∈ Z and e ∈ E or ~E, let ne(i) be the i-th visit crossing of e (with
the convention ne(0) := 0), let Tj be the total time spent in j by the random walk M;
let n′e(i) and T ′j be the similar notation for M′.
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Definition 2.1.2 ([A2], Definition 4.2) For all i ∈ N0 and e ∈ E, let us define the
property Ei,e as follows:

Z ′n′

e(i)
(e) > Zne(i)(e) and Z ′n′

e(i)
(e) 6 Zne(i)(e),

with the convention that Ei,j holds whenever ne(i) = ∞ or n′e(i) = ∞.

Lemma 2.1.6 ([A2], Lemma 4.2) Assume T ′ ≫ T ; then, for all i ∈ N0 and e ∈ E,
Ei,e holds a.s.

The proof can be found in [A2] (see also [5] for a more detailed argument).
Fix x ∈ Z. Let T := (τ e

k)e∈ ~E,k∈N0
be a collection of independent exponential random

variables with expectation 1, and let

T ′(n) := (τ
′(n)e
k )e∈ ~E,k∈N0

= (τ
′e
k )e∈ ~E,k∈N0

:= (τ e
k + 1{e=(x,x−1)}1{k=n})e∈ ~E,k∈N0

.

Let M = (X̃t)t∈R+ := M(T , x0) and M′(n) = (X̃ ′t)t∈R+ := M(T ′, x0). Let, for all
n ∈ N0,

Q := {Z∞(x + 1) = Z∞(x − 1) = ∞} ∩ {Tx < ∞},
Q′(n) := {Z ′∞(x + 1) = Z ′∞(x − 1) = ∞} ∩ {T ′x < ∞}.

The next Lemma implies that Υ(x)∩{Z∞(x−1) = Z∞(x+1) = ∞} a.s. does not occur
simultaneously for M and M′, which will allow us to conclude, since the probabilities
of the same measurable set of paths are comparable for the two random walks M and
M′.

Lemma 2.1.7 ([A2], Lemma 4.3) For all n ∈ N0, P(Q∩Q′(n)) = 0.

proof: If Z∞(x + 1) = Z∞(x − 1) = Z ′∞(x + 1) = Z ′∞(x − 1) = ∞ and Tx < ∞,
T ′x < ∞, then

Tx =
∞
∑

k=0

τ
(x,x+1)
k

Zn(x+1,x)(k)(x + 1)
=
∞
∑

k=0

τ
(x,x−1)
k

Zn(x−1,x)(k)(x − 1)

and, using Lemma 2.1.6,

T ′x =

∞
∑

k=0

τ
′(x,x+1)
k

Z ′n′

(x+1,x)
(k)(x + 1)

6 Tx <

∞
∑

k=0

τ
′(x,x−1)
k

Z ′n′

(x−1,x)
(k)(x − 1)

= T ′x a.s.,

which is contradictory. 2

proof of Proposition 2.1.5: Let Fn := σ(X̃0, . . . , X̃n) ⊆ σ(τ e
k , 1 6 k 6 n, e ∈

~E). Then Lemma 2.1.7 implies

P(Qc ∪ (Q′(n+1))c|Fn) = 1.
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But
P(Qc|Fn) > e−1

P((Q′(n+1))c|Fn),

so that
P(Qc|Fn) > (1 + e)−1.

Now P(Qc|Fn) −→
n→∞

1Qc a.s., so that Qc holds almost surely. 2

The proof of Proposition 2.1.6 is similar to the proof of (2.7) in Section 2.1.2,
but the timelines construction however simplifies the argument. In particular, we use
an interpretation of the sequence of “alarms” in the timeline of particular edge as a
Poisson point process with constant intensity after a change of time, which helped link
ERRW to the vertex-reinforced jump process (VRJP) in recent work with Sabot [A6],
see Section 2.3, Theorem 8.

2.1.5 Proof of Sellke’s conjecture [A3,A4]

In this section we sketch the proof of Theorem 5 in [A3]. We assume throughout that
∑

W (n)−1 < ∞ and that the graph is of bounded degree.
First, the technique of proof of Proposition 2.1.4 carries over to show [82, 53] that

G∞ (defined Section 2.1.3) is a.s. either a single edge or an odd cycle. Therefore the
aim is to prove that G∞ a.s. cannot be a cycle Z/ℓZ of length ℓ, for any ℓ odd.

For all n ∈ N and x ∈ Z/ℓZ, let

W ∗(n) :=
n−1
∑

k=0

1

W (k)

Y ±n (x) :=
n
∑

k=1

1{Xk−1=x,Xk=x±1}

W (Zk−1({x, x ± 1}))
ǫn(x) := Y +

n (x) − Y −n (x)

κn(x) := W ∗(Zn({x, x + 1})) − W ∗(Zn({x, x − 1}));

then Y ±n (x) is the equivalent of the process with the same name defined for VRRW in
Section 2.1.2, in the sense that (ǫn(x))n∈N is similarly a martingale, and

Y +
n (x) + Y −n (x + 1) = W ∗(Zn({x, x + 1})).

Let us first discuss again the case where ℓ is even: obviously

un =
∑

x∈Z/ℓZ, x even

κn(x) =
∑

x∈Z/ℓZ

(−1)xǫn(x)

is a martingale, and

R′ ⊇ Z/ℓZ =⇒ u∞ =
∑

x∈Z/ℓZ, x even

κ∞(x) = 0.
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We can use an instability argument similar to Theorem 15 Section 4.1 to show that
u∞ 6= 0 a.s. (see for instance Section 3 [A4]): then this yields another proof of Propo-
sition 2.1.4.

Now we adapt this heuristics to the case ℓ odd; the process κn(x) is not a martingale
anymore, but approaches one sufficiently closely.

Indeed let us study, given x ∈ Z/ℓZ, the evolution of κn(x). The part of κn(x)
arising from visits originating at x is the martingale ǫn(x), but the behaviour of that
process also depends on the difference in probabilities of cycles clockwise and anti-
clockwise.

A key step in the proof is an approximate computation of these differences, through
a combination of martingales (ǫn(x))n∈N.

More precisely, for all n ∈ N0, let

αn :=
∑

k>n

1

W (k)2
, δn :=

∞
∑

k=n+1

| 1

W (k)
− 1

W (k − 1)
|.

For all n ∈ N, let tn := inf{k ∈ N0 s.t. Zk(0) = n} be the time of n-th visit to site 0
(∞ if 0 is visited less than n times), and let

→
qn := P(Xtn+1 = 1 and Xtn+1−1 = −1 | Ftn),
←
qn := P(Xtn+1 = −1 and Xtn+1−1 = 1 | Ftn),

be the probabilities of anti-clockwise and clockwise cycles originating at 0 at time tn.
Let, for all x ∈ Z/ℓZ, k 6 n < ∞,

ζn(x) := Y +
n (x) − Y −n (x + 1)

δk,n(x) := δZk({x,x+1}) − δZn({x,x+1}).

Then, on one hand, for all x ∈ Z/ℓZ, the average increment of ζ.(x) between return

times tn and tn+1 is of the order of (
→
qn − ←

qn)W (Ztn({x, x + 1})−1, that is,

E(ζtn+1(x) − ζtn(x)|Ftn) =

→
qn − ←

qn

W (Ztn({x, x + 1}) + O(E(δtn,tn+1(x) | Ftn));

indeed, during this time interval, the process goes back and forth through {x, x + 1}
and, if it goes through a cycle, eventually does one more crossing in the corresponding
direction. On the other hand, the sum of processes ζ(x) over x ∈ Z/lZ is a martingale:

∑

x∈Z/ℓZ

ζn(x) =
∑

x∈Z/ℓZ

ǫn(x).

Subsequently,

(
←
qn − →

qn)
∑

x∈Z/ℓZ

1

W (Ztn({x, x + 1}) =
∑

x∈Z/ℓZ

O(E(δtn,tn+1(x) | Ftn)).
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Therefore, using that, for all k ∈ N0,

κk(0) = 2ǫk(0) − ζk(1) − ζk(−1),

we deduce

E(κtn+1(0) − κtn(0) | Ftn) =
∑

y∈Z/ℓZ

O(E(δtn,tn+1(x) | Ftn)).

The calculation obviously holds similarly if we replace 0 by any site i ∈ Z/ℓZ.
Now if

lim inf δn/
√

αn = 0, (2.11)

then the “drift” term in κ.(i), i.e. E(κk(i)−κn(i) | Fn), k > n, after certain times n, for
a site i which minimizes Zn({i, i + 1}), will be outdone by the corresponding standard
deviation of ǫ.(i), that is E((ǫ∞(i)− ǫn(i))2 | Fn), which enables one to conclude, using
the instability argument mentioned above, that

κ∞(i) = W ∗(Z∞({i, i + 1}) − W ∗(Z∞({i, i − 1}) 6= 0 a.s.

for some i ∈ Z/ℓZ, and therefore that R′ 6= Z/ℓZ.
This assumption (2.11) holds under weak regularity assumptions on W , which en-

ables one to show the attracting edge property for any nondecreasing W .

2.2 Localization: positive probability results [A5]

The localization behaviour observed with the VRRW on Z also occurs on general
graphs: the first such result was obtained by Volkov [90], which we present here, to-
gether with a generalization to arbitrary affine weight functions, in a joint work with
Benäım [A5].

For simplicity, in this section, G will denote the graph of the walk as well as its
vertices, as in [A5].

Let us first introduce the notions of complete d-partite subset of G with possible
loops and outer boundary.

Definition 2.2.1 Given d > 1, a subset S of G will be called complete d-partite with
possible loops, if (S,∼) is a d-partite graph on which some loops have possibly been
added. That is

S = V1 ∪ . . . ∪ Vd

with

(i) ∀ p ∈ {1, . . . , d}, ∀ i, j ∈ Vp, if i 6= j then i 6∼ j.

(ii) ∀ p, q ∈ {1, . . . , d}, p 6= q, ∀i ∈ Vp, ∀j ∈ Vq, i ∼ j.
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Given a subset A of G, we let

∂A = {j ∈ G \ A : j ∼ A}

be the outer boundary of A.
Volkov [91] showed localization with positive probability on trapping subsets defined

as follows. Let us recall that a VRRW is a VSIRW with W (n) := n + ∆, ∆′; also,
R and R′, defined in (2.4)–(2.5) in the introduction of Section 2, are respectively the
range and asymptotic range of the process.

Definition 2.2.2 (Volkov, [90]) A subset G′ ⊆ G is called a trapping subset if it
consists of a complete d-partite subset S = V1∪ . . .∪Vd and its outer boundary B = ∂S
and the following property holds: for any y ∈ B there exist i ∈ {1, 2, . . . , d} and
x′ ∈ S \ Vi such that y 6∼ Vi ∪ {x′}.

Theorem 6 (Volkov, [90], VRRW on general graphs) Let G′ = S∪B, S = V1∪
. . . ∪ Vd be a trapping subset of G without loops. Then, with positive probability, if
X0 ∈ G′, there exist αi, i ∈ S,

∑

i∈S αi = 1 such that the following occurs:

(i) R = G′

(ii) Zn(i)/n → αi for all i ∈ S as n → ∞
(iii)

∑

j∈Vi

αi = 1/d for all i ∈ {1, 2, . . . , d}

(iv) log Zn(i)/ log n → (d/(d − 1))
∑

j∈S,j∼i

αj .

Our result with Benäım [A5] shows similar behaviour for a generalized VRRW, defined
as a VSIRW with

W{i,j}(x) := ai,jx, ai,j = aj,i > 0, i ∼ j.

Its proof is based on different techniques, using stochastic approximation of ordinary
differential equations. We show in passing that other trapping subsets can occur, even
when ai,j = 1{i∼j}, see Example 1.

Let us first introduce some definitions. For any x = (xi)i∈G ∈ R
G, let

S(x) := {i ∈ G/ xi 6= 0}

be its support. Let

∆ :=

{

x ∈ R
G
+ s.t. |S(x)| < ∞ and

∑

i∈G

xi = 1

}

be the nonnegative simplex restricted to elements x of finite support.



2.2. LOCALIZATION: POSITIVE PROBABILITY RESULTS 29

For all x ∈ ∆, let

Ni(x) :=
∑

j∈G,j∼i

ai,jxj , H(x) =
∑

i,j∈G,i∼j

ai,jxixj =
∑

i∈G

xiNi(x). (2.12)

For all n ∈ N, let

xn =

(

Zn(i) − 1

n

)

i∈G

be the vector of density of occupation of the random walk at time n, which has finite
support and takes values in ∆.

Let us consider the ordinary differential equation

dx

dt
= F (x), (2.13)

where
F (x) = (xi[Ni(x) − H(x)])i∈G. (2.14)

Up to an adequate rescaling in time, we can show that (xk)k∈N approximates the
ODE (2.14) under certain assumptions. The heuristics on a finite graph is that the
VRRW, for n large and on small time intervals [n, n + L], is close to a Markov Chain
with transition probabilities aijxj/Ni(x) from i to j, which has invariant measure
(xiNi(x)/H(x))i∈G, so that

Zn+L(x) − Zn(x) ≈ LF (xn)/H(xn).

The ODE (2.14) was originally introduced by Fisher, Wright and Haldane in the
1920s [41, 80], as the replicator dynamics in ecology: individuals are labeled by nodes
of G and, at each time step, two of them are chosen, with replacement, according to
the uniform distribution in the population; if i and j are chosen then, on average, ai,j

individuals are added to population i, and aj,i to population j.
A point x = (xi)i∈G ∈ ∆ is called equilibrium if and only if F (x) = 0; it is feasible

iff H(x) 6= 0.

Definition 2.2.3 For any equilibrium x ∈ ∆, let us define the following predicates:

(P)x max
(

Sp [ai,j − 2H(x)]i,j∈S(x)

)

6 0

(Q)x max{Ni(x) − H(x), i ∈ ∂S(x)} < 0

Assumptions (P)x-(Q)x ensure that x is a strictly stable equilibrium, in the sense that
the eigenvalues of DF (x), which are real, are nonpositive.

The support of such equilibria satisfies some strong “clustering” properties, de-
scribed in the following Lemma 2.2.1. In the context of the replicator dynamics de-
scribed above, this would imply that, generically and for symmetric payoffs (on a finite
graph, if (ai,j)i,j∈G has absolutely continuous distribution w.r.t. the Lebesgue measure
on symmetric matrices), a clique of species eventually prevails.
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Definition 2.2.4 For all S ⊆ G, let (P)S be the following predicate:

(P)S(a) (S,∼) is a complete d-partite graph with possible loops.

(P)S(b) If i ∼ i for some i ∈ S, then the partition containing i is a singleton.

(P)S(c) If Vp, 1 6 p 6 d are its d partitions, then for all p, q ∈ {1, . . . , d} and

i, i′ ∈ Vp, j, j′ ∈ Vj, ai,j = ai′,j′.

Lemma 2.2.1 ([A5], Lemma 3) For all x ∈ ∆ feasible equilibrium, (P)x implies
(P)S(x). If, for some c > 0, ai,j = c1{i∼j} for all i, j ∈ S(x), then the converse also
holds.

Theorem 7 ([A5], Theorem 3) Let x ∈ ∆, and assume that (P)x − (Q)x holds.
Then, for any neighbourhood N (x) of x in ∆, there is with positive probability y ∈ N (x)
with S(y) = S(x) and

(i) R′ = S(x) ∪ ∂S(x)

(ii) xn → y

(iii) ∀i ∈ ∂S(x), Zn(i)/nNi(x)/H(x) → Ci ∈ (0,∞) (random).

Lemma 2.2.1 follows from a study of the Jacobian matrix (see [A5] Section 2.2.1). The
proof of Theorem 7 makes use of two main tools. The first one is the Poisson equation,
which allows us to introduce a modification zn of xn, taking into account the position
of the particle, so that zn will be a stochastic approximation of the ODE (2.14) after
renormalization in time. Now the stable equilibria of this ODE are not isolated in
general, so that convergence towards one of them with positive probability cannot be
obtained by classical results (see for instance [6] Chapter 7). Our proof adapts an
entropy function introduced by Akin and Losert [57] to that end; see [A5] Section 2.3
for more details.

Theorem 7 and Lemma 2.2.1 imply Theorem 6 in the case ai,j = 1j∼i. Indeed, if
G′ = S ∪ ∂S is a trapping subset according to Definition 2.2.1, then, for all x ∈ ∆ such
that S(x) = S and

∑

j∈Vi
xj = 1/d, it is easy to check that x is a feasible equilibrium

of (2.14); now S trapping subset implies that, for all i ∈ ∂S, Ni(x) < 1 − 1/d = H(x).
In the case of general a, some simple conditions can ensure the existence of trapping

subsets, see for instance Theorem 4 [A5]. Even when ai,j = 1j∼i, trapping subsets can
occur outside the scope of Definition 2.2.1, as shown in the following Example 1.

Example 1 Assume ai,j = 1j∼i , and consider a graph G on six vertices A, B, C, D,
E and F , with a neighbourhood relation ∼ defined as follows (see Figure 1): A ∼ B ∼
C ∼ D ∼ A, C ∼ E ∼ D and E ∼ F (recall that the graph G is symmetric). Let
x = (xA, xB, xC , xD, xE , xF ) := (3/8, 3/8, 1/8, 1/8, 0, 0), then S(x) = {A, B, C, D} and
∂S(x) = {E}. Also, x is an equilibrium of (2.13), (P)S(x) is satisfied with V1 = {A, C},
V2 = {B, D}, and NE(x) = 1/4 < H(x) = 1/2, which implies (P)x − (Q)x, hence
subsequently by Theorem 7 that R = T (x) with positive probability.
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A 3/8 D 1/8

B 3/8 C 1/8

FE 0

Figure 2.1: We show in Example 1, with ai,j = 1j∼i, that although T := {A, B, C, D, E} does not
satisfy the assumptions of Theorem 6, the VRRW can localize on it with positive probability, using
Theorem 7 and Lemma 2.2.1. The numbers indicated in superscript of vertices represent the limit
proportions of visits to these vertices if x(n) were to converge to the equilibrium x in the example. In
this case the walk would asymptotically spend most of the time in the bipartite subset S := V1 ∪ V2,
where V1 := {A, C}, V2 := {B, D}, evenly divided between partitions V1 and V2, and vertex E would
be seldom visited, of the order of

√
n times at time n.

Now let us prove by contradiction that T (x) with such x does not satisfy the as-
sumptions of Theorem 6 above. Indeed, if T (x) = S ∪ ∂S, then S ⊆ {A, B, C, D}
since, otherwise, F would belong to T (x). Now the condition that for all i ∈ ∂S,
∃p ∈ {1, . . . , d} and j ∈ S \Vp such that i 6∼ Vp∪{j} implies in particular that a vertex
in ∂S is not connected to at least two other vertices in S, so that i ∈ ∂S cannot be
A, B, C or D which are connected to all other but one vertex in {A, B, C, D}. Hence
S = {A, B, C, D}, but then i := E is connected to both partitions of S, and does not
satisfy the condition mentioned last sentence, bringing a contradiction.

2.3 ERRW, VRJP and a conjecture of Diaconis [A6]

This section is devoted to the joint paper [A6] with Sabot. First we show that the edge-
reinforced random walk (ERRW) is equal in law to a vertex-reinforced jump process
(VRJP) with independent gamma conductances. Then we interpret the limit mea-
sure of VRJP (with fixed conductances) as a supersymmetric hyperbolic sigma model
in quantum field theory [32]; one consequence is that VRJP and ERRW with large
reinforcement are strongly recurrent in any dimension.

Let us first recall some earlier results. The ERRW on finite graphs is a mixture
of reversible Markov chains, and the mixing measure was determined explicitly by
Diaconis [29] (see also [44, 78]), which has applications in Bayesian statistics [30, 2, 3].

On acyclic graphs, it can be written as a random walk in an independent random
environment, as was first observed by Pemantle in 1988, which enables one to deduce
recurrence/transience criteria or laws of large numbers in different instances [67, 18,
45, 86].

On infinite graphs with cycles, Merkl and Rolles [60, 62, 61, 63, 79] obtained recur-
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rence criteria and asymptotic estimates on graphs of the form Z × G, G finite graph,
and on a modified version of the graph Z

2, where each edge is divided into a large
number of edges. However, the recurrence/transience question on Z

k, k > 2, is still
open.

The vertex-reinforced jump process (VRJP) on a graph G = (V, E) was conceived
by Werner and introduced by Davis and Volkov [25]; we define here a VRJP starting
at time 0 at some vertex i0 ∈ V (G) with conductances (We)e∈E(G) as a continuous-
time process (Yt)t>0 on V , such that, if Y is at a vertex x ∈ V (G) at time t, then,
conditionally on (Ys, s 6 t), the process jumps to a neighbour y of x at rate W{x,y}Ly(t),
where

Ly(t) := 1 +

∫ t

0

1{Ys=y} ds.

VRJP was so far only studied on trees. In that case, a restriction principle observed
by Davis and Volkov [26] implies the following. Let e and e be the two endpoints of
an edge e ∈ E, with e closer to the initial site i0 than e: if the walk is recurrent on G,
then the random variables

ξe := lim
t→∞

Le(t)

Le(t)
, e ∈ E

are a.s. well-defined, independent, and have inverse gaussian distribution with param-
eters (We, 1), e ∈ E. This allows to show recurrence/transience criteria on trees, with
CLTs in certain instances [25, 26, 19, 4].

We consider here an ERRW with (linear) weight functions n + ae, e ∈ E(G), that
is, for all n ∈ N, if Xn = i then

P(Xn+1 = j | Fn) = 1i∼j

a{i,j} + Zn({i, j})
∑

k∼i(a{i,k} + Zn({i, k})) , (2.15)

and let Pi0 be the probability corresponding to the walk starting at i0.
Our first result with Sabot is that the ERRW is equal in law to a VRJP with inde-

pendent gamma conductances, seen from the times of jumps. More precisely, consider
the positive continuous additive functional of (Ys)

A(s) =

∫ s

0

1

LYu
(u)

du =
∑

x∈V

log(Lx(s)),

and the time changed process
Xt = YA−1(t).

Let, for all x ∈ V and t > 0,

Tx(t) =

∫ t

0

1{Xu=x}du

be the local time of (Xt)t>0 at site x and time t; note that Tx(A(t)) = log(Lx(t)).
Note that there is a slight confusion of notation between (Xt)t>0 and the initial

discrete-time random walk (Xn)n∈N0 . Also, for convenience we let, for all i, j ∈ V (G),
j ∼ i, Wi,j := W{i,j}.
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Lemma 2.3.1 ([A6], Lemma 1) The law of the process Xt is described by the fol-
lowing: if at time t the process Xt is at the position i, then it jumps to a neighbor j of
i at rate Wi,je

Ti(t)+Tj (t).

Theorem 8 ([A6], Theorem 1) Let (X̃t)t>0 be the continuous-time version of the
ERRW with weights (ae)e∈E(G), as defined in Section 2.1.3.

Then there exists a sequence of independent random variables We ∼ Gamma(a
e
, 1 ),

e ∈ E(G), such that, conditionally on (We)e∈E(G), (X̃t)t>0 has the same law as the time
modification (Xt)t>0 of the VRJP with weights (We)e∈E(G).

proof: The proof of Lemma 2.3.1 follows from elementary computations. Let us show
Theorem 8. For any e ∈ E(G), define the simple birth process {N e

t , t > 0} with initial
population size ae, by

N e
t := ae + sup

{

k ∈ N s.t.
k−1
∑

i=0

V e
i 6 t

}

population size at time t; N e
t −ae is the number of events in the timeline e at local time

t. This process is sometimes called the Yule process: by a result of D. Kendall [46],
there exists We := lim Nte

−t, with distribution Gamma(ae, 1), such that, conditionally
on We, {N e

fWe (t), t > 0} is a Poisson process with unit parameter, where

fW (t) := log(1 + t/W );

hence Ne increases between times t and t + dt with probability Wee
t dt = (f−1

We
)′(t) dt.

A similar characterization of the timelines is also used in [A2], Lemma 4.7.
Let us now condition on (We)e∈E(G). If X̃ is at vertex x at time t, it jumps to a

neighbour y of x at rate W{x,y}e
Tx(t)+Ty(t), since Tx(t)+Ty(t) is the time spent adjacent

to the edge {x, y} at time t. 2

The rest of the section is devoted to the study of the time-modification (Xt)t>0 of
a VRJP with fixed conductances (We)e∈E; we show that its centred occupation times
converge a.s., with a limiting measure that can be computed explicitely, and that it is
a mixture of time-changed Markov jump processes.

Proposition 2.3.1 ([A6], Proposition 1) Suppose that G is finite and set N = |V |.
The following limits exist Pi0 a.s.

Ui = lim
t→∞

Ti(t) −
t

N
,

for all i ∈ V .

Theorem 9 ([A6], Theorem 2) Suppose that G is finite and set N = |V |.
i) Under Pi0, (Ui)i∈V has the following density distribution on H0 = {(ui),

∑

ui = 0}
1

(2π)(N−1)/2
eui0e−H(W,u)

√

D(W, u), (2.16)
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where

H(W, u) = 2
∑

{i,j}∈E

Wi,j sinh2

(

1

2
(ui − uj)

)

and D(W, u) is any diagonal minor of the N × N matrix M(W, u) with coefficients

mi,j =







Wi,je
ui+uj if i 6= j

−∑k∈V Wi,ke
ui+uk if i = j

Let νi0,W be the corresponding law.
ii) Let (Ui)i∈V be a random variable in H0 distributed according to (2.16). Let (Zt) be
the Markov jump process starting at i0 and with jump rates from i to j

1

2
Wi,je

Uj−Ui.

Let (li(t)) be the local times of the process Z at time t. Consider the positive continuous
additive functional of Z

B(t) =

∫ t

0

1

2

1
√

1 + lZu
(u)

du =
∑

i∈V

(

√

1 + li(t) − 1
)

,

and the time changed process
Ỹs = ZB−1(s).

Then the law of Ỹ , under (Ui)i∈V with distribution νi0,W , is the law of the VRJP (Ys)s>0

with conductances (Wi,j). In particular, the discrete-time process associated with (Ys)
is a mixture of reversible Markov chains with conductances Wi,je

Ui+Uj .

N.B.: 1) the density distribution is with respect to the Lebesgue measure on H0 which is
∏

i∈V \{j0}
dui for any choice of j0 in V . We simple write du for any of the

∏

i∈V \{j0}
dui.

2) The diagonal minors of the matrix M(W, u) are all equal since the sum on any line
or column of the coefficients of the matrix is null.

proof: The heuristics of Proposition 2.3.1 is that, at “frozen” T (and jump rates
Wi,je

Ti+Tj ), the invariant measure is uniform on all vertices, and that the jump rates
increase exponentially in time. We use martingale techniques, through the Poisson
equation (see [A6], Section 4.1).

Let us sketch the proof of Theorem 9 i). The process X is not Markov, but Θt =
(Xt, (Ti(t))i∈V ) is a time-continuous Markov process on the state space V × R

V with
generator L̃ defined on C∞ bounded functions by

L̃(f)(i, T ) =

(

∂

∂Ti

f

)

(i, T ) + L(T )(f)(i), ∀(x, T ) ∈ V × R
V
+,

where L(T ) is the generator of the jump process on V at frozen T defined for g ∈ R
V :

L(T )(g)(i) =
∑

j∈V

Wi,je
Ti+Tj(g(j) − g(i)), ∀i ∈ V.
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Let P
W
i,T be the law of X under initial condition (i, T ), and let P

W
i := P

W
i,0. Then, letting

(W T )i,j = Wi,je
Ti+Tj ,

we have

P
W
i,T = P

W T

i .

Denote, for all (λi) ∈ H0

Ψ(i0, T, λ) =

∫

H0

ei<λ,u>νi0,W T

(du)

=
1

√
2π

N−1

∫

H0

ei<λ,u>eui0e−H(W T ,u)
√

D(W T , u)du.

Our aim is to show that

Ψ(i0, 0, λ) = E
W
i0

(

ei<λ,U>
)

.

2

Lemma 2.3.2 ([A6], Lemma 4) Ψ is solution of the Feynman-Kac equation

iλi0Ψ(i0, T, λ) + (L̃Ψ)(i0, T, λ) = 0.

proof: Let T i = Ti − 1
N

∑

j∈V Tj . The change of variables ũi = ui + T i yields

Ψ(i0, T, λ) =
1

√
2π

N−1

∫

H0

eũi0
−T i0ei<λ,ũ−T>e−H(W T ,ũ−T )

√

D(W T , ũ − T )dũ (2.17)

Now H(W T , ũ− T ) = H(W T , ũ− T ), since H(W T , u) only depends on the differences
ui − uj. We also observe that the coefficients of the matrix M(W T , u) only contain
terms of the form Wi,je

ui+Ti+uj+Tj , hence

√

D(W T , ũ − T ) = e
N−1

N

P

j Tj

√

D(W, ũ).

Finally, < λ, T >=< λ, T > since λ ∈ H0. This implies that

Ψ(i0, T, λ) =
1

√
2π

N−1

∫

H0

e
P

j Tjeũi0
−Ti0ei<λ,ũ−T>e−H(W T ,ũ−T )

√

D(W, ũ)dũ. (2.18)

An easy computation shows that

∂

∂Ti0

H(W T , ũ − T ) = e−(ũi0
−Ti0

)L(T )(eũ−T )(i0).
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Hence,

− ∂

∂Ti0

Ψ(i0, T, λ)

=
1

√
2π

N−1

∫

H0

(

iλi0e
ũi0
−Ti0 + L(T )(eũ−T )(i0)

)

e
P

j Tjei<λ,ũ−T>e−H(W T ,ũ−T )
√

D(W, ũ)dũ

= iλi0Ψ(i0, T, λ) + (L(T )Ψ)(i0, T, λ),

which completes the proof. 2

Therefore,

Ψ(i0, 0, λ) = E
W
i0

(

ei<λ,T (t)>Ψ(Xt, T (t), λ)
)

.

It remains to show that

lim
t→∞

Ψ(Xt, T (t), λ) = 1.

This is a consequence of the following remarks: when t is large, so is W T (t), thus (ui)

is small. Hence euXt ∼ 1, 2 sinh2((uj − ui)/2) ∼ 1
2
(ui − uj)

2, W
T (t)
i,j eui+uj ∼ W

T (t)
i,j ,

ei<λ,u> ∼ 1, and we sum a free gaussian field, whose integral is 1; see [A6], proof of
Lemma 4, for more technical details.

Using Theorems 8 and 9, we can retrieve the limiting measure of ERRWs, which was
initially computed by Coppersmith and Diaconis in [20] (see also [44]), as the limiting
measure of VRJP with independent gamma conductances arising from Theorem 8. This
explains the renormalization constant in that Coppersmith-Diaconis formula, which had
remained mysterious so far.

Also, the limiting measure of VRJP described in Theorem 9 can be interpreted
as a supersymmetric hyperbolic sigma model in quantum field theory [32]; note that
the question of a possible link was discussed in that paper [32], suggested by Kozma,
Heydenreich and Sznitman.

This interpretation enables us [A6] to deduce that VRJP and ERRW are strongly
recurrent in any dimension for large reinforcement, using a localization result of Diser-
tori and Spencer [31].

More precisely set, for all β > 0,

Iβ :=
√

β

∫ ∞

−∞

dt√
2π

e−β(cosh t−1),

which is strictly increasing in β.
Let βd

c be defined as the unique solution to the equation

Iβd
c
eβd

c (2d−2)(2d − 1) = 1

for all d > 1, βd
c := ∞ if d = 1.
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Theorem 10 (Disertori, Spencer [31], Theorem 2) Let G ⊆ Z
d be a finite con-

nected subset containing 0. Assume that the initial site i0 is 0, and that We = β for all
e, with 0 < β < βd

c . Then there exists a universal constant C0 > 0 such that, for all
x ∈ Z

d,

E
(

e(Ux−U0)/2
)

6 C0

[

Iβeβ(2d−2)(2d − 1)
]|x|

.

Theorem 10 implies that the probability to leave the ball of radius n before coming back
to 0 is exponentially decreasing in n, which subsequently yields the following Corollary
2.3.1. An elementary truncation argument enables us to adapt Disertori and Spencer’s
techniques [31] and deduce recurrence of ERRW for sufficiently large reinforcement.
This question of reucurrence/transience was initially raised by Diaconis in 1986.

Corollary 2.3.1 ([A6], Corollary 1) For 0 < β < βd
c , the VRJP on Z

d starting at
0 with constant conductance β is a mixture of strongly recurrent Markov chains.

Corollary 2.3.2 ([A6], Corollary 2) For any d ∈ N, there exists ad
c > 0 such that,

for all a < ad
c , the ERRW on Z

d starting at 0 with constant initial weight a > 0 is a
mixture of strongly recurrent Markov chains.

Remark 2.3.1 [[A6], Remark 5] Corollaries 2.3.1 (resp. 2.3.2) also hold on any graph
of bounded degree, and for possibly non-constant conductances (βe)e∈E with βe < βc

for some βc > 0 (resp. weights (ae)e∈E with ae < ac for some ac > 0).
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Chapter 3

Brownian polymers

Let (Xt)t>0 be the random process defined by X0 := x0 ∈ R
d and

Xt = σBt +

∫ t

0

ds

∫ s

0

f(Xs − Xu) du, (3.1)

where σ > 0, (Bt)t>0 is a Brownian motion on R
d (starting in 0 at time 0), and

f : R
d → R

d (d > 1) is a measurable function.

A strong solution (3.1) is unique if f is continuous (see Theorem 5 and Corollary 1,
p. 271 in [39]), and it exists if f is Lipschitz (see Theorem 11.2 in [77]). The existence
and uniqueness of a weak solution to (3.1) is ensured under the assumption that f is
bounded, using a generalization of Girsanov theorem (see Corollary 3.5.2 in [43]).

This setting was proposed by Norris, Rogers and Williams [66] in 1987, and in-
troduced by Durrett and Rogers [36] in 1992, as a model for the shape of a growing
polymer, Xt corresponding to the location of the end of the polymer at time t. Without
any assumption on the function f , the stochastic differential equation (3.1) defines a
self-interacting diffusion, in the sense that the process X evolves in an environment
changing with its prior trajectory. We will call it self-repelling (resp. self-attracting)
if, for all x ∈ R

d, xf(x) > 0 (resp. 6 0), in other words if it is more likely to stay away
from (resp. come back to) the places it has already visited before.

I solved two conjectures of Durrett and Rogers [36] on the self-repelling case, the first
one (Conjecture 3) with Mountford when f has heavy tails (i.e. |f(x)| ∼x→±∞ |x|−β,
β ∈ (0, 1)), the other one with Tóth and Valkó (Conjecture 2) when f has light tails
(see assumptions of Section 3.2).

Before we consider them, let us briefly discuss previous results on the self-attracting
case and alternative models. It was studied by Cranston and Le Jan [21] and Raimond
[74] on R

d, in the cases f(x) = −bx and f(x) = −bx/‖x‖, b > 0: both lead to
an almost-sure convergence of the process (see [40] for a generalization in the one-
dimensional case)

In the non-local case f(x) = − sign(x)1|x|>a, the diffusion does not converge but
the paths are however bounded a.s. [21, 40].

39
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Norris, Rogers and Williams [66] define in 1987 a Brownian motion with local time
drift, with the initial motivation to propose a simple mathematical model for the self-
avoiding brownian motion; the model was studied by Hu and Yor [42], Raimond and
Schapira [75], who obtain central limit theorems and criteria for recurrence. The closely
related Brownian Motion perturbed at extremas was introduced by Le Gall [51] in 1986,
as a limit of the latter model; Le Gall and Yor [52], Carmona, Petit and Yor [17], Davis
[24], Perman and Werner [71] show its existence and uniqueness, and analyse certain
fine properties, for instance Hausdorff dimension of points of monotonicity in [71].
Davis [23], Werner [92] and Dolgopyat [34] show that these processes can be seen as
limits in law of renormalized once-reinforced random walks or multi-excited random
walks.

A model similar to (3.1) was introduced and studied in 1996 by Benäım, Ledoux
and Raimond [8], Benäım and Raimond [9, 10], the difference being that the drift
is given by an average of the past occupation (inserting a factor of 1/s in the first
integral). Assuming that the particle lives in a compact connected smooth (C∞) Rie-
mannian manifold (without boundary), and that f(Xs−Xt) is replaced by the gradient
of a potential ∇VXs

(Xt) with sufficient differentiability, they prove that the normalized
occupation measure µt = 1

t

∫ t

0
δXs

ds asymptotically shadows the solutions of a deter-
ministic differential equation, so that the possible limit sets of µt are “attractor free
sets” for this equation. Depending on the structure of the interaction, various corre-
sponding dynamics are possible; however, when the diffusion is self-repelling or weakly
self-attracting, according to definitions introduced by the authors (taking into account
that the particle lives in a compact set), µt a.s. converges toward the normalized Rie-
mannian measure. In the symmetric case, µt converges almost surely to the critical set
of a certain nonlinear free energy functional [10].

A self-interacting model introduced by Del Moral and Miclo [27, 28] presents some
similarity with the latter model: in a discrete time setting, the evolution depends on the
present position and on the occupation measure created by the path up to this instant;
one can obtain sufficient conditions for a.s. convergence of the empirical measures,
and provide upper bounds on the corresponding rate of convergence to the limiting
measure.

Let us now describe the results and conjectures in the initial paper Durrett and
Rogers [36] in 1992. First, if f is bounded and has compact support, then |Xt|/t is
bounded by a deterministic constant a.s.

The rest of paper deals with the one-dimensional setting f : R → R Lipschitz, to
which we restrict ourselves in the rest of the section. Durrett and Rogers [36] prove that
if f is nonnegative and f(0) > 0, then Xt/t is lower bounded by a deterministic constant
a.s., and conjecture a strong law of large numbers, which was proved by Cranston and
Mountford [22] in 1996: under the weaker condition f nonnegative and f 6≡ 0, there
exists c > 0 such that

lim
t→∞

Xt

t
= c a.s.

Next, the case of heavy-tailed f is considered. Let (A1), (A2) and (A3) be the
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following assumptions:

(A1) |f(x)| 6 M ,

(A2) f(x) is decreasing for x ∈ [q,∞),

(A3) xβf(x) → l > 0 as x → ∞ with 0 < β < 1.

Durrett and Rogers [36] describe the following heuristics. Given α > 0, let xt =
T−αXtT and Wt = T−1/2BtT ; then we can rewrite (3.1) as

xt = T 1/2−αWt + T 2−α

∫ t

0

ds

∫ s

0

f
(

T α(xs − xu)
)

du.

If we set

α :=
2

(1 + β)

so that 2 − α = αβ and let T → ∞ we expect that a possible limit (still called xt for
simplicity) should satisfy

xt =

∫ t

0

ds

∫ s

0

l du

(xs − xu)β
.

One solution is xt = c0t
α where c0 satisfies

αcβ+1
0 =

∫ 1

0

l du

(1 − uα)β
. (3.2)

The argument led to the following rigorous result.

Theorem 11 (Durrett and Rogers [36]) Suppose (A1)–(A3) hold and α and c0 are
as above. Then

lim sup
t→∞

Xt

tα
6 c0.

If, moreover, f is nonnegative and f(0) > 0, then

Xt

tα
→ c0 a.s.

Conjecture 1 (Conjecture 3, Durrett and Rogers [36]) Suppose f(x) = x/(1 +
|x|β+1) with 0 < β < 1. Then with probability 1/2,

Xt

tα
→ c0.

We proved Conjecture 1 with Mountford [A7]; a sketch of the proof is given in Section
3.1.

The other conjecture [36] was initially on the case of an odd function f of compact
support.
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Conjecture 2 (Conjecture 2 of Durrett and Rogers [36])) Suppose f has com-
pact support, and f(−x) = −f(x); then

Xt

t
→ 0 a.s.

Tóth and Werner [89] later conjectured, by comparing this model with exponen-
tially self-repelling random walks on Z [88], that under the same assumptions Xt/t

2/3

converges in law, which means that the particle has a super-diffusive behaviour despite
the fact that it only looks at the time spent in its immediate neighbourhood.

We partially proved these conjectures with Tóth and Valkó in [A8], see Section 3.2
for more details.

3.1 Conjecture 3 of Durrett-Rogers [A7]

In this section we sketch the proof, in a joint work with Mountford [A7], of the conjec-
ture 3 of Durrett-Rogers in [36]. The key step is the following proposition.

Proposition 3.1.1 ([A7], Proposition 1) P(lim supt→∞ |Xt| = ∞) = 1.

Its proof relies on the particular shape of the drift when the process remains stuck
in a bounded interval. More precisely, let us define, for any u ∈ R+, the drift function
at time u

gu(x) =

∫ u

0

f(x − Xs) ds;

gu(x) is the drift that would be endured by the particle at time u if it were in x. Then

dXu = dBu + gu(Xu) du.

For any interval I, we define the drift function restricted to contributions within
that interval, i.e.

gI
u(x) =

∫ u

0

f(x − Xs)1Xs∈I ds.

Fix u > 0 and I = [a, b]. Firstly, when the process remains in interval I, gI
u gives

the main contribution to the drift. As long as Xt does not leave I its behavior is, on
time intervals of fixed scale starting at u, comparable to the behavior of a diffusion
with drift gI

u.
Secondly, the drift function x 7→ gI

u(x) satisfies the following property: when x ∈ I
is close to b, then either gI

u(x) is positive or gI
u(y) is nonpositive for all y ∈ [a, x], as

implied by the following Lemma 3.1.1.
Let xmax := (1/β)1/(1+β) be the point of change of monotonicity of f .

Lemma 3.1.1 ([A7], Proposition 1) Let u ∈ R
∗
+, a, b ∈ R. Suppose there exists

x0 ∈ [a, b] such that g
[a,b]
u (x0) 6 0, and either f(b− x0) 6 f(b− a)2 and b− x0 6 1/16,

or b − a 6 xmax. Then, for all x ∈ [a, x0], g
[a,b]
u (x) 6 0.
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Lemma 3.1.1 relies on the shape of f around 0 (f(0) = 0, f ′(0) > 0) and ±∞
(|f(x)|/|x|−β converges as x → ±∞): see [A7] for details. It implies that, as long
as Xt remains in I, each time it approaches the border of I the probability to leave it
within a time limit depending only on the size of the interval is lower bounded. There-
fore, the range of the process Xt regularly widens, which explains Proposition 3.1.1.

Then a thorough study of the local time enables us to show that, each time Xt

reaches its maximum, the probability that it surpasses it by one within one unit of
time is lower bounded, independently of the prior occupation measure of the process.

Finally it can be shown, using previous results of Durrett and Rogers in [36] (in
particular Theorem 11 above), that conditionally on such an event, with lower bounded
probability, Xt/t

α converges to c0. Then the conclusion follows by symmetry.

3.2 Conjecture 2 of Durrett-Rogers [A8]

The aim of this section is to present the results and main arguments in the paper with
Tóth and Valkó [A8], which partially shows Conjecture 2 of Durrett-Rogers in [36].

First, let us consider the following generalized polymer (Xt)t>0 defined by X0 :=
x0 ∈ R and

Xt = σBt +

∫ t

0

(

ξ(Xs) +

∫ s

0

f(Xs − Xu)du

)

ds, (3.3)

where σ > 0, Bt is a standard 1d Brownian motion, f : R → R is a function with
sufficient regularity, and ξ : R → R is an initial drift profile with regularity (detailed
below).

We assume that
f(x) = −b′(x),

where b ∈ L1(R) ∩ C(∞)(R) and has nonnegative Fourier transform.
Note that positive definiteness implies

b(−x) = b(x), sup
x∈R

|b(x)| = b(0). (3.4)

Now, the “drift function” at time t is

gt(x) = ξ(x) +

∫ t

0

f(Xs − x)ds. (3.5)

Let us study the “drift function” environment seen from the particle Xt, i.e.

x 7→ η(t, x) := gt(Xt + x). (3.6)

Then t 7→ η(t) := η(t, ·) is a Markov process, on the space of smooth functions of slow
increase at infinity:

Ω := {ω ∈ C∞(R → R) : (∀k > 0, ∀l > 1) : ‖ω ‖k,l < ∞}. (3.7)
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where ‖ω ‖k,l are the seminorms

‖ω ‖k,l := sup
x∈R

(

1 + |x |
)−1/l ∣

∣ω(k)(x)
∣

∣ , k > 0, l > 1. (3.8)

Given the corresponding assumptions on b, if ξ ∈ Ω, then a solution of (3.3) exists and
is unique (see Theorem 11.2 in [77]), and η(t, .) ∈ Ω, for all t > 0.

We derive by standard Itō-calculus that

dη(t, x) = ση′(t, x)dB(t) + η′(t, x)η(t, 0)dt + σ2η′′(t, x)

2
dt − b′(x)dt. (3.9)

We show in the following Theorem 12 that the Gaussian probability measure π(dω)
on Ω with mean and covariance

∫

Ω

ω(x)π(dω) = 0,

∫

Ω

ω(x)ω(y)π(dω) = b(x − y), (3.10)

is invariant for the Markov process t 7→ η(t) := η(t, ·).
Recall that Minlos’ theorem (Theorem I.10 of [83]) implies, given x 7→ b(x) with

the assumed properties, that the expectations and covariances (3.10) define a unique
translation invariant Gaussian probability measure π(dω) on the space of tempered
distributions S ′(R). The regularity properties of the covariance function b imply that
this measure is actually supported by the space Ω ⊆ S ′(R), see [58, 59].

Theorem 12 ([A8], Theorem 1) The Gaussian probability measure π(dω) on Ω,
with mean 0 and covariances (3.10) is time-invariant and ergodic for the Ω-valued
Markov process t 7→ η(t).

proof: We only provide a formal proof of the time-invariance here; for more details,
see [A8].

Let us first note that the measure π is translation-invariant, so that the action
corresponding to the σdBt part in dXt will leave it invariant: indeed, the Laplacian
∇2, generator of the diffusion in random scenery, is self-adjoint under π, and ∇211 = 0.

Hence assume σ = 0. In order to prove that π is indeed time-stationary we have
to show that for any (sufficiently smooth) test function u(·) the moment generating
functional E

(

exp{〈u, η(t)〉}
)

is constant in time. Here we used the notation

〈u, v〉 :=

∫ ∞

−∞

v(x)u(x)dx. (3.11)

It follows from (3.9) that

dE
(

exp{〈u, η(t)〉}
)

= E
(

d exp{〈u, η(t)〉}
)

= E
(

e〈u,η(t)〉
(

− 〈u′, η(t)〉η(t, 0) + 〈u′, b〉
))

dt.

Let X, Y, Z be jointly Gaussian with zero mean. Then, using differentiations of the
moment generating function of their joint distribution, it is easy to show that

E
(

Y ZeX
)

= exp{E
(

X2
)

/2}
(

E
(

Y Z
)

+ E
(

XY
)

E
(

XZ
))

. (3.12)
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Now note that E[〈u, η(t)〉〈v, η(t)〉] = 〈u, b ∗ v〉, η being a zero mean Gaussian field with
covariance b, thus

dE
(

exp{〈u, η(t)〉}
)

= e
1
2
〈u,b∗u〉

{

− 〈u′, b〉 − 〈u′, b ∗ u〉〈u, b〉+ 〈u′, b〉
}

dt = 0 (3.13)

since, for any test function u, 〈u′, b ∗ u〉 = 0. 2

The following Corollary 3.2.1 will follow from ergodicity, using irreducibility of the
process (see details [A8], Section 2.3), and

Xt − X0 = σB(t) +

∫ t

0

ϕ(η(s))ds,

where
ϕ(ν) := ν(0).

Corollary 3.2.1 ([A8], Corollary 1) For π-almost all initial profiles ξ,

lim
t→∞

Xt

t
= 0 a.s. (3.14)

This partially settles Conjecture 2 of [36].
We now study the t → ∞ asymptotics of the variance of displacement

E(t) := E
(

X2
t

)

. (3.15)

All the following results will be meant for the process being in the stationary regime.
For simplicity, we will assume σ = 1; for arbitrary σ > 0, Yt := Xt/σ is a Brownian
polymer (3.3) with interaction function f̃(x) := f(σx)/σ, so that this assumption does
not restrict generality.

First let us show that, for all t > s > 0,

E
(

(Xt − Xs)
2
)

= t − s + E
((

∫ t

s

ϕ(η(u))du
)2)

. (3.16)

This will be a consequence of the observation that the forward process t 7→ η(t) and
flipped-backward process t 7→ η̃(t) := −η(−t) are identical in law, which is sometimes
called Yaglom-reversibility, see [94, 95, 33].

More precisely let, for all s, t ∈ R,

M(s, t) := Xt − Xs −
∫ t

s

ϕ(η(u))du = Bt − Bs. (3.17)

Lemma 3.2.1 ([A8], Lemma 2) For s ∈ R fixed the process [s,∞) ∋ t 7→ M(s, t)
is a forward martingale with respect to the forward filtration {F(−∞,t] : t > s} of the
process t 7→ η(t). For t ∈ R fixed the process (−∞, t] ∋ s 7→ M(s, t) is a backward
martingale with respect to the backward filtration {F[s,∞) : s 6 t} of the process t 7→
η(t).
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proof: The first statement follows from definitions. Let us prove the second one:
(1) For any s 6 t, there is a Borel function Fs,t mapping a.s. (η(u))s6u6t to X(t)−X(s).
By symmetry, F−t,−s maps the flipped-backward process (η(−u))−t6u6−s to

X̃−s − X̃−t = Xs − Xt. (3.18)

(2) t 7→ η(t) and t 7→ η̃(t) = −η(−t) are identical in law.
(3) The function ω 7→ ϕ(ω) is odd with respect to the flip map ω 7→ −ω.

Putting these facts together (in this order) we obtain

lim
h→0

E
(Xs−h − Xs

−h

∣

∣F[s,∞)

)

= − lim
h→0

E
(X̃−s+h − X̃−s

h

∣

∣F̃(−∞,−s]

)

(3.19)

= −ϕ(η̃(−s)) = ϕ(η(s)).

2

From Lemma 3.2.1 it follows that

E
(

(Xt − Xs)
2
)

= E
(

(M(s, t))2
)

+ E
((

∫ t

s

ϕ(η(u))du
)2)

, (3.20)

which implies (3.16).
Now, let

ρ2 :=

∫ ∞

−∞

p−2b̂(p)dp 6 ∞. (3.21)

Conversely, as stated in the following Theorem 13, we can show that Xt behaves at
least diffusively if ρ2 < ∞; note that this requires b̂(0) = 0 in particular.

Theorem 13 ([A8], Theorem 2) Let ρ2 be the constant defined in (3.21). Then

1 6 lim
t→∞

t−1E(t) 6 lim
t→∞

t−1E(t) 6 1 + ρ2. (3.22)

Let, for all λ > 0,

Ê(λ) :=

∫ ∞

0

e−λtE(t)dt. (3.23)

Let us consider the following infrared bounds for the correlation function b̂(p): for
some −1 < α < 1

C1 := lim
p→0

|p|−αb̂(p) < ∞, C2 := lim
p→0

|p|−αb̂(p) > 0. (3.24)

Obviously, C2 6 C1.

Theorem 14 ([A8], Theorem 3) If for some −1 < α < 1 the infrared bounds (3.24)
hold, then

lim
λ→0

λ(5−α)/2Ê(λ) 6 C3 < ∞, (3.25)
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and
lim
λ→0

λ(9−2α+α2)/4Ê(λ) > C4 > 0, (3.26)

where the constants C3 and C4 depend only on α, C1 and C2.

The upper bound on Ê(λ) can be converted into an upper bound on E(t), using the
following result Tauberian result.

Lemma 3.2.2 (Quastel and Valkó [73]) There exists an explicit finite constant C
such that

E(t) 6 Ct−1Ê(t−1). (3.27)

In summary the upper bound on Ê(λ) (3.25) can be converted into

lim
t→∞

t−(3−α)/2E(t) 6 C ′3 < ∞. (3.28)

and the lower bound on Ê(λ) essentially means

lim
t→∞

t−(5−2α+α2)/4E(t) > C ′4 > 0. (3.29)
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Chapter 4

Stochastic algorithms

Stochastic approximation algorithms are meant to describe the state of a system which
gradually adapts to its environment over time. A discrete-time stochastic algorithm
(xn)n∈N taking values in R

d adapted to a filtration F = (Fn)n∈N will often be assumed
to satisfy a recursion of the form

xn+1 − xn = γnF (xn) + cn(ǫn+1 + rn+1), (4.1)

where (ǫn) is a (F-adapted) martingale increment, and where (γn), (cn) and (rn) are
F-adapted and small, in a sense that will be made more specific later.

Another setting considered here consists in recursions of the type

xn+1 − xn = γnyn + cn(ǫn+1 + rn+1),

where yn is not necessarily a function of xn. If it is possible to control the effect of
certain small perturbations of the system on xn and yn, then a.s. nonconvergence
towards some limit situations can be deduced: see Sections 2.1.2 and 2.1.4 for instance
(and the corresponding papers [A1,A2]), where xn and yn are one-dimensional, with a
technique involving a coupling.

The study of stochastic approximation started in the early 50s with the seminal
papers of Robbins and Monro [76], Kiefer and Wolfowitz [47]), and was the subject of
numerous works in signal processing, adaptive control (Kushner and Yin, Ljung and
Söderström [49, 55, 56]) and recursive estimation (Nevelson and Khaminskii [64]). This
theory more recently found interesting applications in neural networks (Fort and Pagès
[37], White [93]), simulated annealing (Duflo [35]), game theory (Fudenberg and Levine
[38]), and new developments in signal processing, through the use of methods based
on Monte Carlo simulations, with Markov Chain Monte Carlo and sequential Monte
Carlo approaches (Cappé, Moulines and Ryden [16]).

The behaviour of a stochastic algorithm is, under certain assumptions, comparable
to the solutions of the ordinary differential equation (ODE)

ẋ = F (x).

49
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The method was introduced by Ljung in 1977 ([54]) and developed, amongst others,
by Kushner, Clark and Yin [48, 49], Benveniste, Métivier and Priouret [11], Duflo
[35]. Benäım and Hirsch [6, 7] could show, under weak assumptions on the dynamics,
that the limit sets of the algorithm belong to a class of sets fully determined by the
corresponding dynamical system, called internally chain recurrent sets.

I started my PhD on questions of nonconvergence towards unstable sets for the cor-
responding ODE. This problem had already been extensively studied, amongst others
by Pemantle [68, 69], Priouret, Brandière and Duflo [12, 13, 14], and Benäım [6]. My
contribution was to emphasize in [A9,A10], described Section 4.1, that the convergence
or not of the algorithm to the set mainly depends on the nature of the perturbation,
and not on the dynamics itself. In particular non-convergence towards the unstable
set is obtained in Theorem 15 under minimal assumptions in dimension one, if the
perturbation is “exciting” enough.

The corresponding heuristics was useful in the study of VRRW on the integers, see
Sections 2.1.2 and 2.1.4. Also, for strongly edge-reinforced random walks with Limic,
localization on more than one edge can be interpreted as convergence towards 0 of a
process that is “almost” a martingale, as explained Section 2.1.5, so that the techniques
in the proof of Theorem 15 Section 4.1 can be adapted: see for instance Section 2.3
[A3], and Section 3 [A4].

Conversely, the study of some unstable limiting behaviour of VRRW where the
“excitation” assumption was not satisfied (see Section 4 of [A1]) stimulated some work
on the two-armed bandit problem, at the end of my PhD ([87] Chapter 4) and with
Lamberton and Pagès in the case of i.i.d. payoffs [A11], and more recently with Van-
dekerkhove on ergodic payoffs [A12]: these results are presented in Section 4.2. On a
theoretical level, they imply that, if the martingale increment (ǫn)n∈N is weak and irreg-
ular, which corresponds to slowly decreasing step sequences in the two-armed bandit
setting, then the algorithm can converge to the unstable set with positive probability.

I also studied a few models of learning or adaptive behaviour with stochastic ap-
proximations techniques.

First, in a joint work with Benäım and Schreiber [A15], we proposed models of
evolution based on generalized urns processes, in order to understand the relative im-
portance of natural selection and random genetic drift in finite but growing populations.
This paper is not presented here, since I did not work on it or develop related techniques
after my PhD.

Second, the study of VRRW as a stochastic approximation of the replicator dy-
namics with Benäım [A5] enabled us to obtain results of localization with positive
probability, which are presented Section 2.2.

The two other applications of stochastic algorithms considered here are online learn-
ing algorithms in [A13] and reinforcement learning in signaling game [A14]: they are
presented in Sections 4.3 and 4.4.



4.1. UNSTABLE TRAPS 51

4.1 Unstable traps [A9,A10]

I recall here a one-dimensional result obtained at the end of my PhD [A10], which
could be adapted in several of my other works [A1,A2,A3,A4]. The techniques for its
proof also enabled generalization of some previous results of nonconvergence towards
unstable equilibria or periodic orbits and normally hyperbolic sets, see Theorem 2 [A9].

We consider real random variables (Xn), (Yn), adapted to the filtration F and
satisfying

Xn+1 = Yn + cn+1(ǫn+1 + rn+1) if Xn ∈ V (4.2)

Let V be a neighbourhood of 0 in R, let (ǫn) and (rn) F-adapted real sequences, let
(cn) be a nonnegative deterministic sequence having infinitely many positive terms.

Let, for all n ∈ N, αn =
∑+∞

i=n c2
i . Let A-1 be the following assumption on the

perturbation:

• E(ǫn+1|Fn) = 0, lim infn→∞E(ǫ2
n+1|Fn) > 0 et

∃a > 2 lim supn→∞E(|ǫn+1|a|Fn) < +∞
• ∑

n r2
n < +∞.

Theorem 15 ([A10], Theorem 3.2.1) Let (Xn) and (Yn) be random variables sat-
isfying (4.2). Assume A-1 and, for all n ∈ N, |Yn| > |Xn|; then

P ( lim
n→+∞

Xn = 0) = 0.

Let us shortly sketch the proof of Theorem 15 when
∑

c2
i < ∞ and ri = 0: the general

case is more difficult, but follows the same simple heuristics. First, it is easy to show
that, for all k, n ∈ N, k > n,

E(X2
k |Fn) > X2

n +

k
∑

i=n+1

c2
i E(ǫ2

i |Fn).

Let T := inf{k > n s.t. |Xk| > L(
∑∞

i=k c2
i )

1/2}. Using an upper bound on |Xi+1 − Yi|,
we deduce that, for any L > 0, there exists a constant C > 0 such that

P (T < ∞|Fn) > C.

Then Doob’s inequality enables one to conclude that there exists a constant D > 0
such that, using Markov’s inequality,

P (lim inf |Xk| = 0 | FT ) 6
E(
∑∞

i=T+1 ǫ2
i |FT )

X2
T

6
D

L2
.

Indeed the numerator in the fraction would be E((X∞ −XT )2|FT ) if we had Xk = Yk,
and here the algorithm pushes Xk further away from 0 so that the probability that its
lim inf is 0 has to be smaller: see [A10] for details.

In summary we conclude that P(lim inf |Xk| 6= 0|Fn) is lower bounded as n goes to
infinity, which enables us to conclude, since it converges to 1{lim inf |Xk|6=0} a.s.
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4.2 Narendra two-armed bandit algorithm [A11,A12]

The so-called two-armed bandit is a device with two arms, each one yielding an outcome
in {0, 1} at each time step, irrespective of the strategy of the player, who faces the
challenge of choosing the best one without loosing too much time on the other.

The Narendra algorithm is a stochastic procedure devised to that end, which was
initially introduced by Norman, Shapiro and Narendra [65] in the fields of mathematical
psychology and learning automata.

Formally, the Narendra two-armed bandit algorithm is defined as follows. At each
time step n ∈ N, we play source A (resp. source B) with probability Xn (resp. 1−Xn),
where X0 = x ∈ (0, 1) is fixed and Xn is updated according to the following rule, for
all n > 0:

Xn+1 =



















Xn + γn+1(1 − Xn) if Un+1 = A and ηA,n+1 = 1

(1 − γn+1)Xn if Un+1 = B and ηB,n+1 = 1

Xn otherwise,

(4.3)

where (γn)n>1 is a deterministic sequence taking values in (0, 1), Un+1 is the random
variable corresponding to the label of the arm played at time n + 1, and ηℓ,n+1 denotes
the (deterministic) payoff, taking values in {0, 1}, of source ℓ ∈ {A, B} at time n + 1.

Note that, if the payoffs ηℓ,n+1, instead of being deterministic, were i.i.d. with
probabilities θℓ, then Xn would satisfy a recursion of the form (4.1), with F (x) :=
(θA − θB)x(1− x). Assuming θA > θB, 0 would then be an unstable equilibrium of the
corresponding dynamics, and a.s. convergence of Xn to 1 would be expected if θA > θB

.
We first obtained a fallibility result with Lamberton and Pagès [A11] in the i.i.d.

payoffs, which extends the setting of deterministic payoffs, as shown in [A12] with
Vandekerkhove.

Theorem 16 ([A12], Theorem 4) Assume
∑

n>0

∏n
k=1(1 − γkηB,k) < ∞. Then

P

(

lim
n→∞

Xn = 0
)

> 0.

Theorem 16 does not require any information on the limit proportion of successes from
A, but it is a fallibility result only when this limit proportion is greater than the one
for B. Its proof is simple, and based on a Borel-Cantelli argument.

In the case where (ηB,k)k>0 is an i.i.d. sequence of random variables, then

Ex

(

∑

n>0

n
∏

k=1

(1 − γkηB,k)

)

=
∑

n>0

n
∏

k=1

(1 − γkθB) < ∞

ensures that the third condition of Theorem 16 is fulfilled a.s. This corresponds to the
fallibility result Theorem 1 (b) in [A11].
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Let us now discuss assumptions that ensure infallibility.

Step sequence Conditions. Let, for all n ∈ N ∪ {∞}, Γn =

n
∑

k=1

γk.

Let (S1) and (S2) be the following assumptions on the step sequence (γn)n∈N:

(S1) (γn)n>1 is nonincreasing and Γ∞ = ∞;

(S2) γn = O(Γne
−θBΓn).

Let (S) be the set of conditions (S1)-(S2).

Theorem 17 ([A11], Theorem 1 (c)) Assume (ηi,k)k>0, i ∈ {A, B} are i.i.d. se-
quences of random variables, with mean θA and θB, θA > θB, that (S2) holds and
Γ∞ = ∞. Then Xn converges to 1 a.s.

The result was later improved by Lamberton and Pagès, who showed in [50], still in
this i.i.d. case with θA > θB, that if the sequence (γn)n∈N is nonincreasing, then

P(lim Xn = 1) = 1 ⇐⇒ P

(

∑

n>0

n
∏

k=1

(1 − γkηB,k) < ∞
)

= 0;

note that this provides, together with Theorem 16, a necessary and sufficient condition
for infallibility in that case.

If we assume for instance that

γn := (
c

c + n
)α, c > 0, α ∈ (0, 1]

then it follows from Theorems 16 and 17 that Xn converges to 1 a.s. if and only if
α = 1 and c 6 θ−1

B .
The proof of Theorem 17 draws on a similar heuristics as Theorem 15, with the

difference that the variance vanishes when Xn approaches 0: so the proof of the first
step, namely that Xn will eventually become larger than the standard deviation of the
remaining perturbation, relies on different techniques.

We generalized Theorem 17 with Vandekerkhove to payoffs which are no longer
i.i.d., under the assumption that the empirical means of (ηi,k)k>0 converge at rate at
least log(n + 1)−1−ǫ, ǫ > 0.
Ergodic Conditions. Let (E) be the assumption that the outputs of arms A and B
satisfy

(E)
1

n

n
∑

k=1

ηA,k −→
n→∞

θA, and
1

n

n
∑

k=1

ηB,k −→
n→∞

θB,

where θA, θB ∈ (0, 1). Let, for all n ∈ N,

Rn := max
ℓ∈{A,B}

∣

∣

∣

∣

∣

n
∑

i=1

(ηℓ,i − θℓ)

∣

∣

∣

∣

∣

.
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Given a map φ : N −→ R+ and θA, θB ∈ (0, 1), let us denote by (Eφ) the assumption
that Rn/φ(n) −→

n→∞
0.

Let (E1) and (E2) be condition (Eφ), respectively with the following assumption
on φ:

(E1) φ is nondecreasing concave on [k0,∞) for some k0 ∈ N, and supn∈N
γnφ(n) < ∞.

(E2) φ(n) =
n

(log(n + 2))1+ε
for some ε > 0.

Note that (E) corresponds to (Eφ) with φ(n) = n, n ∈ N, for which (E1) holds
for instance in the case of a step sequence γn = c/(c + n), c > 0. It is also possible to
show that (S)-(E2) implies (E1) (see Lemma 1 [A12]).

Theorem 18 ([A12], Theorem 2) Under assumptions (S1)-(E1), the Narendra se-
quence (Xn)n∈N converges Px − a.s towards 0 or 1 as n tends to infinity.

Theorem 19 ([A12], Theorem 3) Under assumptions (S)-(E2) and θA > θB, the
Narendra sequence (Xn)n∈N converges Px − a.s towards 1 as n tends to infinity.

Recall that the above conditions (E1) and (E2) are purely deterministic. If we let
the sequences (ηA,i)i∈N and (ηB,i)i∈N be distributed as i.i.d. sequences with expectations
θA and θB, then (E2) almost surely occurs as a consequence of the law of iterated
logarithm. If we further assume (S) and θA > θB, then Theorem 19 implies that the
algorithm (Xn)n∈N almost surely converges to 1, which generalizes Theorem 17 in the
case nonincreasing step sequences (γn)n∈N.

In practice, the Narendra algorithm is used in the context of performance assess-
ment, in applications either in automatic control or in financial mathematics, and the
i.i.d. assumption looks rather unrealistic, since the performance depends in general on
parameters that evolve slowly and randomly in time.

The proof of Theorem 19 is quite technical, and relies on carefully chosen integra-
tions by parts, in order to translate information on the sequences (ηℓ,i)i∈N, ℓ ∈ {A, B}
into some on the asymptotic behaviour of the algorithm.

4.3 Online Learning as Stochastic Approximation

of Regularization Paths [A13]

Consider the following classical problem of learning from examples: given a sequence of
i.i.d. random samples (zt = (xt, yt))t∈N drawn from a probability measure ρ on X × Y ,
one seeks to approximate the regression function

fρ(x) :=

∫

Y

ydρY |x,

i.e. the conditional expectation of y given x.
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The quality of the estimate one can obtain depends on the regularity of fρ, measured
through a Mercer Kernel K : X × X −→ R (continuous, symmetric and positive
semidefinite). The Reproducing Kernel Hilbert Space (RKHS) HK is defined as the
closure of the linear span of the set of functions {Kx := K(x, .), x ∈ X}, with the
inner product, denoted as < ., . >K , satisfying < Kx, Ky >K= K(x, y).

Recall the reproducing property < Kx, f >= f(x), for all x ∈ X, f ∈ HK , which
implies in particular that ‖f‖∞ 6 κ‖f‖K , where κ := supx∈X

√

K(x, x).
In “batch” learning algorithms, one way to approximate fρ, knowing (zt)16t6m, is

to perform a Tikhonov regularization, in order to trade off bias against variance, as
usually in statistical learning, i.e. choose, for some λ > 0,

fz,λ := argminf∈HK

{

1

m

m
∑

i=1

(f(xi) − yi)
2 + λ‖f‖2

K

}

.

Note that fz,λ exists and is unique by convexity, and that λ can be chosen as a function
of the regularity assumed on fρ, and of m.

More precisely, let ρX be the induced marginal probability measure from ρ on X,
and let LK : L2(ρX) −→ L2(ρX) be the self-adjoint operator defined by

LK(f)(x) =

∫

X

K(x, y)f(y)dρX(y) =< Kx, f >L2(ρX ), x ∈ X,

which is positive and compact, so that we can define (through any orthornomal system),
the operators Lr

K : L2(ρX) −→ L2(ρX) for all r ∈ R+. We assume that there exists
Mρ > 0 such that ρ((x, y) : |y| 6 Mρ) = 1.

Let Cst(a1, a2, . . . , ap) denote a positive constant depending only on a1, a2, . . . ap,
and let Cst denote a universal positive constant.

Smale and Zhou performed in 2007 the following analysis on “batch” learning
Tikhonov regularization algorithms.

Theorem 20 (Smale and Zhou [85], Theorem 2) Assume L−r
K fρ ∈  L2(ρX) for some

1/2 < r 6 1. Let λ := (3κMρ/‖L−r
K fρ‖ρ)

2/(1+2r)m−1/(1+2r). Then, for all δ ∈ (0, 1),
with confidence 1 − δ,

‖fz,λ − fρ‖K 6 4 log(2/δ)(3κMρ)
(2r−1)/(2r+1)‖L−r

K fρ‖2/(1+2r)
ρ m−(2r−1)/(4r+2).

The choice of λ in Theorem 20 is unrealistic, because fρ is not known, but one could
however have some initial information on the regularity of fρ.

Our goal with Yao was to obtain similar bounds for online learning algorithms,
which are recursive, contrary to batch learning algorithms which process the data once
and for all at some fixed time m. We could obtain the same rate [A13], with a careful
choice of the step sequences.

More precisely, we analyze algorithms of the type

ft = ft−1 − γt[(ft−1(xt) − yt)Kxt
+ λtft−1], for some f0 ∈ HK , e.g. f0 = 0,
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with gain sequences (λt)t∈N and (γt)t∈N taking values in R+ \ {0}, originally introduced
by Smale and Yao in [84], and further studied by Yao in [96]. The recursion can be
interpreted as a stochastic gradient descent

ft = ft−1 − grad V λt

zt
(ft−1),

where

V λ
z (f) :=

1

2
[(f(x) − y)2 + λ‖f‖2

k]

for all f ∈ HK , z ∈ X × Y and λ ∈ R+. One of the advantages of such algorithms,
besides being adaptive, is their computational complexity, which is quadratic in time
in the worst case, and can be linear at the cost of a large memory allocation. In
comparison, the batch learning Tikhonov regularization scheme typically involves the
inverse of a matrix, which is O(t3) in the worst case.

We optimize the choice of (λt)t∈N and (γt)t∈N, as a function of the regularity of fρ.
We choose f0 := 0, and

γt := (t + t0)
− 2r

2r+1 , λt := (t + t0)
− 1

2r+1 , (4.4)

for some t0 := Cst(κ).

Theorem 21 ([A13], Theorem B) Assume L−r
K fρ ∈  L2(ρX) for some 1/2 < r 6

3/2. Then, with confidence 1 − δ,

‖ft − fρ‖K 6 Cst(κ, Mρ, ‖L−r
K fρ‖L2(ρX ))

(

log
2

δ

)

t−
2r−1
4r+2 ,

Theorem 22 ([A13], Theorem C) Assume L−r
K fρ ∈  L2(ρX) for some 1/2 < r 6 1.

Then, with confidence 1 − δ,

‖ft − fρ‖L2(ρX) 6 Cst(κ, Mρ, ‖L−r
K fρ‖L2(ρX ))

(

log
2

δ

)2

t−
r

2r+1 .

The exponent in t in the HK-norm rate is the same as the best known one in batch
learning, obtained by Smale and Zhou [85], and the mean square distance convergence
rate is optimal in the sense that it reaches the minimax and individual lower rates (see
for instance Caponnetto and de Vito [15]).

The choice of the gain sequences in (4.4) is derived from the analysis of the algorithm
as a stochastic approximation of a Tikhonov regularization path converging to the
regression function.

The proof is based on the one hand on some martingale and reverse-martingale
expansions, and on the other hand on probabilistic exponential inequalities on Banach
spaces provided of Pinelis [72], which allow to extend finite-dimensional techniques in
the study of rate of convergence of stochastic approximation to the infinite-dimensional
online algorithm considered here.
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The paper is still under progress, in two respects: first, the (log(2/δ))2 factor in
Theorem 22 improves the

√

1/δ factor in Theorem C [A13], and we are finishing the
writing of this improvement. Second, the constants involved in Theorems 21 and 22
can be improved, if we multiply γt and λt in our current choice by a factor depending
on the regularity of fρ: we are currently investigating this.

4.4 Reinforcement learning in signaling game [A14]

We study learning and creation of a common language through reinforcement learning.
Let S1 be a set of states, and let S2 be a set of signals, with |S1| = M , |S2| = N ;
let S := S1 ∪ S2 . A Sender and Receiver have a set of urns which they use to make
decisions:

For any state i, the Sender has a State Urn i, with balls of N different colors, one
per signal (V (n, i, j) balls of colour j at time n).

For any signal j, Receiver has a Signal Urn j with balls of M different colors, one
per state (V (n, j, i) balls of colour i at time n).

The players privilege strategies that yield better payoff, through reinforcement.
More precisely, for any state i, signal j and time n, let

V (n, i, j) : = number of balls of colour/signal j in state Urn i at time n

= number of balls of colour/state i in signal Urn i at time n

The model is described as follows.

1 Initial setting. For any i ∈ S1, j ∈ S2, we assume that V (0, i, j) = V (0, j, i) > 0
is fixed.

2 Reinforcement learning. At each time step, Sender observes a certain state i
from set of states S1; we assume here that all states arise with equal probability
1/M . Then Sender randomly chooses a signal, his probability of drawing j being

V (n, i, j)
∑

l∈S2
V (n, i, l)

.

Receiver observes the signal he receives (let us call it j) and then randomly
chooses a state k with probability

V (n, k, j)
∑

l∈S1
V (n, l, j)

.

3 Updating rule. Both Sender and Receiver receive payoffs when the state chosen
by Receiver matches the state observed by Sender. For any i ∈ S1, j ∈ S2,

V (n + 1, i, j) :=



















V (n, i, j) + 1 if Sender observes state i and chooses

signal j, and Receiver chooses state i;

V (n, i, j) if else.
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For simplicity, for all n ∈ N, i, j ∈ S1 (or S2), let V (n, i, j) = 0.

Note that it follows directly from the model that, for all n ∈ N, i, j ∈ S, V (n, i, j) =
V (n, j, i).

For all n ∈ N and i, j ∈ S, let

Tn :=
∑

k∈S1,l∈S2

V (n, k, l)

be the number of successes up to time n, and let

xn
ij :=

V (n, i, j)

Tn
, xn

i :=
∑

j∈S2

xn
ij , xn

j :=
∑

i∈S1

xn
ij (4.5)

Xn := (xn
ij)i∈S1,j∈S2;

Xn takes values in

∆ :=

{

(xij)i∈S1,j∈S2 : xij > 0,
∑

i∈S1,j∈S2

xij = 1, xij = xji

}

;

given x ∈ ∆ and i, j ∈ S2, define xij , xi and xj as in (4.5).

In the particular case where S1 = {1, 2}, S2 = {A, B}, Argiento, Pemantle, Skyrms
and Volkov obtained the following

Theorem 23 (Argiento, Pemantle, Skyrms and Volkov [1]) Almost surely, ei-
ther Xn = (x1A, x1B, x2A, x2B) converges towards (1/2, 0, 0, 1/2) or (0, 1/2, 1/2, 0) as n
tends to infinity.

Let F (X) : ∆ −→ T∆ be defined by

F (X) :=

(

xij

( xij

xixj

− H(X)
)

)

i∈S1,j∈S2

with the convention that F (X)ij = 0 if xij = 0. Let, for all X ∈ ∆,

H(X) =
∑

i∈S1, j∈S2 s.t. xij>0

x2
ij

xixj

=
1

2

∑

i,j∈S s.t. xij>0

x2
ij

xixj

.

Note that H is not continuous on the boundary of the simplex.

We obtained the following results with Hu and Skyrms [A14].

Theorem 24 ([A14], Theorem 2.1) The communication potential process (H(xn))n∈N

is a bounded submartingale, and hence converges a.s.
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The proof of Theorem 24 is quite technical; let us however show that H is a Lyapounov
function for the ODE (4.9). Let

∂∆ = {x ∈ ∆ : xi = 0 for some i}.
Note that ∂∆ is not the topological boundary of ∆.

Assume x ∈ ∆ \ ∂∆:

∇H · F (x) =
∑

i,j∈S

xij

xixj

((xij)
2

xixj
− xijH(x)

)

− (xij)
2

2(xi)2xj

(

∑

k∈S

(xik)
2

xixk
− xikH(x)

)

− (xij)
2

2xi(xj)2

(

∑

k∈S

(xjk)
2

xjxk

− xjkH(x)
)

=
∑

i,j∈S

(xij)
3

(xi)2(xj)2
−
∑

i,j,k∈S

(xij)
2(xik)

2

(xi)3xjxk

(4.6)

−
(

∑

i,j∈S

(xij)
2

xixj

−
∑

i,j,k∈S

(xij)
2xik

(xi)2xj

)

H(x). (4.7)

Using that
∑

k∈S xik/xi = 1,

(4.7) =
∑

i,j∈S

(xij)
2

xixj

(

1 −
∑

k∈S

xik

xi

)

H(x) = 0.

Using the symmetry between j and k, we obtain

(4.6) =
∑

i,j,k∈S

(xij)
3xik

(xi)3(xj)2
−
∑

i,j,k∈S

(xij)
2(xik)

2

(xi)3xjxk

=
1

2

∑

i,j,k∈S

xijxik

xi

(

xij

xixj
− xik

xixk

)2

. (4.8)

Lemma 4.4.1 ([A14], Lemma 3.1) For all n ∈ N,

Xn+1 − Xn =
1

(1 + Tn)M
F (Xn) + ηn+1

where (ηn)n∈N is a martingale increment, with |ηn| 6 2/(1 + Tn).

Let
Γ := {X ∈ ∆ s.t. F (X) = 0}

be the set of equilibria of the ODE

dX

dt
= F (X). (4.9)
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State 1 2 3 4 5

Signal A B C D E

Figure 4.1: Here M = N , (P )G holds, with both a synonym and an informational
bottleneck.

Theorem 25 ([A14], Theorem 2.2) (Xn) converges to Γ a.s.

The proof of Theorem 25 is very technical, since we have to deal with the possibility
that Xn approaches ∂∆, where F is not continuous anymore.

Given a graph G on S1 ∪ S2, let (P )G be the following property:

• if we let C1, . . . Cd be its connected components then, for every i ∈ {1, . . . , d},
Ci ∩ S1 or Ci ∩ S2 is a singleton.

• each vertex has a corresponding edge.

We call synonym (resp. informational bottleneck or polysemy) a state (resp. signal)
associated to several signals (resp. states), or the corresponding set of adjacent signals
(resp. states). Obviously M 6= N ensures the existence of at least one synonym or
polysemy.

Given x ∈ ∆, let Gx be the weighted bipartite graph with vertices S := S1∪S2, and
adjacency ∼ as follows:

∀ i ∈ S1, j ∈ S2, i ∼ j ⇐⇒ xij > 0.

Note that, if x is not in the topological boundary of ∆, then Gx is the complete 2-partite
graph with partitions S1 and S2.

Given x ∈ ∆, and even if M = N , property (P )Gx
allows for synonyms or informa-

tional bottlenecks, and does not ensure that the system is optimal as a communication
system, i.e. that H(x) reaches the maximum of H .

Theorem 26 ([A14], Theorem 2.3) For all G on S1 ∪ S2 s.t. (P )G holds, we have,
with positive probability,

(a) xn → x s.t. Gx = G.

(b) ∀i, j ∈ S, V (∞, i, j) = ∞ ⇐⇒ {i, j} is an edge of G.
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We also show in Proposition 5.2 [A14] that x ∈ ∆ \ ∂∆ is linearly stable if and only if
(P )Gx

holds.
Interestingly, the result (and proof) of Theorem 26 resembles localization results

for vertex-reinforced random walks [70, 90], [A5,A1,A2].
We are currently studying, with my PhD student Daniel Kious, a generalization

of this model to social networks: on a graph G, i decides to speak to j, within its
neighbours, with a probability proportional to the number of times the communication
between i and j succeeded, the same for j, and the communication succeeds if the two
events occur and i or j has been chosen at that time by Nature to communicate. These
probabilities to be chosen to communicate are arbitrary (pi for i).

Then the signaling model can be seen as the case of a bipartite graph; we are
currently extending the results of this section to that setting.
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