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Abstract

We generalize a result from Volkov (2001,[23]) and prove that, on a large
class of locally finite connected graphs of bounded degree (G,∼) and symmet-
ric reinforcement matrices a = (ai,j)i,j∈V (G), the vertex-reinforced random walk
(VRRW) eventually localizes with positive probability on subsets which consist
of a complete d-partite subgraph with possible loops plus its outer boundary.

We first show that, in general, any stable equilibrium of a linear symmetric
replicator dynamics with positive payoffs on a graph G satisfies the property that
its support is a complete d-partite subgraph of G with possible loops, for some
d > 1. This result is used here for the study of VRRWs, but also applies to other
contexts such as evolutionary models in population genetics and game theory.

Next we generalize the result of Pemantle (1992,[14]) and Benäım (1997,[2])
relating the asymptotic behaviour of the VRRW to replicator dynamics. This
enables us to conclude that, given any neighbourhood of a strictly stable equi-
librium with support S, the following event occurs with positive probability: the
walk localizes on S ∪ ∂S (where ∂S is the outer boundary of S) and the density
of occupation of the VRRW converges, with polynomial rate, to a strictly stable
equilibrium in this neighbourhood.

1 General introduction

Let (Ω,F , P ) be a probability space. Let (G,∼) be a locally finite connected
symmetric graph, and let V (G) be its vertex set which we sometimes also denote
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by G for simplicity. Let a := (ai,j)i,j∈V (G) be a symmetric (i.e ai,j = aj,i) matrix
with nonnegative entries such that, for all i, j ∈ V (G)

i ∼ j ⇔ ai,j > 0.

Let (Xn)n∈N be a process taking values in V (G). Let F = (Fn)n∈N denote the
filtration generated by the process, i.e Fn = σ(X0, . . . ,Xn) for all n ∈ N.

For any i ∈ V (G), let Zn(i) be the number of times that the process visits
site i up through time n ∈ N ∪ {∞}, i.e

Zn(i) = Z0(i) +
n
∑

m=0

1I{Xm=i},

with the convention that, before initial time 0, a site i ∈ V (G) has already been
visited Z0(i) ∈ R+ \ {0} times.

Then (Xn)n∈N is called a Vertex-Reinforced Random Walk (VRRW) with
starting point v0 ∈ V (G) and reinforcement matrix a := (ai,j)i,j∈V (G) if X0 = v0

and, for all n ∈ N,

P(Xn+1 = j | Fn) = 1I{j∼Xn}
aXn,jZn(j)

∑

k∼Xn
aXn,kZn(k)

.

These non-Markovian random walks were introduced in 1988 by Pemantle
[13] during his PhD with Diaconis, in the spirit of the model of Edge-Reinforced
Random Walks by Coppersmith and Diaconis in 1987 [4], where the weights
accumulate on edges rather than vertices.

Vertex-reinforced random walks were first studied in the articles of Pemantle
(1992,[14]) and Benäım (1997,[2]) exploring some features of their asymptotic
behaviour on finite graphs and in particular relating the behaviour of the empir-
ical occupation measure to solutions of ordinary differential equations when the
graph is complete (i.e. when all vertices are related together), as explained below.
On the integers Z, Pemantle and Volkov (1999,[16]) showed that the VRRW a.s.
visits only finitely many vertices and, with positive probability, eventually gets
stuck on five vertices, and Tarrès (2004,[18]) proved that this localization on five
points is the almost sure behavior.

On arbitrary graphs, Volkov (2001,[23]) proved that VRRW with reinforce-
ment coefficients ai,j = 1Ii∼j, i, j ∈ V (G) (again, i ∼ j meaning that i and j
are neighbours in the nonoriented graph G) localizes with positive probability
on some specific finite subgraphs; we recall this result in Theorem 4 below, in
a generalized version. More recently, Limic and Volkov [8] study VRRW with
the same specific type of reinforcement on complete-like graphs (i.e. complete
graphs ornamented by finitely many leaves at each vertex) and show that, almost
surely, the VRRW spends positive (and equal) proportions of time on each of its
non-leaf vertices.

The VRRW with polynomial reinforcement (i.e. with the probability to visit
a vertex proportional to a function W (n) = nρ of its current number of visits)
has recently been studied by Volkov on Z (2006,[24]). In the superlinear case
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(i.e. ρ > 1), the walk a.s. visits two vertices infinitely often. In the sublinear case
(i.e. ρ < 1) the walk a.s. either visits infinitely many sites infinitely often or is
transient; it is conjectured that the latter behaviour cannot occur, and that in
fact all integers are infinitely often visited.

The similar Edge-Reinforced Random Walks and, more generally, self-interacting
processes, whether in discrete or continuous time/space, have been extensively
studied in recent years. They are sometimes used as models involving self-
organization or learning behaviour, in physics, biology or economics. We pro-
pose a two pages review of the subject in the introduction of [12]. For more
detailed overviews, we refer the reader to surveys by Davis [5], Merkl and Rolles
[10], Pemantle [15] and Tóth [19], each analyzing the subject from a different
perspective.

Let us first recall a few well-known observations on the study of Vertex-
Reinforced Random Walks, and in particular the heuristics for relating its be-
haviour to solutions of ordinary differential equations when the graph is finite
and complete (i.e. when all vertices are related together), as done in Pemantle
(1992,[14]) and Benäım (1997,[2]) .

Let us introduce some preliminary notation, without any assumption on
(G,∼) locally finite connected symmetric graph, possibly infinite. For all x =
(xi)i∈V (G) ∈ R

V (G), let

S(x) := {i ∈ V (G)/ xi 6= 0}

be its support. For all x ∈ R
V (G) such that S(x) is finite, let

Ni(x) :=
∑

j∈V (G),j∼i

ai,jxj , H(x) =
∑

i,j∈V (G),i∼j

ai,jxixj =
∑

i∈G

xiNi(x) (1)

and, if H(x) 6= 0, let

π(x) :=

(

xiNi(x)

H(x)

)

i∈G

. (2)

Let
Θ :=

{

x ∈ R
V (G) s.t. |S(x)| < ∞

}

,

and let

∆ :=







x ∈ R
V (G)
+ ∩ Θ s.t.

∑

i∈V (G)

xi = 1







.

be the nonnegative simplex restricted to elements x of finite support.
Assume for now that G is a general finite graph, and define, for all n ∈ N,

the vector of density of occupation of the random walk at time n

v(n) =

(

Zn(i)

n + n0

)

i∈V (G)

,

where n0 :=
∑

j∈V (G) Z0(j) > 0, taking values in the nonnegative simplex ∆.
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Let L ≫ 1. For all n ∈ N, the goal is to compare v(n + L) to v(n). If n ≫ L,
then the VRRW between these times behaves as though v(k), n 6 k 6 n + L,
were constant, and hence approximates a Markov chain which we call M(v(n)).

Then π(v(n)) ∈ ∆ is the invariant measure of M(v(n)), which is reversible
(trivially H(v(n)) > since v(n)i > 0 for all i, so that π(v(n)) is well-defined).
If L is large enough then, by the ergodic theorem, the local occupation density
between these times will be close to π(v(n)). This means that,

(n + L)v(n + L) ≈ nv(n) + Lπ(v(n)), (3)

hence

v(n + L) − v(n) ≈ L

nH(v(n))
F (v(n)), (4)

where
F (x) = (xi[Ni(x) − H(x)])i∈V (G). (5)

Up to an adequate time change, (v(k))k∈N should approximate solutions of
the ordinary differential equation on ∆

dx

dt
= F (x), (6)

also known as the linear replicator equation in population genetics and game
theory.

However, the requirement that L be large enough so that the local occupation
measure of the Markov Chain approximates the invariant measure π(v(n)), com-
petes with the other requirement that L be small enough so that the probability
transitions of this Markov Chain still match the ones of the VRRW, so that the
heuristics breaks down when the relaxation time of the Markov Chain is of the
order of n, which can happen in general on non-complete graphs and is actually
consistent with the fact that the walk will indeed eventually localize on a small
subset. An illustration of how such a behaviour can occur is given in the proof
of Lemma 2.8 in Tarrès [18]. The study of the a.s. asymptotic behaviour of the
VRRW on an infinite graph is even more involved in general.

Let us yet study the replicator differential equation (6) associated to the
random walk on ∆ for general locally finite symmetric graphs (G,∼).

It is easy to check that H is a strict Lyapounov function for (6) on ∆, i.e.
that it is strictly increasing on the non-constant solutions of this equation: if
x(t) = (xi(t))i∈G is the solution at time t, starting at x(0) := x0, then

dH

dt
(t) =

∑

i∈S(x)

∂H

∂xi
(x(t))F (x(t))i = J(x(t))

where, for all x ∈ ∆,

J(x) := 2
∑

i∈S(x)

Ni(x)F (x)i = 2
∑

i∈S(x)

xi(Ni(x) − H(x))2. (7)
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Note that the restriction of H to the equilibria of (6) takes finitely many values
if G is finite (see [14] for instance).

Let us now deal with the equilibria of this differential equation: a point
x = (xi)i∈V (G) ∈ ∆ is called an equilibrium if and only if F (x) = 0. An equilibrium
is called feasible provided H(x) 6= 0.

The reason why we only consider feasible equilibria x ∈ ∆ is that, for all
n ∈ N and i ∈ G, Zn(i) 6

∑

j∼i Zn(j) + n0, so that an accumulation point x of
(v(n))n∈N in ∆ would satisfy Ni(x) > (minj∼i ai,j)xi for all i ∈ V (G), hence

H(x) >

(

min
{i,j∈S(x), j∼i}

ai,j

)

∑

i∈S(x)

x2
i >

min{i,j∈S(x), j∼i} ai,j

|S(x)| (8)

by Cauchy-Schwarz inequality.
By a slight abuse of notation, we let DF (x) = (∂Fi/∂xj)i,j∈V (G) denote both

the Jacobian matrix of F at x, and the corresponding linear operator on Θ. Since
∆ is invariant under the flow induced by F, the tangent space

T∆ :=







v ∈ Θ/
∑

i∈V (G)

vi = 0







is invariant under DF (x). We let DF (x)|T∆ denote the restriction of the operator
DF (x) to T∆.

When x is an equilibrium, it is easily seen that DF (x) has real eigenvalues
(see Lemma 1). Such an equilibrium is called hyperbolic (respectively a sink)
provided DF (x)|T∆ has nonzero (respectively negative) eigenvalues. It is called
a stable equilibrium if DF (x)|T∆ has nonpositive eigenvalues. Note that every
sink is stable. Furthermore, by Theorem 1 below, every stable equilibrium is
feasible.

We will sometimes abuse notation and identify arbitrary subsets H of G to
the corresponding subgraph (H,∼). Given x ∈ V (G) and a subset A of V (G),
we write x ∼ A if there exists y ∈ A such that x ∼ y. Given two subsets R and
S of V (G), we let

∂R = {y ∈ V (G) \ R : y ∼ R}, ∂SR = {y ∈ S \ R : y ∼ R};
∂R is called the outer boundary of R.

A site i ∈ V (G) will be called a loop if i ∼ i, and we will say that a subset H
contains a loop iff there exists a site in it which is a loop.

We will say that x is a strictly stable equilibrium if it is stable and, furthermore,
for all i ∈ ∂S(x), Ni(x) < H(x). We let Es be the set of strictly stable equilibria
of (6) in ∆. Note that x stable already implies Ni(x) 6 H(x) for all i ∈ ∂S(x),
by Lemma 1.

Given d > 1, subgraph (S,∼) of (G,∼) will be called a complete d-partite
graph with possible loops, if (S,∼) is a d-partite graph on which some loops have
possibly been added. That is

S = V1 ∪ . . . ∪ Vd

with
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(i) ∀ p ∈ {1, . . . , d}, ∀ i, j ∈ Vp, if i 6= j then i 6∼ j.

(ii) ∀ p, q ∈ {1, . . . , d}, p 6= q, ∀i ∈ Vp, ∀j ∈ Vq, i ∼ j.

For all S ⊆ G, let (P)S be the following predicate:

(P)S(a) (S,∼) is a complete d-partite graph with possible loops.

(P)S(b) If α ∼ α for some α ∈ S, then the partition containing α is a singleton.

(P)S(c) If Vi, 1 6 i 6 d are its d partitions, then for all i, j ∈ {1, . . . , d} and

α, α′ ∈ Vi, β, β′ ∈ Vj, aα,β = aα′,β′ .

Theorem 1 If x ∈ ∆ is a stable equilibrium of (6), then x is feasible and (P)S(x)

holds.

In the case a = (ai,j)i,j∈V (G) = (1Ii∼j)i,j∈V (G) the following Theorem 2 pro-
vides a necessary and sufficient condition for x ∈ ∆ being a stable equilibrium.
Theorems 1 and 2 are proved in Section 2.2.

Theorem 2 Assume ai,j = 1Ii∼j for all i, j ∈ G, and let x = (xi)i∈G ∈ ∆.
If (S(x),∼) contains no loop, then x is a stable (resp. strictly stable) equilib-

rium if and only if there exists d > 2 such that

(i) (S(x),∼) is a complete d-partite subgraph, with partitions =: V1, . . . Vd,

(ii)
∑

i∈Vp
xi = 1/d for all p ∈ {1, . . . , d},

(iii) ∀i ∈ ∂S(x), Ni(x) 6 (resp. <) 1 − 1/d (= H(x)).

If (S(x),∼) contains a loop, then x is a stable (resp. strictly stable) equi-
librium if and only if (S(x),∼) is a clique of loops (resp. with the additional
assumption: ∀j ∈ ∂S(x), Nj(x) < 1 or, equivalently, ∂{j} 6⊇ S(x)).

Remark 1 Jordan [6] independently shows, in the context of preferential du-
plication graphs, that conditions (i)-(iii) in Theorem 2 are indeed sufficient for
x ∈ ∆ being a stable equilibrium when loops are not allowed.

Remark 2 A connection between the number of stable rest points in the replica-
tor dynamics (or of patterns of evolutionary stable sets (ESS’s)) and the numbers
of cliques of its graph was made by Vickers and Cannings [21, 22], Broom [3] et
al., and Tyrer et al [20], motivated by the study of evolutionary dynamics in
biology.

A consequence of Theorem 1 is that supports of stable equilibria are generi-
cally cliques of the graph G. More precisely assume that the coefficients (ai,j)i,j∈G

are distributed according to some absolutely continuous distribution w.r.t. the
Lebesgue measure on symmetric matrices. Then the supports of stable equilibria
are a.s. cliques of the graph G (i.e. any two different vertices are connected), as
a consequence of (P)S(x)(a) and (c).
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The following Theorem 3 states that, given any neighbourhood N (x) of a
strictly stable equilibrium x ∈ Es then, with positive probability, the VRRW
eventually localizes in

T (x) := S(x) ∪ ∂S(x),

and the vector of density of occupation converges toward a point in N (x), which
will not necessarily be x (there may exist a submanifold of stable equilibria in
the neighbourhood of x). Note that this will imply, using Remark 2, that the
VRRW generically localizes with positive probability on subgraphs which consist
of a clique plus its outer boundary.

More precisely, let us first introduce the following definitions. For all S ⊆
V (G), let

S(S) := {v ∈ ∆ s.t. S(v) = S}.
For any open subset U of ∆ containing x ∈ ∆, let L(U) be the event

L(U) := {v(∞) := lim
n→∞

v(n) exists and belongs to Es ∩ S(S(x)) ∩ U}.

Let R be the asymptotic range of the VRRW, i.e.

R := {i ∈ G s.t. Z∞(i) = ∞}.

For any random variable v taking values in ∆, let

A∂(v) :=

{

∀i ∈ ∂S(v),
Zn(i)

nNi(v)/H(v)
converges to a (random) limit ∈ (0,∞)

}

.

Theorem 3 Let x ∈ ∆ be a strictly stable equilibrium. Then, for any open
subset U of ∆ containing x,

P({R = T (x)} ∩ L(U) ∩ A∂(v(∞))) > 0.

Moreover, the rate of convergence is at least reciprocally polynomial, i.e. there
exists ν := Cst(x, a) such that, a.s. on L(BVx(ǫ)),

lim
n→∞

(v(n) − v(∞))nν = 0.

Theorem 3 is proved in Section 2.3. It naturally leads to the following ques-
tions.

Firstly, are all the trapping subsets always of the form T (x) for some x ∈
Es? The answer is negative in general: let us consider for instance the graph
(Z,∼) of integers, to which we add a loop 0 ∼ 0 at site 0, with ai,j := 1Ii∼j .
Then x := (1I{i=0})i∈Z is a stable equilibrium, but is not strictly stable since
N−1(x) = N1(x) = 1 = H(x). However Proposition below (proved in Appendix
A.2) shows that v(n) converges to x with positive probability, by combining
an urn result from Athreya [1], Pemantle and Volkov [16] (Theorem 2.3) with
martingale techniques from Tarrès [18] (Section 3.1).
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Proposition 1 Let (G,∼) be the graph of integers defined above, and ai,j :=
1Ii∼j . Then, with positive probability, the VRRW localizes on {−2,−1, 0, 1, 2},
and there exist random variables α ∈ (0, 1), C and C ′ > 0 such that

(i)
Zn(0)

n
−→
n→∞

1,

(ii)
(Zn(−1), Zn(1))

n/ log n
−→
n→∞

(α, 1 − α),

(iii)

(

Zn(−2)

(log n)α
,

Zn(2)

(log n)1−α

)

−→
n→∞

(C,C ′).

We conjecture that, conditionally on a localization of the VRRW on a finite
subset, its vector of density of occupation on the subset converges to a stable
equilibrium x of (6), that the asymptotic range R is a subset of S(x) ∪ ∂S(x) ∪
∂(∂S(x)), and is equal to T (x) = S(x)∪∂S(x) if x ∈ Es, which occurs generically
on a; recall that S(x) then is a complete d-partite subgraph with possible loops
for some d > 1, by Theorem 1. A proof would require a deeper understanding
of the dynamics of (Z.(i))i∈V (G) (see Lemma 4). Note that, on the integers Z

(with standard adjacency, unlike Proposition 1) with ai,j = 1Ii∼j, the result that
the VRRW a.s. localizes on five sites [18] implies that stable equilibria which are
not in Es are ruled out (otherwise six sites would be possible as well); this can
be related to the property in this case that every neighbourbood of any stable
equilibrium x contains a strictly stable one.

Secondly, which subsets are of the form T (x) = S(x)∪∂S(x) for some x ∈ Es?
We know from Theorem 1 that subsets S(x) satisfy (P)S(x) and thus always con-
sist of a complete d-partite subgraph with possible loops and its outer boundary
for some d > 2. But (P)S(x) is not sufficient, and the occurrence of such subsets
also depends on the reinforcement matrix a = (ai,j)i,j∈V (G). Even in the case
a = (ai,j)i,j∈V (G) = (1Ii∼j)i,j∈V (G) Theorem 2 provides explicit criteria for x ∈ Es,
but the corresponding condition (iii) (when (S(x),∼) has no loops) is on x, thus
not explicitly on the subgraph.

We introduce in the following Definition 1 the notion of strongly trapping
subsets, which we prove in Theorem 4 to always be such subsets T (x) for some
x ∈ Es -and actually for all x ∈ Σ, where Σ ⊆ Es is defined in the statement
of the theorem. As a consequence, by Theorem 3, the VRRW localizes on these
subsets with positive probability. The result is thus a generalization to arbitrary
reinforcement matrices of Theorem 1.1 by Volkov (2001,[23]) when ai,j := 1I{i∼j},
in which case the assumptions of Definition 1 obviously reduce to (c) or (c)’.

Definition 1 A subset T ⊆ V (G) is called a strongly trapping subset of (G,∼)
if T = S ∪ ∂S, where

(a) (i, j) 7→ ai,j is constant on {(i, j) ∈ S2 s.t. i ∼ j}, with common value =: aS ,

(b) max
i∈S,j∈∂S

ai,j 6 aS , and
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either (c) (i) S is a complete d-partite subgraph of G for some d > 2,

with partitions V1, . . ., Vd,

(ii) ∀j ∈ ∂S, ∃p ∈ {1, . . . , d} and i ∈ S \ Vp such that j 6∼ Vp ∪ {i},
or (c)’ S is a clique of loops, and ∀j ∈ ∂S, ∂{j} 6⊇ S.

Theorem 4 Let T be a strongly trapping subset of (G,∼); then the VRRW has
asymptotic range T with positive probability.

More precisely, assume T = S ∪ ∂S, where S satisfies conditions (a)-(c) or
(c)’ of Definition 1, and let us use the corresponding notation. Let

Σ :=







x ∈ S(S) s.t.
∑

i∈Vq

xi = 1/d for all 1 6 q 6 d







rd := d/(d − 1)

if (S,∼) contains no loops, and Σ := S(S), rd := 1 otherwise.
Then, for any x ∈ Σ and any neighbourhood N (x) of x in Σ, with positive

probability there exists random variables y ∈ N (x) and Cj > 0, j ∈ ∂S, such that

(i) VRRW eventually localizes on T , i.e. R = T

(ii) Zn(i)/n −→
n→∞

yi for all i ∈ S

(iii) Zn(j) ∼
n→∞

Cjn
rd

P

i∼j ai,jyi/aS

Theorem 4 is proved in Section 2.2.3. We provide in Example 1 (illustrated
in Figure 1) a counterexample showing that Theorem 3 is stronger, even in the
case a = (1Ii∼j)i,j∈G.

Thirdly, which conditions on the graph and on the reinforcement matrix a
do ensure the existence of at least one strictly stable equilibrium x ∈ Es, thus
implying localization with positive probability on T (x)? First note that, trivially,
this does not always occur, for instance on Z when φ(n) := a{n,n+1} is strictly
monotone, in which case we believe the walk to be transient.

In the case a = (1Ii∼j)i,j∈G, Volkov [23] proposed the following result, using
an iterative construction on subsets of the graph.

Proposition 2 (Volkov,[23]) Assume that a = (1Ii∼j)i,j∈G, and that (G,∼) is a
locally finite graph without loops. Then, under either of the following conditions,
there exists at least one strongly trapping subset:

(A) (G,∼) does not contain triangles;

(B) (G,∼) is of bounded degree;

(C) the size of any complete subgraph is uniformly bounded by some number K.

proof: Start, for some d > 2, with any complete d-partite subgraph (S,∼) of G
with partitions V1, . . ., Vd (for instance a pair of connected vertices, d = 2). Let
x ∈ ∂S, S = V1 ∪ . . . ∪ Vd:
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1) First assume that x ∼ Vp for all 1 6 p 6 d. Then, for all 1 6 p 6 d, let jp ∈
Vp, be such that x ∼ jp; iterate the procedure with the subgraph ∪16p6d{jp}∪{x},
which is a clique, and thus a complete (d + 1)-partite subgraph.

2) Now assume there exists p such that x 6∼ Vp, with ∂{x} ⊇ S \ Vp. Then
we iterate the procedure with the complete d-partite subgraph S ∪ {x} with
partitions V1, . . ., Vi ∪ {x}, . . ., Vd.

3) Otherwise we keep the same subgraph S and try another x ∈ ∂S.
If S has remained unchanged for all x ∈ ∂S, this implies that T = S ∪ ∂S is

a strongly trapping subgraph in the sense of Definition 1, so that the VRRW has
asymptotic range T with positive probability. 2

Using a similar technique, we can obtain the following necessary condition for
the existence of a strongly trapping subset in the case of general reinforcement
matrices a, when the graph does not contain triangles or loops. Let us first
introduce some notation. Let c be the distance on E(G) defined as follows:
for all e, e′ ∈ E(G), let c(e, e′) be the minimum number of edges necessary to
connect e to e′ plus one (and 0 if e = e′). For all e = {i, j}, let C(2, e) be the set
of maximal complete 2-partite subgraphs S ⊆ V (G) such that i, j ∈ V (G) and,
for all k, l ∈ S with k ∼ l, ak,l = ai,j.

Proposition 3 Assume the graph does not contain triangles nor loops. If, for
some e ∈ E(G),

min
S∈C(2,e)

max
k∈S, l∈∂S

ak,l 6 ae, (9)

then there exists at least one strongly trapping subset.
Note that (9) holds if

max
c(e,e′)62

ae′ 6 ae.

Remark 3 If, for all e ∈ E(G), (9) does not hold then there exists, for all
e ∈ E(G), an infinite sequence of edges (en)n∈N0 such that e0 = e, en ∼ en+1

and, for all n ∈ N, aen 6 aen+1 and aen < aen+2 . However, even in this case, there
can exist a strictly stable equilibrium x ∈ Es (but no strongly trapping subset).

proof of Proposition 3: By assumption, there exist e = {i, j} and a maximal
complete 2-partite subgraph S ⊆ V (G) containing i and j, with partitions V1 and
V2, and satisfying conditions (a), (b) and (c)(i) of Definition 1. For all k ∈ ∂S,
k is adjacent to at most one of two partitions, say V1, since otherwise G would
contain a triangle; if k were adjacent to all vertices in V1, then it would be in
V2, since S is assumed maximal. Hence (c)(ii) holds as well, and S is a strongly
trapping subset. 2

When the graph contains triangles, the property outlined in Remark 3, i.e.
the existence of an infinite sequence of edges with increasing labels when there
is no strongly trapping subset, does not hold anymore. The maximum of the
Lyapounov function on a complete subgraph with more than two vertices takes
a nontrivial form, which can lead to counterintuitive behaviour.

10
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A 3/8 D 1/8

B 3/8 C 1/8

FE 0

Figure 1: We show in Example 1 that T := {A, B, C, D, E} does not satisfy the assumptions of
Theorem 4, but is a trapping subgraph with positive probability by Theorems 2 and 3. The numbers
indicated in superscript of vertices represent the limit proportions of visits to these vertices if v(n)
were to converge to the equilibrium x in the example. In this case the walk would asymptotically
spend most of the time in the bipartite subgraph S := V1 ∪ V2, where V1 := {A, C}, V2 := {B, D},
evenly divided between partitions V1 and V2, and vertex E would be seldom visited, of the order of√

n times at time n.

We show for instance in Example 2 a case where the reinforcement matrix a
has a strict global maximum at a certain edge, but where however there is no
stable equilibrium at all. We believe the walk to be transient in this example.

Example 1 Let us show, in the case a = (1Ii∼j)i,j∈G, that Theorem 3 is stronger
than Theorem 4. Consider a graph G on six vertices A, B, C, D, E and F , with a
neighbourhood relation ∼ defined as follows (see Figure 1): A ∼ B ∼ C ∼ D ∼ A,
C ∼ E ∼ D and E ∼ F (recall that the graph G is symmetric). Let x =
(xA, xB , xC , xD, xE , xF ) := (3/8, 3/8, 1/8, 1/8, 0, 0), then S(x) = {A,B,C,D}
and ∂S(x) = {E}. Also, x is an equilibrium of (6), (P)S(x) is satisfied with
V1 = {A,C}, V2 = {B,D}, and NE(x) = 1/4 < H(x) = 1/2, which implies that
x is a strictly stable equilibrium by Theorem 2, hence subsequently by Theorem
3 that R = T (x) with positive probability.

Now let us prove by contradiction that T (x) with such x does not satisfy
the assumptions of Theorem 4 above. Indeed, if T (x) = S ∪ ∂S, then S ⊆
{A,B,C,D} since, otherwise, F would belong to T (x). Now the condition that
for all α ∈ ∂S, ∃i ∈ {1, . . . , d} and β ∈ S \ Vi such that α 6∼ Vi ∪ {β} implies in
particular that a vertex in ∂S is not connected to at least two other vertices in
S, so that α ∈ ∂S cannot be A, B, C or D which are are connected to all other
but one vertex in {A,B,C,D}. Hence S = {A,B,C,D}, but then α := E is
connected to both partitions of S, and does not satisfy the condition mentioned
last sentence, bringing a contradiction.

Example 2 Let us first study the case of a triangle (G,∼), V (G) := {0, 1, 2},
0 ∼ 1 ∼ 2 ∼ 0, with reinforcement coefficients a := a0,1, b := a1,2, c := a0,2 > 0.

If a < b+ c, then the equilibrium x = (x0, x1, x2) = (1/2, 1/2, 0) is not stable,
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since N2(x) = (b + c)/2 > H(x) = a/2. Hence, if we assume that

a < b + c, b < a + c, c < a + b, (10)

then a stable equilibrium has to belong to the interior of the simplex ∆. A simple
calculation shows that there is only one such equilibrium:

x = (x0, x1, x2) :=

(

c(a + b − c)

δ
,
b(a + c − b)

δ
,
a(b + c − a)

δ

)

,

where
δ := (a + b + c)2 − 2(a2 + b2 + c2);

δ > 0, which can be shown by adding up inequalities (b − a)2 6 c2, (c− a)2 6 b2

and (c − b)2 6 a2. Then H(x) = 2abc/δ.

p0 q1 p2

q1 p2

q0 q0 q1 q2 q2

0 1 2 3

0 1

p1

2

. . .

Figure 2: On the infinite graph on the figure, with reinforcement coefficient sequences (pn)n>0 strictly
decreasing and (qn)n>0 strictly increasing, we show in Example 2 that, even if p0 = sup

n>0
pn >

sup
n>0

qn, we can choose these sequences in such a way that there is no stable equilibrium in ∆, and
therefore no trapping subgraph.

Let N := Z+. Let us now consider the following graph (G,∼) with vertices
V (G) := {i, i, i ∈ N} and adjacency i ∼ i + 1, i ∼ i + 1, i ∼ i and i ∼ i + 1, for
all i ∈ N.

Fix ǫ, η, p, q > 0, µ ∈ (0, 1), which will be chosen later. Let, for all n ∈ N,

pn := p

n−1
∏

k=0

(1 − µkǫ), qn := q

n−1
∏

k=0

(1 + µkη). (11)

Note that, for all n ∈ N,

p

(

1 − ǫ

1 − µ

)

6 pn 6 p, q 6 qn 6 qe
η

1−µ .

Now assume that the reinforcement matrix (ak,l)k,l∈V (G) is defined as follows,
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depending on (pn)n∈N and (qn)n∈N, for all i ∈ N:

a2i,2i+1 := p2i, a
2i+1,2(i+1)

:= p2(i+1),

a2i,2i+1 = a2i+1,2(i+1) := q2i+1

a2i,2i = a2i,2i+1 := q2i

a2i+1,2i+1 := p2i+1

a2i+1,2(i+1) := q2i+1.

Let x ∈ ∆ be a stable equilibrium of (6). Then, by Theorem 1, (P)S(x) holds,
so that S(x) consists of two vertices or a triangle (it cannot be made of four
vertices, because of (P)S(x)(c)). Assume

p < 2q, ηqe
η

1−µ < p

(

1 − ǫ

1 − µ

)

. (12)

Then, for all i ∈ N,

pi < 2qi, pi+1 < qi + qi+1, qi+1 < qi + pi+1,

so that S(x) has to be a triangle.
Assume S(x) := {2i, 2i, 2i + 1} for some i ∈ N; the argument is similar in

other cases. Then

x2i+1 =
H(x)

2qi
, x2i =

H(x)

2q2
i

(2qi − pi), x2i+1 =
H(x)

2qi
,

and
N2i(x) = qix2i + pix2i+1 = H(x)

and, therefore,

N2i+1(x) = qi+1x2i + pi+1x2i+1 = H(x) +
H(x)

2q2
i

[(qi+1 − qi)(2qi − pi) + (pi+1 − pi)qi]

= H(x) +
H(x)

2q2
i

µi[ηqi(2qi − pi) − ǫpiqi] > H(x)

if
η > ǫ

p

2q − p
, (13)

using that p/(2q − p) > pi/(2qi − pi) for all i ∈ N.
Hence x is not a stable equilibrium, which leads to a contradiction.

2 Introduction to the proofs

2.1 Notation

We let N := Z+, N
∗ := N \ {0}, R

∗
+ := R+ \ {0}.
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For all y = (yi)i∈G ∈ R
G and for any finite subset A of G, let

yA :=
∑

i∈A

yi.

Given r ∈ N
∗, let (., .) (resp. |.|, ‖.‖∞) be the scalar product (resp. the

canonical norm, the infinity norm) on R
r, defined by

(a, b) =

r
∑

i=1

aibi, |a| =
√

(a, a), ‖a‖∞ := max
16i6r

|ai|

if a = (a1, . . . , ar) and b = (b1, . . . , br).
Given a real r × r matrix M with real eigenvalues, we let Sp(M) denote the

set of eigenvalues of M. When M is symmetric we let M [.] denote the quadratic
form associated to M , defined by M [a] = (Ma, a) for all a ∈ R

r.
Given y1, . . ., yr, we let Diag(y1, . . . , yr) be the diagonal r × r matrix of

diagonal terms y1, . . ., yr.
For all u, v ∈ R, we write u = 2(v) if |u| 6 v. Given two (random) sequences

(un)n>k and (vn)n>k taking values in R, we write un ≡ vn if un − vn converges
a.s, and un ∼n→∞ vn iff un/vn →n→∞ 1, with the convention that 0/0 = 1.

Let Cst(a1, a2, . . . , ap) denote a positive constant depending only on a1, a2,
. . . ap, and let Cst denote a universal positive constant.

2.2 Proof of Theorems 1, 2 and 4

Theorems 1 and 2 are a consequence of the more general three following Lemmas
1, 2 and 3 below.

2.2.1 Lemmas 1, 2 and 3, and proof of Theorem 1

By the following Lemma 1, if an equilibrium x ∈ ∆ is stable, then the eigenvalues
of [ai,j −2H(x)]i,j∈S(x), which depend only on a, S(x) and H(x), are nonpositive.
This property will subsequently imply (P)S(x), by Lemmas 2 and 3.

Lemma 1 Let x = (xi)i∈V (G) ∈ ∆ be an equilibrium. Then

(a) DF (x) has real eigenvalues.

(b) The three following assertions are equivalent:

(i) x is stable

(ii) maxSp(DF (x)) 6 0

(iii) max
(

Sp
(

[ai,j − 2H(x)]i,j∈S(x)

)

⋃ {Ni(x) − H(x), i ∈ ∂S(x)}
)

6 0

(c) If x is stable, then it is feasible.

The following Lemma 2 yields an algebraically simpler characterization of
assertion (P)S for S ⊆ V (G); recall that, given subsets S and R of V (G), ∂SR,
defined in Section 1, is the outer boundary of R inside S.
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Lemma 2 The statement (P)S is equivalent to

(P)′S If j, k ∈ S are such that j 6∼ k, then, for all i ∈ S, ai,j = ai,k

(so that ∂S{j} = ∂S{k} in particular).

Lemma 3 states that (P)S(x) holds if the eigenvalues of [ai,j − 2H(x)]i,j∈S(x)

are nonpositive, with equivalence if a = (1Ii∼j)i,j∈G.

Lemma 3 Let x = (xi)i∈V (G) ∈ ∆ be a feasible equilibrium. Then

maxSp
(

[ai,j − 2H(x)]i,j∈S(x)

)

6 0 =⇒ (P)′S(x).

If, for some c > 0, ai,j = c1Ii∼j for all i, j ∈ S(x), then the above implication is
an equivalence.

Lemmas 1, 2 and 3 are proved respectively in Sections 3.1, 3.2 and 3.3. They
obviously imply Theorem 1.

2.2.2 Proof of Theorem 2

Suppose a = (1Ii∼j)i,j∈G, and let x ∈ ∆.
First assume that (S(x),∼) contains no loop. If x is a stable equilibrium, then

(P)S(x) and thus (i) holds by Theorem 1; let Vk, 1 6 k 6 d be the partitions of
S(x). Then d > 2 (otherwise H(x) = 0 and x is not feasible, thus not stable by
Lemma 1) and, for all 1 6 k 6 d, j ∈ Vk,

vk :=
∑

i∈Vk

xi = 1 − Nj(x) = 1 − H(x),

so that vk = 1/d (since
∑

k vk = 1) and H(x) = 1 − 1/d, and subsequently (ii)-
(iii) hold by Lemma 1. Conversely, assume (i)-(iii) hold; then Ni(x) = 1 − 1/d
for all i ∈ S(x), so that H(x) =

∑

i∈S(x) xiNi(x) = 1 − 1/d and x is a feasible

equilibrium. Now (i) implies (P)S(x) and thus (P)′S(x) by Lemma 2. Hence, using
Lemmas 1 and 3, x is a stable equilibrium.

Now assume on the contrary that (S(x),∼) contains one loop i ∼ i. If x is a
stable equilibrium then Ni(x) = 1 = H(x) (x equilibrium), which implies that,
for all j ∈ S(x), Nj(x) = 1 so that j ∼ j and, subsequently, that (S(x),∼) is a
clique of loops by (P)S(x)(b). Conversely, if (S(x),∼) is a clique of loops, then
(P)S(x) obviously holds so that, by Lemmas 1 and 3, x is stable (since H(x) = 1,
then Ni(x) 6 H(x) for all i ∈ V (G)).

2.2.3 Proof of Theorem 4

First observe that
Σ = S(S) ∩ Es.

Indeed, the proof of Theorem 2 implies that Σ ⊇ S(S)∩ Es and, conversely, that
if x ∈ Σ, then x is a equilibrium and, by (c)(ii), for all j ∈ ∂S(x), Nj(x) < H(x)
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(= aS(1−1/d) if (S(x),∼) contains no loops, = aS otherwise), using assumptions
(a)-(b) and (c)(ii) or the second part of (c)’. Also (P)S(x) holds by (c) or (c)’,
and therefore x is strictly stable by Lemmas 1–3. The rest of the proof follows
from Theorem 3.

2.3 Proof of Theorem 3

Firstly, we provide in Lemma 4 a rigorous mathematical setting for the stochastic
approximation of the density of occupation of the VRRW v(n) by solutions of
the ordinary differential equation (6) on a finite graph G, heuristically justified
in Section 1 (see (4)). Secondly, we make use of this technique and of an entropy
function originally introduced in [9] to study the VRRW on the finite subgraph
T (x) when its density of occupation is in the neighbourhood of a strictly stable
equilibrium x, in Lemmas 5–10. Thirdly, we focus again on a general graph G -
possibly infinite - and prove in Proposition 4, assuming again that the density of
occupation is in the neighbourhood of an element x ∈ Es, that the walk eventually
localizes in T (x) with lower bounded probability.

In the first step, we make use of a technique originally introduced by Métivier
and Priouret in 1987 [11] and adapted by Benäım [2] in the context of vertex
reinforcement when the graph is complete (Hypothesis 3.1 in [2]). In Sections
4.1–4.3, we generalize it and show that a certain quantity z(n), depending only
on a, v(n), Xn and n and defined in (36), satisfies the recursion (37):

z(n + 1) = z(n) +
1

n + n0 + 1

F (z(n))

H(v(n))
+ ǫn+1 + rn+1,

where E(ǫn+1 | Fn) = 0. The following Lemma 4, proved in Section 4.3, provides
upper bounds on the infinity norms of ǫn+1, rn+1 and z(n) − v(n), and on the
conditional variances of (ǫn+1)i, i ∈ G.

More precisely, let us break down the set of vertices of G as V (G) = S ∪ ∂S,
where (S,∼) is finite, connected, and not a singleton unless it is a loop. Let, for
all α ∈ R+ \ {0},

Λα := {v = (vj)j∈G ∈ ∆ s.t. vj > α for all j ∈ S}. (14)

Lemma 4 For all n > Cst(α) and i ∈ G, if v(n) ∈ Λα then

(a) ‖ǫn+1‖∞ 6
Cst(α, a, |G|)

n + n0
(b) E((ǫn+1)

2
i | Fn) 6

Cst(α, a, |G|)v(n)i
(n + n0)2

(c) ‖rn+1‖∞ 6
Cst(α, a, |G|)

(n + n0)2
(d) ‖z(n) − v(n)‖∞ 6

Cst(α, a, |G|))
n + n0

Note that, if G were a complete d-partite finite graph for some d > 1, or more
generally if G were without loop and, for all i, j ∈ G with i ∼ j, {i, j}∪∂{i, j} =
G, then the constants in the inequalities of Lemma 4 would not depend on α > 0
and, as a consequence, the stochastic approximation of z(n) by (6) would hold
uniformly a.s. Indeed, for all n ∈ N, by the pigeonhole principle there exists at
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least one edge {i, j} i, j ∈ G, i ∼ j, on which the walk has spent more than
n/|G|2 times, so that v(n)i ∧ v(n)j >

1
|G|2

n
n+n0

and, under the assumption on G,

Lemma 4 with S := {i, j} would yield the claim.
In the second step, we define an entropy function Vq(.), measuring a ”distance”

between q and an arbitrary point (as can be seen by (15) below), originally
introduced by Losert and Akin in 1983 in [9] in the study of the deterministic
Fisher-Wright-Haldane population genetics model, and to our knowledge so far
only used for the analysis of deterministic replicator dynamics. Note that it
is not mathematically a distance however, since it does not satisfy the triangle
inequality in general.

In the following, until after the statement Lemma 10 - and in particular in
Lemmas 5–10 - we assume that x ∈ Es and G = T (x) = S(x)∪∂S(x); this choice
will be justified later in the proof. Note that if q ∈ N (x) ∩ Es, where N (x) is an
adequately chosen neighbourhood of x, then q ∈ S(S(x)) since x ∈ Es, so that
T (q) = T (x). Set S := S(x), T := T (x), and S := S(S(x)) for simplicity.

Lemmas 5 and 6 below will imply that, given any stable equilibrium q ∈
N (x) ∩ Es as a reference point, Vq(z(n)) decreases in average when z(n) is close
enough to x. Therefore, martingale estimates will enable us to prove in Lemma
7 that, starting in the neighbourhood of x, v(n) remains close to x with large
probability if n is large, and converges to one of the strictly stable equilibria in
this neighbourhood.

For all q = (qi)i∈G ∈ S and y ∈ R
V (G), let

Vq(y) :=

{

−∑i∈S qi log (yi/qi) + 2y∂S if yi > 0, ∀i ∈ S

∞ otherwise.

Let, for all q ∈ S and r > 0,

BVq(r) := {y ∈ ∆ s.t. Vq(y) < r}, B∞(q, r) := {y ∈ ∆ s.t. ‖y − q‖∞ < r}.

Then, we will prove in Section 4.4 that, for all q ∈ S, there exist increasing
continuous functions u1,q, u2,q : R+ −→ R+ such that u1,q(0) = u2,q(0) = 0 and,
for all r > 0,

B∞(q, u1,q(r)) ⊆ BVq(r) ⊆ B∞(q, u2,q(r)). (15)

Let, for all q, z ∈ R
V (G),

Iq(z) := −
∑

i∈S

qi[Ni(z) − H(z)] + 2
∑

i∈∂S

zi[Ni(z) − H(z)]. (16)

The following Lemma 5, also proved in Section 4.4, provides the stochastic
approximation equation for Vq(z(n)), q ∈ S ∩ Es; we make use of notation u =
2(v) ⇐⇒ |u| 6 v, introduced in Section 2.1.

Lemma 5 Let q ∈ S∩Es. There exist an adapted process (ζn)n∈N (not depending
on q and a), and constants n1 and ǫ (depending only on q and a) such that, if
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n > n1 and v(n) ∈ BVq(ǫ), then Vq(z(n)), Vq(z(n + 1)) < ∞, E(ζn+1 | Fn) = 0
and

Vq(z(n + 1)) = Vq(z(n)) +
Iq(v(n))

n + n0 + 1
− (q, ζn+1) + 2(ǫn+1)∂S + 2

(

Cst(q, a)

(n + n0)2

)

.

(17)

Lemma 6 below, proved in Section 3.4, provides estimates of the Lyapounov
function H, and of I.(.), in the neighbourhood of a strictly stable equilibrium.
It will not only be useful in the proof of Lemma 7 below, stating convergence of
v(n) with large probability, but also for Lemma 8 on the rate of this convergence.

Lemma 6 There exists a neighbourhood N (x) of x in ∆ such that, for all q ∈
N (x) ∩ Es, y ∈ N (x),

(a) Cst(x, a)J(y) 6 H(q) − H(y) 6 Cst(x, a)J(y), (18)

(b) − [H(q) − H(y) + Cst(x, a)y∂S ] 6 Iq(y) 6 −[H(q) − H(y) + Cst(x, a)y∂S ] 6 0.
(19)

Remark 4 Lemma 6 implies that y ∈ N (x) is an equilibrium iff H(y) = H(x).
Also note that the maximality of H at x ∈ Es is not global in general. For in-
stance, in the counterexample at the end of Section 1, x := (3/8, 3/8, 1/8, 1/8, 0) ∈
Es but, letting y := (0, 0, 1/3, 1/3, 1/3), H(y) = 2/3 > H(x) = 1/2.

The following Lemma 7 is shown in Section 5.1. A key point in its proof is
that the martingale term −(q, ζn+1)+2(ǫn+1)∂S in Lemma 5, is a linear function
of ζn+1 and ǫn+1 which do not depend on q, so that the two corresponding
convergence results of these martingales will apply from any reference point q ∈
Es ∩ N (x). It will enable us to prove that, if r is a accumulation point of v(n),
then Vr(v(n)) a.s. converges to 0 if r ∈ N (x) although r is random.

Lemma 7 There exist ǫ0 := Cst(x, a) and n1 := Cst(x, a) such that, if for some
ǫ 6 ǫ0 and n > n1, v(n) ∈ BVx(ǫ/2), then

P(L(BVx(ǫ)) | Fn) > 1 − exp(−ǫ2Cst(x, a)(n + n0)).

Next, we provide in the following Lemma 8 some information on the rate of
convergence of v(n) to v(∞), which will be necessary for the asymptotic estimates
on the frontier A∂(v(∞)) in Lemma 10.

Lemma 8 There exist ǫ, ν := Cst(x, a) such that, a.s. on L(BVx(ǫ)),

lim
n→∞

(v(n) − v(∞))nν = 0.

The proof of Lemma 8, given in Section 5.2, starts with a preliminary estimate
of the rate of convergence of H(v(n)) to H(v(∞)). To this end we make use of
Lemma 9 below, giving the stochastic approximation equation of H(z(n)). It
implies, together with Lemma 6 (a), that the expected value of H(z(n + 1)) −
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H(z(n)) is at least Cst(x, a)(H(x) − H(z(n)), so that we can then estimate the
rate of H(v(n)) to H(x) by a one-dimensional technique.

Finally, this estimate implies similar ones for the convergence of J(v(n)) and
Iv(∞)(v(n)) to 0 by Lemma 6, so that we conclude using entropy estimates for
the rate of convergence of Vv(∞)(z(n)), using again that only two martingales es-
timates are necessary, given the linearity of the perturbation in (17) with respect
to the reference point q ∈ Es ∩N (x).

Lemma 9 For all n ∈ N,

H(z(n + 1)) − H(z(n)) =
1

n + n0 + 1

J(z(n))

H(v(n))
+ ξn+1 + sn+1, (20)

where E(ξn+1 | Fn) = 0 and, if for some α > 0, v(n) ∈ Λα and n > Cst(α), then

(1) ‖ξn+1‖∞ 6
Cst(α, a, |G|)

n + n0
, (2) ‖sn+1‖∞ 6

Cst(α, a, |G|)
(n + n0)2

.

Lemma 9 is proved in Section 4.5.
The next Lemma 10 yields the asymptotic behaviour on the border sites

∂S. This behaviour is similar to the one one would obtain without perturbation
(i.e. with (ǫn)n∈N∗ = 0 in (37)). Indeed, if i ∈ ∂S, then Ni(x) − H(x) < 0 is the
eigenvalue of the Jacobian matrix of (6) in the direction (δi,j)j∈V (G) (see the proof
of Lemma 1), and the renormalization in time is approximately in H(x)−1 log n
(see equation (37)), so that the replicator equation (6) would predict that i ∈ ∂S
is visited of the order of nNi(x)/H(x) times at time n. This similarity with the
noiseless case is due to the fact that the perturbation (ǫn)n∈N∗ is weak near the
boundary (see Lemma 4 (b)).

Lemma 10 There exists ǫ := Cst(x, a) such that, a.s. on L(BVx(ǫ)), A∂(v(∞))
occurs a.s.

The proof of Lemma 10, given in Section 5.3, makes use of a martingale
technique developed in [18], Section 3.1, and in [7] in the context of strong edge
reinforcement. We could have shown this Lemma 10 by a thorough study of the
border sites coordinates of the stochastic approximation equation (37), but it
would lead to a significantly longer - and less intuitive - proof.

Now we do not assume anymore that V (G) = T (x) for some x ∈ ∆, in
other words we let the graph (G,∼) be arbitrary, possibly infinite. The following
Proposition 4 obviously implies Theorem 3.

Let, for all n, k ∈ N∪{∞}, n > k, Rn,k be the range of the vertex-reinforced
random walk between times n and k, i.e.

Rn,k := {i ∈ G s.t. Xj = i for some j ∈ [n, k]};

note that, for all n ∈ N, R ⊆ Rn,∞.
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Proposition 4 Let x ∈ Es. There exists ǫ := Cst(x, a) such that, for all n >

Cst(x, a), if v(n) ∈ BVx(ǫ/2), then

P({Rn,∞ = T (x)} ∩ L(BVx(ǫ)) ∩ A∂(v(∞)) | Fn) > 0.

Moreover, the rate of convergence is at least reciprocally polynomial, i.e. there
exists ν := Cst(x, a) such that, a.s. on L(BVx(ǫ)),

lim
k→∞

(v(k) − v(∞))kν = 0.

Proposition 4 is proved in Section 5.4. Observe that, if G = T (x), then it is
a direct consequence of Lemmas 7, 8 and 10. The localization with positive
probability in this subgraph T (x) results from a Borel-Cantelli type argument:
the probability to visit ∂T (x) at time n starting from S(x) is, by Lemma 10,
upper bounded by a term smaller than nα−2, where α ≈ maxi∈∂S Ni(x)/H(x) <
1, and

∑

n∈N
nα−2 < ∞. Technically, the proof is based on a comparison of

the probability of arbitrary paths remaining in T (x) for the VRRWs defined
respectively on the graphs T (x) and G.

2.4 Contents

Section 3 concerns the results on the deterministic replicator dynamics: Lemmas
1–3 and Lemma 6 are proved, respectively, in Sections 3.1–3.3 and 3.4.

Section 4 develops the framework relating the behaviour of the vector of den-
sity of occupation v(n) to the replicator equation (6): we write the stochastic
approximation equation (37) in Section 4.1, establish in Section 4.2 some prelimi-
nary estimates on the underlying Markov Chain M(v), prove Lemma 4 in Section
4.3, prove Lemmas 5 and 9 (stochastic approximation equations for Vq(z(n)) and
H(z(n))) and inclusions (15) in Sections 4.4–4.5.

Section 5 is devoted to the proofs of the asymptotic results for the VRRW:
Lemma 7 in Section 5.1 on the convergence of v(n) with positive probability,
Lemma 8 in Section 5.2 on the corresponding speed of convergence, Lemma 10 in
Section 5.3 on the asymptotic behaviour of the number of visits on the frontier of
the trapping subset, and Proposition 4 in Section 5.4 on localization with positive
probability in the trapping subsets.

Finally, we show in Appendix A.1 a Lemma on the remainder of square-
bounded martingales, which is useful in the proofs of Lemma 8 and Proposition
1, whereas Appendix A.2 is devoted to the proof of this Proposition 1.

3 Results on the replicator dynamics

3.1 Proof of Lemma 1

Note that DF (x)v = −H(x)v if S(v) ∩ T (x) = ∅, so that it is sufficient to study
the eigenvalues of DF (x) on {v ∈ R

V (G) s.t. S(v) ⊆ T (x)}; hence we can assume
that V (G) is finite (equal to T (x)) w.l.o.g.
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Let S := S(x) for convenience. For all i, j ∈ V (G),

∂Fi

∂xj
=























Ni(x) − H(x) if xi = 0 and j = i

0 if xi = 0 and j 6= i

xi[ai,j − 2H(x)] if xi 6= 0 and xj 6= 0

xi[ai,j − 2Nj(x)] if xi 6= 0 and xj = 0

Let us now consider matrix DF (x) by taking the following order on the indices:
we take first the indices i, j ∈ V (G) \ S, and second the indices i, j ∈ S:





Diag(Ni(x) − H(x))i∈V (G)\S (0)

(∗) DB



 ,

where
B = [ai,j − 2H(x)]i,j∈S , D = Diag(xi)i∈S .

The matrix DB is easily seen to be self-adjoint with respect to the scalar
product (u, v)D−1 := (D−1u, v). Hence DB has real eigenvalues. This proves the
first statement of the lemma.

Remark that, if we consider (6) as a differential equation on R
V (G) then

(F (x), 1I) =
d(x(t), 1I)

dt
|t=0,x(0)=x = −((x, 1I) − 1)H(x).

This implies, if x ∈ ∆ (so that (x, 1I) = 1), that, for all vector u ∈ R
V (G),

(DF (x)u, 1I) = −H(x)(u, 1I). (21)

Hence p : u 7→ (u, 1I) is an eigenvector of tDF (x) with eigenvalue −H(x). This
makes −H(x) an eigenvalue of DF (x) and, more precisely,

Sp(DF (x)) = {−H(x)} ∪ Sp(DF (x)|T∆);

indeed, by (21), an eigenvector u of DF (x) with eigenvalue λ 6= −H(x) belongs
to Ker p = T∆. Therefore, the stability of an equilibrium x of (6) on R

V (G) is
equivalent to the stability restricted on ∆, which completes the proof of the first
equivalence in statement (b).

Claim. Let M = Diag(y1, . . . , yr) be a diagonal r × r matrix, with y1, . . .
yr ∈ R

∗
+, and let N be a symmetric r × r matrix. Then minSp(N) > 0 ⇐⇒

min Sp(MN) > 0 and, under this assumption,

minSp(MN) > min Sp(N)min{yi}16i6r.

Proof of the claim. It suffices to prove that minSp(N) > 0 implies
min Sp(MN) > 0 and the corresponding inequality, since the inverse statement
is symmetrical.
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Recall that, for any r × r symmetric matrix R with nonnegative eigenvalues,
there exist a diagonal matrix D and orthogonal matrix Q such that R = QT DQ,
hence

minSp(R) = inf
|t|>1

(Dt, t) = inf
|t|>1

(DQt,Qt) = inf
|t|>1

(Rt, t).

Let us define L = Diag(
√

y1, . . . ,
√

yr). Observe that L2 = M . Now MN =
L(LNL)L−1 implies Sp(MN) = Sp(LNL).

LNL is symmetric; therefore

min Sp(MN) = min Sp(LNL) = inf
|t|>1

(LNLt, t) = inf
|t|>1

(NLt,Lt)

> inf
|u|>min16i6r

√
yi

(Nu, u) = min
16i6r

yi inf
|u|>1

(Nu, u) = min
16i6r

yiSp(N).

2

To complete the proof of statement (b), we apply the claim to M := D and
N := −B.

It remains to prove that a stable equilibrium in ∆ is feasible. Let x ∈ ∆
be such an equilibrium. Assume that H(x) = 0. If xi = 0 for some i, then (by
Lemma 1 (b)), Ni(x) = 0 so that xj = 0 for all j ∼ i. Hence x = 0, which is
contradictory. If now xi 6= 0 for all i, then G is necessarily finite (by definition
of ∆), and a = (ai,j)i,j∈V (G) = 0 since its eigenvalues are nonpositive (Lemma 1
(b) again) and its trace is nonnegative. This is again contradictory.

3.2 Proof of Lemma 2

Let ∂ := ∂S , (P) := (P)S and (P)′ := (P)′S for simplicity.
Assume (P) holds for some d > 1. Let us prove that, if i, j, k ∈ S are such

that i ∼ j 6∼ k, then ai,j = ai,k.
If i = j, then i = j 6∼ k implies, by (P)(a)-(b) that k 6∈ S - and therefore

a contradiction - since if k were in S, it would be in the partition of i, which is
a singleton. If i 6= j 6∼ k, then j and k are in the same partition of S. Hence
ai,j = ai,k by (P)(c), which completes the proof of (P)’.

Assume now (P)’. Let us prove that the relation R defined on S by

iRj ⇐⇒ i 6∼ j or i = j

is an equivalence relation on S. It is clearly symmetric and reflexive. Let us
prove that it is transitive: let i, j, k ∈ S be such that iRj and jRk, and prove
iRk. This is immediate if i = j or j = k; hence assume that i 6= j and j 6= k;
then (P)’ implies ∂S{i} = ∂S{j} = ∂S{k}. If we had i ∼ k, then it would imply
k ∈ ∂S{i} = ∂S{j}, and therefore j ∼ k, which leads to a contradiction.

Now let us prove that there is only one element in the partition of a loop.
Assume that iRj, i ∼ i and j 6= i for i, j ∈ S; (P)’ implies in this case that
ai,i = ai,j > 0, so that i ∼ j, hence i = j since iRj holds, which leads to a
contradiction.

22



Let Vi, i = 1, . . . d be the partitions of R: elements of different partitions
are connected, by definition, and (P)(a)-(b) holds for some d > 1. Let us prove
(P)(c): let i, j ∈ {1, . . . , d} be such that i 6= j, and assume α ∈ Vi, β ∈ Vj . Let

Wα,β := {(α′, β′) ∈ S2 s.t. aα′,β′ = aα,β}.

By applying (P)’ twice, we firstly obtain that Wα,β ⊇ {α} × Vj, and secondly
that Wα,β ⊇ Vi × Vj , which enables us to conclude.

3.3 Proof of Lemma 3

Let S := S(x) and (P)′ := (P)′S(x) for simplicity. Let

B = [ai,j − 2H(x)]i,j∈S ,

and maxSp(B) 6 0 ⇐⇒ ∀t ∈ R
S, B[t] 6 0. Observe that, for all t = (ti)i∈S ∈

R
S,

B[t] =
∑

i,j∈S

(ai,j − 2H(x))titj = H(t) − 2H(x)

(

∑

i∈S

ti

)2

.

Let us assume that (P)’ does not hold, and deduce that B[t] > 0 for some t ∈ RS ,
which will prove the first statement.

There exist i, j, k ∈ S such that j 6∼ k and ai,j 6= ai,k (otherwise (P)’ would
be satisfied). Let, for all λ ∈ R,

tλ := (1I{v=i} + λ1I{v=j} − (1 + λ)1I{v=k})v∈S ∈ R
S,

then
B[tλ] > 2λ(ai,j − ai,k) − 2ai,k,

so that B[tλ] > 0 for some λ ∈ R, which yields the contradiction.
Let us now assume that (P)’ holds, and that ai,j = c1Ii∼j , with c = 1 for

simplicity. First assume S contains no loop. Then, by Lemma 2, S is a d-partite
subgraph for some d > 1 ((P)S(a) holds); let V1, . . . Vd be its partitions, then

B[t] =
∑

i,j∈S

(1Ii∼j − 2H(x))titj = −2H(x)

(

∑

i∈S

ti

)2

+
∑

i,j∈S

1Ii∼jtitj

= −2H(x)

(

d
∑

k=1

vk

)2

+

(

d
∑

k=1

vk

)2

−
d
∑

k=1

v2
k,

where, for all i ∈ {1, . . . , d}, vk =
∑

i∈Vk
ti. Therefore

B[t] = −(2H(x) − 1)

(

d
∑

k=1

vk

)2

−
d
∑

k=1

v2
k 6 0,
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where we use the fact that H(x) > 1/2, since H(x) = 1 − 1/d and d > 2 (see
proof of Theorem 2, Section 2.2.2).

Now assume that S contains one loop; then, again by the proof of Theorem
2, Section 2.2.2, it is a clique of loops and H(x) = 1; thus

B[t] = −2

(

∑

i∈S

ti

)2

+

(

∑

i∈S

ti

)2

= −
(

∑

i∈S

ti

)2

6 0.

3.4 Proof of Lemma 6

Let us first prove (a) in the case q := x, which will imply H(q) = H(x) for any
equilibrium q ∈ N (x) and therefore imply (a) in the general case. Let x ∈ Es,
and let y ∈ T∆ be such that x + y ∈ ∆. Let S := S(x) for simplicity.

Then

H(x + y) =
∑

i,j∈ V (G)

ai,j(xi + yi)(xj + yj) = H(x) + 2
∑

i∈V (G)

Ni(x)yi + H(y)

(22)

= H(x) + 2
∑

i∈V (G)

(Ni(x) − H(x))yi +
∑

i,j∈V (G)

(ai,j − 2H(x))yiyj

= H(x) + 2
∑

i∈V (G)\S
(Ni(x) − H(x))yi +

∑

i,j∈S

(ai,j − 2H(x))yiyj (23)

+
∑

i∈V (G)\S
wi(y)

6 H(x) + 2
∑

i∈V (G)\S
(Ni(x) − H(x))yi +

∑

i∈V (G)\S
wi(y)

In the third equality, we make use of the identity
∑

i∈V (G) yi = 0, whereas in
the fourth equality we notice that Ni(x) = H(x) for all i ∈ S and that the
reinforcement matrix a := (ai,j)i,j∈V (G) is symmetric, and let

wi(y) := yi



2
∑

j∈S

(ai,j − 2H(x))yj +
∑

j∈V (G)\S
(ai,j − 2H(x))yj



 = o|y|→0(yi)

= o|y|→0(y∂S),

using that, for all j ∈ ∂S, yj > 0. Finally, we apply in the inequality that
B := (ai,j − 2H(x))i,j∈S is a negative semidefinite matrix.

Using that, for all i ∈ ∂S, Ni(x) < H(x) (and yi > 0), we deduce that
there exists a neighbourhood N (x) of x in ∆ such that, if x + y ∈ N (x), then
H(x + y) 6 H(x).

In order to obtain the required estimate of H(x+ y)−H(x) we observe that,
if z := (yi)i∈S then, by semi-definiteness of B symmetric,

−Cst(x, a)|Bz|2 6 (Bz, z) =
∑

i,j∈S

(ai,j − 2H(x))yiyj 6 −Cst(x, a)|Bz|2. (24)
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But

Bz =

(

Ni(y) − 2H(x)
∑

i∈S

yi

)

i∈S

= (Ni(y) + 2H(x)y∂S)i∈S

where we use that y∂S = −yS in the second equality, since y ∈ T∆. Hence

|Bz|2 =
∑

i∈S

(Ni(y) + 2H(x)y∂S)2 =
∑

i∈S

Ni(y)2 + o|y|→0(y∂S) (25)

and, if we let

K(y) :=
∑

i∈S

Ni(y)2 + y∂S

then, by combining identities (23), (24) and (25) (and using that wi(y) = o|y|→0(y∂S)
for all i ∈ ∂S), restricting N (x) if necessary,

−Cst(x, a)K(y) 6 H(x + y) − H(x) 6 −Cst(x, a)K(y). (26)

On the other hand, let

L(y) :=
∑

i∈S

(Ni(x + y) − H(x + y))2 + y∂S.

Then, again by restricting N (x) if necessary,

Cst(x, a)L(y) 6 J(x + y) 6 Cst(x, a)L(y), (27)

where we use again that Ni(x) < H(x) for all i ∈ ∂S. But

L(y) =
∑

i∈S

[Ni(y) − (H(x + y) − H(x))]2 + y∂S

= K(y) + o|y|→0(|H(x + y) − H(x)|). (28)

Combining inequalities (26), (27) and (28), and further restricting N (x) if
necessary, we obtain inequality (18) as required.

Let us now prove (b). If q ∈ S(S(x)) and y ∈ ∆, then

−
∑

i∈S

qi[Ni(y) − H(y)] = H(y) −
∑

i∈S

qiNi(y),

and
∑

i∈S

qiNi(y) =
∑

i∈G

qiNi(y) =
∑

i∈G

yiNi(q) = H(q) +
∑

i∈∂S

yi[Ni(q) − H(q)],

where we use that (ai,j)i,j∈G is symmetric in the second equality, and that q is
an equilibrium in the third equality. Therefore

Iq(y) = H(y) − H(q) +
∑

i∈∂S

yi[2(Ni(y) − H(y)) − (Ni(q) − H(q))]. (29)

If q, y ∈ N (x) then, by restricting N (x) if necessary, x ∈ Es implies that for all
i ∈ ∂S,

−Cst(x, a) 6 2(Ni(y) − H(y)) − (Ni(q) − H(q)) 6 −Cst(x, a).

Inequality (19) follows.
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4 Stochastic approximation results for the

VRRW

4.1 The stochastic approximation equation

The main idea is to modify the density of occupation measure

v(n) =

(

Zn(v)

n + n0

)

v∈G

into a vector z(n) that takes into account the position of the random walk, so
that the conditional expectation of z(n + 1) − z(n) roughly only depends on
z(n) and not on the position Xn. This expectation will actually approximately
be F (z(n))/(n + n0), where F is the map involved in the ordinary differential
equation (6).

For all x ∈ ∆, let M(x) be the reversible Markov Chain with transition
probabilities

M(x)(i, j) : 1Ii∼j
ai,jxj

∑

k∼i ai,kxk
. (30)

Note that M(v(n)) provides the transition probabilities from the VRRW at time
n. Recall that π(x) in (2) is the invariant probability measure for M(x).

Let us denote by G (resp. H) the set of functions on V (G) taking values in R

(resp. in R
G). Let 1I be the function identically equal to 1. Let M(x) and Π(x)

denote the linear transformations on G defined by

(M(x)f)(i) :=
∑

j∈G

M(x)(i, j)f(j) (31)

Π(x)(f) :=

(

∑

i∈G

π(x)(i)f(i)

)

1I. (32)

Note that, by a slight abuse of notation, M(x) equally denotes the Markov Chain
defined in (30) and its transfer operator in (31); Π(x) is the linear transformation
of G that maps f to the linear form identically equal to the mean of f under the
invariant probability measure π(x).

Any linear transformation P of G (and in particular M(x) and Π(x)) also
defines a linear transformation of H: for all f = (fi)i∈G ∈ H,

Pf := (Pfi)i∈G. (33)

Let us now introduce a solution of the Poisson equation for the Markov Chain
M(x). Let us define, for all t ∈ R+,

Gt(x) := e−t(I−M(x)) = e−t
∞
∑

0

tiM(x)i

i!
,
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which is the Markov operator of the continuous time Markov Chain associated
with M(x). For all x ∈ Int(∆), M(x) is indecomposable so that Gt(x) converges
towards Π(x) at an exponential rate, hence

Q(x) :=

∫ ∞

0
(Gt(x) − Π(x)) dt

is well defined. Note that
Q(x)1I = 0,

and that Q(x) is the solution of the Poisson equation

(I − M(x))Q(x) = Q(x)(I − M(x)) = I − Π(x), (34)

using that M(x)Π(x)f = Π(x)f = Π(x)M(x)f for all f ∈ G (or f ∈ H).
Let us now expand v(n + 1) − v(n), using (34). Let (ei)i∈G be the canonical

basis of R
G, i.e. ei := (1Ij=i)j∈G for all i ∈ G. Let ι ∈ H be defined by

ι : G −→ R
G

i 7−→ ei.

By definition,

v(n + 1) =

(

Zi(n) + ι(Xn+1)

n + n0 + 1

)

i∈G

=

(

1 − 1

n + n0 + 1

)

v(n) +
ι(Xn+1)

n + n0 + 1
,

so that, using that Π(x)ι = π(x)1I for all x ∈ ∆,

(n + n0 + 1)(v(n + 1) − v(n)) = ι(Xn+1) − v(n)

= [I − Π(v(n))]ι(Xn+1) + (π(v(n)) − v(n))

= [I − Π(v(n))]ι(Xn+1) + F (v(n)),

where F is the function in definition (5).
Now,

[I − Π(v(n))]ι(Xn+1)

n + n0 + 1
=

(Q(v(n)) − M(v(n)Q(v(n)))ι(Xn+1)

n + n0 + 1

= ǫn+1 + ηn+1 + rn+1,1 + rn+1,2, (35)

where

ǫn+1 :=
Q(v(n))ι(Xn+1) − M(v(n))Q(v(n))ι(Xn)

n + n0 + 1

rn+1,1 :=

(

1

n + n0 + 1
− 1

n + n0

)

M(v(n))Q(v(n))ι(Xn) = −M(v(n))Q(v(n))ι(Xn)

(n + n0)(n + n0 + 1)

ηn+1 :=
M(v(n))Q(v(n))ι(Xn)

n + n0
− M(v(n + 1))Q(v(n + 1))ι(Xn+1)

n + n0 + 1

rn+1,2 :=
[M(v(n + 1))Q(v(n + 1)) − M(v(n))Q(v(n))]ι(Xn+1)

n + n0 + 1
.
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Let, for all n ∈ N,

z(n) := v(n) +
M(v(n))Q(v(n))ι(Xn)

n + n0
, (36)

and

rn+1,3 :=
1

n + n0 + 1

F (v(n)) − F (z(n))

H(v(n))

rn+1 := rn+1,1 + rn+1,2 + rn+1,3.

Then, for all n ∈ N, it follows from equation (35) that

z(n + 1) = z(n) +
1

n + n0 + 1

F (z(n))

H(v(n))
+ ǫn+1 + rn+1. (37)

Note that E(ǫn+1 | Fn) = 0, since E(Q(v(n))ι(Xn+1) | Fn) = M(v(n))Q(v(n))ι(Xn);
also observe that

∑

i∈V (G)

z(n)i =
∑

i∈V (G)

v(n)i +
(M(v(n))Q(v(n))1I)(Xn)

n + n0
= 1.

We provide in Section 4.2 estimates of the conditional variance of ǫn+1 and of
rn+1, which will be sufficient to prove localization of the vertex-reinforced random
walk with positive probability.

4.2 Estimates on the underlying Markov Chain M(v)

For convenience we assume here that V (G) = S ∪ ∂S, where (S,∼) is finite,
connected, and not a singleton unless it is a loop. Let a := maxi,j∈G,i∼j ai,j,
a := mini,j∈G,i∼j ai,j.

Let us first introduce some general notation on Markov Chains. Let K be
a reversible Markov Chain on the graph (G,∼), with invariant measure µ. Let
< ., . >µ be the scalar product defined by, for all f , g ∈ G,

< f, g >µ:=
∑

x∈G

f(x)g(x)µ(x).

On G, we define the ℓp(µ) norm, 1 6 p < ∞ by

‖f‖ℓp(µ) :=

(

∑

x∈G

|f(x)|pµ(x)

)1/p

,

and the infinity norm
‖f‖∞ := max

x∈G
|f(x)|.

We also define the infinity norm on H: if f = (fi)i∈G ∈ H,

‖f‖∞ = max
i∈G

‖fi‖∞ = max
i,x∈G

|fi(x)|. (38)
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Let Eµ be the expectation operator

Eµf :=
∑

x∈G

f(x)µ(x) =< f, 1I >µ,

where 1I is the constant function equal to 1.
We let EK be the Dirichlet form of K

EK(f, g) =< (I − K)f, g >µ,

and let Varµ be the variance operator

Varµ(f) := ‖f − Eµf‖2
ℓ2(µ) = ‖f‖2

ℓ2(µ) − (Eµf)2.

Simple calculations yield that

EK(f, f) =
1

2

∑

i∼j

(f(i) − f(j)))2K(i, j)µ(i),

and

Varµ(f) =
1

2

∑

i,j∈G

(f(i) − f(j)))2µ(i)µ(j).

Let λ(K) be the spectral gap of the Markov Chain K,

λ(K) := min

{EK(f, f)

Varµ(f)
s.t. Varµ(f) 6= 0

}

.

The following Lemma 11 states that the spectral gap of the Markov Chain
M(v) is lower bounded on Λα (defined in (14)).

Lemma 11 For all v ∈ Λα, λ(M(v)) > Cst(α, a, |G|).

proof: Let M := M(v) and π := π(v) for simplicity. Let us first observe that,
for all i ∈ G, j ∈ S such that i ∼ j,

M(i, j) > avj/a > αa/a and M(i, j)π(i) = π(j)M(j, i) > aα21Ii∈S/a, (39)

where the second inequality comes from

M(i, j)π(i) =
ai,jvj

Ni(v)

viNi(v)

H(v)
=

ai,jvivj

H(v)
>

aα2

a
1Ii∈S .

Now, by connectedness of (S,∼), for all i, j ∈ G, there exists l 6 |G| and a
path (nk)16k6l ∈ V (G) × Sl−2 × V (G) such that i = n1, j = nl, nk ∼ nk+1 for
all k ∈ {1, . . . , l − 1}.
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Hence, for all k ∈ {1, . . . , l}, using inequalities (39),

π(i)π(j)(f(i) − f(j))2 6 lπ(i)π(j)
∑

k∈{1,...,l−1}
(f(nk) − f(nk+1))

2

6 lπ(i)(f(i) − f(n2))
2 + lπ(j)(f(j) − f(nl−1))

2 + l
∑

k∈{2,...,l−2}
(f(nk) − f(nk+1))

2

6
al

aα
[M(i, n2)π(i)(f(i) − f(n2))

2 + M(j, nl−1)π(j)(f(j) − f(nl−1))
2]

+
al

aα2

∑

k∈{2,...,l−2}
(f(nk) − f(nk+1))

2M(nk, nk+1)π(nk)

6
al

aα2

∑

k∈{1,...,l−1}
(f(nk) − f(nk+1))

2M(nk, nk+1)π(nk) 6
2a|G|
aα2

EM (f, f).

Therefore

Varπ(f) =
1

2

∑

i,j∈G

π(i)π(j)(f(i) − f(j)))2 6
a|G|3
aα2

EM (f, f).

2

The following Lemma 12 provides upper bounds on the norms of Q(v), M(v)Q(v)
and their partial derivatives on Λα, which will be needed in the estimates of rn+1

and of the conditional variance of ǫn+1 in Lemma 4.
The norm on linear transformations of G will be the infinity norm

‖A‖∞ := sup
f∈G,f 6=0

‖Af‖∞
‖f‖∞

.

Note that, for any linear transformation A of G, the corresponding linear trans-
formation of H (still called A) defined in (33) still has the same infinity norm
(the ‖.‖∞ on H is defined by (38))

‖A‖∞ = sup
f∈H,f 6=0

‖Af‖∞
‖f‖∞

.

Lemma 12 For all v ∈ Λα, i, j ∈ G, f ∈ G,

(a) M(v)(i, j) 6

(

a

a

)2 π(v)(j)

α2

(b) ‖Q(v)f‖ℓ2(π(v)) 6

√

Varπ(v)(f)

λ(M(v))
6

‖f‖ℓ2(π(v))

λ(M(v))

(c) ‖Q(v)‖∞ 6 Cst(α, a, |G|), ‖M(v)Q(v)‖∞ 6 Cst(α, a, |G|)

(d) ‖∂Q(v)

∂vi
‖∞ 6 Cst(α, a, |G|), ‖∂(M(v)Q(v))

∂vi
‖∞ 6 Cst(α, a, |G|).
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proof: Let M := M(v), Q := Q(v), π := π(v), λ := λ(M(v)) for simplicity.
Inequality (a) is obvious: for all j ∈ G,

M(i, j) =
ai,jvj

Ni(v)
=

vjNj(v)

H(v)

ai,jH(v)

Ni(v)Nj(v)
6

(

a

a

)2 π(j)

α2
.

Let us now prove (b). For all f ∈ G,

‖Gtf − π(f)‖2
ℓ2(π) 6 e−2λtVarπ(f),

by definition of the spectral gap (see for instance Lemma 2.1.4,[17]), so that

‖Q(v)f‖ℓ2(π) 6

∥

∥

∥

∥

∫ ∞

0
(Gt(v)f − Π(v)f) dt

∥

∥

∥

∥

ℓ2(π)

6

∫ ∞

0
‖(Gt(v)f − Π(v)f)‖ℓ2(π) dt

6
√

Varπ(f)

∫ ∞

0
e−λt dt =

√

Varπ(f)

λ
6

‖f‖ℓ2(π)

λ
(40)

Inequality (c) translates this upper bound of the ℓ2(π) → ℓ2(π)-norm of Q(v)
into one involving the infinity norm for MQ, using (a):

|MQf(i)| =

∣

∣

∣

∣

∣

∣

∑

j∈G

M(i, j)Qf(j)

∣

∣

∣

∣

∣

∣

6
1

α2

(

a

a

)2
∑

j∈G

π(j)|Qf(j)| =

(

a

a

)2 ‖Qf‖ℓ1(π)

α2

6

(

a

a

)2 ‖Qf‖ℓ2(π)

α2
6

(

a

a

)2 ‖f‖ℓ2(π)

λα2
.

Hence, using Lemma 11,

‖MQf‖∞ 6

(

a

a

)2 ‖f‖ℓ2(π)

λα2
6

(

a

a

)2 ‖f‖∞
λα2

6 Cst(α, a, |G|)‖f‖∞.

Then the same upper bound for ‖Q(v)f‖∞ follows from the Poisson equation
(34):

Q(v) = M(v)Q(v) + I − Π(v).

Let us now prove (d). Given i ∈ G, let us take the derivative of the Poisson
equation Q(v)(I − M(v)) = I − Π(v) with respect to vi:

∂Q(v)

∂vi
(I − M(v)) = Q(v)

∂M(v)

∂vi
− ∂Π(v)

∂vi
.

This equality, multiplied on the right by Q(v), yields, using now the Poisson
equation (I − M(v))Q(v) = I − Π(v),

∂Q(v)

∂vi
=

∂Q(v)

∂vi
(I − Π(v)) =

(

Q(v)
∂M(v)

∂vi
− ∂Π(v)

∂vi

)

Q(v), (41)
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where we use that, for all f ∈ G,

∂Q(v)

∂vi
Π(v)f =< f, 1I >π(v)

∂Q(v)

∂vi
1I = 0,

since Q(v)1I = 0 for all v ∈ ∆.

The equality (41) implies the required upper bound of ‖∂Q(v)
∂vi

‖∞. Indeed, the
following estimates hold: for all i, j, k ∈ G, j ∼ k,

∣

∣

∣

∣

∂[M(v)(j, k)]

∂vi

∣

∣

∣

∣

=

∣

∣

∣

∣

∂

∂vi

(

aj,kvk

Nj(v)

)∣

∣

∣

∣

=

∣

∣

∣

∣

∂vk

∂vi

aj,k

Nj(v)
− aj,kvk

Nj(v)2
∂Nj(v)

∂vi

∣

∣

∣

∣

6
2a

Nj(v)
6

2a

aα
,

where we use that aj,kvk 6 Nj(v) and ∂Nj/∂vi(v) = aj,i, and that there exists
l ∈ S with l ∼ j, given the assumptions on S. Also,

∣

∣

∣

∣

∂π(v)(j)

∂vi

∣

∣

∣

∣

=

∣

∣

∣

∣

∂

∂vi

(

vjNj(v)

H(v)

)∣

∣

∣

∣

=

∣

∣

∣

∣

∂(vjNj(v))

∂vi

1

H(v)
− vjNj(v)

H(v)2
∂H(v)

∂vi

∣

∣

∣

∣

6
4a

H(v)
6

4a

aα2
,

where we note that |∂H(v)
∂vi

| = 2Ni(v) 6 2a. The upper bound of ‖∂(M(v)Q(v))
∂vi

‖∞
follows directly. 2

4.3 Proof of Lemma 4

The estimates (a) and (d) readily follow from the definitions of ǫn+1 and z(n),
and Lemma 12 (c).

Let M := M(v(n)), Q := Q(v(n)), π := π(v(n)), λ := λ(M(v(n))) for sim-
plicity. Let us prove (b):

(n + n0)
2
E((ǫn+1)

2
i | Fn) 6 E([Qei(Xn+1)]

2 | Fn) =
∑

j∼Xn

M(Xn, j)[Qei(j)]
2

6
1

α2

(

a

a

)2
∑

j∈G

π(j)[Qei(j)]
2 =

(

a

a

)2 1

α2
‖Qei‖2

ℓ2(π(v(n))

6 Cst(α, a, |G|)‖ei‖2
ℓ2(π(v(n)) 6 Cst(α, a, |G|)v(n)i ,

where we use Lemma 12 (a) and (b) respectively in the second and in the third
inequality.

In order to prove (c), let us first upper bound ‖rn+1,1‖∞ using Lemma 12
(c):

‖rn+1,1‖∞ 6
‖M(v(n))Q(v(n))ι(Xn)‖∞

(n + n0)2
6

Cst(α, a, |G|)
(n + n0)2

.
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Let us now bound ‖rn+1,2‖∞:

(n + n0)‖rn+1,2‖∞ 6 sup
θ∈[0,1]

∥

∥

∥

∥

∂(MQ)(θv(n) + (1 − θ)v(n + 1))

∂θ

∥

∥

∥

∥

∞

6
∑

i∈G

|(v(n + 1) − v(n))i| sup
i∈G, θ∈[0,1]

∥

∥

∥

∥

∂(MQ)(θv(n) + (1 − θ)v(n + 1))

∂vi

∥

∥

∥

∥

∞

6
Cst(α, a, |G|)

n + n0
,

where we use Lemma 12 (d) in the last inequality.
It remains to upper bound ‖rn+1,3‖∞. First observe that, for all y = (yi)i∈G,

z = (zi)i∈G ∈ ∆, i ∈ G,

|Fi(z) − Fi(y)| 6
∑

j∈G

|zj − yj| sup
k∈G, x∈∆

∣

∣

∣

∣

∂Fi(x)

∂xk

∣

∣

∣

∣

6 2a
∑

i∈G

|zi − yi|,

where we use the explicit computations of ∂Fi/∂xj in the proof of Lemma 1.
Hence

‖F (z) − F (y)‖∞ 6 2a|G|‖z − y‖∞,

which implies

‖rn+1,3‖∞ 6
1

n + n0

|G|
a

2a|G|‖v(n) − z(n)‖∞ 6
Cst(α, a, |G|)

(n + n0)2
,

where we use that, by inequality (8), H(x) > a/|G| for all x ∈ ∆.

4.4 Proof of Lemma 5 and inclusions (15)

Let us first prove inclusions (15). If we let g : R+ \ {0} −→ R+ be the function
defined by g(u) := u − log(u + 1), nonnegative by concavity of the log function,
then, for all y ∈ ∆ such that yi > 0 for all i ∈ S,

Vq(y) = −
∑

i∈S

qi log

(

1 +
yi − qi

qi

)

+ 2y∂S =
∑

i∈S

qig

(

yi − qi

qi

)

+ 3y∂S , (42)

which implies the inclusions.
Let us now prove Lemma 5; let, for all n ∈ N,

ζn+1 :=

(

(ǫn+1)i
z(n)i

1Ii∈S

)

i∈G

,

with the convention that ζn+1 = 0 if z(n)i = 0 for some i ∈ S. Fix ǫ > 0 such
that BVq(2ǫ) ⊆ Λα for some α = Cst(q) > 0, and assume v(n) ∈ BVq(ǫ) for some
n > n1. Thus ‖z(n) − v(n)‖∞ 6 Cst(q, a)/(n + n0) by Lemma 4 (d); we assume
in the rest of the proof that ǫ < Cst(q) and n0 > Cst(q, a) so that, using (42),
z(n) ∈ BVq(2ǫ) ⊆ Λα.
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Note that ‖v(n) − v(n + 1)‖∞ 6 (n + n0)
−1, which implies, using Lemma 4,

that ‖z(n) − z(n + 1)‖∞ 6 Cst(q, a)(n + n0)
−1. Hence, using that z(n) ∈ Λα,

Vq(z(n + 1)) − Vq(z(n)) = −
∑

i∈S

qi log

(

z(n + 1)i
z(n)i

)

+ 2[z(n + 1)∂S − z(n)∂S ]

= −
∑

i∈S

qi
z(n + 1)i − z(n)i

z(n)i
+ 2[z(n + 1)∂S − z(n)∂S ] + 2

(

Cst(q, a)

(n + n0)2

)

,

where we again make use of notation u = 2(v) ⇐⇒ |u| 6 v from Section 2.1.
Hence, using identity (37) and Lemma 4 (b), we obtain subsequently (recall

that Iq(.) is defined in (16))

Vq(z(n + 1)) − Vq(z(n)) =
1

n + n0 + 1

Iq(v(n))

H(v(n))
− (q, ζn+1)

+ 2(ǫn+1)∂S + 2

(

Cst(q, a)

(n + n0)2

)

.

4.5 Proof of Lemma 9

Using identities (22) and (37) (recall that J is defined in (7)),

H(z(n + 1)) − H(z(n)) = 2
∑

i∈G

Ni(z(n)).(z(n + 1) − z(n))i + H(z(n + 1) − z(n))

=
1

n + n0 + 1

J(z(n))

H(v(n))
+ ξn+1 + sn+1,

where

ξn+1 := 2
∑

i∈G

Ni(z(n))(ǫn+1)i

sn+1 := 2
∑

i∈G

Ni(z(n))(rn+1)i + H(z(n + 1) − z(n)).

Let α > 0, and assume v(n) ∈ Λα. Inequalities (1)-(2) follow from Lemma 4
(a)-(c), and from ‖z(n + 1)− z(n)‖∞ 6 Cst(α, a, |G|)/(n + n0) (see for instance
the beginning of the proof of Lemma 5).

5 Asymptotic results for the VRRW

5.1 Proof of Lemma 7

Fix ǫ > 0 such that BVx(ǫ) ⊆ Λα for some α > 0 depending on x, and assume
v(n) ∈ BVx(ǫ/2) for some n > n1.

Let us define the martingales (Ak)k>n, (Bk)k>n and (κk)k>n by

Ak :=

k
∑

j=n+1

ζj1I{Vx(v(j−1))6ǫ}, Bk :=

k
∑

j=n+1

(ǫj)∂S1I{Vx(v(j−1))6ǫ},

κk := −(q,Ak) + 2Bk,
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with the convention that An := 0 and Bn = κn := 0. Using Lemma 4 (a), it
follows from Doob’s convergence theorem that (Ak)k>n, (Bk)k>n and (κk)k>n

converge a.s. and in L2. The upper bound |κk − κk−1| 6 Γ/(k + n0) a.s., for
some Γ := Cst(x, a), implies that, for all k > n + 1 and θ ∈ R,

E(exp(θ(κk − κk−1) | Fk−1) 6 exp

(

Γ2

2

θ2

(k + n0)2

)

.

On the other hand, (exp(θκk))k>n is a submartingale since (κk)k>n is a martin-
gale, so that Doob’s submartingale inequality implies, for all θ > 0,

P

(

sup
k>n

κk > c | Fn

)

= P

(

sup
k>n

eθκk > eθc | Fn

)

6 e−θc
E(eθκ∞ | Fn)

6 exp

(

−θc +
θ2Γ2

2(n + n0)

)

.

Choosing θ := c(n + n0)/Γ
2 yields

P

(

sup
k>n

κk > c | Fn

)

6 exp

(

− c2

2Γ2
(n + n0)

)

. (43)

Let

Υ :=

{

sup
k>n

κk <
ǫ

12

}

;

inequality (43) implies that

P(Υ | Fn) > 1 − exp(−ǫ2Cst(x, a)(n + n0)).

Now assume that Υ holds, and let T be the stopping time

T := inf{k > n s.t. Vx(z(k)) > 2ǫ/3}.

Note that, using Lemma 4 (d), if n > Cst(x, a), then for all k ∈ [n, T ), Vx(v(k)) <
ǫ. We upper bound Vx(v(T )) − Vx(v(k)) by adding up identity (17) in Lemma
5 with q := x, from time n to T − 1: this yields, together with Lemma 6, that
Vx(z(T )) < 2ǫ/3 if T < ∞, if we assume n > n1 := Cst(x, a) large enough and
ǫ < ǫ0 := Cst(x, a) small enough.

Therefore Vx(v(k)) < ǫ for all k > n. Using again inequality (17), we obtain
subsequently that

lim inf
k→∞

H(x) − H(v(k)) + v(k)∂S = 0 a.s.

since, otherwise, the convergence of (κk) as k → ∞ would imply limk→∞ Vx(z(k)) =
limk→∞ Vx(v(k)) = −∞, which is in contradiction with Vx(v(k)) > 0.

Hence, there exists a (random) increasing sequence (jk)k>0 such that

lim
k→∞

H(v(jk)) = H(x), lim
k→∞

v(jk)∂S = 0.
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Let r be an accumulation point of (v(jk))k>0. Then H(r) = H(x) and r∂S = 0.
Note that Vx(r) = limk→∞ Vx(z(jk)) 6 ǫ. By possibly choosing a smaller

ǫ0 := Cst(x, a), we obtain by Lemma 6 that r is an equilibrium, and by Lemma
1 that it is strictly stable.

Let, for all j ∈ N,

Λj :=

{

sup
k>j

|Ak − Aj| <
ǫ

24

}

⋂

{

sup
k>j

|Bk − Bj | <
ǫ

24

}

.

There exists a.s. j ∈ N such that Λj holds; let l0 (which is random, and is
not a stopping time) be such a j.

Let k ∈ N be such that jk > l0 and Vr(z(jk)) < ǫ/2. Then Lemma 5 applies
to r ∈ S ∩Es and a similar argument as previously shows that, for all j′ > j > jk,
Vr(v(j)) 6 ǫ and

Vr(z(j′)) 6 Vr(z(j)) + sup
k>j

|Ak − Aj| + 2 sup
k>j

|Bk − Bj | +
Cst(q, a)

j + n0
, (44)

if n1 := Cst(x, a) was chosen sufficiently large.
Now, lim infj→∞ Vr(z(j)) = 0 and

lim
j→∞

sup
k>j

|Ak − Aj | = lim
j→∞

sup
k>j

|Bk − Bj | = lim
j→∞

Cst(q)

j + n0
= 0,

hence limj→∞ Vr(v(j)) = 0 which implies limj→∞ v(j) = r and completes the
proof.

5.2 Proof of Lemma 8

Let us start with an estimate of the rate of convergence of H(z(n)) to H(x). Let,
for all n ∈ N,

χn := H(x) − H(z(n)), νn :=
J(z(n))

H(v(n))χn
,

with the convention that νn := 0 if χn = 0.
By Lemma 6 there exist ǫ, λ, µ := Cst(x, a) such that, for all n ∈ N such that

v(n) ∈ BVx(2ǫ), νn ∈ [λ, µ]. On the other hand, for all n ∈ N, using Lemma 9
and the observation that J(z(n)) = 0 if χn = 0 by Lemma 6,

χn+1 =

(

1 − νn

n + n0 + 1

)

χn − ξn+1 − sn+1

6

(

1 − λ

n + n0 + 1

)

χn − ξn+1 + s′n+1, (45)

where
s′n+1 := −sn+1 + (νn − λ)max(−χn, 0)/(n + n0 + 1).
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If v(n) ∈ BVx(2ǫ) for sufficiently small ǫ := Cst(x, a) then, by Lemma 9,

‖ξn+1‖∞ 6
Cst(x, a)

n + n0
, ‖s′n+1‖∞ 6

Cst(x, a)

(n + n0)2
, (46)

where we use in the second inequality that max(−χn, 0) 6 Cst(x, a)/(n+n0 +1),
since ‖v(n) − z(n)‖∞ 6 Cst(x, a)/(n + n0 + 1) by Lemma 4 (d), and H(v(n)) 6

H(x) by Lemma 6.
Let, for all n ∈ N,

βn :=

n
∏

k=1

(

1 − λ

n + n0

)

.

Note that βnnλ converges to a positive limit. Inequality (45) implies by induction
that, for all n ∈ N,

χn 6 βn



χ0 −
n
∑

j=1

ξj

βj
+

n
∑

j=1

s′j
βj



 .

Assume L(BVx(ǫ)) holds so that, in particular, v(n) ∈ L(BVx(2ǫ)) for large n ∈
N. The upper bounds (46) yield, assuming w.l.o.g. λ < 1/2, that

∑n
j=1 s′j/βj <

∞ and
∑n

j=1 E(ξ2
j )/β

2
j < ∞; the latter implies, by Doob convergence theorem in

L2, that
∑n

j=1 ξj/βj converges a.s. Therefore χnnλ is bounded a.s.

We deduce subsequently, by Lemma 6 (a), that for all λ 6 Cst(x, a), J(v(n))nλ

converges a.s. to 0, so that limn→∞ v(n)∂Snλ = 0 in particular. This implies that
limn→∞ Iv(∞)(v(n))nλ = 0 by Lemma 6 (b).

Now apply Lemma 5 with q := v(∞): for large n ∈ N,

Vv(∞)(z(n)) = −
∞
∑

k=n

Iv(∞)(v(k))

k + n0 + 1
+

(

v(∞),

∞
∑

k=n+1

ζk

)

− 2

∞
∑

k=n+1

(ǫk)∂S

+ Cst(x, a)2

( ∞
∑

k=n

1

(k + n0)2

)

= o(n−λ) a.s.,

if we still assume w.l.o.g. λ < 1/2, so that
∑∞

k=n+1(ǫk)∂S = o(n−λ) a.s by
Lemmas 4 (a) and A.1. This completes the proof of the Lemma, using (42).

5.3 Proof of Lemma 10

Let, for all n ∈ N and i, j ∈ G, i ∼ j,

Y i,j
n :=

n
∑

k=1

1I{Xk−1=i,Xk=j}
Zk−1(j)

, Y i
n :=

n
∑

k=1

1I{Xk−1=i}
∑

v∼i av,iZk−1(v)
.

Then, by definition of the vertex-reinforced random walk,

M i,j
n := Y i,j

n − ai,jY
i
n
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is a martingale, and

∞
∑

k=1

E((M i,j
k − M i,j

k−1)
2) = E

( ∞
∑

k=1

1I{Xk−1=i}
Zk−1(j)2

ai,jZk−1(j)
∑

v∼i av,iZk−1(v)

(

1 − ai,jZk−1(j)
∑

v∼i av,iZk−1(v)

)

)

6 E

( ∞
∑

k=1

1I{Xk−1=i,Xk=j}
Zk−1(j)2

)

< ∞ (47)

so that, by Doob convergence theorem in L2, M i,j
n converges a.s.

Hence, for all i ∈ ∂S,

log Zn(i) ≡
n
∑

k=1

1I{Xk=i}
Zk−1(i)

=
∑

j∼i

Y j,i
n ≡

∑

j∼i

aj,iY
j
n =

∑

j∼i

aj,i

n
∑

k=1

1I{Xk−1=j}
Zk−1(j)

v(k − 1)j
Nj(v(k − 1))

≡
∑

j∼i,j 6∈∂S

ai,j
v(∞)j

Nj(v(∞))

n
∑

k=1

1I{Xk−1=j}
Zk−1(j)

≡ Ni(v(∞))

H(v(∞))
log n,

using Lemma 8, the symmetry of a and Nj(v(∞)) 6= 0 for all j ∈ G = T (x)
in the third equivalence, and H(v(∞)) = Nj(v(∞)) for all j ∈ S in the fourth
equivalence (v(∞) being an equilibrium).

5.4 Proof of Proposition 4

We can assume w.l.o.g. that Xn ∈ T (x). First recall that, if G = T (x), then
the proposition is a consequence of Lemmas 7, 8 and 10. We will now compare
the probability of arbitrary paths remaining in T (x) for the VRRWs defined
respectively on the graphs T (x) and G.

Let us introduce some notation. For all k ∈ N and A ⊆ V (G), let PA := AN

be the set of infinite sequences taking values in A, and let T A
k be the smallest

σ-field on PA that contains the cylinders

CA
v,k := {w ∈ PA s.t. w0 = v0, . . . , wk = vk}, v ∈ Ak.

Let T A := ∨k∈NT A
k . Finally, let (XA

j )j∈N be the random walk restricted to
remain in the subgraph A after time n.

For all k > n and v ∈ T (x)k,

P((Xn+1, . . . ,Xk) = v | Fn) = P((X
T (x)
n+1 , . . . ,X

T (x)
k ) = v | Fn)Y

(v)
n,k ,

where

Yn,k :=

k−1
∏

j=n

∏

α∈∂S(x)

(

1 − 1I{Xj=α}

∑

γ∼α, γ∈V (G)\T (x) aα,γZn(γ)
∑

β∼α aα,βZj(β)

)

∈ (0, 1), (48)

and Y
(v)
n,k denotes the value of Yn,k at (Xn+1, . . . ,Xk) := v, where Zj(w), w ∈

V (G), n 6 j 6 k − 1, assumes the corresponding number of visits of X. to w.
This enables us to prove the following claim.
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Claim For all E ∈ T T (x), P((Xj+n)j∈N ∈ E | Fn) = E(1I
(X

T (x)
j+n )j∈N∈E

Yn,∞ | Fn).

Let us first prove the claim in the case E = CT (x)
v,k = CV (G)

v,k ∩ {Rn,∞ ⊆ T (x)},
for some k ∈ N and v ∈ T (x)k. Indeed, we deduce from (48) that, for all l > n,

P({(Xj+n)j∈N ∈ CV (G)
v,k } ∩ {Rn,l ⊆ T (x)} | Fn) = E(1I

(X
T (x)
j+n )j∈N∈CT (x)

v,k

Yn,l | Fn),

so that

P((Xj+n)j∈N ∈ E | Fn) = lim
l→∞

E(1I
(X

T (x)
j+n )j∈N∈E

Yn,l | Fn)

= E(1I
(X

T (x)
j+n )j∈N∈E

Yn,∞ | Fn)

where Yn,∞ := liml→∞ Yn,l. The claim follows by uniqueness of extension of finite
measures on π-systems.

We now apply the claim for E := {Rn,∞ = T (x)}∩L(BVx(ǫ))∩A∂(v(∞)) and
prove that, a.s. on E, Yn,∞ > 0, which will complete the proof of the proposition:
for all α ∈ ∂S(x), a.s. on E, if ǫ is sufficiently small, then

∞
∑

j=k

1I{Xj=α}
∑

β∼α aα,βZj(β)
=

∞
∑

j=k

Zj(α) − Zj−1(α)
∑

β∼α aα,βZj(β)

6

∞
∑

j=k

Zj(α)

(

1
∑

β∼α aα,βZj(β)
− 1
∑

β∼α aα,βZj+1(β)

)

6 a
∞
∑

j=k

Zj(α)
(

∑

β∼α aα,βZj(β)
)2 1I{Xj+1∼α} 6 a

∞
∑

j=k

vj(α)

j(Nα(v(j)))2
< ∞

where we use that, since A∂(v(∞)) holds, v(j)α ∼j→∞ CjNα(v(∞))/H(x)−1 for

some random C > 0, so that v(j)α

j(Nα(v(j))2 ∼j→∞ C jNα(v(∞))/H(x)−2

Nα(v(∞)) , and Nα(v(∞)) <

H(v(∞)) = H(x) is ǫ is sufficiently small.

A Appendix

A.1 Remainder of square-bounded martingales

The following Lemma provides an almost sure estimate of Mn −M∞ for large n,
when Mn is a martingale bounded in L2(Ω,F , P).

Lemma A.1 Let (Mn)n>0 be a bounded martingale in L2, and let f : R+ → R+

be a nondecreasing function such that
∫ 1
0 (f(x))−2 dx < ∞. Then

Mn − M∞ = o(f(E((Mn − M∞)2)) a.s.
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proof: For all n > 0, let sn := E((Mn − M∞)2) and let

Nn :=

n
∑

k=1

Mk − Mk−1

f(sn−1)
, N0 := 0.

Then, for all n > 0,

E[N2
n] =

n
∑

k=1

sk−1 − sk

f(sk−1)2
6

∫ s0

0

dx

(f(x))2
< ∞.

Therefore (Mn)n>0 and (Nn)n>0 are martingales bounded in L2, and thus con-
verges a.s.

Now, letting On := Nn − N∞ for all n > 0,

Mn − M∞ =

∞
∑

k=n

f(sk)(Ok − Ok+1) = f(sn)On +

∞
∑

k=n+1

(f(sk) − f(sk−1))Ok

= o(f(sn)) a.s.

2

A.2 Proof of Proposition 1

Assume X0 := 0 for simplicity. Let, for all n ∈ N,

An := Zn(−1) + Zn(−1), α±
n := Zn(±1)/An,

Rn := Zn(0)/An − log An, Sn := log

(

Zn(−1)

Zn(1)

)

= log

(

α−
n

1 − α−
n

)

.

Let a ∈ (0, 1), ǫ < [a∧ (1− a)]/2. Given n0 ∈ N with Zn0(0) sufficiently large
and Xn0 = 0, assume that Zn0(−2)/ log Zn0(−1), Zn0(2)/ log Zn0(1) ∈ (1/3, 1/2),
α−

n0
∈ (a−ǫ/3, a+ǫ/3) and Rn0 ∈ (−ǫ/3, ǫ/3), which trivially occurs with positive

probability.
Let us define the following stopping times

T0 := inf{n > n0 s.t. Xn ∈ {−3, 3} or Xn = Xn−2 ∈ {−2, 2}},
T1 := inf{n > n0 s.t. Zn(2) ∨ Zn(−2) > log Zn(0)},
T2 := inf{n > n0 s.t. α−

n 6∈ (a − ǫ/2, a + ǫ/2) or Rn 6∈ (−ǫ/2, ǫ/2)},
T := T0 ∧ T1 ∧ T2.

For all n ∈ N, let tn be the n-th return time to 0, and let t′n := tn ∧ T .
It follows from elementary estimates that, as long as n0 6 tn < T , for suf-

ficiently large Zn0(0), Ztn(−1) ∈ ((a − ǫ)n/ log n, (a + ǫ)n/ log n) and Ztn(1) ∈
((1 − a − ǫ)n/ log n, (1 − a + ǫ)n/ log n).

We successively upper bound P(T0 < T1∧T2 | Fn0), P(T1 < T0∧T2 | Fn0) and
P(T2 < T0 ∧ T1 | Fn0), which will enable us to conclude that P(T = ∞|Fn0) > 0
for large Zn0(0).
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First, for sufficiently large Zn0(0),

P(T0 < T1 ∧ T2 | Fn0)

6
∑

n>Zn0 (0): tn<T

P(Xtn+4 = Xtn+2 = ±2 | Fn0) + P(Xtn+3 = ±3 | Fn0)

6 Cst(a, ǫ)
∑

n>Zn0 (0)

log n

n2
<

1

3
. (49)

Let G := (Ft′n)n>Zn0 (0), and let us consider the Doob decompositions of the
G-adapted processes Rt′n and St′n , n > Zn0(0):

Rt′n = Rn0 + ∆n + Ψn,

St′n := Sn0 + Φn + Ξn,

where ∆Zn0(0) = ΦZn0(0) = ΨZn0 (0) = ΞZn0 (0) := 0 and, for all n > Zn0(0),

∆n − ∆n−1 := E(Sn − Sn−1 | Ft′n−1
), Φn − Φn−1 := E(Tn − Tn−1 | Ft′n−1

),

and (Ψn)n>Zn0 (0) and (Ξn)n>Zn0 (0) are G-adapted martingales.
Easy computations yield that, for all n > Zn0(0),

|∆n − ∆n−1| 6 Cst
(log n)3

n2
, |Φn − Φn−1| 6 Cst(a, ǫ)

(

log n

n

)2

, (50)

E((Ψn+1−Ψn)2 | Ft′n) 6 Cst
(log n)4

n2
, E((Ξn+1−Ξn)2 | Ft′n) 6 Cst(a, ǫ)

(

log n

n

)2

.

(51)
Hence, by Chebyshev’s and Doob’s martingale inequalities, for all δ > 0,

P

(

max
k>Zn0(0)

|Ψk| > δ | Fn0

)

6
Cst

δ2

∞
∑

j=Zn0(0)

(log n)4

n2
6

Cst

δ2

(log Zn0(0))
4

Zn0(0)
;

and a similar inequality holds on the maximum of |Ξk|, k > Zn0(0), so that, for
sufficiently large Zn0(0), P(T2 < T0 ∧ T1 | Fn0) < 1/3.

Let us now make use of notation Y i,j
n , Y i

n and M i,j
n from Section 5.3 (with

ai,j = 1Ii∼j), and let U±
n := Y ±1,±2

n , V ±
n := Y ±1

n and W±
n := M±1,±2

n = U±
n −V ±

n .
Then the processes (U±

n )n>0 are martingales and, using (47), for all n > n0,

E((W±
n − W±

n0
)2 | Fn0) 6 E





n
∑

k=n0+1

1I{Xk−1=±1,Xk=±2}
Zk−1(±2)2



 6
∑

j>Zn0(±2)

1

j2
(52)

so that, if Υ := {maxk>n0 |W i
k − W i

n0
| 6 δ, i ∈ {+,−}} then, for all δ > 0,

P (Υc | Fn0) 6
1

δ2

(

1

Zn0(2) − 1
+

1

Zn0(−2) − 1

)

<
1

3
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for sufficiently large Zn0(0).
Now, on Υ, for all n < T , choosing δ = (log 2)/3, and again for sufficiently

large Zn0(0),

log Zn(±2) 6 log Zn0(±2) + U±
n − U±

n0
+ δ 6 2δ + log Zn0(±2) + V ±

n − V ±
n0

6 2δ + log Zn0(±2) +

n
∑

k=n0+1

1I{Xk−1=±1}
Zk−1(0)

6 2δ + log Zn0(±2) +

Zn−1(±1)
∑

k=Zn0 (±1)

1

k log k

6 3δ + log

(

Zn0(±2)

log Zn0(±1)

)

+ log(log Zn(±1)) 6 log(log Zn(±1)) 6 log(log Zn(0)),

where we use in the fourth inequality that, if n < T , then Tn > −ǫ/2 and
α−

n ∈ (a − ǫ/2, a + ǫ/2) so that Zn(0) > Zn(±1) log Zn(±1) if Zn0 > Cst(a, ǫ).
This completes the proof P(T1 < T0 ∧ T2 | Fn0) 6 P(Υc|Fn0) < 1/3 for large
Zn0(0).

The estimates (51) (resp. (52)) imply that the G (resp. F)-adapted martin-
gales (Ψn)n>Zn0 (0) and (Ξn)n>Zn0 (0) (resp. W±

n ) are bounded in L2 and hence
converge a.s.

Therefore, on {T = ∞}, (i)-(ii) hold, (αn)n>0 and (Rn)n>0 converge a.s.
Note that Lemma A.1 implies more precisely, for all ν < 1/2, Ξn−Ξ∞ = o(n−ν),
hence αn − α∞ = o(Zn(0)−ν). Thus, on {T = ∞},

log Zn(±2) ≡ U±
n ≡ V ±

n =

n−1
∑

k=0

1I{Xk=±1}
Zk(±2) + Zk(0)

≡ α±
∞

n−1
∑

k=0

1I{Xk=±1}
Zk(±1) log Zk(±1)

(

1 + O

(

1

log Zk(±1)

))

≡ α±
∞ log(log Zn(±1)) ≡ α±

∞ log(log n),

which proves (iii).
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