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Abstract

I start with a description of the goals of the analysis – developing a
“gauge theory of states of matter” – and a survey of the chiral anomaly,
including a sketch of an application to quantum wires.

I then review some basic elements of the theory of the quantum Hall
effect in 2D electron gases. In particular, I discuss the role of anomalous
chiral edge currents and of anomaly inflow in 2D insulators with explicitly
or spontaneously broken time reversal, i.e., in Hall- and Chern insulators.
The topological Chern-Simons action yielding the correct response eqs.
for the 2D bulk of such materials and the anomalous edge action are
exhibited. A classification of “abelian” Hall insulators is outlined.

After some remarks on induced Chern-Simons terms, I analyze chiral
photonic wave guides and chiral edge spin-currents as well as the bulk
response equations in time-reversal invariant 2D topological insulators.

The “chiral magnetic effect” in 3D systems and axion-electrodynamics
are reviewed next. A short digression into the theory of 3D topological
insulators, including “axionic insulators”, follows. I conclude with some
remarks on Weyl semi-metals, which exhibit the chiral magn. effect.

Some open problems are presented at the end.



1. Introduction: Goal and Purpose of Lectures

I Our main goal is to use concepts and results from Gauge Theory,
Current Algebra, and Generaly Relativity, in order to develop a
“Gauge Theory of Phases/States of Matter”, which complements
the Landau Theory of Phases and Phase Transitions when there are
no local order parameters available to characterize some states of
interest, and which yields information on current Green functions,
whence on transport coefficients (conductivities).

I Show on interesting examples how that theory can be used to
classify (“topologically protected”) correlated bulk- and surface
states of interacting systems of condensed matter when 6 ∃ local
order parameters.

I Key tools to develop a “Gauge Theory of Phases of Matter” are:

• “Effective Actions” = generating functionals of connected current
Green functions ↔ transport coeffs., in particular conductivities ;

• implications of gauge invariance ↔ current conservation (Ward
ids.), locality & power counting on form of Effective Actions ;

• Gauge Anomalies and their cancellations ↔ edge (surface)
degrees of freedom ↔ “holography”; etc.



Applications to Condensed-Matter Physics

I Introduce & study these field-theoretic notions and concepts,
and discuss the following applications of the “Gauge Theory
of States of Matter”; (a list of references to some of my work
will be given at the end):

• Conductance quantization in ideal quantum wires
• Theory of the Fractional Quantum Hall Effect
• Theory of chiral states of light in wave guides
• Time-reversal invariant 2D “topological” insulators and

superconductors; chiral edge spin currents
• Chiral magnetic effect2; higher-dimensional cousins of the

QHE3, 3D topological insulators, Weyl semi-metals, etc.

—

I Applications in other areas of physics, in particular in
cosmology

2Found in a preliminary form by A. Vilenkin; see Alekseev, Cheianov, JF.
3They have also been studied by O. Zilberberg et al.



Digression on Effective Actions
Consider a quantum-mechanical system with degrees of freedom
described by fields ψ,ψ, . . . over a space-time, Λ, which is equipped with
a metric gµν of signature (−1, 1, 1, 1). Its dynamics is assumed to be
derivable from an action functional S(ψ,ψ, ...; gµν). We assume that
there is a conserved vector current (density) Jµ, with ∇µJµ = 0. If the
current Jµ is charged, i.e., is carried by electrically charged degrees of
freedom, it couples to the electromagnetic field, which we describe by its
vector potential Aµ. Then the action of the system is given by

S(ψ,ψ, ...; gµν ,A) := S(ψ,ψ, ...; gµν) +

∫
Λ

d4x
√
−g Jµ(x)Aµ(x) , (1.1)

where g = det(gµν). The Effective Action of the system on a space-time
Λ with metric gµν and in an external electromagnetic field with vector
potential Aµ is then defined by the functional integral

Seff (gµν ,Aµ) := −i~ ln

(∫
DψDψ exp[

i

~
S(ψ,ψ, ...; gµν ,Aµ)]

)
+ (divergent) const. (1.2)



Properties of Seff
A precise definition of the right side in (1.2) requires specifying initial and
final field configurations, e.g., corresp. to ground-states of the system.

Next, we review some properties of Seff :

1. The variational derivatives of Seff with respect to Aµ are given by
connected current Green functions:

δSeff (gµν ,Aµ)

δAµ(x)
= 〈Jµ(x)〉g ,A , (1.3)

and
δ2Seff (gµν ,Aµ)

δAµ(x) δAν(y)
= 〈Jµ(x)Jν(y)〉cg ,A , (1.4)

where 〈(·)〉g ,A = ..., etc.

2. Let us consider the effect of a gauge transformation,
Aµ 7→ Aµ + ∂µχ, where χ is an arbitrary smooth function on Λ, on
the effective action, Seff . After an integration by parts we find that

δSeff (gµν ,Aµ + ∂µχ)

δχ(x)
= ∇µ〈Jµ(x)〉g ,A = 0 (1.5)

vanishes, because Jµ is conserved. Thus, Seff is invariant under
gauge transformations !



Properties of Seff – ctd.

3. We may also vary Seff with respect to the metric gµν :

δSeff (gµν ,Aµ)

δgµν(x)
= 〈Tµν(x)〉g ,A ,

where Tµν is the energy-momentum tensor of the system. Using
local energy-momentum conservation, i.e., ∇µTµν = 0, we find that
Seff (gµν ,Aµ) is invariant under coordinate transformations on Λ.

A general (possibly curved) metric gµν can be used to describe
defects – dislocations and disclinations – in a condensed-matter
system. – Invariance of Seff under Weyl rescalings of the metric
(i.e., under local variations of the density) would imply that
〈Tµ

µ (x)〉g ,A ≡ 0↔ scale-invariance (criticality) of the system.

4. If a system exhibits an energy gap above its ground-state, i.e., if it
is an “insulator”, then the zero-temperature connected current
Green functions have good decay properties in space and time. In
the scaling limit, i.e., in the limit of very large distances and very
low frequencies, its effective action then approaches a functional
that is a space-time integral of local, gauge-invariant polynomials in
Aµ and derivatives of Aµ.



Form of effective actions in the scaling limit

These terms can be organized according to their scaling dimensions,
(power counting).

Properties 1. through 4. enable us to determine the general form of
effective actions, Seff , (of insulators) in the scaling limit.

Example: We consider an insulator with broken parity and time-
reversal confined to a flat 2D region. Then Seff (Aµ) tends to

σH

2

∫
Λ

A ∧ dA +
1

2

∫
Λ

d3x
√
−g [E (x) · εE (x)− µ−1B(x)2] + · · · ,

as the scaling limit is approached, where σH is the Hall conductivity, ε is
the tensor of dielectric constants, and µ is the magnetic susceptibility. –
Note: Chern-Simons term not gauge-invariant if ∂Λ 6= ∅ → holography!

We also use generalizations of these concepts for non-abelian gauge fields
and currents that are only covariantly conserved. Such gauge fields may
represent “real” external fields; but also “virtual” ones merely serving to
develop the response theory needed to determine transport coefficients.

These matters are discussed in detail in my 1994 Les Houches lectures.



2. The Chiral Anomaly

Consider a system of relativistic, massless, charged fermions in a
space-time of dimension 2n, n = 1, 2, . . . . We consider the vector current,
Jµ, and the axial current, Jµ5 , of this system. The vector current turns
out to be conserved:

∂µJµ = 0 ↔ gauge invariance of theory

But the axial current is anomalous: In 2D,

∂µJµ5 =
α

2π
E , α :=

e2

~
, [J0

5 (~y , t), J0(~x , t)] = i
α

2π
δ
′
(~x − ~y), (2.1)

where α is the finestructure constant and E is the electric field.



Chiral Anomaly – ctd.
In 4D:

∂µJµ5 =
α

π
~E · ~B (∝ instanton density)

and
[J0

5 (~y , t), J0(~x , t)] = i
α

4π
~B(~y , t) · ∇~yδ(~x − ~y),

where ~E is the electric field and ~B the magnetic induction. For massive
fermions, there are terms ∝ fermion masses contributing to ∂µJµ5 .

—

We now derive the formulae in Eq. (2.1), (setting ~ = 1). We consider a
system on 2D Minkowski space, Λ. Let i be the 1-form dual to the vector
current density Jµ. Then

∂µJµ = 0 ⇔ di = 0.

By Poincaré’s lemma,

i =
Q

2π
dϕ, ϕ a scalar field, Q = “charge”.



Chiral anomaly in 2D – potential of conserved current
Thus

Jµ =
Q

2π
εµν∂νϕ (2.2)

In 2D, (given an arbitrary metric to raise and lower indices),

Jµ5 = εµνJν
(2)
=

Q

2π
∂µϕ, (2.3)

(see Schwinger, Seiler, and others). Suppose that E = 0, mass m = 0.
Then

∂µJµ5 = 0
(2.3)⇔ �ϕ = 0, (2.4)

i.e., ϕ is a massless free field. → Lagrangian QFT with action given by

S(ϕ) =
1

4π

∫
Λ

d2x
√
−g ∂µϕ(x)∂µϕ(x). (2.5)

Momentum, $, canonically conjugate to ϕ, (gµν flat, for simplicity):

$(x) =
δS(ϕ)

δ(∂0ϕ(x))
=

1

2π

∂ϕ(x)

∂t
= −Q−1J1(x).



Bosonization of Fermi fields
By (2.3),

J0
5 = Q$, J1

5 =
Q

2π

∂ϕ

∂x
.

Equal-time canonical commutation relations on Fock space,
[$(t, x), ϕ(t, y)] = −iδ(x − y),

imply an “anomalous current commutator”:

[J0(t, x), J0
5 (t, y)] = i

Q2

2π
δ′(x − y). (2.6)

Chiral currents: Jµ`/r := Jµ ± Jµ5 .

Chiral Fermi fields: Define

ψ
(q)
`/r (x) = : exp{±2πi

q

Q

∫ ∞
x

i`/r (x0, y)} :

= : exp2πiq[±ϕ(x)

2π
+

∫ ∞
x

$(x0, y)dy ] : (2.7)

El. charge: Q · q; statistics: e±iπq2

(Weyl rel.) → Fermi field if q = 1 !



Coupling to an external abelian gauge field

Electric field E (x) can be derived from vector potential Aµ(x):
E (x) = εµν(∂µAν)(x).
Now, replace S(ϕ) in (2.5) by

S(ϕ; A) :=
1

4π

∫
Λ

∂µϕ∂
µϕ d2x +

∫
Λ

JµAµ d2x

=
1

4π

∫
Λ

{∂µϕ∂µϕ+ 2Qεµν∂νϕAµ}d2x

=
1

4π

∫
Λ

{∂µϕ∂µϕ+ 2Q ϕE}d2x .

Can be derived from theory of Dirac fermions coupled to vector potential,
(by convergent perturbation theory in

∫
Λ

JµAµd2x). ⇒ Field equation
for ϕ becomes �ϕ(x) = QE (x). Hence

∂µJµ5 =
Q2

2π
E (x) (2.8)

which is the chiral anomaly in 2D!



3. Conductance quantization in quantum wires

– with A. Alekseev and V. Cheianov, 1998 –

Conserved chiral charges: The currents

Ĵ µ`/r := Jµ`/r ∓
Q

2π
εµνAν

are conserved, (∂µĴµ`/r = 0), but not gauge-invariant. However, the chiral

charges

N`/r :=

∫
Ĵ 0
`/r (t, x)dx (3.1)

are not only conserved, but also gauge-invariant!

Consider a very long wire containing a 1D interacting electron gas
(Q = −e) connected to electron reservoirs on the left end and the right
end; assume that there are no back-scattering processes converting
left-moving electrons into right-moving ones (or conversely), and that
E = 0. This system has a conserved vector current, Jµ = e

2π ε
µν∂νϕ, a

conserved axial current, Jµ5 , and two conserved charges, N` and Nr . Let
H denote the Hamiltonian of the electron gas.



Equilibrium state and equilibrium current
The equilibrium state of the electron gas at inverse temperature β is
given by the density matrix

Pµ`,µr := Ξ−1
β,µ`,µr

exp(−βHµ`,µr ), (3.2)

where Ξβ,µ`,µr = partition function, µ` and µr denote the chemical
potentials of reservoirs on the right end of the wire (injecting left-moving
electrons into the wire) and on the left end of the wire, respectively, and

Hµ`,µr := H − µ`N` − µr Nr .

Expectations with respect to Pµ`,µr are denoted by 〈(·)〉µ`,µr . We then
find the following formula for the current, I , through the wire:

I := 〈J1(x)〉µ`,µr = − e

2π
〈∂ϕ(x)

∂t
〉µ`,µr

= i
e

2π
〈[H, ϕ(x)]〉µ`,µr (Heisenberg Eq. of motion)

=
ie

2π
〈[Hµ`,µr , ϕ(x)] + [µ`N` + µr Nr , ϕ(x)]〉µ`,µr



Quantized conductance
The expectation 〈[Hµ`,µr , ϕ(x)]〉µ`,µr vanishes, as follows from (3.2)!
Using Eq. (3.1) and the anomalous commutator (2.6), we find that the
remaining terms in the expression for the current I add up to

I = − ie2

2π
(µ` − µr )

∫
〈[$(t, y), ϕ(t, x)]〉µ`,µr dy

= − e2

2π
(µ` − µr ) , by CCR. (3.3)

Notice that −(µ` − µr ) =: ∆V is the voltage drop through the wire.
Re-installing Planck’s constant ~, we find that

I =
e2

2π~
∆V .

Since electrons have spin 1
2 , there are actually two species of charged

particles (“spin-up” and “spin-down”) per filled band in the wire. Thus,

I = 2n
e2

h
∆V , for a wire with n filled bands.

(Generalizations for wires with impurities (Bachas-F): ↗ K. Gawedzki)



4. Anomalous chiral edge currents in incompressible Hall
fluids

In this section we outline the general theory of the QHE.

From von Klitzing’s lab journal (→ 1985 Nobel Prize in Physics):



Setup and experimental data



Electrodynamics of 2D incompressible electron gases

Basic quantities: 2D electron gas confined to sample Ω ⊂ xy -plane, in
magnetic field ~B0 ⊥ Ω. Filling factor ν chosen such that RL = 0.4 Study
the response of 2D EG to small perturbing e.m. field, ~E ‖Ω, ~B ⊥ Ω, with

~B tot := ~B0 + ~B, B := |~B|, E := (E1,E2).

We now review the electrodynamics of 2D “incompressible” (RL = 0)
electron gases. Field tensor:

F =

 0 E1 E2

−E1 0 −B
−E2 B 0

 = dA , (A: e.m. vector potential)

Current:
jµ(x) := 〈Jµ(x)〉A, µ = 0, 1, 2 ,

(reference to metric gµν , chosen to be flat, omitted.)

Here are the basic equations:

4To show that, for interacting 2D EG, ∃ ν’s such that RL = 0 is a very hard
problem of quantum many-body theory! . . .



Electrodynamics ... - ctd.

(1) Hall’s Law – phenomenological

jk (x) = σHε
k`E`(x) , assuming RL = 0→ broken P,T ! (4.1)

(2) Charge conservation – fundamental

∂

∂t
ρ(x) +∇ · j(x) = 0 . (4.2)

(3) Faraday’s induction law – fundamental

∂

∂t
B tot

3 (x) +∇∧ E (x) = 0 . (4.3)

Combining (1) through (3), we get

∂

∂t
ρ

(2)
= −∇ · j (1)

= −σH∇∧ E
(3)
= σH

∂

∂t
B . (4.4)

Integrate (4.4) in t, with integration constants chosen as follows:

j0(x) := ρ(x) + e · n, B(x) = B tot
3 (x)− B0 ⇒



Electrodynamics ... -ctd.

(4) Chern-Simons Gauss law

j0(x) = σH B(x) . (4.5)

Eqs. (4.1) and (4.5) yield

jµ(x) = σHε
µνλFνλ(x) (4.6)

which is a generally covariant relation between current density and field
tensor. → Puzzle:

0
(2)
= ∂µjµ

(3),(6)
= εµνλ(∂µσH )Fνλ 6= 0 , (4.7)

wherever σH 6= const., e.g., at ∂Ω.

Solution of Puzzle:
jµ is bulk current density 6= conserved total electric current density!

jµtot = jµbulk + jµedge , ∂µjµtot = 0, but ∂µjµbulk

(4.7)

6= 0 . (4.8)

Note:
supp jµedge = supp{∇σH} ⊇ ∂Ω, j

edge
⊥ ∇σH .



Anomalous edge current
Combining (4.7) (with jµ = jµbulk ) with (4.8), we find that

∂µjµedge

(4.8)
= −∂µjµbulk |supp{∇σH}

(4.6)
= −σH E‖|supp{∇σH} (4.9)

Chiral anomaly in 1 + 1 dimensions !

Eq. (4.9) is an example of “holography”. Apparently, jµedge is an
anomalous chiral current in 1 + 1 diemnsions.
Here is a classical-physics argument determining the chirality of jµedge : At
the edge of the sample the Lorentz force acting on electrons must be
cancelled by the force confining them to the interior of the sample. Thus

e

c
B totv k

‖ = εk` ∂Vedge

∂x`
,

where Vedge is the potential of the force confining electrons to the
interior of the sample → equation for chiral motion, (“skipping orbits”).

Analogous phenomenon in classical physics: Hurricanes :

~B → ~ωearth, Lorentz force → Coriolis force ,Vedge → air pressure .



An expression for the Hall conductivity σH

From the theory of the chiral anomaly in 1 + 1 dimensions we infer that

∂µjµedge = −e2

h

( ∑
edge modes α

Q2
α

)
E‖

with (4.9)⇒ σH =
e2

h

∑
species α

Q2
α (4.10)

where eQα is the “charge” (see (2.2), (2.5)) of the edge current, Jµα ,
corresponding to species α of clockwise-chiral edge modes; (similar
contributions from counter-clockwise chiral modes, but with reversed
sign!) → Halperin’s chiral edge currents . – Apparently, if σH 6∈ e2

h Z
then ∃ fractionally charged currents propagating along the edge !



Bulk effective action of a 2D Hall insulator
Consider a 2D electron gas in a neutralising ionic background subject to
a constant transversal magnetic field ~B0. Electrons are confined to a
region Ω in the xy -plane. The space-time of the system is given by
Λ = R× Ω. We suppose that electrons are coupled to an external em
vector potential A = A0 dt + A1 dx1 + A2 dx2 describing a small
perturbing em field (E‖Ω,B).
We assume that the 2D EG is an insulator, i.e., that the longitudinal
conductance vanishes. It is then easy to determine the form of the
effective action, Seff (A), of this system as a functional of the external
vector potential A in the limiting regime of very large distances and very
low frequencies (scaling limit), as explained in the Introduction:

Seff (A) =
σH

2

∫
Λ

A ∧ [dA + K ] + boundary term

+
1

2

∫
Λ

d3x{E (x) · εE (x)− µ−1B2(x)}+ ... (4.11)

where the coefficient, σH , of the topological Chern-Simons action turns
out to be the Hall conductivity, K is the Gauss curvature 2-form of the
sample, (and ε = tensor of dielectric consts., µ = magn. permeability).



Bulk effective action – ctd.

The presence of the Chern-Simons term on the right side of (4.11) can
also be inferred from Eq. (4.6): Omitting curvature terms (↔ “shift”),

jµbulk = 〈Jµ(x)〉A ≡
δSΛ(A)

δAµ(x)

(4.6)
= σH ε

µνλFνλ(x), x 6∈ ∂Λ .

⇒ SΛ(A) =
σH

2

∫
Λ

A ∧ dA + boundary term

That there must be a boundary term is a consequence of the fact that
the Chern-Simons bulk term is not gauge-invariant on a space-time Λ
with non-empty boundary ∂Λ: Under a gauge transformation
Aµ → Aµ + ∂µχ, the Chern-Simons action changes by a boundary term

σH

2

∫
∂Λ

[χdA]|∂Λ (4.12)

This anomaly must be cancelled by the anomaly of a boundary term!



Edge effective action

Returning to Eq. (4.10), we guess that the boundary term must be the
generating functional of the connected Green functions of the anomalous
chiral edge currents Jµα , α = 1, 2, ..., introduced there, where α labels the
different species of charged chiral edge modes. The charge of Jµα has
been denoted by eQα.
Let vα denote the propagation speed of the chiral modes that give rise to
the edge current Jµα . This propagation speed plays the role of the “speed
of light” in 2D current algebra. We introduce “light-cone coordinates”,
u+, u−, on ∂Λ. Let a := A‖ denote the em vector potential restricted to
the 1 + 1-dimensional boundary ∂Λ of space-time. Then a = a+du++
+a−du−. The eff. action of the chiral edge current Jµα is then given by

(eQα)2

h
Γ

(α)
∂Λ (a) , with Γ

(±)
∂Λ (a) :=

1

2

∫
∂Λ

[a+a− − 2a±
∂2
±
�

a±]du+ du− ,

(4.13)
where, in the last term on the right side of (4.13), the subscript “+” is
chosen if the modes that give rise to the current Jµα propagate clockwise,
and “−” is chosen if they propagate counter-clockwise; (dependence on
α though chirality of mode α and propagation speed vα!)



Anomaly inflow and anomaly cancellation

I propose as an exercize to the audience to verify that the anomaly
(4.12), namely the term σH

2

∫
∂Λ

[χdA]|∂Λ, is cancelled by the anomaly of
the edge effective action,

σH Γedge(a) :=
∑

species α

(eQα)2

h
Γ

(α)
∂Λ (a) ,

under a gauge transformation a→ a + dχ|∂Λ if and only if

σH =
e2

h

∑
α

Q2
α .

Note that, for simplicity, it is assumed here and in the following that all
edge modes have the same chirality; otherwise, we would have to insert
appropriate signs into these formulae. –

Whatever has been said here about Hall insulators also applies to
so-called Chern insulators, which break reflection- and time-reversal
invariance even in the absence of a magnetic field; e.g., because of
magnetic impurities in the bulk of the material; (↗ Haldane model).



Classification of “abelian” Hall fluids & Chern insulators

Here I sketch a general classification of 2D insulators with broken P and
T exhibiting quasi-particles with abelian braid statistics.5 Let J denote
the total electric current density (bulk + edge), which is conserved:

∂µJ µ = 0. – In the following we use units such that e2

~ = 1.
Ansatz:

J =
N∑
α=1

QαJα, (4.14)

where the currents Jα are assumed to be canonically normalized and
conserved, w. charges Qα ∈ R. On a 3D space-time Λ = Ω× R, a
conserved current J can be derived from a vector potential, B: If i
denotes the 2-form dual to J then ∂µJ µ = 0⇒ di = 0, hence

i =
1√
2π

dB,

where the vector potential B is a 1-form. It is determined by i up to the
gradient of a scalar function, β: B and B + dβ yield the same i .

5States exhibiting quasi-particles with non-abelian braid statistics are
discussed in my work with Pedrini, Schweigert and Walcher.



Chern-Simons action of conserved currents in an insulator

For a 2D insulator with broken time reversal (T ), the effective field
theory of the currents (Jα)N

α=1 must be topological in the scaling limit
(large distances, low frequencies). If reflection in lines and T are broken
the “most relevant” term in the action of the potentials, B := (Bα)N

α=1,
of the currents Jα is the Chern-Simons term

SΛ(B,A) :=
N∑
α=1

∫
Λ

{1

2
Bα∧dBα+A∧ Qα√

2π
dBα}+bd. terms+. . . , (4.15)

where A is the em vector potential, and the boundary terms must be
added to cancel the anomalies of the Chern-Simons term under the
“gauge trsfs.” Bα → Bα + dβα, A→ A + dχ. – Carrying out the
oscillatory Gaussian integrals over the potentials Bα, we find∫

exp(iSΛ

(
B,A)

) N∏
α=1

DBα = exp

(
iσH [

1

2

∫
Λ

A ∧ dA + Γedge(A‖)]

)
,

(4.16)

where σH = 1
2π

∑N
α=1 Q2

α , (see (4.13)!)



Classification of 2D “abelian” Hall insulators – bulk
degrees of freedom

Physical states of the Chern-Simons theory with action as in (4.15) can
be constructed from Wilson networks – lines can be flux tubes –
contained in the half space Λ− := Ω× R− whose lines/tubes end in Ω.
Given a network, W , let |W 〉 denote the physical state corresponding to
W ; (the map W → |W 〉 is “many to one”!). Let Θ(W ) denote the
network contained in Λ+ := Ω× R+ arising from W by reflection in Ω,
followed by complex conjugation. If W1 and W2 are two such networks
with the property that their intersections with Ω, more precisely their
fluxes through Ω, coincide (see blackboard) we may consider the gauge-
invariant network, W1 ◦Θ(W2), arising by multiplying W1 with Θ(W2);
(graphically: concatenation at coinciding points/regions in Ω). Then the
saclar product of the state |W1〉 with the state |W2〉 is given by

〈W2‖W1〉 :=

∫ (
W1 ◦Θ(W2)

)
(B) exp(iSΛ

(
B,A)

) N∏
α=1

DBα . (4.17)

Fact (easy to verify): In the scaling limit, the Hamiltonian of a Hall
insulator corresp. to (4.15) vanishes. Thus, excitations are“static”!



Classification of 2D “abelian” Hall insulators – charges of
physical states

The operator, QO, measuring the electric charge stored in states inside a
region O of the sample space Ω is given in terms of Wilson loop “ops.”:

exp(iεQO) := exp
(
iε

∫
O
J 0d2x

)
= exp

(
i

N∑
α=1

ε
Qα√

2π

∫
∂O

Bα
)
, ε ∈ R .

Because the ground-state energy of a Hall insulator is separated from the
rest of the energy spectrum by a positive (mobility) gap, electric charge
is a good quantum number to label its physical states (at zero
temperature). In other words, the charge operators

QO, and Q := limO↗ΩQO

are well defined on physical states (at zero temperature).6

The electric charges contained in a region O ⊂ Ω, denoted qO,1, qO,2, of
two states |W1〉, |W2〉 with the property that W1 ◦Θ(W2) is gauge-
invariant are identical : qO,1 = qO,2 ≡ qO.

6The same conclusion is reached by noticing that all Wilson loop
expectations have perimeter decay and then invoking “ ’tHooft duality”.



Classification of 2D “abelian” Hall insulators – connection
between charge and statistics

The charge qO contained in O is given by

exp(iεqO)〈W2‖W1〉 =

=

∫ (
W1 ◦Θ(W2)

)
(B)exp(iεQO)exp(iSΛ

(
B,A)

) N∏
α=1

DBα , (4.18)

If a Wilson network W creates a physical state |W 〉 describing n
electrons or holes located inside a region O ⊂ Ω from the ground-
state of a Hall insulator then the charge qO ≡ qO(W ) contained in
O is given by qO(W ) = −n + 2k, where k is the number of holes
in O. If the charge, −n + 2k , deposited in O by an excitation W
creating n − k electrons and k holes in O is odd, i.e., if n is odd,
then the excitation created by W inside O must have Fermi-Dirac
statistics, if n is even it must have Bose-Einstein statistics.



Classification of 2D “abelian” Hall insulators – statistics
and braiding

More precisely: Let W and W ′ be two Wilson networks creating
excitations with the same number of electrons and holes, but
located at disjoint points inside a region O ⊂ Ω, with qO(W ) =

= qO(W ′) =n mod2. Let W̃ be an arbitrary Wilson network with

the property that (W ·W ′) ◦Θ(W̃ ) and BO(W ·W ′) ◦Θ(W̃ ) are
gauge- invariant, where BO(W ·W ′) arises from W ·W ′ by
braiding all lines of the two networks with endpoints inside O, and
only those, in such a way that the endpoints of all lines of W
ending inside O are exchanged with the endpoints of all lines of
W ′ ending in O, but without any lines crossing each other; (see
blackboard). Then

〈W̃ ‖BO(W ·W ′)〉 = exp(iπn2)〈W̃ ‖(W ·W ′)〉 .

This is the standard connection between electric charge and
statistics in systems of electrons.



Classification of 2D “abelian” Hall insulators in terms of
odd-integral lattices

Consider a Wilson network W with just a single line, γp, starting at some
point in Λ− and ending at a point, p, in a region O, and let q := (qα)N

α=1

denote the quantum numbers (fluxes) dual to the potentials Bα attached
to this line. This line corresponds to the “operator”

exp
(
i

N∑
α=1

√
2πqα

∫
γp

Bα
)
.

It follows from Eq. (4.18) that

qO(W ) =
N∑
α=1

Qα qα = Q · q . (4.19)

It is almost obvious that the quantum numbers, q = (qα)N
α=1, corresp. to

multi-electron/hole excitations, form a module, Γ, over Z of rank N, i.e.,
a lattice of rank N. The “vector” Q = (Q1, ...,QN ) is an integer-valued
Z-linear functional on Γ, i.e., an element of the dual lattice, Γ∗.



Classification of 2D “abelian” Hall insulators – Hall lattices
The lattice Γ is equipped with an odd-integral quadratic form,

〈q(1), q(2)〉 :=
∑
α

q(1)α · q(2)α , q(1), q(2) ∈ Γ .

This is seen as follows: Braiding two lines with quantum numbers
q(1) = q(2) = q ∈ Γ yields a phase factor exp

(
iπ〈q, q〉

)
, which must be

= 1 if Q · q is even, and = −1 if Q · q is odd.
If q is the vector of quantum numbers corresponding to a single
electron/hole then

Q · q = ∓1, and exp
(
iπ〈q, q〉

)
= −1 . (4.20)

Thus Q is a “visible” vector of Γ∗. Since Q ∈ Γ∗ and Γ is an (odd-)
integral lattice, it follows that

h

e2
σH = Q · Q ≡

N∑
α=1

Q2
α ∈ Q (4.21)

→ Must classify (Γ,Q ∈ Γ∗), using invariants of these data! (See
F-Studer-Thiran, 1992-1994; Les Houches 1994 – separate lecture).



Classification – edge degrees of freedom
Chiral anomaly (4.13) ⇒ several (N) species of gapless quasi-particles
propagating along edge ↔ described by N chiral scalar Bose fields
{ϕα}N

α=1 with propagation speeds {vα}N
α=1, such that

1. Chiral electric edge current operator & Hall conductivity

Jµedge = e
N∑
α=1

Qα√
2π

∂µϕα, Q = (Q1, . . . ,QN ), σH =
e2

h
Q · QT

2. Multi-electron/hole states loc. along edge created by vertex ops.

: exp i

(
N∑
α=1

√
2π qαϕ

α

)
: , q =

 q1

...
qN

 ∈ Γ, j = 1, . . . ,N.

(4.22)
Charge ↔ Statistics ⇒ Γ an odd-integral lattice of rank N. Hence:

3. Classifying data are

{ Γ ; “visible” Q ∈ Γ∗; v = (vα)N
α=1 ; “CKM matrix” }

Γ∗ 3 q∗ ↔ quasi-particles w. abelian braid statistics!



Success of claissification

A large class of Hall insulators is classified by the data derived above:
Γ = odd-integral lattice, Q = visible vector in Γ∗, ... ⇒ h

e2σH ∈ Q; etc.

Classification of “non-abelian” Hall insulators : See F-P-S-W !



5. Induced Chern-Simons Terms in Three-Dimensional
Theories

We consider a relativistic quantum field theory of an odd number of
2-component Dirac fermions,

(
ψα
)
, with masses Mα, α = 1, 2, ..., 2n + 1,

propagating on a three-dimensional space-time, Λ (= Ω× R), and
minimally coupled to an electromagnetic vector potential A. This theory
breaks time reversal, T , and reflection in lines, P. Integrating over the
degrees of freedom of these Dirac fermions, we find that the effective
action of the vector potential A is given by

SΛ(A) =
2n+1∑
α=1

`n[detren

(
(∂µ + Aµ)γµ + Mα

)
]

=
2n+1∑
α=1

Tr `n
(
1 + GMα

Aµγ
µ
)
, (5.1)

where GM is the propagator of a free 2-component Dirac fermion with
mass M 6= 0 propagating in Λ. One may then expand the logarithm on
the right side of (5.1) in powers of A.



The effective action of the electromagnetic field
For large M, the leading term in Tr`n

(
1 + GM Aµγ

µ
)

is the one quadratic
in A, which can be calculated without difficulty.7 It is given by

sgn(M)
e2

8π~

∫
Λ

A ∧ dA + boundary term, (5.2)

i.e., by a Chern-Simons term corresponding to a Hall conductivity

σH = 1
2 ·

e2

h . Terms of higher order in A tend to 0, as M →∞.
I will not reproduce the calculations leading to (5.2); but see Redlich’s
papers.
If the electromagnetic field is treated as dynamical one must add the
Maxwell term to the induced Chern-Simons term (5.2), in order to get
the full effective action, which is given by

SΛ(A) =

∫
Λ

[εE 2 − µ−1B2]d3x +

+ sgn(M){ e2

8π~

∫
Λ

A ∧ dA + Γ∂Λ(A‖)} . (5.3)

7(Unpublished work on QED3, by J. Magnen, the late R. Sénéor and myself
in 1976). Explicit expressions were published by Deser, Jackiw and Templeton,
and by Redlich.



Massive photons and Dirac quasi-particles

SΛ(A) in (5.3) is quadratic in A. It therefore suffices to calculate 2-point
functions. If we choose Λ = R3 then the imaginary-time (euclidian) 2-pt.
functions of the components, Fµν , of the electromagnetic field tensor are
analytic in momentum space (∝ (k2 + cst.e4)−1). This is an easy
exercise left to the reader. Thus, photons turn out to have a strictly
positive mass ∝ e2.
If space-time Λ has a boundary then the effective action of the electro-
magnetic field has a boundary term given by the anomalous chiral action
Γ∂Λ(A‖) cancelling the anomaly of the Chern-Simons term in (5.3)
(+ irrelevant terms), as discussed in (4.13) and (4.16).

It is argued that, in certain planar systems of condensed matter, there
exist quasi-particles with low-energy properties mimicking those of
2-component Dirac fermions. An example is “doped” graphene; (see,
e.g., lectures by G. Semenoff). Other exampes will be discussed in later
sections. The low-energy properties of such systems can be described by
QED3, as introduced above.



Dualities in planar systems
Dualities

In planar systems (three space-time dimensions), the em vector potential
A and the vector potential, B, of the conserved el. current, J = ∇∧ B,
are dual to one another. Under the replacements

A 7→ B, B 7→ A,

conventional time-reversal inv. 2D insulators are mapped to 2D super-
conductors, and electronic Hall- or Chern insulators to gapped photonic
wave guides exhibiting extended chiral electromagnetic surface waves;
and conversely. This is seen using functional Fourier transformation; (see
F-S-T, Les Houches 1994).
Here we consider the duality between Hall- or Chern insulators and
gapped photonic wave guides. We define

S̃Λ(B) :=
1

2σH

∫
Λ

B ∧ dB + bd. term + less relevant terms, (5.4)

where σH := e2

4π~ . Then we have the duality

Chern-Simons QED3 ↔ Quantum Theory of Currents in Hall insulators



Gapped photonic wave guides
This is elucidated by Functional Fourier Transformation:

e i SΛ(A) = N−1

∫
e i S̃Λ(B) e i

∫
Λ

A∧dBDB , (5.5)

where N is a normalization factor, and conversely. We may view the
current driven through a wave guide with broken time-reversal invariance
as a “classical control variable”, while the electromagnetic field is treated
as dynamical and is quantized. Then we have the response equations:

〈Fµν(x)〉B = εµνλ
δS̃Λ(B)

δBλ(x)

= σ−1
H εµνλ jλ(x) . (5.6)

The boundary term on the right side of Eq. (5.4) is – as we already know

from (4.13), ... – given by 1
σH

Γ
(±)
∂Λ (B|∂Λ), with

Γ
(±)
∂Λ (b) :=

1

2σH

∫
∂Λ

[b+b− − 2b±
∂2
±
�

b±]du+ du− ,



Concluding remarks
in light-cone ccordinates (u+, u−) on ∂Λ, with B|∂Λ = b+du+ + b−du−.
The sign of σH and the choice of ± depends on the chirality of the em
edge waves. This is the generating functional of Green functions of the
em field of gapless quantized edge waves propagating chirally around the
boundary of the wave guide.

There would be various further topics to be discussed, such as the theory
of rotating Bose gases (which started with my work with Studer and
Thiran – see, e.g., Les Houches 1994. Further work was carried out by N.
Cooper et al., N. Rougerie, J. Yngvason et al., ...), or the role of
gravitational anomalies (see. e.g., the work of S. Klevtsov and P.
Wiegmann) related to heat transport; etc.

Five-dimensional QED – a close cousin of (5.1) through (5.3) – will have
a brief appearance in Sect. 8.

—



6. Chiral Spin Currents in Planar Topological Insulators
So far, we have ignored electron spin, in spite of the fact that there are
2D EG exhibiting the fractional quantum Hall effect where electron spin
plays an important role. (We won’t study these systems; but see refs..)

Here we consider time-reversal invariant 2D topological insulators (2D
TI) exhibiting chiral spin currents. – We start from the
Pauli equation for a spinning electron:

i~D0Ψt = − ~2

2m
g−1/2Dk g 1/2g kl Dl Ψt , (6.1)

where m is the (effective) mass of an electron, (gkl ) = metric of sample
space(-time), an orthonormal frame bundle is introduced on space-time
enabling one to define spinors, (↑ and ↓):

ψt(x) =

(
ψ↑t (x)

ψ↓t (x)

)
∈ L2(Ω, d vol .)⊗ C2 : 2-component Pauli spinor

Furthermore,

i~D0 = i~∂t + eϕ− ~W0 · ~σ︸ ︷︷ ︸
Zeeman coupling

, ~W0 = µc2 ~B + · · · (6.2)



U(1)em × SU(2)spin - gauge invariance

~
i

Dk =
~
i
∇k + eAk − ~Wk · ~σ + · · · , (6.3)

where ϕ is the electrostatic potential, ~∇ is the covariant gradient, ~A is
the vector potential, and the dots stand for terms arising in a moving
frame (ignored in the following), and

~Wk · ~σ := [(−µ̃ ~E + · · · ) ∧ ~σ]k︸ ︷︷ ︸
spin-orbit interactions

, (6.4)

and µ̃ = µ+ e~
4mc2 , (the last term due to Thomas precession).

We observe that the Pauli equation (6.1) displays perfect
U(1)em × SU(2)spin - gauge invariance.

We now consider an interacting gas of electrons confined to a region Ω of
a 2D plane, with ~B ⊥ Ω and ~E‖Ω. Then the SU(2) - connection, ~Wµ, is
given by

W 3
µ · σ3, with W K

µ ≡ 0, for K = 1, 2. (6.5)



Effective action of a 2D T-invariant topological insulator

From (6.5) we conclude that parallel transport of Pauli spinors splits into
parallel transport for spin ↑ and for spin ↓. The component ψ↑ of a Pauli
spinor Ψ couples to the abelian connection a + w , while ψ↓ couples to
a− w , where

aµ = −eAµ, and wµ = W 3
µ , (see (6.2)− (6.4)).

Under time reversal, T ,

a0 → a0, ak → −ak , but w0 → −w0, wk → wk . (6.6)

The dominant term in the effective action of a 2D T-inv. topological
insulator, with ~W as in (6.5), is a Chern-Simons term. If either w ≡ 0 or
a ≡ 0 a Chern-Simons term in a or in w alone would not be T -invariant.
If w ≡ 0 the dominant term would thus be given by

SΛ(A) =

∫
Λ

dt d2x{εE 2 − µ−1B2}, (6.7)

which is the effective action of a conventional insulator.



The Chern-Simons effective action

In the presence of both a and w a combination of two Chern-Simons
terms is T -invariant:

SΛ(a,w) =
σ

2

∫
Λ

{(a + w) ∧ d(a + w)− (a− w) ∧ d(a− w)}

= σ

∫
Λ

{a ∧ dw + w ∧ da} , (6.8)

up to boundary terms. (Note that, for ~W as in (6.2), (6.4), (6.5), one
recovers (6.7)!)8 The gauge fields a and w transform independently
under gauge transformations (preserving (6.5)), and the action (6.8) is
anomalous under these gauge transformations on a 2D sample Ω with
non-empty boundary. We have learned that the anomalous boundary
action,

σ[Γ+
∂Ω×R

(
(a + w)‖

)
− Γ−∂Ω×R

(
(a− w)‖

)
] , (6.9)

cancels the anomalies of the bulk action. This boundary action is the
generating functional of connected Green functions of two counter-
propagating chiral edge currents.

8The effective action (6.8) first appeared in a paper w. Studer in 1993.



Chiral edge spin currents
One of the two counter-propagating edge currents has spin ↑ (in
+3-direction ⊥ Ω), the other one has spin ↓. Thus, a net chiral spin
current, s3

edge , can be excited to propagate along the edge.

The bulk response equations (analogous to the Hall-Chern-Simons law
(4.6)) are given by

jk (x) = 2σεk`∂`B(x), sµ3 (x) =
δSΛ(a,w)

δwµ(x)
= 2σεµνλFνλ(x) (6.10)

The second equation could again be used to deduce that there must exist
edge spin-currents.

We should ask what kinds of quasi-particles in the bulk of such materials
could produce the bulk Chern-Simons terms in (6.8). Given our findings
in Sect. 5, it is tempting to argue that a 2D time-reversal invariant
topological insulator with a bulk effective action as given in (6.8) must
exhibit two species of charged quasi-particles in the bulk, with one
species (spin ↑) related to the other one (spin ↓) by time-reversal, and
each species has two degenerate states per wave vector mimicking a
two-component Dirac fermion at small energies ⇒ quantization of σ!



Experimental situation

Materials of this kind have been produced and studied in the lab of L.
Molenkamp in Würzburg.

The experimental data are not very clean, the likely reason being that,
due to small magnetic impurities and/or electric fields in the direction

⊥ Ω, the condition (6.5) is violated, i.e., the SU(2)-gauge field ~Wµ does
not only have a non-vanishing 3-component and is genuinely non-abelian.
In this situation, the spin current is not conserved, anymore, (but
continues to be covariantly conserved), and T is broken.

The approach to 2D time-reversal invariant topological insulators
sketched here can be generalized as follows: Consider a state of matter
exhibiting a bulk-spectrum of two species of quasi-particles related to one
another by time-reversal.



Generalizations
In order to analyze the transport properties of the state, one should study
the response of the state when one species is coupled to a (real or virtual,
abelian or non-abelian) external gauge field9 W + and the other one to a
gauge field W− related to each other by time-reversal, T , according to

(W +
0 )T = W−

0 , (W +
k )T = −W−

k

Assuming again that the leading term in the effective action for the
gauge fields W + and W− is given by the sum of two identical
Chern-Simons terms, but with opposite signs, time-reversal invariance is
manifest, and one concludes that there are two counter-propagating
chiral edge currents generating current (Kac-Moody) algebras (at level 1,
for non-interacting electrons) based on a Lie group given by the gauge
group corresponding to the gauge fields W±. (For non-interacting
electrons, this group can be determined from band theory!)

If one gives up the requirement of time-reversal invariance one arrives at
a theory of chiral states of matter. In particular, if ~W is an SU(2)-
gauge field coupling to the spin of electrons (see (6.2) and (6.4)) one
finds a framework to describe chiral spin liquids; (see Les Houches 1994).

9often dubbed “Berry connection”



7. The Chiral Anomaly in Four Dimensions

In Sect. 2 it was claimed that chiral currents carried by particles that are
coupled to non-vanishing external gauge fields are not conserved. For
concreteness, we consider particles of electric charge eQ,Q ∈ R, coupled
to an electromagnetic vector pontential A =

∑3
µ=0 Aµdxµ propagating in

four-dimensional space-time. Let J`/r denote the left-handed/right-
handed chiral current. Then the chiral anomaly says that

∂µJ µ`/r (x) = ± Q2

16π2
εµνρλFµν(x) Fρλ(x) , (7.1)

where we use units such that e2

~ = 1. I will not derive Eq. (7.1); but see
Adler, Bell & Jackiw, Fujikawa; and others. Eq. (7.1) permits us to
introduce modified chiral currents,

Ĵ µ`/r := J µ`/r ∓
Q2

16π2
εµνρλAνFρλ (7.2)

The second term on the right side is related to the Chern-Simons 3-form,
A ∧ dA, that we are already familiar with and whose exterior derivative is
the dual of the right side of (7.1).



Hamiltonian anomaly
By (7.2), the currents Ĵ µ`/r are (locally well-defined and) conserved, but

not gauge-invariant. But they give rise to gauge-inv. conserved charges.

I now derive the Hamiltonian anomaly in the form

[J 0
`/r (~y , t),J 0(~x , t)] = ±i

Q2

8π2
~B(~y , t) · ~∇~yδ(~x − ~y). (7.3)

Let A denote the affine space of (smooth) em vector poetntials, A,

corresponding to time-independent em fields, ~E , ~B. Given a fixed A ∈ A,
let
FA = Fock space for a free, massless chiral (e.g., left-handed)

Dirac-Weyl field coupled to A.

The spaces FA,A ∈ A are all isomorphic to the standard Fock space, F ,
of a free, massless Dirac-Weyl fermion. Let H denote the Hilbert bundle
with base space A and fibres FA,A ∈ A, equipped with a flat connection.
We can then identify all the fibres FA with the standard Fock space F .
The bundle H must carry a projective representation, U, of the infinite-
dimensional, abelian group, G, of time-independent gauge-transfs., gχ,

gχ(x) := e iχ(x), χ independent of time t.



Projective representation of gauge group on H
Properties of U:

(i) U(gχ) : FA → FA+dχ.

(ii) U(gχ)ψ(x ; A) U(gχ)−1|FA+dχ
= e iχ(x)ψ(x ; A + dχ)|FA+dχ

,

and similarly for ψ̄. Here ψ(x ; A) is the Dirac-Weyl field on FA.

It follows that
U(gχ) = expG (χ),

where G (χ) :=
∫

d3x χ(~x)G (~x), and

G (~x) = −i ~∇ · δ

δ ~A(~x)
+ Q−1J 0

` (~x ; A) (7.4)

Locally, the phase factor of the projective representation can be made
trivial by replacing G (~x) by

Ĝ (~x) := −i ~∇ · δ

δ ~A(~x)
+ Q−1Ĵ 0

` (~x ; A) . (7.6)



Anomalous commutators

Then, since the gauge group G is abelian, it follows that

[Ĝ (~x), Ĝ (~y)]
!

= 0, (at all times) (7.7)

Since the operator-valued distribution J 0
` (x ; A) is gauge-invariant (while

Ĵ 0
` (x ; A) is not), it follows that

[~∇ · δ

δ ~A(~x)
,J 0

` (~y ; A)] = 0 .

Using this equation, along with (7.6) and (7.2), in (7.7), one finds, after
straightforward calculations left to the audience, that

[J 0
` (t, ~x),J 0

` (t, ~y)] = i
Q2

4π2

(
~B(~x , t) · ~∇~x

)
δ(~x − ~y) . (7.8)

This implies (7.3). (Further details can be found in the literature.)



5. Chiral Magnetic Effect, Axion Electrodynamics
Let us consider a theory of charged, massless Dirac-Weyl fermions in four
space-time dimensions in the presence of a time-indep. external electro-
magnetic field with vector potential A. This theory has a conserved
vector current, J µ:

∂µJ µ = 0.

The continuity eq. implies that there exists a vector field, ~ϕ(x), such that

J 0(x) =
Qe

2π
~∇ · ~ϕ(x), ~J (x) = −Qe

2π

∂

∂t
~ϕ(x) , (8.1)

with Q the electric charge (in units where e2

~ = 1). If H denotes the
Hamiltonian of the system then (formally)

∂

∂t
~ϕ(x) =

i

~
[H, ~ϕ(x)] . (8.2)

We define chiral charges

N`/r :=

∫
d3x Ĵ 0

`/r (t, ~x), with Ĵ µ`/r as in Eq. (7.2) . (8.3)



Thermal equilibrium
Since the fermions are assumed to be massless, these charges are
conserved and gauge-invariant. Let µ` and µr denote chemical potentials
conjugate to the charges N` and Nr , respectively; and µ := (µ`, µr ).

We let 〈(·)〉β,µ denote an equilibrium state of the system at inverse
temperature β and chemical potentials µ. Our aim is to calculate
~j(x) = 〈 ~J (x)〉β,µ, using arguments reminiscent of those in Sect. 3. By

(8.2),

~j(x) =
iQe

h
〈[H, ~ϕ(x)]〉β,µ (8.4)

Formally, the right side of this eq. vanishes, because the equilibrium state
is time-translation invariant. However, the field ~ϕ turns out to have
ill-defined zero-modes, so that we cannot use the identity
[H, ~ϕ(x)] = H ~ϕ(x)− ~ϕ(x)H. We must regularize the right side of (8.4)
by introducing a small mass and then use that

∂

∂t
~ϕ(x) =

i

h

[
H − µ`N` − µr Nr , ~ϕ(x)

]
+

i

h

[
µ`N` + µr Nr , ~ϕ(x)

]
(8.5)

and that 〈
[
H − µ`N` − µr Nr , ~ϕ(x)

]
〉β,µ = 0.



The chiral magnetic effect
Combining this with (8.4) and (8.5), we find the “current sum rule”:

~j(x) =
iQe

h
〈
[
µ`N` + µr Nr , ~ϕ(x)

]
〉β,µ. (8.6)

Recalling formula (7.3) for the anomalous current commutators,

[
J 0
`/r (~y , t),J 0(~x , t)

]
= ±i

(Qe)2

4π
~B(~y , t) · ~∇~yδ(~x − ~y) ,

and (8.1), we conclude that

[
Ĵ 0
`/r (~y , t), ~ϕ(~x , t)

]
= ∓i

Qe

4π
~B(~y , t) δ(~x − ~y) + ~∇∧ ~Π`/r (~x − ~y , t) (8.7)

Using (8.3) and (8.6), we find10

~j(x) = − (Qe)2

4πh

(
µ` − µr

)
~B(x) . (8.8)

Chiral Magnetic Effect

10
See also: A. Vilenkin, Phys. Rev. D 22, 3080 (1980); A. Alekseev et al., Phys. Rev. Letters 81, 3503 (1998)



5D QHE
Note that, as in Symanzik ’s proof of the Goldstone theorem, one can
show that, at T = 0, if ~j(x) 6= 0 then there must exist massless modes!

In our derivation (see (8.5), (8.6)), it has been important to assume that
the external electromagnetic field is time-independent. This is usually not
the case, and in applcations to cosmology and condensed-matter physics,
it is unrealistic to assume that µ5 := µ`−µr is (space-)time-independent!
It turns out that a dynamical cousin of µ5 has been known in particle
physics under the name of “axion”. The most natural way of introducing
axions is to study an analogue of the quantum Hall effect in 5D: Imagine
that space-time is a five-dimensional slab, Λ = Ω× [0, L], with two four-
dim. boundary branes, ∂±Λ ' Ω. The bulk is assumed to be filled, e.g.,
with massive four-component Dirac fermions coupled to the 5D em
vector potential, Â. Integrating out the Dirac fermions (↗ Sect. 5!), we

find the effective action for Â:

SΛ(Â) =
1

4LQ2

∫
Λ

d5x F̂MN (x)F̂ MN (x) + CSΛ(Â)

+ Γ`(Â|∂+Λ) + Γr (Â|∂−Λ) + . . . , (8.9)



Dimensional reduction and axions
where L is the width of the 5D slab,

CSΛ(Â) :=
1

24π2

∫
Λ

Â ∧ F̂ ∧ F̂ (8.10)

is the 5D Chern-Simons action, and Γ`/r is the anomalous action of
left-handed/right-handed Dirac-Weyl fermions located on the boundary

branes, ∂±Λ, (canceling the anomaly of CSΛ(Â)!). The action (8.9), with
(8.10), describes the electrodynamics of the 5D QHE.

Dimensional reduction to 4D, assuming that the components F̂MN are
independent of x4, ∀M,N: We define

ϕ(x) :=

∫
γx

Â ,

where γx is a path connecting ∂−Λ to ∂+Λ at constant values of
x = (x0, x1, x2, x3). Then, for Λ = Ω× [0, L], the action (8.9) becomes

SΩ(A;ϕ) =
1

2Q2

∫
Ω

d4x
[
Fµν(x)Fµν(x) +

1

L2
∂µϕ(x)∂µϕ(x)

]
+

1

8π2

∫
Ω

ϕ (F ∧ F ) + ΓΩ(A) + . . . . (8.11)



Axion electrodynamics

Here ΓΩ(A) = Γ`(A) + Γr (A) is not anomalous and is ignored in the
following. Expression (8.11) shows that the pseudo-scalar field ϕ can be
interpreted as an axion. One can add a self-interaction term U(ϕ) to the
Lagrangian density in (8.11), requiring that U(ϕ) be periodic in ϕ. From
(8.11) we derive the equations of motion for Fµν and ϕ:

∂µFµν =
Q2

8π2
∂µ
(
ϕF̃µν

)
, L−2�ϕ =

Q2

8π2
Fµν F̃µν − δU(ϕ)

δϕ
,

where F̃µν is the dual field tensor, and the homogeneous Maxwell eqs.
read ∂µF̃µν = 0. In terms of the electric and magnetic fields, these
equations become:

~∇ · ~B = 0, ~∇∧ ~E + ~̇B = 0 ,

~∇ · ~E =
Q2

8π2

(
~∇ϕ
)
· ~B ,

~∇∧ ~B = ~̇E − Q2

8π2
{ϕ̇ ~B + ~∇ϕ ∧ ~E} . (8.12)



A generalized chiral magnetic effect

The equation of motion for ϕ is as shown above. If ϕ only depends on
time then ~∇ϕ = 0, and, comparing the right side of (8.12) with Eq.

(8.8) and re-installing e2

~ , we find that11

ϕ̇ = µ` − µr ≡ µ5 (8.13)

In condensed-matter theory, the equation of motion for µ5 ≡ ϕ̇ may take
the form of a diffusion equation, including a term, τ−1µ5, describing
dissipation of the asymmetry between left- and right-handedness:

µ̇5 + τ−1µ5 − D 4 µ5 = L2 e2

2πh
~E · ~B , (8.14)

(Q = 1) where τ is a relaxation time, D is a diffusion constant, and it is
assumed that U(ϕ) ≡ 0. As time t tends to ∞ (assuming that D is very
small), µ5 approaches

µ5 '
τ(Le)2

2πh
~E · ~B . (8.15)

11↗ F-Pedrini (2000), Hehl et al. (2008),. . . , S.-C. Zhang et al. (2010).



Manifestation of the chiral magnetic effect in the
conductivity tensor of Weyl semi-metals

This expression for µ5 can be plugged into equation (8.8) for the
current, which then yields an expression for a conductivity tensor in
the presence of an external magnetic field:

σk` =
τ(Lα)2

4π2
Bk B` (8.16)

This expression is relevant in the study of transport properties of
Weyl semi-metals (to mention one example), as discussed in the
next section.

Axion electrodynamics may have interesting applications not only
in cond-mat physics, but also in the theory of heavy-ion collisions,
in astrophysics, and in cosmology, where it may explain the growth
of tiny, but highly uniform cosmic magnetic fields extending over
intergalactic distances. But that’s another story!



Additional remarks about dimensional reduction

For some purposes, it is of interest to assume that one boundary brane,
e.g., ∂−Λ (located at x4 = 0), does not carry any dynamical degrees of

freedom, and that Â|∂−Λ = 0, while Â|∂+Λ =: A is arbitrary. We then set

ÂM (x , x4) :=
x4

L
A(x)µ, M ≡ µ = 0, 1, 2, 3, Â4(x , x4) =:

1

L
ϕ(x).

The ”axion” ϕ then transforms under em gauge transformations like an
angle. From the action (8.9) of 5D Chern-Simons electrodynamics we
then derive the gauge-invariant action in 4D

SΩ(A, ϕ) :=
1

4Q2

∫
Ω

d4x
[1

3
Fµν(x)Fµν(x) +

+ L−2
(
∂µϕ(x)− Aµ(x)

)
·
(
∂µϕ(x)− Aµ(x)

)]
+

1

8π2

∫
Ω

ϕ
(
F ∧ F

)
+ · · ·+ Γ`(A) . (8.17)

This is an anomaly-free 4D theory of chiral fermions coupled to electro-
magnetism and an “axion”-like (not gauge-invariant) field ϕ.



9. 3D Topological Insulators and Weyl Semi-Metals
In this section, we study 3D systems, representing topological insulators
and Weyl semi-metals, on a sample space-time Λ := Ω×R, with ∂Ω 6= ∅.
We are interested in the general form of the effective action describing the
response of the systems to turning on an external em field. Until the mid
nineties, the effective action of a 3D insulator was thought to be given by

SΛ(A) =
1

2

∫
Λ

dt d3x{~E · ε~E − ~B · µ−1 ~B}+ “irrelevant” terms , (9.1)

where ε is the tensor of dielectric constants and µ is the magnetic
permeability tensor. The action (9.1) is dimensionless. In the seventies,
particle theorists taught us that one could add another dimensionless
term:

SΛ(A)→ S
(θ)
Λ (A) := SΛ(A) + θ IΛ(A) , (9.2)

where IΛ is a “topological” term, the “instanton number”, given by

IΛ(A) =
1

4π2

∫
Λ

dt d3x ~E (~x , t) · ~B(~x , t) =

=
1

8π2

∫
Λ

F ∧ F =
Stokes

1

8π2

∫
∂Λ

A ∧ dA (9.3)



“Vacuum angle” and surface degrees of freedom
In particle physics, the parameter θ is called “vacuum (or ground-state)
angle”. The partition function of an insulator (after having integrated
over all matter degrees of freedom) is given by

Ξ
(θ)
Λ (A) = exp

(
iS

(θ)
λ (A)

)
,

with S
(θ)
Λ as in (9.2), (9.3). In the thermodynamic limit, Ω↗ R3, Ξ

(θ)
Λ (A)

is periodic in θ with period 2π and invariant under time reversal iff

θ = 0, π

For θ = π, Ξ
(θ)
Λ (A) contains a factor only depending on A|∂Λ:

exp

(
± i

8π

∫
∂Λ

A ∧ dA

)
, (9.4)

This is the partition function of a Hall insulator on ∂Λ with a Hall
conductivity

σH = ±1

2
· e2

h
(9.5)



Promoting the vacuum angle θ to an “axion”

We have encountered the “boundary partition function” (9.4) (with
(9.5)) in Sect. 5; see formulae (5.2), (5.3): Up to further, less relevant
terms in the exponent, it is the partition function of one species of
2-component Dirac fermions coupled to A|∂Λ. Gapless quasi-particles
with spin 1

2 located at ∂Λ could mimick such Dirac fermions and give rise
to (9.4).

One may now argue that the vacuum angle θ could be the ground-state
expectation of a dynamical field, ϕ, an “axion”, and replace the
topological term θIΛ(A) by

IΛ(A, ϕ) :=
1

8π2

∫
Λ

ϕF ∧ F + S0(ϕ) , (9.6)

where S0(ϕ) is invariant under shifts ϕ 7→ ϕ+ nπ, n ∈ Z. We then enter
the realm of axion-electrodynamics, as reviewed in Sect. 8! Recalling the
equations of motion (8.12), we find the equation for Halperin’s “3D
quantum Hall effect”:



A 3D quantum Hall effect in axionic topological insulators

From Eq. (8.12) we infer a formula for the current ~j generated in an
electromagnetic field:

~j = − e2

4πh

(
ϕ̇ · ~B + ~∇ϕ× ~E

)
(9.7)

Let us consider a 3D spatially periodic (Crystalline) system with an axion
ϕ. We suppose that ϕ is time-independent, i.e., µ5 = 0. Taking into
account the periodicity of exp

(
iIΛ(A, ϕ)

)
under shifts, ϕ 7→ ϕ+ 2nπ,

n ∈ Z, invariance under lattice translations implies that

ϕ(~x) = 2π
(
~K · ~x

)
+ φ(~x) , (9.7)

where ~K belongs to the dual lattice, and φ is invariant under lattice
translations. Neglecting φ, we find that

~∇ϕ = 2π ~K is “quantized”. 12

12This last point was brought to my attention by Greg Moore.



Why there might be axions in condensed-matter physics

It has been argued that axions may emerge as effective degrees of
freedom in:
• certain 3D topological insulators with anti-ferromagnetic short-range

order, (magnetic fluctuations playing the role of a dyn. axion)13 ; and in
• crystalline 3D Weyl semi-metals,
i.e., in systems with two energy bands exhibiting two (or, more generally,
an even number14 of) double-cones in “frequency-quasi-momentum
space” corresponding to chiral quasi-particle states, assuming that the
Fermi energy is close to the apices of those double-cones. At low
frequencies, namely near the apices of those double-cones, the
quasi-particle states of such systems satisfy the Weyl equation of left- or
right-handed Weyl fermions, respectively. In these systems, the
time-derivative, µ5 ≡ ϕ̇ of the “axion”, ϕ, really has the meaning of a
(time-dependent) difference of chemical potentials of left-handed and
right-handed quasi-particles.
It satisfies an equation of motion of the kind described in (8.14):

13a conjecture proposed by S.-C- Zhang (inspired by our work in cosmology)
14This folllows from the celebrated Nielsen-Ninomiya theorem



How one might discover “axions” in Weyl semi-metals

µ̇5 + τ−1µ5 − D 4 µ5 = L2 e2

2πh
~E · ~B , (9.8)

A non-vanishing initial value of the chemical potential µ5 may be
triggered by strain applied to the system, leading to a slightly `↔ r -
asymmetric population of the Fermi sea. Due to “inter-valley” scattering
processes, a non-vanishing µ5 will then relax towards 0, with a relaxation
time corresp. to the parameter τ in Eq. (9.8). Applying an electric field
~E and a magnetic induction ~B to the system, with the property that
~E · ~B 6= 0, one finds from (9.8) that the potential µ5 relaxes towards

µ5 ' τ(Le)2

2πh
~E · ~B. Thus, the conductivity tensor, σ = (σk`)k,`=1,2,3, is

given by

σk` = σ
(0)
k` +

τ(Lα)2

4π2
Bk B` ,

where the first term on the right side is the standard Ohmic conductivity
(due to phonon- and impurity scattering), and the second term is a
manifestation of the chiral magnetic effect. (Alas, this term may be too
small to be detected in actual measurements.)



And how one might discover “axionic insulators”

People15 have described various other Gedanken experiments serving to
discover effects due to axions in Weyl semi-metals; but we won’t review
their ideas here. Instead, we describe some axionic effects in topological
insulators with an effective action given by – see (9.1) and (9.6) –

SΛ(A, ϕ) = SΛ(A) +
1

8π2

∫
Λ

ϕF ∧ F + S0(ϕ) , (9.9)

where S0(ϕ) is invariant under shifts ϕ 7→ ϕ+ nπ, n ∈ Z. It is
compatible with time-reversal invariance that S0(ϕ) has minima at
ϕ = nπ. Then the material described by (9.9) is not an ordinary
insulator, and it may exhibit a Mott transition at a positive temperature:
The bulk of such a material will be filled with domain walls across which
ϕ jumps by (an integer multiple of) π. Applying the insight described
after (9.4) and (9.5), we predict that such domain walls may carry
gapless two-component Dirac-type fermions. At sufficiently high
temperatures, domain walls can be expected to become macroscopic, and
this would then give rise to a non-vanishing conductivity.16

15e.g., theorists in Würzburg including J. Erdmenger
16↗ F-Werner (2014)



Instabilities in axionic topological insulators
It has been pointed out by Pedrini and myself in 2000 that the presence
of a dynamical axion ϕ with µ5 ≡ ϕ̇ = a const. or a periodic function of
time, t, will give rise to the growth of a helical em field; modes of the
magnetic induction ~B at wave vectors of size ≤ cst.µ5 will be unstable
and exhibit unlimited growth. This growth is stopped by the relaxation of
µ5 to 0. (Our mechanism has first been applied in cosmology.)

Another, albeit related instability has been pointed out by Ooguri and
Oshikawa: Assuming that ~E and ~B are essentially time-independent, an
external electric field ~E applied to an axionic magnetic material is
screened once its strength |~E | exceeds a certain critical value Ec , the
excess energy giving rise to a magnetic field, as shown in the following
diagram taken from the paper Phys. Rev. Lett. 108, 161803 (2012):



10. Summary, Open Problems

1. Apparently, concepts and methods from (relativistic) quantum field
theory can be used to study general features of (interacting)
systems of cond-mat physics; e.g., to exhibit various examples of
“topological states of matter” that cannot be characterized by local
order parameters. This has been illustrated in my lectures by
showing how concepts from gauge theory, in particular, the chiral
anomaly, the chiral magn. effect and axion electrodynamics yield
rather surprizing insights into properties of such states of matter.

2. What’s missing in my lectures is an account of the bare-hands
analysis of spectral properties of many-body Hamiltonians descr.
“topological states of matter” at energies quite close to the ground-
state energy and to derive properties of quasi-particles, using tools,
such as renormalization group methods. Colleagues who have
devoted serious efforts extending over many years towards reaching
results in this direction are: T. Ba 6 laban, J. Feldman, G. Gallavotti,
A. Giuliani, H. Knörrer, V. Mastropietro, M. Porta, E. Trubowitz,
and some others. I recommend their work to the attention of this
audience! Of course, many questions remain open. . . .



“Survivre et Vivre” – almost half a Century later

To conclude, here is something more important to think about:

“... depuis fin juillet 1970 je consacre la plus grande partie de mon
temps en militant pour le mouvement Survivre, fondé en juillet à
Montréal. Son but est la lutte pour la survie de l’espèce humaine,
et même de la vie tout court menacée par le déséquilibre écologique
croissant causé par une utilisation indiscriminée de la science et de
la technologie et par des mécanismes sociaux suicidaires, et
menacée également par des conflits militaires liés à la prolifération
des appareils militaires et des industries d’armements. ...”

Alexandre Grothendieck

“Réveillez-vous, indignez-vous!”

(Stéphane Hessel)


