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Abstract

| start with a description of the goals of the analysis — developing a
“gauge theory of states of matter” — and a survey of the chiral anomaly,
including a sketch of an application to quantum wires.

| then review some basic elements of the theory of the quantum Hall
effect in 2D electron gases. In particular, | discuss the role of anomalous
chiral edge currents and of anomaly inflow in 2D insulators with explicitly
or spontaneously broken time reversal, i.e., in Hall- and Chern insulators.
The topological Chern-Simons action yielding the correct response egs.
for the 2D bulk of such materials and the anomalous edge action are
exhibited. A classification of “abelian” Hall insulators is outlined.

After some remarks on induced Chern-Simons terms, | analyze chiral
photonic wave guides and chiral edge spin-currents as well as the bulk
response equations in time-reversal invariant 2D topological insulators.

The “chiral magnetic effect” in 3D systems and axion-electrodynamics
are reviewed next. A short digression into the theory of 3D topological
insulators, including “axionic insulators”, follows. | conclude with some
remarks on Weyl semi-metals, which exhibit the chiral magn. effect.

Some open problems are presented at the end.



1. Introduction: Goal and Purpose of Lectures

» Our main goal is to use concepts and results from Gauge Theory,
Current Algebra, and Generaly Relativity, in order to develop a
“Gauge Theory of Phases/States of Matter”, which complements
the Landau Theory of Phases and Phase Transitions when there are
no local order parameters available to characterize some states of
interest, and which yields information on current Green functions,
whence on transport coefficients (conductivities).

» Show on interesting examples how that theory can be used to
classify (“topologically protected”) correlated bulk- and surface
states of interacting systems of condensed matter when A local
order parameters.

» Key tools to develop a “Gauge Theory of Phases of Matter” are:

e “Effective Actions” = generating functionals of connected current
Green functions <> transport coeffs., in particular conductivities;

e implications of gauge invariance <> current conservation (Ward
ids.), locality & power counting on form of Effective Actions;

e Gauge Anomalies and their cancellations < edge (surface)
degrees of freedom < “holography”; etc.



Applications to Condensed-Matter Physics

> Introduce & study these field-theoretic notions and concepts,
and discuss the following applications of the “Gauge Theory
of States of Matter”; (a list of references to some of my work
will be given at the end):

e Conductance quantization in ideal quantum wires

e Theory of the Fractional Quantum Hall Effect

e Theory of chiral states of light in wave guides

e Time-reversal invariant 2D “topological” insulators and
superconductors; chiral edge spin currents

e Chiral magnetic effect?; higher-dimensional cousins of the
QHES3, 3D topological insulators, Weyl semi-metals, etc.

» Applications in other areas of physics, in particular in
cosmology

2Found in a preliminary form by A. Vilenkin; see Alekseev, Cheianov, JF.
3They have also been studied by O. Zilberberg et al.



Digression on Effective Actions
Consider a quantum-mechanical system with degrees of freedom
described by fields v, ), ... over a space-time, A, which is equipped with
a metric g,,,, of signature (—1,1,1,1). Its dynamics is assumed to be
derivable from an action functional S(¢, v, ...; g,.). We assume that
there is a conserved vector current (density) J*, with V,J* = 0. If the
current J* is charged, i.e., is carried by electrically charged degrees of
freedom, it couples to the electromagnetic field, which we describe by its
vector potential A,. Then the action of the system is given by

S(J,w,...;gm,,A) = S(J,w,...;gw)—I—/Ad‘lx\/%J“(x)AM(x), (1.1)

where g = det(g,.). The Effective Action of the system on a space-time
N\ with metric g, and in an external electromagnetic field with vector
potential A, is then defined by the functional integral

SEff(gll/Da Alt) = 7Ih ln (/ DEDd) eXp[éS(aa 11[}’ e g,uua AH)])
+  (divergent) const. (1.2)



Properties of Sex
A precise definition of the right side in (1.2) requires specifying initial and
final field configurations, e.g., corresp. to ground-states of the system.
Next, we review some properties of Ses:

1. The variational derivatives of S.¢ with respect to A, are given by
connected current Green functions:

55eff(g/w7 Au)

s e (13)
and s ( )
eff g/u/a nw) m v c
AL = W O, (14)
where ((-))g,a = ..., etc.

2. Let us consider the effect of a gauge transformation,
A, Au+ 0,x, where x is an arbitrary smooth function on A, on
the effective action, Seg. After an integration by parts we find that

65eff(gm/7 Au + 8/1)()
dx(x)
vanishes, because J* is conserved. Thus, S.# is invariant under
gauge transformations !

=V ()ea=0  (15)



Properties of Sq# — ctd.

3. We may also vary Ses with respect to the metric gy, :

55eff (g,ulu A/J)
08w (x)
where TH” is the energy-momentum tensor of the system. Using

local energy-momentum conservation, i.e., V,, T#” = 0, we find that
Sefr(8uv, Ay) is invariant under coordinate transformations on A.

=(T"(x))g.a,

A general (possibly curved) metric g, can be used to describe
defects — dislocations and disclinations — in a condensed-matter
system. — Invariance of S under Weyl rescalings of the metric
(i-e., under local variations of the density) would imply that
(T} (x))g.a =0 <> scale-invariance (criticality) of the system.

4. If a system exhibits an energy gap above its ground-state, i.e., if it
is an “insulator”, then the zero-temperature connected current
Green functions have good decay properties in space and time. In
the scaling limit, i.e., in the limit of very large distances and very
low frequencies, its effective action then approaches a functional
that is a space-time integral of local, gauge-invariant polynomials in
A, and derivatives of A,,.



Form of effective actions in the scaling limit

These terms can be organized according to their scaling dimensions,
(power counting).

Properties 1. through 4. enable us to determine the general form of
effective actions, Se, (of insulators) in the scaling limit.

Example: We consider an insulator with broken parity and time-
reversal confined to a flat 2D region. Then Sex(A,) tends to

o 1
% [andas ) / Pxv/=g [E(x) - E(x) = p~ B(x)2] + -+ ,
A A

as the scaling limit is approached, where oy is the Hall conductivity, € is
the tensor of dielectric constants, and p is the magnetic susceptibility. —
Note: Chern-Simons term not gauge-invariant if OA # () — holography!
We also use generalizations of these concepts for non-abelian gauge fields
and currents that are only covariantly conserved. Such gauge fields may
represent “real” external fields; but also “virtual” ones merely serving to
develop the response theory needed to determine transport coefficients.

These matters are discussed in detail in my 1994 Les Houches lectures.



2. The Chiral Anomaly

Consider a system of relativistic, massless, charged fermions in a
space-time of dimension 2n,n =1,2,.... We consider the vector current,
J*, and the axial current, Jéf, of this system. The vector current turns
out to be conserved:

0,J" =0 <« gauge invariance of theory

But the axial current is anomalous: In 2D,

(% 62

w_ @ < 0 0w N\ —; Ys'(g_ o
Oul = 3-E, ai= S (B0, LR Ol =20 (K= 7). (1)

where « is the finestructure constant and E is the electric field.



Chiral Anomaly — ctd.

In 4D: o -
0,J¢ = —E-B (o instanton density)
™
and
0/ 02 =12 o o
[s (v, 1), S (X, )] = i —B(y, ) - V(X — y),

where E is the electric field and B the magnetic induction. For massive
fermions, there are terms o fermion masses contributing to 9, J&'.

We now derive the formulae in Eq. (2.1), (setting & = 1). We consider a
system on 2D Minkowski space, A. Let i be the 1-form dual to the vector
current density J#. Then

o' =0 & di=0.
By Poincaré’s lemma,

i= stp, ¢ a scalar field, @ = “charge”.

2w



Chiral anomaly in 2D — potential of conserved current
Thus

= %wayw (2.2)

In 2D, (given an arbitrary metric to raise and lower indices),

p=eg, @ Doy, (23)

(see Schwinger, Seiler, and others). Suppose that E = 0, mass m = 0.
Then

a0t =0 % op=o, (2.4)
i.e., p is a massless free field. — Lagrangian QFT with action given by
1
S(0) = 3= | AP V=B (00" (). (25)

Momentum, w, canonically conjugate to ¢, (g, flat, for simplicity):

_0S(p) 1 0p(x) g
== St ~2r a9 T




Bosonization of Fermi fields

By (2.3),
Q Oy
R = =T
5=Qw, ) 21 Ox
Equal-time canonical commutation relations on Fock space,

[@(t,x), o(t, y)] = —id(x — y),
imply an “anomalous current commutator”:

2
(), Bt )] = T (x— y). (26)
Yy - Yy
Chiral currents: J[fL/r = Jr £ JE
Chiral Fermi fields: Define
w(q) (x) = :exp{x2 A 7 0 :
0/r = &Xp uy Q ’é/r(X 7X)} :
= exp27riq[:|:@ —|—/ w(x°, y)dy] : (2.7)
s N =T

El. charge: Q-g; statistics: eX"™ (Weyl rel.) — Fermi field if g = 1!



Coupling to an external abelian gauge field

Electric field E(x) can be derived from vector potential A, (x):
E(x) = " (9,A.)(x).
Now, replace S(y) in (2.5) by

S(g;A) = % //\ OOt d*x + //\ JHA, d?x
- = /A (0,000 + 2Qem 0, 0A, } dx
= %//\{8“¢8‘L@+2Q YE}d?x.
Can be derived from theory of Dirac fermions coupled to vector potential,

(by convergent perturbation theory in [, J*A,d?x). = Field equation
for ¢ becomes [p(x) = QE(x). Hence

Q2
or

9,0 = 2 E(x) (2.8)

which is the chiral anomaly in 2D!



3. Conductance quantization in quantum wires
— with A. Alekseev and V. Cheianov, 1998 —

Conserved chiral charges: The currents

= T ewa,

Th
J l/r o

l/r
are conserved, (3”]?/, = 0), but not gauge-invariant. However, the chiral
charges

Nyje = [ (6,00 (31)
are not only conserved, but also gauge-invariant!

Consider a very long wire containing a 1D interacting electron gas

(Q = —e) connected to electron reservoirs on the left end and the right
end; assume that there are no back-scattering processes converting
left-moving electrons into right-moving ones (or conversely), and that
E = 0. This system has a conserved vector current, J/ = =0, ¢, a
conserved axial current, J', and two conserved charges, Ny and N,. Let
H denote the Hamiltonian of the electron gas.



Equilibrium state and equilibrium current

The equilibrium state of the electron gas at inverse temperature 3 is
given by the density matrix

Puop. = EE,LZ,#,eXp(_ﬂHMhMr)> (3.2)

where =g ,,, ., = partition function, u, and i, denote the chemical
potentials of reservoirs on the right end of the wire (injecting left-moving
electrons into the wire) and on the left end of the wire, respectively, and

HM@,,U,, =H - MZNE - MrNr~

Expectations with respect to P, ,, are denoted by ((-)).,,.,. We then
find the following formula for the current, /, through the wire:

[ = <J1(X)>w,ur = _%<8g(t)()>ue,ur

. €
= [§<[,‘-/7 QO(X)]>,U27/W (Heisenberg Eq. of motion)

ie
= E<[Hw,#u ©(x)] + [1eNe + pr Ny, QP(X)DM,M,



Quantized conductance
The expectation ([Hy, 1., ©(X)]) ., u. vanishes, as follows from (3.2)!
Using Eq. (3.1) and the anomalous commutator (2.6), we find that the
remaining terms in the expression for the current / add up to

f 2
= () / (@(t,y), 9t e e dly
- _gw — u), by CCR. (33)

Notice that —(u¢ — ) =: AV is the voltage drop through the wire.
Re-installing Planck’s constant f, we find that

2

e
| = —AV.
2mh

Since electrons have spin % there are actually two species of charged
particles (“spin-up” and “spin-down”) per filled band in the wire. Thus,

2
| = 2n%AV, for a wire with n filled bands.

(Generalizations for wires with impurities (Bachas-F): 7 K. Gawedzki)



4. Anomalous chiral edge currents in incompressible
fluids

In this section we outline the general theory of the QHE.

von 0

From von Klitzing's lab journal (—> 1985 Nobel Prize in Physics)
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Setup and experimental data

Ga, A€, As

Ga As

B,

o

Experimental behavior of the Hall conductivity

A experimental curve (sketch)

classical curve

4
3
1
2 xRy
RH=pH=__v‘ 1 3
’ measured 1
R, b 31
1 5

Fig. 1. Schematic representation of the experimental setup and of experimental results on the
QHE.

Observations: Ry, = 0 +> (v,0f) € plateau; plateau heights € %Q; the cleaner the sample, the
more numerous are the observed plateaux and the narrower they are; if E%UH ¢ Z there appear
to exist fractional electric charges.



Electrodynamics of 2D incompressible electron gases

Basic quantities: 2D electron gas confined to sample Q C xy-plane, in
magnetic field 5, L €. Filling factor v chosen such that R, :_.0'4 Study
the response of 2D EG to small perturbing e.m. field, £ ||, B L Q, with

B .= B,+ B, B:=|B|, E:=(E,E).

We now review the electrodynamics of 2D “incompressible” (R, = 0)
electron gases. Field tensor:

0 £ &
F=| -& 0 —-B | =dA, (A: em. vector potential)
-E B 0

Current:
JH(x) = (S (x)a, w=0,1,2,
(reference to metric g, chosen to be flat, omitted.)

Here are the basic equations:

*To show that, for interacting 2D EG, 3v's such that R, = 0 is a very hard
problem of quantum many-body theory! ...



Electrodynamics ... - ctd.
(1) Hall's Law — phenomenological
J¥(x) = one**Ey(x), assuming R, =0 — broken P, T'!

(2) Charge conservation — fundamental

2 o047 j) =0,
(3) Faraday's induction law — fundamental

2 tot
ot >
Combining (1) through (3), we get

(x)+VAE(x)=0.

J . (1) (3) 0
— 0 -V.-j=—-oyVANE = 0oy—B.
ot . - ot

Integrate (4.4) in t, with integration constants chosen as follows:

P00 = p(x) +e-n, B(x)=BE(x) =By =



Electrodynamics ... -ctd.
(4) Chern-Simons Gauss law
J(x) = ouB(x). (4.5)
Egs. (4.1) and (4.5) yield

J*(x) = O’HE’W)‘FV)\(X) (4.6)

which is a generally covariant relation between current density and field
tensor. — Puzzle:
2 . (3),(6
02 9, CL c) (@, 00)Fin £ 0, (4.7)
wherever oy # const., e.g., at 0.

Solution of Puzzle:
j# is bulk current density # conserved total electric current density!

) ) ) ) ) (4.7)
./g)t :Jffu,k +J:dge7 8uJ#ot =0, but 3u12‘u/k # 0. (4-8)

Note:
SUPP Jegge = supp{¥on} 20Q, j 1 Vou.



Anomalous edge current
Combining (4.7) (with j# = jj' ) with (4.8), we find that

(4.8)

. (4.6)
aﬂjel;dge -

*aujgu/k|supp{ZoH} = *UHEH|supp{ZUH} (4'9)

Chiral anomaly in 1 4+ 1 dimensions!

Eq. (4.9) is an example of “holography”. Apparently, jé‘dge is an
anomalous chiral current in 1 4+ 1 diemnsions.

Here is a classical-physics argument determining the chirality of jg‘dge: At
the edge of the sample the Lorentz force acting on electrons must be
cancelled by the force confining them to the interior of the sample. Thus

€ Btot k _ ke 3Vedge
- v =¢ ,
c I Oxt

where Vi gq is the potential of the force confining electrons to the
interior of the sample — equation for chiral motion, (“skipping orbits” ).

Analogous phenomenon in classical physics: Hurricanes:

B — @eartn, Lorentz force — Coriolis force , Vegge —+ air pressure .



An expression for the Hall conductivity oy

edge currey,

N 0u=0

T Vedge NN 50

cyclotron
orbit

Fig. 2. Skipping orbits of electrons moving along the boundary /edge of a 2D electron gas confined
to a disk — electrons near 92 perform a chiral motion.

From the theory of the chiral anomaly in 1 + 1 dimensions we infer that

. e’ with (4.9 e?
Opdeage = =7 ( Y. Q)E i )aH:W S @ (410)

edge modes o species o

where eQ,, is the “charge” (see (2.2), (2.5)) of the edge current, J¥,
corresponding to species « of clockwise-chiral edge modes; (similar
contributions from counter-clockwise chiral modes, but with reversed
sign!) — Halperin's chiral edge currents. — Apparently, if oy & E—;Z
then 3 fractionally charged currents propagating along the edge!



Bulk effective action of a 2D Hall insulator

Consider a 2D electron gas in a neutralising ionic background subject to
a constant transversal magnetic field 5;. Electrons are confined to a
region Q in the xy-plane. The space-time of the system is given by

AN =R x Q. We suppose that electrons are coupled to an external em
vector potential A = Agdt + A; dx; + Az dxy describing a small
perturbing em field (E||2, B).

We assume that the 2D EG is an insulator, i.e., that the longitudinal
conductance vanishes. It is then easy to determine the form of the
effective action, Ser(A), of this system as a functional of the external
vector potential A in the limiting regime of very large distances and very
low frequencies (scaling limit), as explained in the Introduction:

Ser(A) = %4 AN [dA+ K] + boundary term
A
+ %/d3x{§(x) ceE(x) — B2 (x)} + ... (4.11)
A

where the coefficient, oy, of the topological Chern-Simons action turns
out to be the Hall conductivity, K is the Gauss curvature 2-form of the
sample, (and & = tensor of dielectric consts., ;1 = magn. permeability).



Bulk effective action — ctd.

The presence of the Chern-Simons term on the right side of (4.11) can
also be inferred from Eq. (4.6): Omitting curvature terms (<> “shift”),

B = 0= A

(10) o e AF A (x), x & ON.

= Sp(A) = UQ—H / A A dA + boundary term
A

That there must be a boundary term is a consequence of the fact that
the Chern-Simons bulk term is not gauge-invariant on a space-time A
with non-empty boundary OA: Under a gauge transformation

Ap — Au + 0y, the Chern-Simons action changes by a boundary term

%[ ixdAllo (412)

This anomaly must be cancelled by the anomaly of a boundary term!



Edge effective action

Returning to Eq. (4.10), we guess that the boundary term must be the
generating functional of the connected Green functions of the anomalous
chiral edge currents J¥, o = 1,2, ..., introduced there, where « labels the
different species of charged chiral edge modes. The charge of JX has
been denoted by eQ,,.

Let v, denote the propagation speed of the chiral modes that give rise to
the edge current J¥. This propagation speed plays the role of the “speed
of light” in 2D current algebra. We introduce “light-cone coordinates”,
uT,u", on OA. Let a:= A| denote the em vector potential restricted to
the 1 + 1-dimensional boundary OA of space-time. Then a = a, dut+
+a_du~. The eff. action of the chiral edge current J¥ is then given by

2
(eci“) rida), with 16 (a) [ lva - 2aia—ai]du+ du~
(4.13)
where, in the last term on the right side of (4.13), the subscript “+" is
chosen if the modes that give rise to the current J¥ propagate clockwise,
and “—" is chosen if they propagate counter-clockwise; (dependence on
« though chirality of mode a and propagation speed v, !)




Anomaly inflow and anomaly cancellation

| propose as an exercize to the audience to verify that the anomaly
(4.12), namely the term % [, [xdA]|on, is cancelled by the anomaly of
the edge effective action,

OH edge(a) = Z h on (3) 5

species o

under a gauge transformation a — a + dx|aa if and only if

e2
UH:?ZQEZ-

Note that, for simplicity, it is assumed here and in the following that all
edge modes have the same chirality; otherwise, we would have to insert
appropriate signs into these formulae. —

Whatever has been said here about Hall insulators also applies to
so-called Chern insulators, which break reflection- and time-reversal
invariance even in the absence of a magnetic field; e.g., because of
magnetic impurities in the bulk of the material; (,* Haldane model).



Classification of “abelian” Hall fluids & Chern insulators

Here | sketch a general classification of 2D insulators with broken P and
T exhibiting quasi-particles with abelian braid statistics.®> Let J denote
the total electric current density (bulk 4+ edge), which is conserved:

0uJ*" = 0. — In the following we use units such that e—hz =1
Ansatz:
N
J = Z Qajom (4.].4)
a=1

where the currents 7, are assumed to be canonically normalized and
conserved, w. charges Q, € R. On a 3D space-time A =Q xR, a
conserved current J can be derived from a vector potential, B: If j
denotes the 2-form dual to J then 9,J" =0 = di =0, hence

1
i = ——dB,
\V2or
where the vector potential B is a 1-form. It is determined by i up to the
gradient of a scalar function, 5: B and B + d[3 yield the same i.

SStates exhibiting quasi-particles with non-abelian braid statistics are
discussed in my work with Pedrini, Schweigert and Walcher.



Chern-Simons action of conserved currents in an insulator

For a 2D insulator with broken time reversal (T), the effective field
theory of the currents (7,)N_; must be topological in the scaling limit
(large distances, low frequencies). If reflection in lines and T are broken
the “most relevant” term in the action of the potentials, B := (B,)N_,;,
of the currents 7, is the Chern-Simons term

Qo
\/7

where A is the em vector potential, and the boundary terms must be
added to cancel the anomalies of the Chern-Simons term under the
“gauge trsfs." B, — B, + dB., A— A+ dx. — Carrying out the
oscillatory Gaussian integrals over the potentials B,, we find

SA(B,A) /{ BaAdB,+AA dB,}+bd. terms+..., (4.15)

/exp(iSA (B, A)) all_v[lDBa = exp (iaH[; /AA A dA + redge(AH)]) ,

(4.16)
where OH = 5= Y01 @2, (see (4.13)!)



Classification of 2D “abelian” Hall insulators — bulk
degrees of freedom

Physical states of the Chern-Simons theory with action as in (4.15) can
be constructed from Wilson networks — lines can be flux tubes —
contained in the half space A_ := Q x R_ whose lines/tubes end in .
Given a network, W, let |W) denote the physical state corresponding to
W; (the map W — |W) is “many to one"!). Let ©(W) denote the
network contained in Ay := Q x R, arising from W by reflection in £,
followed by complex conjugation. If W) and W, are two such networks
with the property that their intersections with Q, more precisely their
fluxes through Q, coincide (see blackboard) we may consider the gauge-
invariant network, Wy o ©(W,), arising by multiplying W; with ©(W,);
(graphically: concatenation at coinciding points/regions in Q). Then the
saclar product of the state |W;) with the state |W,) is given by

N
WallWa) = [ (Wso @) (B)exp(isn(B.4) [] DB.. (417

a=1

Fact (easy to verify): In the scaling limit, the Hamiltonian of a Hall
insulator corresp. to (4.15) vanishes. Thus, excitations are “static”!



Classification of 2D “abelian” Hall insulators — charges of
physical states

The operator, Q», measuring the electric charge stored in states inside a
region O of the sample space ( is given in terms of Wilson loop “ops.”:

N
exp(ieQp) = exp /5/ j0d2 *exp Z \/7 ),SGR.
o 20

Because the ground-state energy of a Hall insulator is separated from the
rest of the energy spectrum by a positive (mobility) gap, electric charge
is a good quantum number to label its physical states (at zero
temperature). In other words, the charge operators

Qo, and Q :=limp ~qQo

are well defined on physical states (at zero temperature).®
The electric charges contained in a region O C €2, denoted qo 1, §o,2, of
two states |W;), |Wa) with the property that W o ©(W,) is gauge-
invariant are identical : go1 = qo.2 = qo.

5The same conclusion is reached by noticing that all Wilson loop
expectations have perimeter decay and then invoking “'tHooft duality” .




Classification of 2D “abelian” Hall insulators — connection
between charge and statistics

The charge gop contained in O is given by

exp(ieqo)(Wa||Wh) =
N
_ / (Wh 0 ©(W5)) (B)exp(i=Qo)exp(iSa (B, A)) [ DB, (4.18)

a=1

If a Wilson network W creates a physical state |W) describing n
electrons or holes located inside a region O C Q from the ground-
state of a Hall insulator then the charge go = go(W) contained in
O is given by go(W) = —n + 2k, where k is the number of holes
in O. If the charge, —n + 2k, deposited in O by an excitation W
creating n — k electrons and k holes in O is odd, i.e., if nis odd,
then the excitation created by W inside O must have Fermi-Dirac
statistics, if nis even it must have Bose-Einstein statistics.



Classification of 2D “abelian” Hall insulators — statistics
and braiding

More precisely: Let W and W’ be two Wilson networks creating
excitations with the same number of electrons and holes, but
located at disjoint points inside a region O C Q, with go(W) =
= go(W’) =n mod2. Let W be an arbitrary Wilson network with
the property that (W - W) o ©(W) and Bo(W - W) 0 ©(W) are
gauge- invariant, where Bo(W - W') arises from W - W' by
braiding all lines of the two networks with endpoints inside O, and
only those, in such a way that the endpoints of all lines of W
ending inside O are exchanged with the endpoints of all lines of

W’ ending in O, but without any lines crossing each other; (see
blackboard). Then

(W|Bo(W - W) = exp(imn®)(W|(W - W')).

This is the standard connection between electric charge and
statistics in systems of electrons.



Classification of 2D “abelian” Hall insulators in terms of
odd-integral lattices

Consider a Wilson network W with just a single line, ,, starting at some
point in A_ and ending at a point, p, in a region O, and let q := (¢*)N_;
denote the quantum numbers (fluxes) dual to the potentials B, attached

to this line. This line corresponds to the “operator”

N
exp(iz \/ﬂqa/ Ba) .
a=1 il

P

It follows from Eq. (4.18) that

N
(W)= Quq*=Q-q. (4.19)
a=1

It is almost obvious that the quantum numbers, q = (q*)N_,, corresp. to

multi-electron/hole excitations, form a module, I', over Z of rank N, i.e.,
a lattice of rank N. The “vector” Q = (@, ..., Qn) is an integer-valued
Z-linear functional on T, i.e., an element of the dual lattice, *.



Classification of 2D “abelian” Hall insulators — Hall lattices
The lattice I is equipped with an odd-integral quadratic form,

(g, @ - ana g@ . g @ e

This is seen as follows: Braiding two lines with quantum numbers

g = ¢® = g €T yields a phase factor exp(iﬂ'(q, q)) which must be
=1ifQ-giseven,and = —1if Q- g is odd. O
If g is the vector of quantum numbers corresponding to a single
electron/hole then

Q-g=7F1, and exp(im(q,q)) = —1. (4.20)

Thus Q is a “visible" vector of [*. Since @ € [* and I is an (odd-)
integral lattice, it follows that

h N
?aH:Q~QEZQ§EQ (4.21)

a=1

— Must classify (I', Q € T*), using invariants of these data! (See
F-Studer-Thiran, 1992-1994; Les Houches 1994 — separate lecture).



Classification — edge degrees of freedom

Chiral anomaly (4.13) = several () species of gapless quasi-particles
propagating along edge <+ described by N chiral scalar Bose fields
{o*}N_, with propagation speeds {v,}"_,, such that

1. Chiral electric edge current operator & Hall conductivity

Qu o 2
Jsdge:e;maﬂgp ’ Q:(Qla---7QN)a UH:%Q‘QT

2. Multi-electron/hole states loc. along edge created by vertex ops.

N q1
:expi(Z\/27rqagoa>:,q: : el, j=1,...,N.
a=1

an
(4.22)

Charge <> Statistics = I an odd-integral lattice of rank N. Hence:
3. Classifying data are
{r; "visible" Q €T™*; v =(v,)"_,; “CKM matrix” }

[* 3 g* <> quasi-particles w. abelian braid statistics!



Success of claissification

A large class of Hall insulators is classified by the data derived above:
' = odd-integral lattice, @ = visible vector in '*, ... = e—"QoH € Q; etc.
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Fig. 3. Observed Hall fractions o = ny /dy in the interval 0 < oy < 1 and their experimental
status in single-layer 2D electron gases exhibiting the quantum Hall effect.

Classification of “non-abelian” Hall insulators: See F-P-S-W !



5. Induced Chern-Simons Terms in Three-Dimensional
Theories

We consider a relativistic quantum field theory of an odd number of
2-component Dirac fermions, (1), with masses My, o =1,2,...,2n+1,
propagating on a three-dimensional space-time, A (= Q x R), and
minimally coupled to an electromagnetic vector potential A. This theory
breaks time reversal, T, and reflection in lines, P. Integrating over the
degrees of freedom of these Dirac fermions, we find that the effective
action of the vector potential A is given by

2n+1
SA(A) = > In[det,en (9 + AV + Ma)]
a=1
2n+1
= Z Trin(1+ Gu, A™), (5.1)

a=1

where Gy is the propagator of a free 2-component Dirac fermion with
mass M = 0 propagating in A. One may then expand the logarithm on
the right side of (5.1) in powers of A.



The effective action of the electromagnetic field
For large M, the leading term in Tr£n(1 + GMA#'y“) is the one quadratic
in A, which can be calculated without difficulty.” It is given by

2
sgn(M) % //\ A A dA + boundary term, (5.2)

i.e., by a Chern-Simons term corresponding to a Hall conductivity

oy = % . e—hz Terms of higher order in A tend to 0, as M — co.

| will not reproduce the calculations leading to (5.2); but see Redlich’s
papers.

If the electromagnetic field is treated as dynamical one must add the
Maxwell term to the induced Chern-Simons term (5.2), in order to get

the full effective action, which is given by
SA(A) = /[652 — B d®x +
A
&2

+ sgn(M) &l

"(Unpublished work on QEDs, by J. Magnen, the late R. Sénéor and myself

in 1976). Explicit expressions were published by Deser, Jackiw and Templeton,
and by Redlich.



Massive photons and Dirac quasi-particles

Sa(A) in (5.3) is quadratic in A. It therefore suffices to calculate 2-point
functions. If we choose A = R3 then the imaginary-time (euclidian) 2-pt.
functions of the components, F,,,, of the electromagnetic field tensor are
analytic in momentum space (x (k2 + cst.e*)™1). This is an easy
exercise left to the reader. Thus, photons turn out to have a strictly
positive mass o €.

If space-time A has a boundary then the effective action of the electro-
magnetic field has a boundary term given by the anomalous chiral action
Fan(A)) cancelling the anomaly of the Chern-Simons term in (5.3)

(+ irrelevant terms), as discussed in (4.13) and (4.16).

It is argued that, in certain planar systems of condensed matter, there
exist quasi-particles with low-energy properties mimicking those of
2-component Dirac fermions. An example is “doped” graphene; (see,
e.g., lectures by G. Semenoff). Other exampes will be discussed in later
sections. The low-energy properties of such systems can be described by
QED;, as introduced above.



Dualities in planar systems
Dualities

In planar systems (three space-time dimensions), the em vector potential
A and the vector potential, B, of the conserved el. current, 7 =V A B,
are dual to one another. Under the replacements

A= B, B~ A,

conventional time-reversal inv. 2D insulators are mapped to 2D super-
conductors, and electronic Hall- or Chern insulators to gapped photonic
wave guides exhibiting extended chiral electromagnetic surface waves;
and conversely. This is seen using functional Fourier transformation; (see
F-S-T, Les Houches 1994).

Here we consider the duality between Hall- or Chern insulators and
gapped photonic wave guides. We define

= 1
SA(B) := 5ol B AdB+ bd. term + less relevant terms,  (5.4)
OH JA

where oy = ﬁzh. Then we have the duality

’Chern—Simons QED; < Quantum Theory of Currents in Hall insulators‘




Gapped photonic wave guides

This is elucidated by Functional Fourier Transformation:
o SM(A) :Nfl/e"g"(s) eif,\A/\dEeDB7 (5.5)

where A is a normalization factor, and conversely. We may view the
current driven through a wave guide with broken time-reversal invariance
as a ‘“classical control variable”, while the electromagnetic field is treated
as dynamical and is quantized. Then we have the response equations:

3SA(B)
F 1% v
< Iz (X)>B Ep A(SB)\(X)
= oo ). (5.6)
The boundary term on the right side of Eq. (5.4) is — as we already know
from (4.13), ... — given by 2T (B]on), with

1 o2 B
rfﬁ)(b) = o 6/\[b+b_ - 2bj:iib:|:]du+ du™,



Concluding remarks

in light-cone ccordinates (u™, u™) on OA, with B|gp = bydu™ + b_du™.
The sign of oy and the choice of £+ depends on the chirality of the em
edge waves. This is the generating functional of Green functions of the
em field of gapless quantized edge waves propagating chirally around the
boundary of the wave guide.

There would be various further topics to be discussed, such as the theory
of rotating Bose gases (which started with my work with Studer and
Thiran — see, e.g., Les Houches 1994. Further work was carried out by N.
Cooper et al., N. Rougerie, J. Yngvason et al., ...), or the role of
gravitational anomalies (see. e.g., the work of S. Klevtsov and P.
Wiegmann) related to heat transport; etc.

Five-dimensional QED — a close cousin of (5.1) through (5.3) — will have
a brief appearance in Sect. 8.



6. Chiral Spin Currents in Planar Topological Insulators

So far, we have ignored electron spin, in spite of the fact that there are
2D EG exhibiting the fractional quantum Hall effect where electron spin
plays an important role. (We won't study these systems; but see refs..)
Here we consider time-reversal invariant 2D topological insulators (2D
TI1) exhibiting chiral spin currents. — We start from the

Pauli equation for a spinning electron:

. h?
ihDoW; = _ﬂg 1/2Dk gl/zgk/ DV, (6-1)

where m is the (effective) mass of an electron, (gx) = metric of sample

space(-time), an orthonormal frame bundle is introduced on space-time
enabling one to define spinors, (1 and J):

Pr(x) = Ui () € 1%(Q,d vol.) ® C?: 2-component Pauli spinor
RESERNETE) S P P

Furthermore,

ihDy = ihdy + ep— Wp-& , Wo=pc®B+---  (6.2)

Zeeman coupling



U(1)em x SU(2)spin- gauge invariance

h h -
7Dk:7vk+eAk—Wk-5’+--~, (6.3)

where @ is the electrostatic potential, V is the covariant gradient, Alis
the vector potential, and the dots stand for terms arising in a moving
frame (ignored in the following), and

Wy -G :=[(—RE +---) A&, (6.4)
spin-orbit interactions
and ji =+ % , (the last term due to Thomas precession).

We observe that the Pauli equation (6.1) displays perfect
U(1)em x SU(2)spin - gauge invariance.

We now consider an interacting gas of electrons confined to a region Q of
a 2D plane, with B 1 Q and E||Q2. Then the SU(2) - connection, W,,, is
given by

WS o3, with WS =0, for K =1,2. (6.5)



Effective action of a 2D T-invariant topological insulator

From (6.5) we conclude that parallel transport of Pauli spinors splits into
parallel transport for spin 1 and for spin |. The component %" of a Pauli
spinor W couples to the abelian connection a + w, while 1/* couples to

a — w, where

a, =—eA,, and w, = Wj’, (see (6.2) — (6.4)).
Under time reversal, T,

ag — ag, ak — —ak, but wp — —wp, we — wy. (6.6)

The dominant term in the effective action of a 2D T-inv. topological
insulator, with W as in (6.5), is a Chern-Simons term. If either w =0 or
a =0 a Chern-Simons term in a or in w alone would not be T-invariant.
If w =0 the dominant term would thus be given by

SA(A) = /Adt d?x{eE* — u~*B?}, (6.7)

which is the effective action of a conventional insulator.



The Chern-Simons effective action

In the presence of both a and w a combination of two Chern-Simons
terms is T-invariant:

Sa(a,w) = %/A{(a—kw)/\d(a—i—w)—(a—W)/\d(a—w)}

- a/{a/\dw—i—w/\da}, (6.8)

up to boundary terms. (Note that, for W as in (6.2), (6.4), (6.5), one
recovers (6.7)!)8 The gauge fields a and w transform independently
under gauge transformations (preserving (6.5)), and the action (6.8) is
anomalous under these gauge transformations on a 2D sample Q with
non-empty boundary. We have learned that the anomalous boundary

action,
o[ gaxr((@a+w))) = Tagur((@a—w))l, (6.9)

cancels the anomalies of the bulk action. This boundary action is the
generating functional of connected Green functions of two counter-
propagating chiral edge currents.

8The effective action (6.8) first appeared in a paper w. Studerin 1993.



Chiral edge spin currents

One of the two counter-propagating edge currents has spin 1 (in
+3-direction L Q), the other one has spin |. Thus, a net chiral spin
current, sgdge, can be excited to propagate along the edge.

The bulk response equations (analogous to the Hall-Chern-Simons law

(4.6)) are given by

J5(x) = 2069, B(x), st (x) = ‘Sfcv(j(xv)v) = 20" F 5 (x)|  (6.10)

The second equation could again be used to deduce that there must exist
edge spin-currents.

We should ask what kinds of quasi-particles in the bulk of such materials
could produce the bulk Chern-Simons terms in (6.8). Given our findings
in Sect. 5, it is tempting to argue that a 2D time-reversal invariant
topological insulator with a bulk effective action as given in (6.8) must
exhibit two species of charged quasi-particles in the bulk, with one
species (spin 1) related to the other one (spin |) by time-reversal, and
each species has two degenerate states per wave vector mimicking a
two-component Dirac fermion at small energies = quantization of o!



Experimental situation

Materials of this kind have been produced and studied in the lab of L.
Molenkamp in Wiirzburg.

The experimental data are not very clean, the likely reason being that,
due to small magnetic impurities and/or electric fields in the direction

1 Q, the condition (6.5) is violated, i.e., the SU(2)-gauge field V_VH does
not only have a non-vanishing 3-component and is genuinely non-abelian.
In this situation, the spin current is not conserved, anymore, (but
continues to be covariantly conserved), and T is broken.

The approach to 2D time-reversal invariant topological insulators
sketched here can be generalized as follows: Consider a state of matter
exhibiting a bulk-spectrum of two species of quasi-particles related to one
another by time-reversal.



Generalizations

In order to analyze the transport properties of the state, one should study
the response of the state when one species is coupled to a (real or virtual,
abelian or non-abelian) external gauge field® W™ and the other one to a
gauge field W™ related to each other by time-reversal, T, according to

W) =Wy, (W)™ =-w;

Assuming again that the leading term in the effective action for the
gauge fields W™ and W~ is given by the sum of two identical
Chern-Simons terms, but with opposite signs, time-reversal invariance is
manifest, and one concludes that there are two counter-propagating
chiral edge currents generating current (Kac-Moody) algebras (at level 1,
for non-interacting electrons) based on a Lie group given by the gauge
group corresponding to the gauge fields W®. (For non-interacting
electrons, this group can be determined from band theory!)

If one gives up the requirement of time-reversal invariance one arrives at
a theory of chiral states of matter. In particular, if W is an SU(2)-
gauge field coupling to the spin of electrons (see (6.2) and (6.4)) one
finds a framework to describe chiral spin liquids; (see Les Houches 1994).

%often dubbed “Berry connection”



7. The Chiral Anomaly in Four Dimensions

In Sect. 2 it was claimed that chiral currents carried by particles that are
coupled to non-vanishing external gauge fields are not conserved. For
concreteness, we consider particles of electric charge eQ, Q € R, coupled
to an electromagnetic vector pontential A = 23 _o Audx* propagating in
four-dimensional space-time. Let Jy,, denote the left-handed /right-
handed chiral current. Then the chiral anomaly says that

Q2
1672

5#@’;r(x) =4 eMPAE,L(x) Fon(X), (7.1)
where we use units such that %2 = 1. | will not derive Eq. (7.1); but see
Adler, Bell & Jackiw, Fujikawa; and others. Eq. (7.1) permits us to
introduce modified chiral currents,

Q2

625" " AvFox (7.2)

Tl =4, F

The second term on the right side is related to the Chern-Simons 3-form,
A A dA, that we are already familiar with and whose exterior derivative is
the dual of the right side of (7.1).



Hamiltonian anomaly
By (7.2), the currents jﬁr are (locally well-defined and) conserved, but
not gauge-invariant. But they give rise to gauge-inv. conserved charges.

| now derive the Hamiltonian anomaly in the form

2 — -
97,0, 7%, 0)) = +1 3B V%~ 9).  (73)

Let A denote the affine space of (smooth) em vector poetntials, A,
corresponding to time-independent em fields, E, B. Given a fixed A € A,
let
Fa = Fock space for a free, massless chiral (e.g., left-handed)
Dirac-Weyl field coupled to A.

The spaces Fa, A € A are all isomorphic to the standard Fock space, F,
of a free, massless Dirac-Weyl fermion. Let H denote the Hilbert bundle
with base space A and fibres Fa, A € A, equipped with a flat connection.
We can then identify all the fibres F4 with the standard Fock space F.
The bundle H must carry a projective representation, U, of the infinite-
dimensional, abelian group, G, of time-independent gauge-transfs., gX,

gX(x) := XX\ independent of time t.



Projective representation of gauge group on H
Properties of U:
(i) U(g*):Fa— Fardx-
(i) U(g*)w(xi A) U(gX) M Fara, = XU At dX)| 7y
and similarly for ¢). Here ¢(x; A) is the Dirac-Weyl field on Fia.

It follows that
U(gX) = expG(x),

where G(x) := [ d®x x(X)G(x), and

f + QLI (% A) (7.4)

G(X) = —iV - e

Locally, the phase factor of the projective representation can be made
trivial by replacing G(x) by
~ . )

7) = iV - LI(%; A). :
G(R) = —iV 6/‘,()?)4‘0 TP (% A) (7.6)




Anomalous commutators

Then, since the gauge group G is abelian, it follows that
[G(%),G(7)] =0, (at all times) (7.7)

Since the operator-valued distribution J?(x; A) is gauge-invariant (while
JL(x; A) is not), it follows that

—

[V A ( 3 NACDIEIE

Using this equation, along with (7.6) and (7.2), in (7.7), one finds, after
straightforward calculations left to the audience, that

Qz(

-

[77(t,%), (¢, 9)] = B(X. 1) - Vx)3(x — ). (7.8)

This implies (7.3). (Further details can be found in the literature.)



5. Chiral Magnetic Effect, Axion Electrodynamics
Let us consider a theory of charged, massless Dirac-Weyl fermions in four
space-time dimensions in the presence of a time-indep. external electro-
magnetic field with vector potential A. This theory has a conserved
vector current, J*:

9, J" =0.
The continuity eq. implies that there exists a vector field, J(x), such that
0 Qe - Qe 0
X 2 1
T0) = ¥ 3). T = g),  (81)

with Q the electric charge (in units where %2 = 1). If H denotes the
Hamiltonian of the system then (formally)

0800 = 11H, 800 (82)

We define chiral charges

Nyyy = /d&@%(t,)‘(’), with je‘;r asin Eq. (7.2) . (8.3)



Thermal equilibrium

Since the fermions are assumed to be massless, these charges are
conserved and gauge-invariant. Let py and p, denote chemical potentials
conjugate to the charges N, and N,, respectively; and 1 := (pe, fir).

We let ((-))s,. denote an equilibrium state of the system at inverse
temperature 3 and chemical potentials . Our aim is to calculate

j(x) = <j(X)>5’u, using arguments reminiscent of those in Sect. 3. By
(8.2),

- iQe .

Jx) = == (H, &x)Ds.u (8.4)
Formally, the right side of this eq. vanishes, because the equilibrium state
is time-translation invariant. However, the field ¢ turns out to have
ill-defined zero-modes, so that we cannot use the identity
[H, #(x)] = HP(x) — #(x)H. We must regularize the right side of (8.4)
by introducing a small mass and then use that

o i . i .
ESO(X) = Z[H — pueNe — Mrersp(X)] + Z[;U'ZNK + //*rer(P(X)] (8'5)

and that  ([H — pueNg — e Ny, 3(X)]) 30 = 0.



The chiral magnetic effect
Combining this with (8.4) and (8.5), we find the ‘“current sum rule”:

JT(X) = ,QTe< [ﬂé NE + Hr Nra QE(X)} >5aﬁ' (86)

Recalling formula (7.3) for the anomalous current commutators,

2 — -
O 5(5.0) V05— 7).

(78,7, 1), T, 1)] = i
and (8.1), we conclude that
[T97.). 8(%,6)] = Fi e B(F, 1) 8(% — ) + ¥ ATl (2~ 7.1) (67)
Using (8.3) and (8.6), we find'°

2 —
jx) =- (f:,), (e = pr) B(x) . (8.8)

Chiral Magnetic Effect

1OSee also: A. Vilenkin, Phys. Rev. D 22, 3080 (1980); A. Alekseev et al., Phys. Rev. Letters 81, 3503 (1998)



5D QHE

Note that, as in Symanzik's proof of the Goldstone theorem, one can

show that, at T =0, if f(x) # 0 then there must exist massless modes!
In our derivation (see (8.5), (8.6)), it has been important to assume that
the external electromagnetic field is time-independent. This is usually not
the case, and in applcations to cosmology and condensed-matter physics,
it is unrealistic to assume that us := p¢ — p, is (space-)time-independent!
It turns out that a dynamical cousin of us has been known in particle
physics under the name of “axion”. The most natural way of introducing
axions is to study an analogue of the quantum Hall effect in 5D: Imagine
that space-time is a five-dimensional slab, A = Q x [0, L], with two four-
dim. boundary branes, 9+ A ~ Q. The bulk is assumed to be filled, e.g.,
with massive four-component Dirac fermions coupled to the 5D em
vector potential, A. Integrating out the Dirac fermions (,* Sect. 5!), we

find the effective action for A:

N 1 N N N
SA = 7o /A ox Fun(x)F"N(x) + CS(A)

+ Te(Alo,a) +Te(Alo_n) + ..., (8.9)



Dimensional reduction and axions
where L is the width of the 5D slab,

1 SN
—— | ANFAF 8.10
247r2/,\ ( )

is the 5D Chern-Simons action, and Iy, is the anomalous action of
left-handed /right-handed Dirac-Weyl fermions located on the boundary

branes, 91/, (canceling the anomaly of CSy(A)!). The action (8.9), with
(8.10), describes the electrodynamics of the 5D QHE.

Dimensional reduction to 4D, assuming that the components ,EMN are
independent of x*, VM, N: We define

o= [ X

where v, is a path connecting _A to 0 A at constant values of
x = (x9 x1,x2,x3). Then, for A = Q x [0, L], the action (8.9) becomes
1 y 1
SalAie) = 5gz | A () + 000" ()]

+ %/gap(F/\F)—kFQ(A)—Q—.... (8.11)

CSA(A) =

A,



Axion electrodynamics

Here Iq(A) = ¢(A) + I, (A) is not anomalous and is ignored in the
following. Expression (8.11) shows that the pseudo-scalar field ¢ can be
interpreted as an axion. One can add a self-interaction term U(¢p) to the
Lagrangian density in (8.11), requiring that U(y) be periodic in ¢. From
(8.11) we derive the equations of motion for F,, and ¢:

” Q2 = _ Q? L OU
8, FH = 8( Fr), L 2Op = B—FWF &(;0)

b

where ﬁi“’ is the dual field tensor, and the homogeneous Maxwell egs.
read 0,F*” = 0. In terms of the electric and magnetic fields, these
equations become:

V.B = 0, VAE+B=0,

.o @ s 5

VE - T8

VAB = EfQ—{goBJrVgo/\E} (8.12)



A generalized chiral magnetic effect

The equation of motion for ¢ is as shown above. If ¢ only depends on
time then Vi = 0, and, comparing the right side of (8.12) with Eq.
(8.8) and re-installing <, we find that'!

Sb:NE*,UrEPﬁ‘ (8.13)

In condensed-matter theory, the equation of motion for s = ¢ may take
the form of a diffusion equation, including a term, 7~ s, describing
dissipation of the asymmetry between left- and right-handedness:

s + 77 /¢5—DA,u5—L22 hE B, (8.14)

(Q = 1) where 7 is a relaxation time, D is a diffusion constant, and it is

assumed that U(p) = 0. As time t tends to oo (assuming that D is very
small), us approaches

7(Le)?

E.B. 1
27h (8.15)

M5 =

117 F-Pedrini (2000), Hehl et al. (2008),..., S.-C. Zhang et al. (2010).



Manifestation of the chiral magnetic effect in the
conductivity tensor of Weyl semi-metals
This expression for ps can be plugged into equation (8.8) for the

current, which then yields an expression for a conductivity tensor in
the presence of an external magnetic field:

7(Lar)?
Oky = (471_2)31(33 (816)

This expression is relevant in the study of transport properties of
Weyl semi-metals (to mention one example), as discussed in the
next section.

Axion electrodynamics may have interesting applications not only
in cond-mat physics, but also in the theory of heavy-ion collisions,
in astrophysics, and in cosmology, where it may explain the growth
of tiny, but highly uniform cosmic magnetic fields extending over
intergalactic distances. But that's another story!



Additional remarks about dimensional reduction

For some purposes, it is of interest to assume that one boundary brane,
e.g., O_N (located at x* = 0), does not carry any dynamical degrees of
freedom, and that Als_a = 0, while Alg,n =: A is arbitrary. We then set

4

XTA(X)W M=pu=0,1,23 Ayx,x*) = L(p(x)

~

An(x, x*) =

The "axion” ¢ then transforms under em gauge transformations like an
angle. From the action (8.9) of 5D Chern-Simons electrodynamics we
then derive the gauge-invariant action in 4D

Sa(A @) = 402/0'4 Fuu (X)FH (x) +
+ L7(up(x) = Au(x)) - (9"p(x) — A¥(x))]
877172/Q¢(FAF)+~-~+U(A). (8.17)

This is an anomaly-free 4D theory of chiral fermions coupled to electro-
magnetism and an “axion”-like (not gauge-invariant) field .



9. 3D Topological Insulators and Weyl Semi-Metals
In this section, we study 3D systems, representing topological insulators
and Weyl semi-metals, on a sample space-time A := Q x R, with 9Q # 0.
We are interested in the general form of the effective action describing the
response of the systems to turning on an external em field. Until the mid
nineties, the effective action of a 3D insulator was thought to be given by

1 — — — —
Sa(A) = 5/dfcﬁx{E-aE— B-p B} + ‘irrelevant” terms, (9.1)
A
where ¢ is the tensor of dielectric constants and p is the magnetic

permeability tensor. The action (9.1) is dimensionless. In the seventies,
particle theorists taught us that one could add another dimensionless

term:
Sa(A) = S\D(A) := SA(A) + 0 1n(A), (9.2)
where 5 is a “topological” term, the “instanton number”, given by
1 3 S/ —
IN(A) = e dtd xE(%,t)- B(%,t) =

1 1
Q/AFAFS&ESW/MAMA (9.3)



“Vacuum angle” and surface degrees of freedom

In particle physics, the parameter 6 is called “vacuum (or ground-state)
angle”. The partition function of an insulator (after having integrated
over all matter degrees of freedom) is given by

Es\g)(A) = exp(iSﬁ\e)(A)) ,

with S as in (9.2), (9.3). In the thermodynamic limit, @ ~ R3, ={)(A)
is periodic in 6 with period 27 and invariant under time reversal iff

0=0,r
For 0 =, ES\G)(A) contains a factor only depending on A|gn:

|
+— ANdA 4
oo fpw). o

This is the partition function of a Hall insulator on OA with a Hall
conductivity

N

e

O’/—[:i F

N —



Promoting the vacuum angle 6 to an “axion”

We have encountered the “boundary partition function” (9.4) (with
(9.5)) in Sect. 5; see formulae (5.2), (5.3): Up to further, less relevant
terms in the exponent, it is the partition function of one species of
2-component Dirac fermions coupled to A|sp. Gapless quasi-particles
with spin % located at OA could mimick such Dirac fermions and give rise
to (9.4).

One may now argue that the vacuum angle 6 could be the ground-state
expectation of a dynamical field, ¢, an “axion”, and replace the
topological term 0I5(A) by

1
WA¢) = gos | oF AP+ Sie). (96)

where So(¢) is invariant under shifts ¢ — ¢ + nm, n € Z. We then enter
the realm of axion-electrodynamics, as reviewed in Sect. 8! Recalling the
equations of motion (8.12), we find the equation for Halperin's “3D
quantum Hall effect”:



A 3D quantum Hall effect in axionic topological insulators

From Eq. (8.12) we infer a formula for the current j generated in an
electromagnetic field:

2

—m(¢-/§+Wx E) (9.7)

j =

Let us consider a 3D spatially periodic (Crystalline) system with an axion
. We suppose that ¢ is time-independent, i.e., us = 0. Taking into
account the periodicity of exp(ilA(A, ¢)) under shifts, ¢ — ¢ + 2nm,

n € 7Z, invariance under lattice translations implies that

o(X) =27 (K- %) + (%), (9.7)

where K belongs to the dual lattice, and ¢ is invariant under lattice
translations. Neglecting ¢, we find that

Vo = 27K is “quantized”. 12

12This last point was brought to my attention by Greg Moore.



Why there might be axions in condensed-matter physics

It has been argued that axions may emerge as effective degrees of
freedom in:
e certain 3D topological insulators with anti-ferromagnetic short-range
order, (magnetic fluctuations playing the role of a dyn. axion)!3 ; and in
e crystalline 3D Weyl semi-metals,
i.e., in systems with two energy bands exhibiting two (or, more generally,
an even number!* of) double-cones in “frequency-quasi-momentum
space” corresponding to chiral quasi-particle states, assuming that the
Fermi energy is close to the apices of those double-cones. At low
frequencies, namely near the apices of those double-cones, the
quasi-particle states of such systems satisfy the Weyl equation of left- or
right-handed Weyl fermions, respectively. In these systems, the
time-derivative, us = ¢ of the “axion”, ¢, really has the meaning of a
(time-dependent) difference of chemical potentials of left-handed and
right-handed quasi-particles.
It satisfies an equation of motion of the kind described in (8.14):

133 conjecture proposed by S.-C- Zhang (inspired by our work in cosmology)
1This folllows from the celebrated Nielsen-Ninomiya theorem



How one might discover “axions” in Weyl semi-metals

fis 4+ 7 s — DAus—L22 hE B, (9.8)

A non-vanishing initial value of the chemical potential us may be
triggered by strain applied to the system, leading to a slightly £ <> r -
asymmetric population of the Fermi sea. Due to “inter-valley” scattering
processes, a non-vanishing us will then relax towards 0, with a relaxation
time corresp. to the parameter T in Eq. (9.8). Applying an electric field
E and a magnetic induction B to the system, with the property that

. B # 0, one finds from (9.8) that the potential s relaxes towards
7(Le)? 2
27

s~ - E - B. Thus, the conductivity tensor, o = (0ks)k,¢=1,2.3, IS
given by
_ (©, 7(La)
Okt =0y + 42 Bk By,

where the first term on the right side is the standard Ohmic conductivity
(due to phonon- and impurity scattering), and the second term is a
manifestation of the chiral magnetic effect. (Alas, this term may be too
small to be detected in actual measurements.)



And how one might discover “axionic insulators”

People!® have described various other Gedanken experiments serving to
discover effects due to axions in Weyl semi-metals; but we won't review
their ideas here. Instead, we describe some axionic effects in topological
insulators with an effective action given by — see (9.1) and (9.6) —

S\A9) = S\A) + 5z [ PFAFES(0).  (99)

where So(ip) is invariant under shifts ¢ — @+ nm, n€ Z. It is
compatible with time-reversal invariance that So(¢) has minima at

© = nm. Then the material described by (9.9) is not an ordinary
insulator, and it may exhibit a Mott transition at a positive temperature:
The bulk of such a material will be filled with domain walls across which
© jumps by (an integer multiple of) . Applying the insight described
after (9.4) and (9.5), we predict that such domain walls may carry
gapless two-component Dirac-type fermions. At sufficiently high
temperatures, domain walls can be expected to become macroscopic, and
this would then give rise to a non-vanishing conductivity.'®

B¢ g., theorists in Wiirzburg including J. Erdmenger
16 7 F-Werner (2014)



Instabilities in axionic topological insulators

It has been pointed out by Pedrini and myself in 2000 that the presence
of a dynamical axion ¢ with us = ¢ = a const. or a periodic function of
time, t, will give rise to the growth of a helical em field; modes of the
magnetic induction B at wave vectors of size < cst.us will be unstable
and exhibit unlimited growth. This growth is stopped by the relaxation of
s to 0. (Our mechanism has first been applied in cosmology.)

Another, albeit related instability has been pointed out by Ooguri and
Oshikawa: Assuming that E and B are essentially time-independent, an
external electric field £ applied to an axionic magnetic material is
screened once its strength |E\ exceeds a certain critical value E., the
excess energy giving rise to a magnetic field, as shown in the following
diagram taken from the paper Phys. Rev. Lett. 108, 161803 (2012):

10}
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Courtesy Ooguri & Oshikawa



10. Summary, Open Problems

1. Apparently, concepts and methods from (relativistic) quantum field
theory can be used to study general features of (interacting)
systems of cond-mat physics; e.g., to exhibit various examples of
“topological states of matter” that cannot be characterized by local
order parameters. This has been illustrated in my lectures by
showing how concepts from gauge theory, in particular, the chiral
anomaly, the chiral magn. effect and axion electrodynamics yield
rather surprizing insights into properties of such states of matter.

2. What's missing in my lectures is an account of the bare-hands
analysis of spectral properties of many-body Hamiltonians descr.
“topological states of matter” at energies quite close to the ground-
state energy and to derive properties of quasi-particles, using tools,
such as renormalization group methods. Colleagues who have
devoted serious efforts extending over many years towards reaching
results in this direction are: T. Ba faban, J. Feldman, G. Gallavotti,
A. Giuliani, H. Knorrer, V. Mastropietro, M. Porta, E. Trubowitz,
and some others. | recommend their work to the attention of this
audience! Of course, many questions remain open. ...



“Survivre et Vivre" — almost half a Century later

To conclude, here is something more important to think about:

“... depuis fin juillet 1970 je consacre la plus grande partie de mon
temps en militant pour le mouvement Survivre, fondé en juillet a
Montréal. Son but est la lutte pour la survie de I'espéce humaine,
et méme de la vie tout court menacée par le déséquilibre écologique
croissant causé par une utilisation indiscriminée de la science et de
la technologie et par des mécanismes sociaux suicidaires, et
menacée également par des conflits militaires liés a la prolifération
des appareils militaires et des industries d’armements. ..."

Alexandre Grothendieck

“Réveillez-vous, indignez-vous!”
(Stéphane Hessel)



