

Chirality induced interface currents in the Chalker-Coddington Model*

Alain Joye

* joint with J. Asch & O. Bourget

2D electronic motion

Classical electron in \mathbb{R}^2

$$(m=1, |q|=1)$$

Potential
$$V(x,y)$$
 & magnetic field $B \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

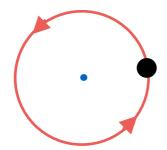
2D electronic motion

Classical electron in \mathbb{R}^2

(m=1, |q|=1)

Potential
$$V(x,y)$$
 & magnetic field $B\begin{pmatrix} 0\\0\\1 \end{pmatrix}$

$$V \equiv 0$$



$$B \odot$$

$$r = \frac{\sqrt{2E}}{B}$$

$$\omega_c = B$$

2D electronic motion

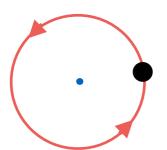
Classical electron in \mathbb{R}^2

$$(m=1, |q|=1)$$

Potential V(x,y) & magnetic field $B \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\boxed{B \gg 1}$

Level lines: $\Gamma_E = \{(x,y) \mid V(x,y) = E\}$

$$V \equiv 0$$

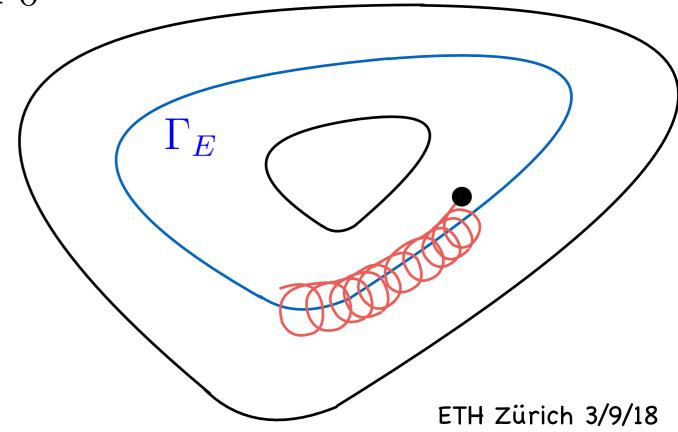


$$B \bullet$$

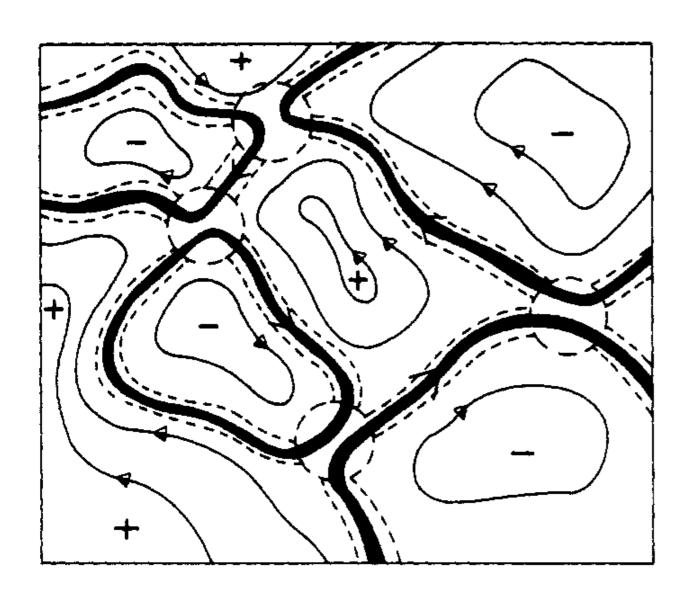
$$r = \frac{\sqrt{2E}}{B}$$

$$\omega_c = B$$

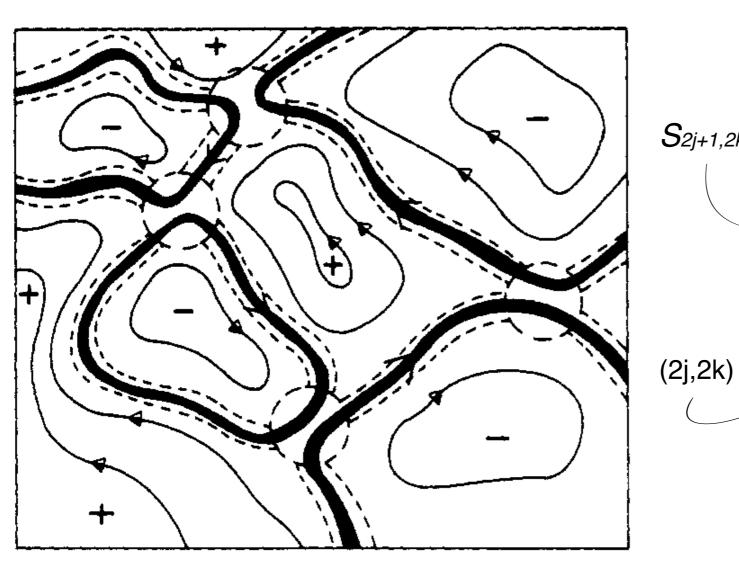
$$V \not\equiv 0$$

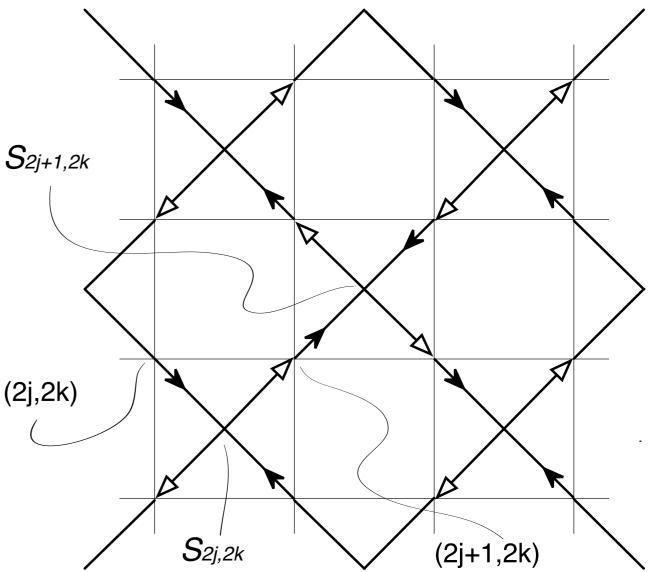


Simplified Quantum version in '88

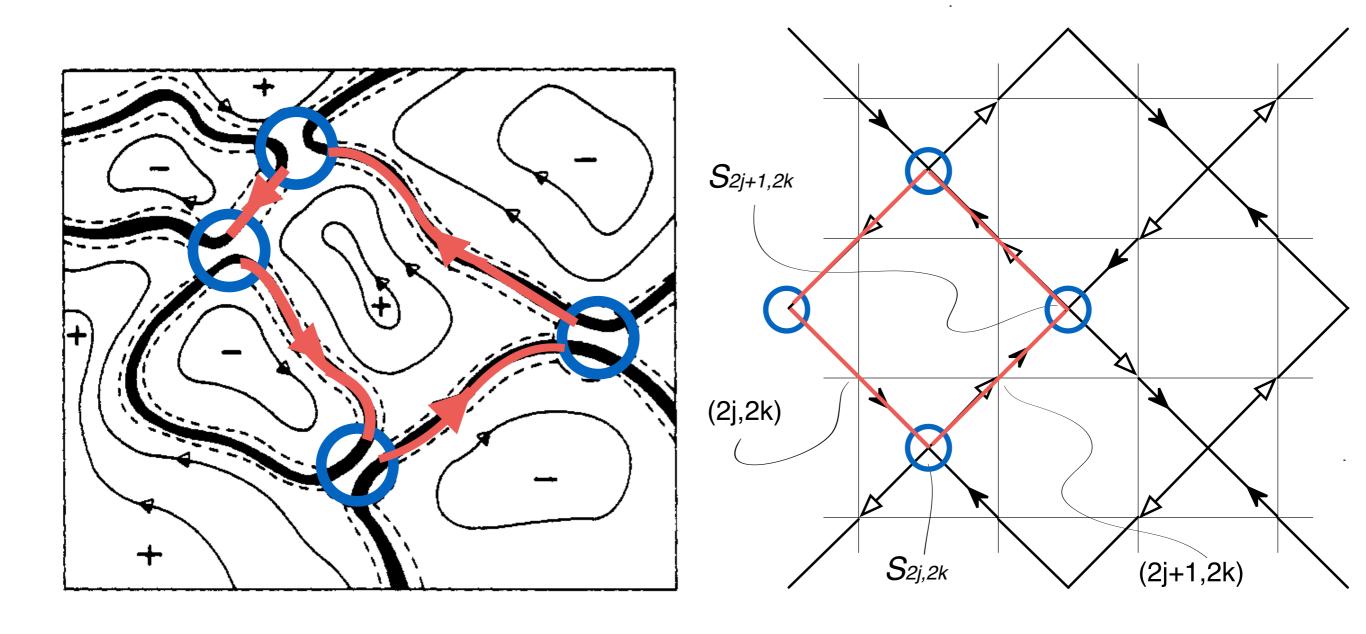


Simplified Quantum version in '88





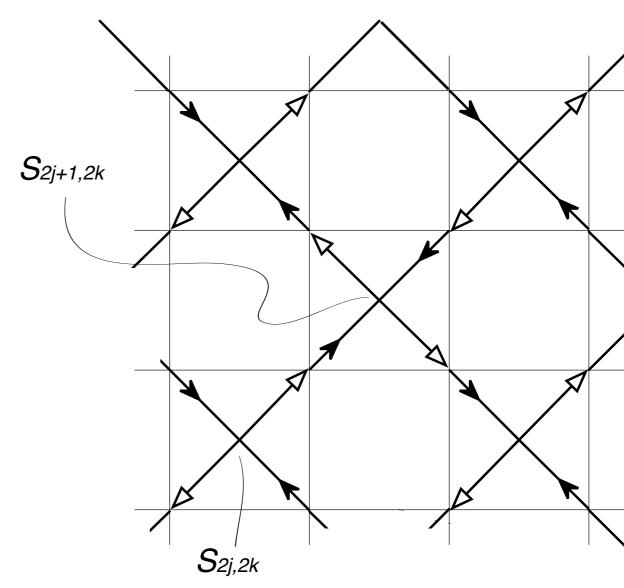
Simplified Quantum version in '88



 $S_{j,2k} \in U(2)$ "scattering matrices"

Config.
$$S:(j,k)\mapsto S_{j,2k}\in U(2)$$

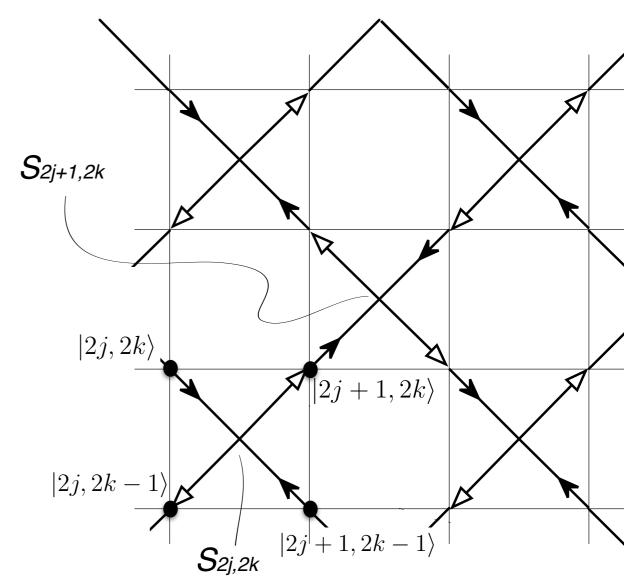
Hilbert space: $\ell^2(\mathbb{Z}^2;\mathbb{C})$



Config.
$$S:(j,k)\mapsto S_{j,2k}\in U(2)$$

Hilbert space: $\ell^2(\mathbb{Z}^2;\mathbb{C})$

 $\{|j,k\rangle\}_{(j,k)\in\mathbb{Z}^2}$ Basis:



Config.
$$S:(j,k)\mapsto S_{j,2k}\in U(2)$$

Hilbert space: $\ell^2(\mathbb{Z}^2;\mathbb{C})$

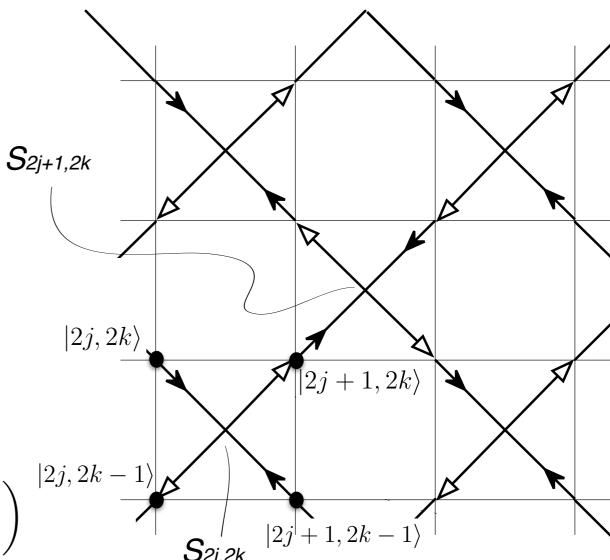
Basis:

$$\{|j,k\rangle\}_{(j,k)\in\mathbb{Z}^2}$$

Definition of U_{CC} :

$$\begin{pmatrix} U_{CC}|2j,2k\rangle \\ U_{CC}|2j+1,2k-1\rangle \end{pmatrix} := S_{2j,2k} \begin{pmatrix} |2j,2k-1\rangle \\ |2j+1,2k\rangle \end{pmatrix}$$

$$\begin{pmatrix} U_{CC}|2j+1,2k \\ U_{CC}|2j+2,2k+1 \end{pmatrix} := S_{2j+1,2k} \begin{pmatrix} |2j+2,2k \rangle \\ |2j+1,2k+1 \rangle \end{pmatrix} \stackrel{|2j,2k-1 \rangle}{\longrightarrow}$$



Config.
$$\mathbf{S}:(j,k)\mapsto S_{j,2k}\in U(2)$$

Hilbert space: $\ell^2(\mathbb{Z}^2;\mathbb{C})$

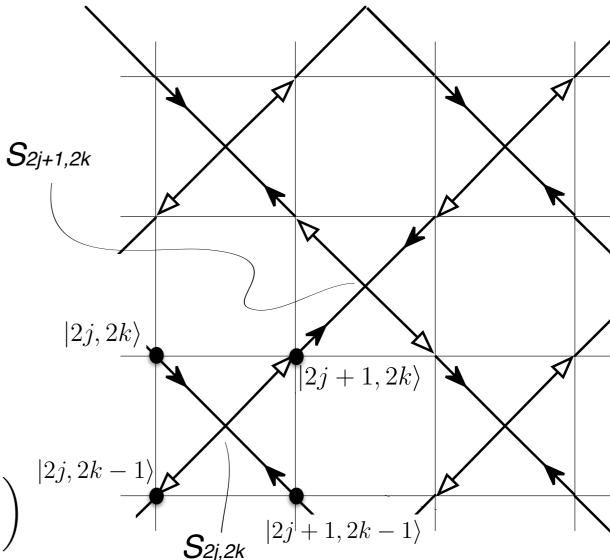
Basis:

$$\{|j,k\rangle\}_{(j,k)\in\mathbb{Z}^2}$$

Definition of U_{CC}:

$$\begin{pmatrix} U_{CC}|2j,2k\rangle \\ U_{CC}|2j+1,2k-1\rangle \end{pmatrix} := S_{2j,2k} \begin{pmatrix} |2j,2k-1\rangle \\ |2j+1,2k\rangle \end{pmatrix}$$

$$\begin{pmatrix} U_{CC}|2j+1,2k \\ U_{CC}|2j+2,2k+1 \end{pmatrix} := S_{2j+1,2k} \begin{pmatrix} |2j+2,2k \rangle \\ |2j+1,2k+1 \rangle \end{pmatrix}^{|2j,2k-1|}$$



 $U_{CC} \equiv U_{CC}(\mathbf{S})$ is unitary, $\forall \mathbf{S}$ Lemma:

$$||U_{CC}(\mathbf{S}) - U_{CC}(\mathbf{S}')|| \le c||\mathbf{S} - \mathbf{S}'||_{\infty}$$

Chalker-Coddington Model \sqrt{i}

Config.
$$\mathbf{S}:(j,k)\mapsto S_{j,2k}\in U(2)$$

Hilbert space: $\ell^2(\mathbb{Z}^2;\mathbb{C})$

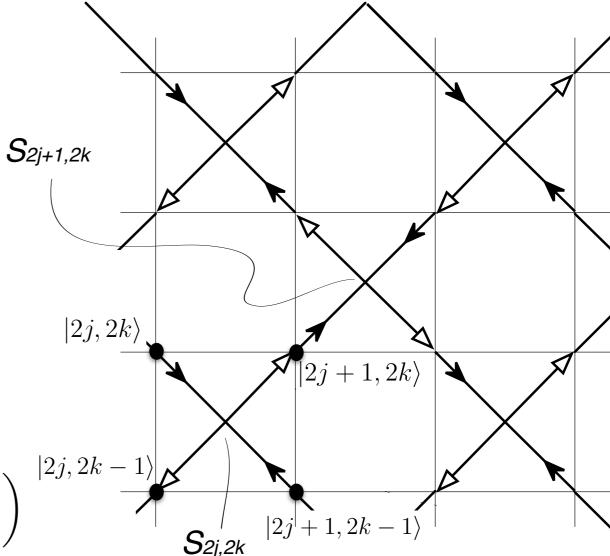
Basis:

$$\{|j,k\rangle\}_{(j,k)\in\mathbb{Z}^2}$$

Definition of U_{CC}:

$$\begin{pmatrix} U_{CC}|2j,2k\rangle \\ U_{CC}|2j+1,2k-1\rangle \end{pmatrix} := S_{2j,2k} \begin{pmatrix} |2j,2k-1\rangle \\ |2j+1,2k\rangle \end{pmatrix}$$

$$\begin{pmatrix} U_{CC}|2j+1,2k \rangle \\ U_{CC}|2j+2,2k+1 \rangle \end{pmatrix} := S_{2j+1,2k} \begin{pmatrix} |2j+2,2k \rangle \\ |2j+1,2k+1 \rangle \end{pmatrix}^{|2j,2k-1 \rangle}$$

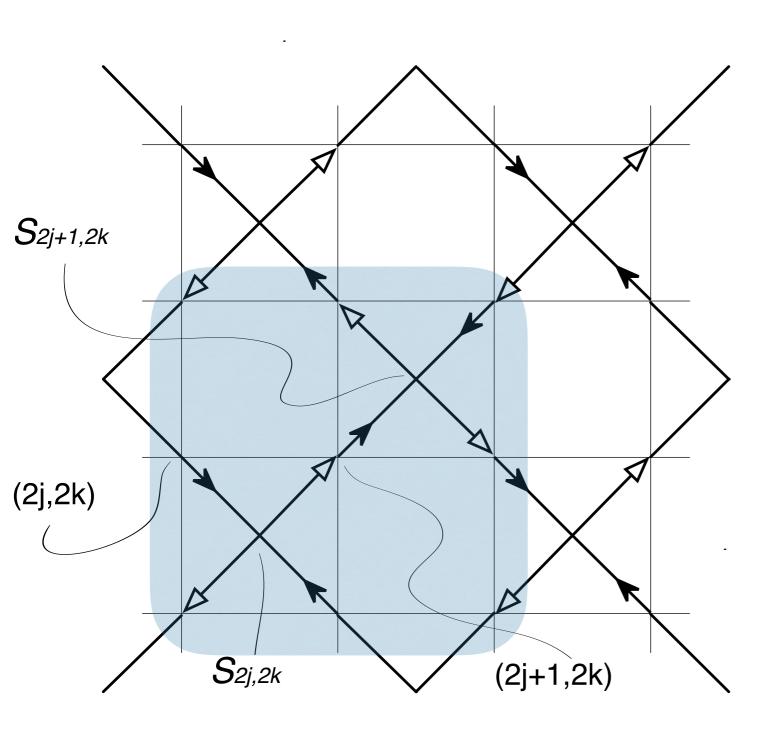


 $U_{CC} \equiv U_{CC}(\mathbf{S})$ is unitary, $\forall \ \mathbf{S}$ Lemma:

$$||U_{CC}(\mathbf{S}) - U_{CC}(\mathbf{S}')|| \le c||\mathbf{S} - \mathbf{S}'||_{\infty}$$

Questions: U_{CC}^n as $n \to \infty$, nature of $\sigma(U_{CC})$?

Graphic representation

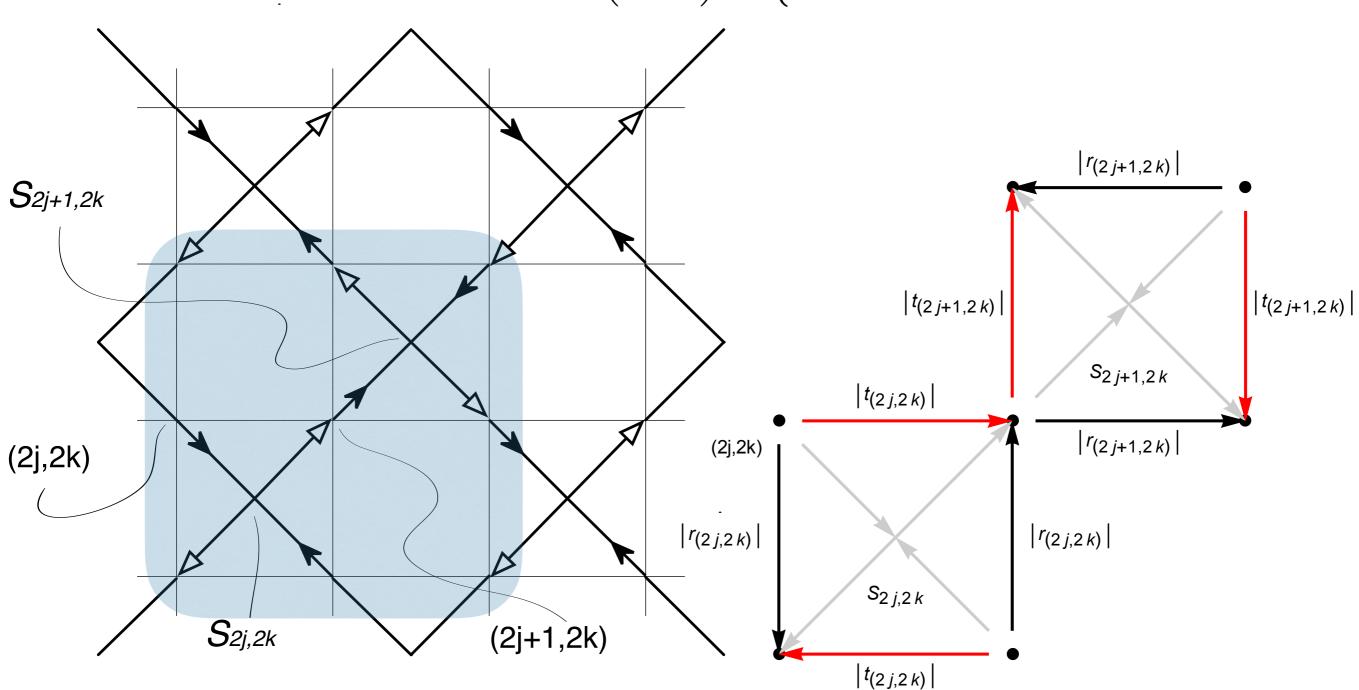


Graphic representation

Parametrisation:

$$S = q \begin{pmatrix} r & -t \\ \overline{t} & \overline{r} \end{pmatrix} \qquad \begin{cases} q \in \mathbb{S}^1 \\ |r|^2 + |t|^2 = 1 \end{cases}$$

$$\begin{cases} q \in \mathbb{S}^1 \\ |r|^2 + |t|^2 = 1 \end{cases}$$

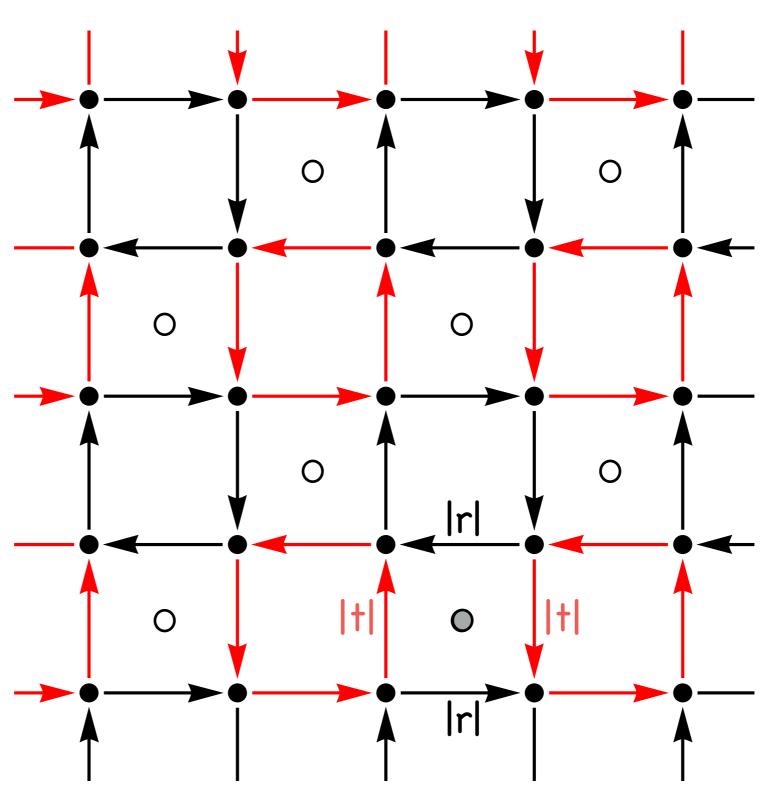


Quantum Manhattan model

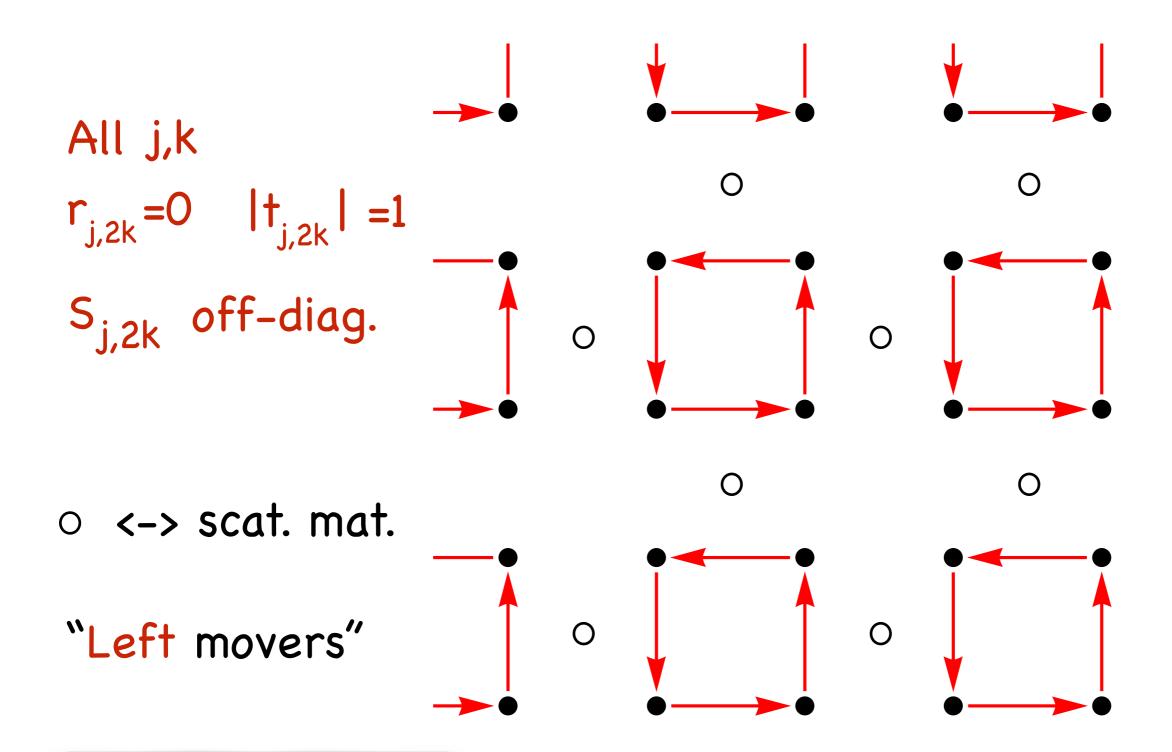
Red <-> |t|

Black <-> |r|

o <-> scat. mat.



Localised phases



 $\sigma(U_{CC})$ pure point

Localised phases

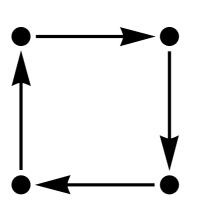
All j,k

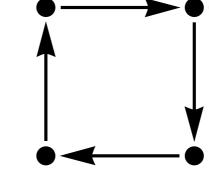
$$t_{j,2k} = 0 | r_{j,2k} | = 1$$

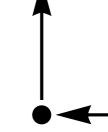
S_{j,2k} diag.

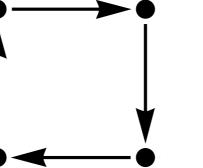
o <-> scat. mat.

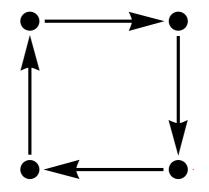
"Right movers"

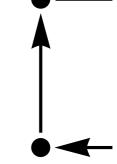


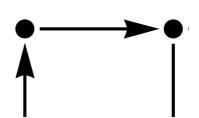


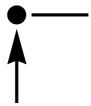












Random iid phases, constant amplitudes $(|r|, |t|) \in \mathbb{S}^1$

Random iid phases, constant amplitudes $(|r|, |t|) \in \mathbb{S}^1$

• Numerics: localisation if $|r| \neq |t|$ delocalisation if $|r| = |t| = \frac{1}{\sqrt{2}}$

CC '88+...

Random iid phases, constant amplitudes $(|r|, |t|) \in \mathbb{S}^1$

• Numerics: localisation if $|r| \neq |t|$ delocalisation if $|r| = |t| = \frac{1}{\sqrt{2}}$

CC '88+...

• On a strip & periodic b.c.

ABJ '10

$$\forall \, r,t \ \Rightarrow \ \begin{cases} \sigma\left(U_{CC}(\omega)\right) = \sigma_{pp}\left(U_{CC}(\omega)\right) \text{ a.s.} \\ \text{finite localisation length} \end{cases}$$

Random iid phases, constant amplitudes $(|r|, |t|) \in \mathbb{S}^1$

• Numerics: localisation if $|r| \neq |t|$ delocalisation if $|r| = |t| = \frac{1}{\sqrt{2}}$

CC '88+...

• On a strip & periodic b.c.

ABJ '10

$$\forall \, r,t \; \Rightarrow \; \begin{cases} \sigma\left(U_{CC}(\omega)\right) = \sigma_{pp}\left(U_{CC}(\omega)\right) \text{ a.s.} \\ \text{finite localisation length} \end{cases}$$

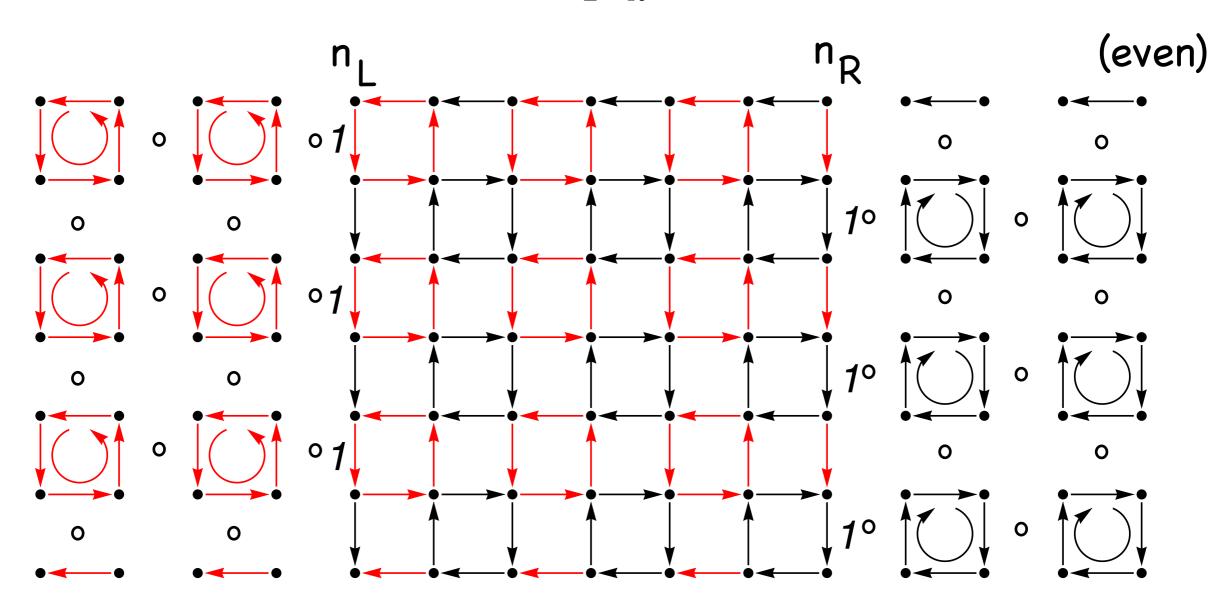
ullet On \mathbb{Z}^2 ABJ '12

$$|r\cdot t|\ll 1 \quad \Rightarrow \qquad \begin{cases} \sigma\left(U_{CC}(\omega)\right) = \sigma_{pp}\left(U_{CC}(\omega)\right) \text{ a.s.} \\ \text{dynamical localisation} \end{cases}$$

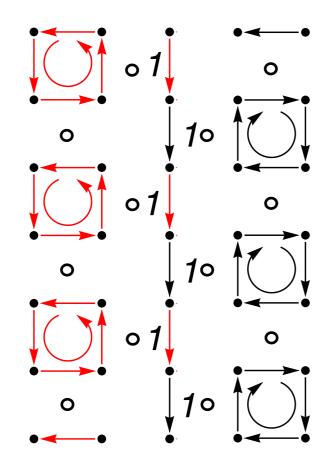
Interface

Let
$$n_L \leq n_R$$
 & $S_{j,2k}$ $\begin{cases} \textit{off-diagonal} & \textit{if } j < n_L \\ \textit{diagonal} & \textit{if } j \geq n_R \end{cases}$

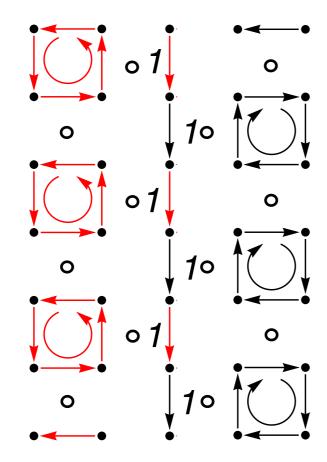
$$=$$
> focus on $U_I:=U_{CC}|_{I_{n_L,n_R}}$ $I_{n_L,n_R}:=\ell^2\left(\{m{n_L},m{n_R}\} imes\mathbb{Z}
ight)$



$$n_L = n_R = 0$$



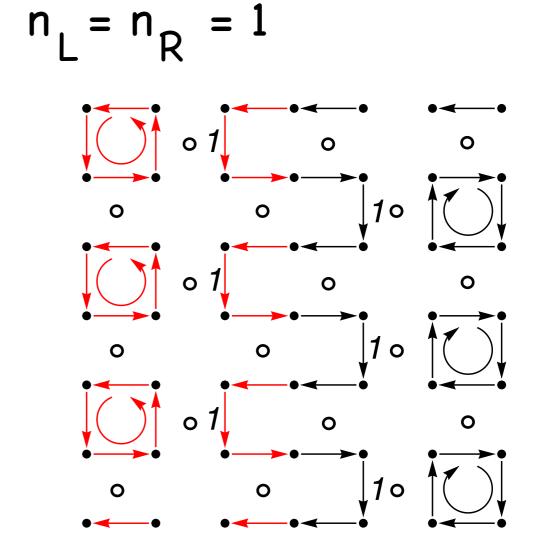
$$n_L = n_R = 0$$



$$U_I \simeq \mathsf{shift}$$

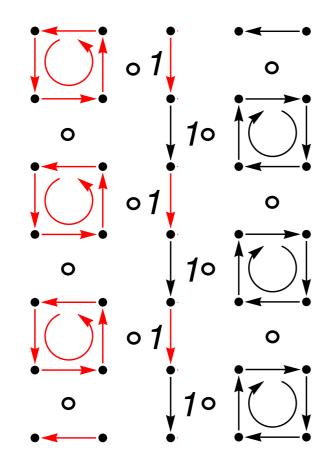
$$n_{L} = n_{R} = 0$$

$$0 \quad 1 \quad 0$$



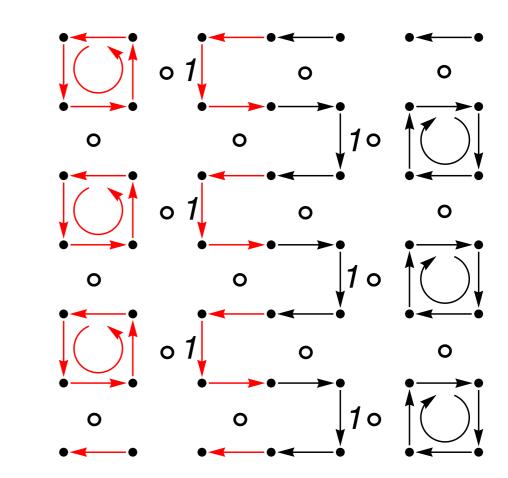
 $U_I \simeq \mathsf{shift}$

$$n_L = n_R = 0$$



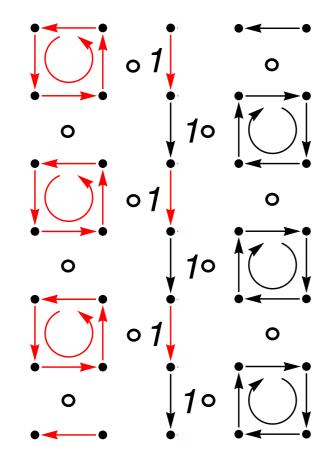
$$U_I \simeq \mathsf{shift}$$

$$n_L = n_R = 1$$



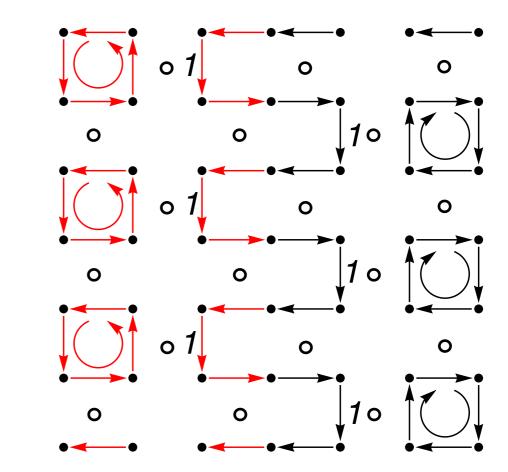
$$U_I \simeq \mathsf{shift}$$

$$n_L = n_R = 0$$



$$U_I \simeq \mathsf{shift}$$

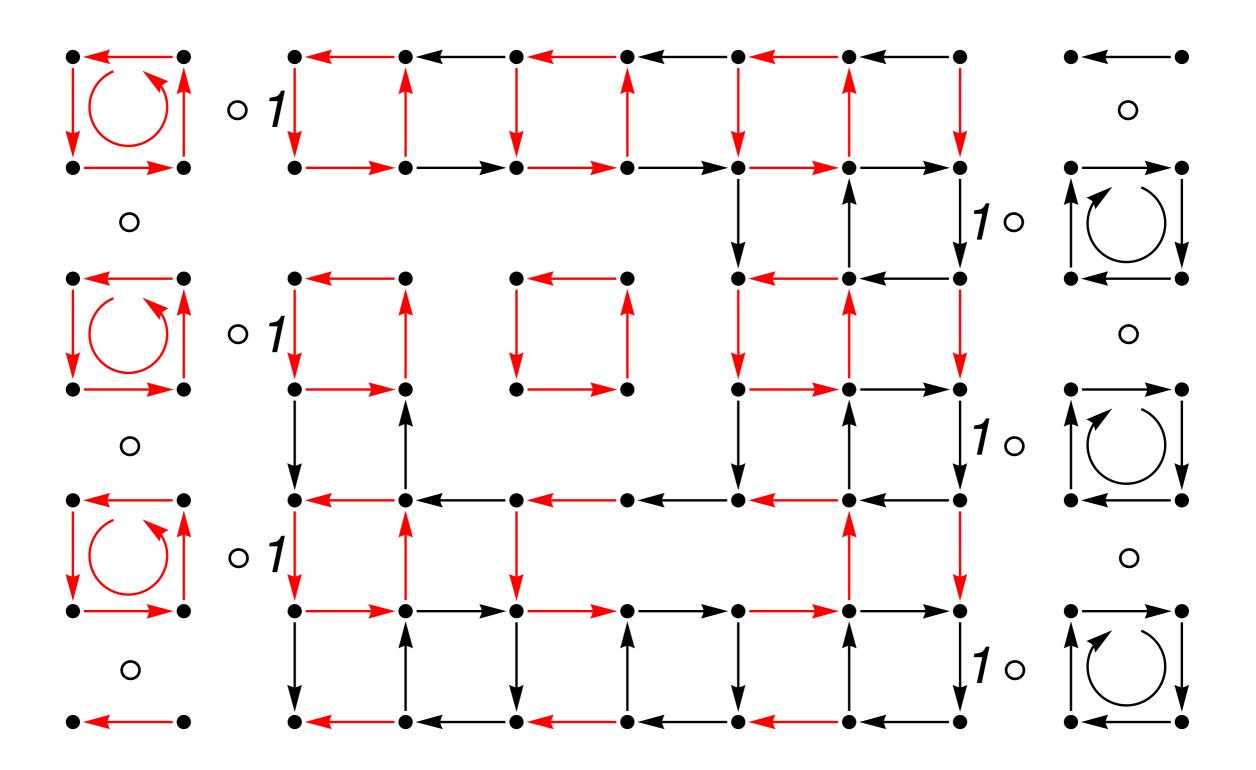
$$n_L = n_R = 1$$



$$U_I \simeq \mathsf{shift}$$

Transport &
$$\sigma(U_I) = \sigma_{ac}(U_I) = \mathbb{S}^1$$

Arbitrary interface

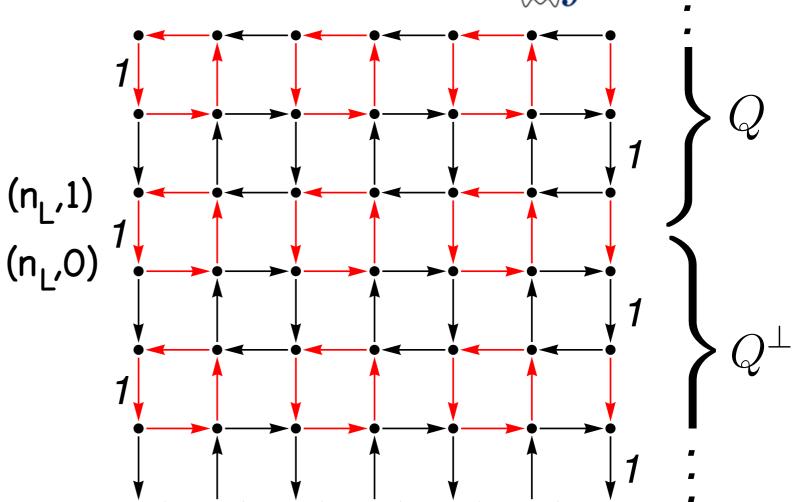


Flux observable

Let Q mult. by $\chi(k \ge 1)$

$$\Phi := U_I^* Q U_I - Q$$

flux through k=1

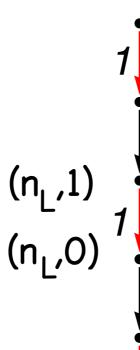


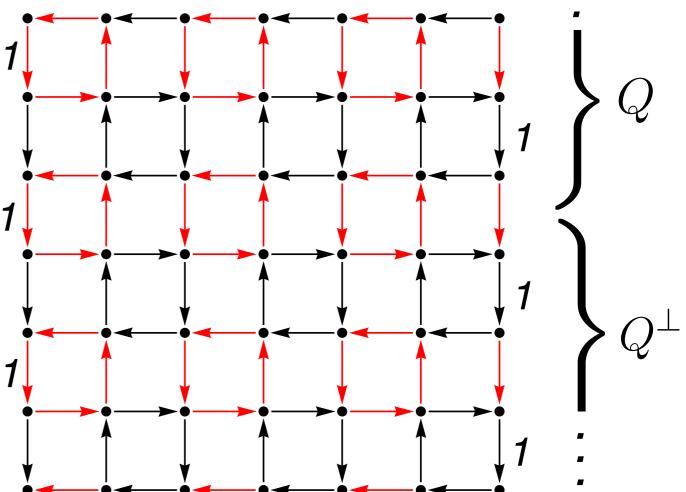
Flux observable

Let Q mult. by $\chi(k \ge 1)$

$$\Phi := U_I^* Q U_I - Q$$

flux through k=1





Prop. • Φ is finite rank

- $\operatorname{Tr}(\Phi) = -1$
- $\operatorname{Tr}(\Phi) = \operatorname{index}(U_I^*QU_I, Q)$

where

Avron, Seiler, Simon '94

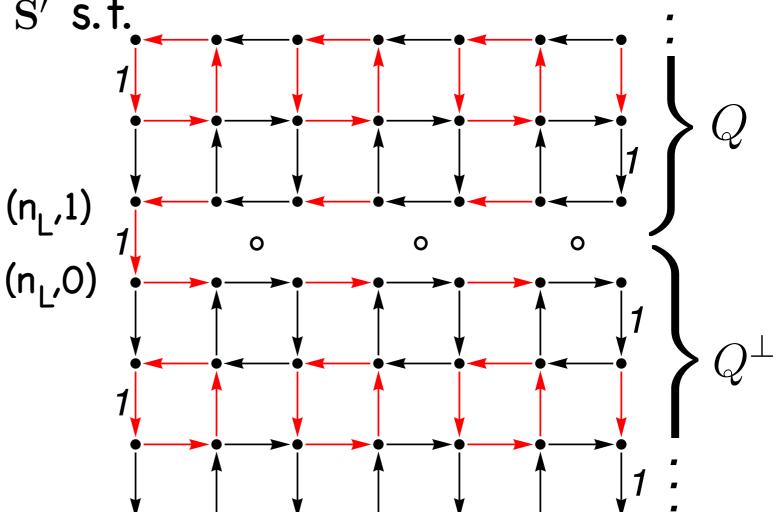
$$\mathit{index}(P,Q) := \dim \operatorname{Ker}(P-Q-1) - \dim \operatorname{Ker}(P-Q+1)$$
 if $P-Q$ cpct.

& $index(U_1^*QU_1,Q) = index(U_0^*QU_0,Q)$ if $U_1 - U_0$ cpct.

Deformation $U'_{I}=U_{I}+F$

• Given $U_I \leftrightarrow \mathbf{S}$, let $U_I' \leftrightarrow \mathbf{S}'$ s.t.

$$\begin{cases} S'_{j,0} := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ j odd} \\ S'_{j,2k} = S_{j,2k}, \text{ elsewhere} \\ \Rightarrow F \text{ finite rank} \end{cases}$$



Deformation $U'_{I}=U_{I}+F$

 $(n_L,1)$

 $(n_1,0)$

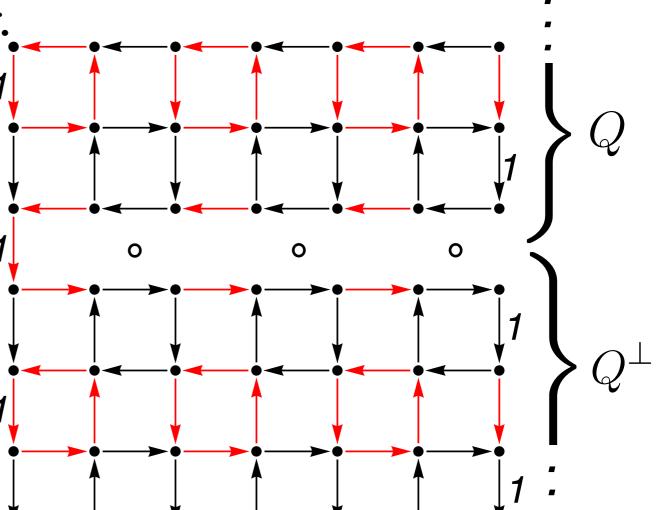
• Given $U_I \leftrightarrow \mathbf{S}$, let $U_I' \leftrightarrow \mathbf{S}'$ s.t.

$$\left\{egin{array}{l} S_{j,0}':=egin{pmatrix}1&0\0&1\end{pmatrix}\!\!\!
ight.$$
 , $oldsymbol{j}$ odd $S_{j,2k}'=S_{j,2k}$, elsewhere

$$\Rightarrow$$
 F finite rank

$$\Phi' = U_I'^* Q U_I' - Q = -|n_L, 1\rangle\langle n_L, 1|$$

$$\Rightarrow \operatorname{Tr}(\Phi') = -1 = \operatorname{Tr}(\Phi)$$



Deformation $U_I'=U_I+F$

 $(n_L,1)$

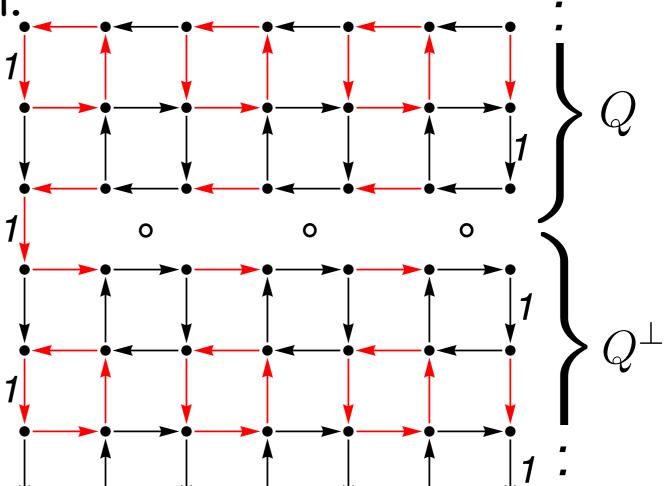
 $(n_1,0)$

• Given $U_I \leftrightarrow \mathbf{S}$, let $U_I' \leftrightarrow \mathbf{S}'$ s.t.

$$\Rightarrow$$
 F finite rank

$$\Phi' = U_I'^* Q U_I' - Q = -|n_L, 1\rangle \langle n_L, 1|$$

$$\Rightarrow \operatorname{Tr}(\Phi') = -1 = \operatorname{Tr}(\Phi)$$



Moreover:

$$\begin{cases} Q_c \text{ mult. by } \chi(k \ge c) \\ \Phi_c = U_I^* Q_c U_I - Q_c \end{cases} \Rightarrow \operatorname{Tr}(\Phi_c) = \operatorname{Tr}(\Phi), \ \forall c \in \mathbb{Z}$$

Spectral consequences

Lemma:

$$\operatorname{Tr}(\Phi_c) \neq 0 \implies \left(\sigma_{cont}(U_{CC}) \neq \emptyset\right)$$

Spectral consequences

• Lemma: $\operatorname{Tr}(\Phi_c) \neq 0 \Rightarrow \sigma_{cont}(U_{CC}) \neq 0$

Proof: φ e.v. of $U \Rightarrow \langle \varphi, (U^*QU - Q)\varphi \rangle = 0 \Rightarrow \operatorname{Tr}(P_{pp}(U)\Phi P_{pp}(U)) = 0$

$$\operatorname{Tr}(\Phi) = \operatorname{Tr}((P_{pp}(U) + P_{cont}(U))\Phi((P_{pp}(U) + P_{cont}(U)))) = \operatorname{Tr}(P_{cont}(U)\Phi P_{cont}(U)) \neq 0$$

Spectral consequences

Lemma:

$$\operatorname{Tr}(\Phi_c) \neq 0 \implies \left(\sigma_{cont}(U_{CC}) \neq \emptyset\right)$$

Spectral consequences

Lemma:

$$\operatorname{Tr}(\Phi_c) \neq 0 \implies \left(\sigma_{cont}(U_{CC}) \neq \emptyset\right)$$

• Theorem I: $Tr(\Phi) = -1$

$$\Rightarrow I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$$

$$U_I = S \oplus V + F$$
,

Theorem 1:
$$Ir(\Phi) = -1$$
 $\Rightarrow I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$ & $U_I = S \oplus V + F$, with $\begin{cases} S \text{ shift} \\ V \text{ unitary} \\ F \text{ finite rank} \end{cases}$

Spectral consequences

Lemma:

$$\operatorname{Tr}(\Phi_c) \neq 0 \implies \left(\sigma_{cont}(U_{CC}) \neq \emptyset\right)$$

• Theorem I: $Tr(\Phi) = -1$

$$\Rightarrow I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$$

$$U_I = S \oplus V + F$$

Theorem 1:
$$Ir(\Phi) = -1$$
 $\Rightarrow I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$ & $U_I = S \oplus V + F$, with $\begin{cases} S \text{ shift} \\ V \text{ unitary} \\ F \text{ finite rank} \end{cases}$

• Corollary:
$$\left[\sigma_{ac}(U_{CC}) = \mathbb{S}^1\right]$$

Spectral consequences

Lemma:

$$\operatorname{Tr}(\Phi_c) \neq 0 \implies \left[\sigma_{cont}(U_{CC}) \neq \emptyset\right]$$

• Theorem I: $Tr(\Phi) = -1$

$$\Rightarrow$$
 $I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$

$$U_I = S \oplus V + F$$

Theorem I:
$$\text{Tr}(\Phi) = -1$$
 $\Rightarrow I_{n_L,n_R} = \mathcal{H}_s \oplus \mathcal{H}_s^{\perp}$ & $U_I = S \oplus V + F$, with $\begin{cases} S \text{ shift} \\ V \text{ unitary} \\ F \text{ finite rank} \end{cases}$

• Corollary:
$$\left[\sigma_{ac}(U_{CC}) = \mathbb{S}^1\right]$$

• Theorem II: $S_{j,2k} = S_j$, $\forall (j,k) \in \mathbb{Z}^2$

$$S_{j,2k} = S_j , \forall (j,k) \in \mathbb{Z}^2$$

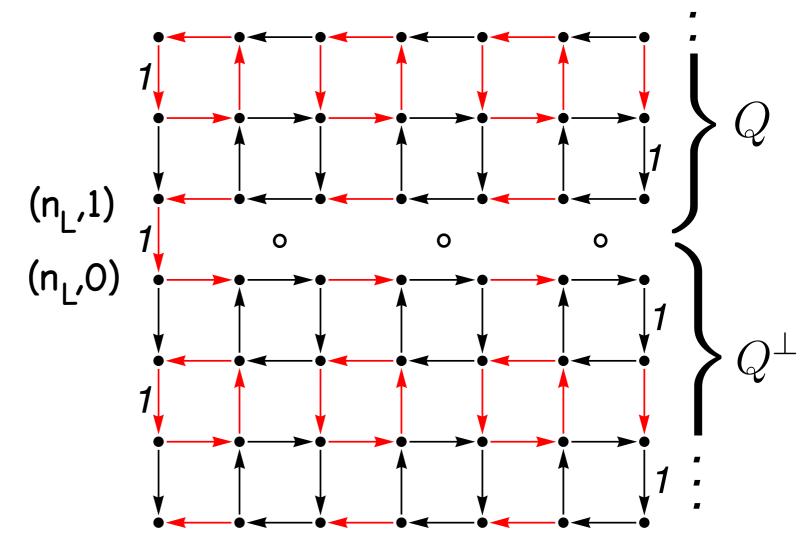
Transl. invar.

$$\Rightarrow$$

$$\sigma_{sc}(U_{CC}) = \emptyset$$

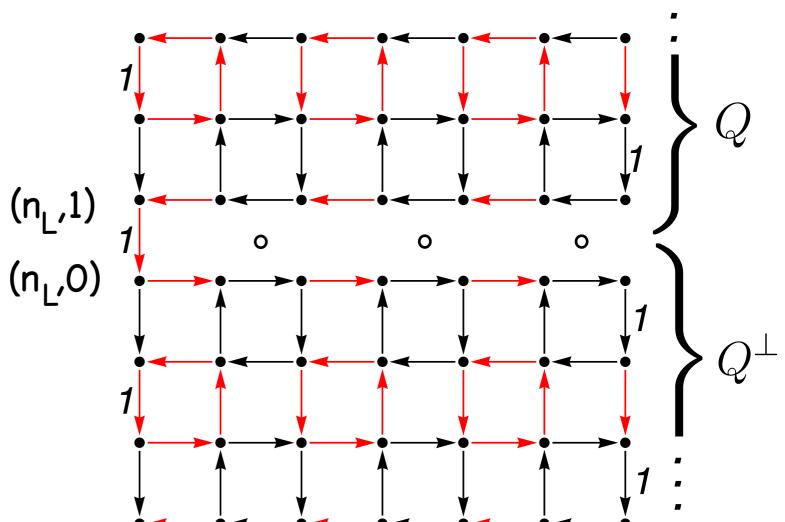
$$\Rightarrow$$
 $\left(\sigma_{sc}(U_{CC}) = \emptyset \quad \& \quad \sigma_{ac}(U_{CC}) = \mathbb{S}^1\right)$

• Consider $U_I' = U_I + F$:



• Consider $U_I' = U_I + F$:

$$\begin{aligned} QU_I'Q^{\perp} &= 0 \\ Q^{\perp}U_I'Q &= p \left| \boldsymbol{n_L}, 0 \right\rangle \left\langle \boldsymbol{n_L}, 1 \right| \\ p &\in \mathbb{S}^1 \end{aligned}$$



• Consider $U_I' = U_I + F$:

$$QU_I'Q^{\perp} = 0$$

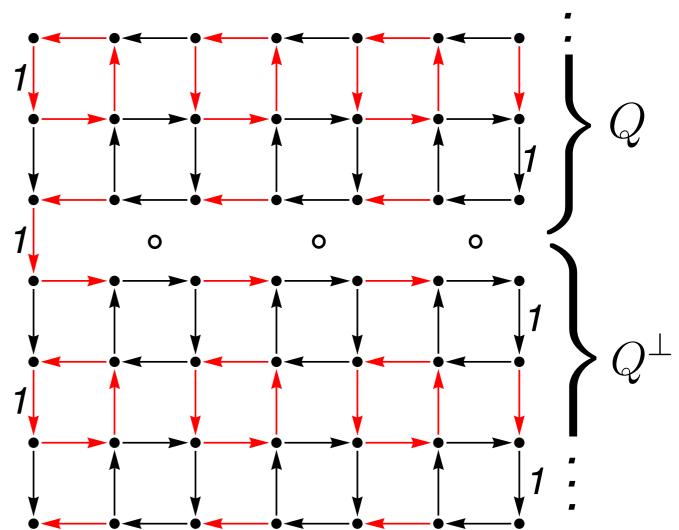
$$Q^{\perp}U_{I}'Q = p | \boldsymbol{n_{L}}, 0 \rangle \langle \boldsymbol{n_{L}}, 1 |$$
$$p \in \mathbb{S}^{1}$$

 $(n_L,1)$

 $(n_L,0)$

• Let $\mathcal{L} := span\{|\boldsymbol{n_L},1\rangle\}$ then

$$U_I^{\prime n} \mathcal{L} \perp \mathcal{L} \qquad \forall n \ge 1$$



• Consider $U_I' = U_I + F$:

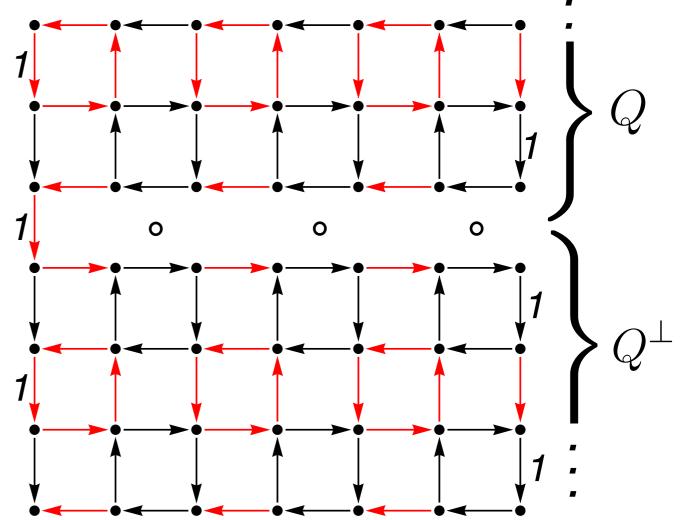
$$QU_I'Q^{\perp} = 0$$

$$Q^{\perp}U_{I}'Q = p | \boldsymbol{n_{L}}, 0 \rangle \langle \boldsymbol{n_{L}}, 1 |$$
$$p \in \mathbb{S}^{1}$$

• Let $\mathcal{L} := span\{|\boldsymbol{n_L},1\rangle\}$ then

$$U_I^{\prime n} \mathcal{L} \perp \mathcal{L} \qquad \forall n \ge 1$$

$$U_I^{\prime n} \mathcal{L} \perp U_I^{\prime m} \mathcal{L}, \ \forall \ n \neq m$$



i.e. \mathcal{L} wandering subspace

• Consider $U_I' = U_I + F$:

$$QU_I'Q^{\perp} = 0$$

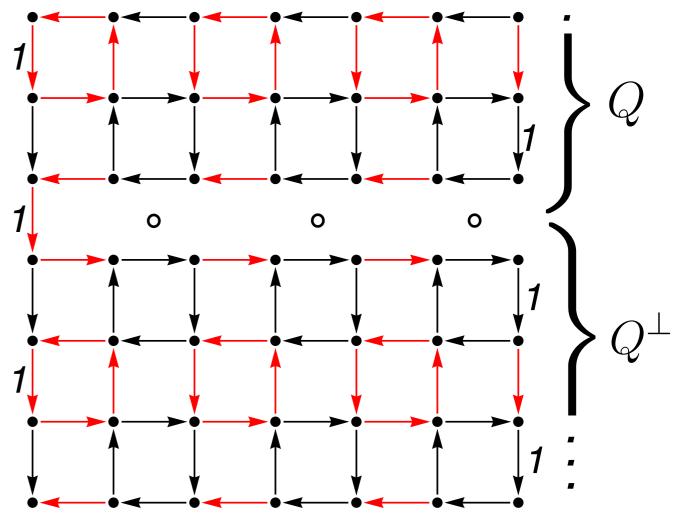
$$Q^{\perp}U_{I}'Q = p | \mathbf{n}_{L}, 0 \rangle \langle \mathbf{n}_{L}, 1 |$$
$$p \in \mathbb{S}^{1}$$

(n_L,1) (n_I,0)

• Let $\mathcal{L} := span\{|\boldsymbol{n_L},1\rangle\}$ then

$$U_I^{\prime n} \mathcal{L} \perp \mathcal{L} \qquad \forall n \ge 1$$

$$U_I^{\prime n} \mathcal{L} \perp U_I^{\prime m} \mathcal{L}, \ \forall n \neq m$$



i.e. L wandering subspace

• Set
$$\mathcal{H}_s := \bigoplus_{n \in \mathbb{Z}} {U_I'}^n \mathcal{L}$$
, invariant

$$U_I'|_{\mathcal{H}_s} \simeq S$$
 shift & $U_I'|_{\mathcal{H}_s^{\perp}} = V$ unitary

Assume

$$S_{j,2k} = S_j, \ \forall (j,k) \in \mathbb{Z}^2$$

Assume

$$\left(S_{j,2k} = S_j, \ \forall (j,k) \in \mathbb{Z}^2\right)$$

$$\mathcal{F}: \ell^2\left(\mathbb{Z}^2; \mathbb{C}\right) \to L^2(\mathbb{S}^1) \otimes \ell^2(\mathbb{Z}; \mathbb{C}) \otimes \mathbb{C}^2$$

$$\begin{cases} \mathcal{F} |j, 2k\rangle := e^{iky} \otimes |j\rangle \otimes |+\rangle \\ \mathcal{F} |j, 2k+1\rangle := e^{iky} \otimes |j-1\rangle \otimes |-\rangle \end{cases}$$

Assume

$$\left(S_{j,2k} = S_j, \ \forall (j,k) \in \mathbb{Z}^2\right)$$

Fourier

$$\mathcal{F}: \ell^2\left(\mathbb{Z}^2; \mathbb{C}\right) \to L^2(\mathbb{S}^1) \otimes \ell^2(\mathbb{Z}; \mathbb{C}) \otimes \mathbb{C}^2$$

$$\begin{cases} \mathcal{F} |j, 2k\rangle := e^{iky} \otimes |j\rangle \otimes |+\rangle \\ \mathcal{F} |j, 2k+1\rangle := e^{iky} \otimes |j-1\rangle \otimes |-\rangle \end{cases}$$

• Prop:

$$\mathcal{F}U_{CC}\mathcal{F}^{-1} = \int_{\mathbb{S}^1}^{\oplus} U_{QW}(y) \; rac{dy}{2\pi} \quad ext{on} \quad L^2\left(\mathbb{S}^1; \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2
ight)$$

$$U_{QW}(y) := \mathcal{S}\mathbf{C}(y)$$

where
$$U_{QW}(y) := SC(y)$$
 is a 1D Quantum Walk

Assume

$$\left(S_{j,2k} = S_j, \ \forall (j,k) \in \mathbb{Z}^2\right)$$

Fourier

$$\mathcal{F}: \ell^2\left(\mathbb{Z}^2; \mathbb{C}\right) \to L^2(\mathbb{S}^1) \otimes \ell^2(\mathbb{Z}; \mathbb{C}) \otimes \mathbb{C}^2$$

$$\begin{cases} \mathcal{F} |j, 2k\rangle := e^{iky} \otimes |j\rangle \otimes |+\rangle \\ \mathcal{F} |j, 2k+1\rangle := e^{iky} \otimes |j-1\rangle \otimes |-\rangle \end{cases}$$

• Prop:

$$\mathcal{F}U_{CC}\mathcal{F}^{-1} = \int_{\mathbb{S}^1}^{\oplus} U_{QW}(y) \; rac{dy}{2\pi} \quad ext{on} \quad L^2\left(\mathbb{S}^1; \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2
ight)$$

where

$$U_{OW}(y) := \mathcal{S}\mathbf{C}(y)$$

 $U_{QW}(y) := SC(y)$ is a 1D Quantum Walk

$$\mathcal{S}\left|j\right>\otimes\left|\pm\right>:=\left|j\pm1\right>\otimes\left|\pm\right>$$

$$\mathbf{C}(y)|j\rangle\otimes v:=|j\rangle\otimes C_{i}(y)v \qquad \forall v\in\mathbb{C}^{2}$$

$$C_{2j}(y) := q_{2j} \begin{pmatrix} -t_{2j} & \overline{r_{2j}}e^{iy} \\ r_{2j}e^{-iy} & \overline{t_{2j}} \end{pmatrix}, \quad C_{2j+1}(y) := q_{2j+1} \begin{pmatrix} r_{2j+1} & \overline{t_{2j+1}} \\ -t_{2j+1} & \overline{r_{2j+1}} \end{pmatrix}.$$

Assume

$$\left(S_{j,2k} = S_j, \ \forall (j,k) \in \mathbb{Z}^2\right)$$

Fourier

$$\mathcal{F}: \ell^2\left(\mathbb{Z}^2; \mathbb{C}\right) \to L^2(\mathbb{S}^1) \otimes \ell^2(\mathbb{Z}; \mathbb{C}) \otimes \mathbb{C}^2$$

$$\begin{cases} \mathcal{F} |j, 2k\rangle := e^{iky} \otimes |j\rangle \otimes |+\rangle \\ \mathcal{F} |j, 2k+1\rangle := e^{iky} \otimes |j-1\rangle \otimes |-\rangle \end{cases}$$

• Prop:

$$\mathcal{F}U_{CC}\mathcal{F}^{-1} = \int_{\mathbb{S}^1}^{\oplus} U_{QW}(y) \; rac{dy}{2\pi} \quad ext{on} \quad L^2\left(\mathbb{S}^1; \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2
ight)$$

where

$$U_{QW}(y) := \mathcal{S}\mathbf{C}(y)$$

 $U_{OW}(y) := SC(y)$ is a 1D Quantum Walk

$$\mathcal{S}|j\rangle\otimes|\pm\rangle:=|j\pm1\rangle\otimes|\pm\rangle$$

$$\mathbf{C}(y)|j\rangle\otimes v:=|j\rangle\otimes C_j(y)v \qquad \forall v\in\mathbb{C}^2$$

$$C_{2j}(y) := q_{2j} \begin{pmatrix} -t_{2j} & \overline{r_{2j}}e^{iy} \\ r_{2j}e^{-iy} & \overline{t_{2j}} \end{pmatrix}, \quad C_{2j+1}(y) := q_{2j+1} \begin{pmatrix} r_{2j+1} & \overline{t_{2j+1}} \\ -t_{2j+1} & \overline{r_{2j+1}} \end{pmatrix}.$$

• Interface
$$[0,2\pi) \ni y \mapsto U_{QW}(y)$$
 finite matrix, analytic

$$\Rightarrow$$
 Thm II: $\left(\sigma_{sc}(U_{CC}) = \emptyset$ & $\sigma_{ac}(U_{CC}) = \mathbb{S}^1\right)$

Remarks

• Kitaev's Spectral flow formula:

on
$$\ell^2\left(\mathbb{Z};\mathbb{C}^d\right)$$

$$U\psi(x) = \sum_{y \in \mathbb{Z}} U(x,y)\psi(y) \qquad \text{s.t.} \qquad \|U(x,y)\|_{HS} \leq \frac{c}{|x-y|^{\alpha}}$$

$$||U(x,y)||_{HS} \le \frac{c}{|x-y|^{\alpha}}$$

$$\alpha > 2$$

$$index(U^*QU,Q) = \text{Tr}\left(U^*QU - Q\right) = \sum_{z \ge 1} \sum_{y < 1} \left(\|U(z,y)\|_{HS}^2 - \|U(y,z)\|_{HS}^2 \right)$$

Remarks

 $\alpha > 2$

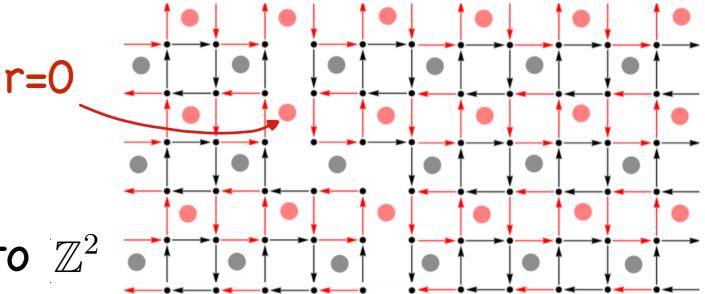
• Kitaev's Spectral flow formula:

on
$$\ell^2\left(\mathbb{Z};\mathbb{C}^d\right)$$

$$U\psi(x) = \sum_{y \in \mathbb{Z}} U(x,y)\psi(y) \qquad \text{s.t.} \qquad \|U(x,y)\|_{HS} \le \frac{c}{|x-y|^{\alpha}}$$

$$||U(x,y)||_{HS} \le \frac{c}{|x-y|^{\alpha}}$$

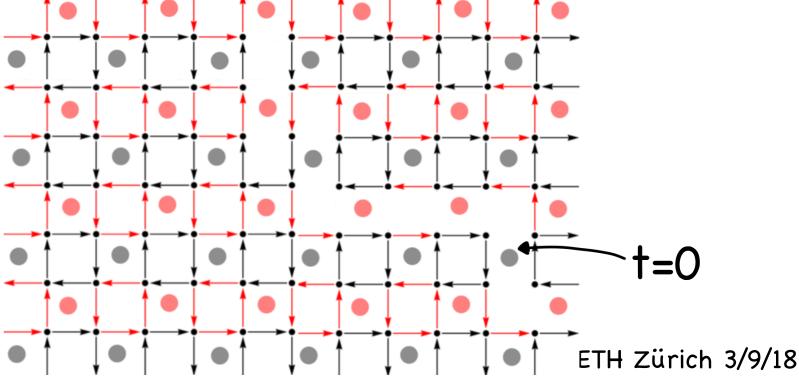
$$\mathit{index}(U^*QU,Q) = \mathrm{Tr}\,(U^*QU-Q) = \sum_{z\geq 1} \sum_{y<1} \left(\|U(z,y)\|_{HS}^2 - \|U(y,z)\|_{HS}^2 \right)$$



• Extensions to \mathbb{Z}^2

perturb. of:

$$\Rightarrow \sigma_{ac}(U_{CC}) = \mathbb{S}^1$$



Remarks:

- No conjugate operator for Mourre estimate
- ullet Extensions to other Quantum Walks in \mathbb{Z}^d
- Reminiscent of Iwatsuka type situations
- Bulk-edge correspondence for Floquet operators: Carpentier et al '15, Graf-Tauber '17, Sadel-Schulz-Baldes '17, Delplace et al '17, Shapiro-Tauber '18.
- · Inspiration Kitaev and Werner's group work on 1D QW's