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Abstract

We study transport properties of a Chalker–Coddington type model in the
plane which presents asymptotically pure anti-clockwise rotation on the left plane

instead
of 2

Jo

plane
instead
of 2

and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.

1 Introduction

By a Chalker–Coddington (aka: CC–model) we understand a unitary operator

UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map

S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:
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Potential V (x, y)

{|j, ki}(j,k)2Z2

✓
UCC |2j, 2ki

UCC |2j + 1, 2k � 1i
◆

:= S2j,2k

✓|2j, 2k � 1i
|2j + 1, 2ki

◆
(2)

= q2j,2j

✓
r2j,2k|2j, 2k � 1i � t2j,2k|2j + 1, 2ki
t2j,2k|2j, 2k � 1i+ r2j,2k|2j + 1, 2ki

◆
(3)

✓
UCC |2j + 1, 2ki

UCC |2j + 2, 2k + 1i
◆

:= S2j+1,2k

✓ |2j + 2, 2ki
|2j + 1, 2k + 1i

◆
(4)

= q2j+1,2k

✓
r2j+1,2k|2j + 2, 2ki � t2j+1,2k|2j + 1, 2k + 1i
t2j+1,2k|2j + 2, 2ki+ r2j+1,2k|2j + 1, 2k + 1i

◆
. (5)

According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].
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ability to describe the delocalisation transition of the Quantum Hall e↵ect.
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the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
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as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
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restricted to the interface contains a non-trivial absolutely continuous component that
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argument makes use of a topological quantity which comes as the index of a pair of
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nature and independent of the details of the model.
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S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:
R2

V ⌘ 0

⇤Supported by FONDECYT 1161732, and ECOS-Conicyt C15E10
†Supported by the LabEx PERSYVAL-Lab (ANR-11- LABX- 0025-01) funded by the French pro-

gram Investissement davenir
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The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
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Figure 1 .  Sketch of a typical potential, V ( x , y ) .  Full curves represent equipotentials and 
arrowsgive direction of guiding centre motion; + and - denote maxima and minima. Heavy 
curves indicate contours at potential Vi). Portions of these contours are enclosed in strips 
and circles (broken lines) which correspond to links and nodes of the network model. 

of net current flow on the strip, so the integral is positive. Let Zi and Zf be the values of 
Z ( s )  at the beginning and end of the strip: since no current flows through the sides of the 
strip, Zf = e'q Z,,  Q, real. The phase, Q,, characterises a link of the network model and 
depends (in a given gauge) on the arc length of the link in units of I,; we take the Q, to be 
independent random variables uniformly distributed in [0,2n).  

Each strip starts and ends at a circle, which encloses a region where two contours 
approach one another and tunnelling must be considered (the arbitrariness in placing 
the boundaries of the regions is irrelevant provided A / f c  9 1). Generically, two incoming 
and two outgoing strips (defined according to the sense of net current flow) meet at each 
circle (see figure 2). Let their respective values of Z ( s )  on the boundary by Z1, Z,, Z 3  
and Z4. The result of matching the solution of the Schrodinger equation inside the circle 

Figure 2. Sketch of a saddle point in the potential, V ( x ,  y ) .  Full curves represent contours 
and arrows give direction of guiding centre motion. Amplitudes Z , ,  2,. Z ,  and Z4 (see 
text) are defined on the numbered broken lines. Sets of contours labelled (a), (b) and (c) 
correspond to potentials V ,  which are, respectively, Vo a V,,, Vi,  = V,, and V,, + V,,,, where 
V ,  is the saddle-point potential. 

Simplified Quantum version in ‘88
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of net current flow on the strip, so the integral is positive. Let Zi and Zf be the values of 
Z ( s )  at the beginning and end of the strip: since no current flows through the sides of the 
strip, Zf = e'q Z,,  Q, real. The phase, Q,, characterises a link of the network model and 
depends (in a given gauge) on the arc length of the link in units of I,; we take the Q, to be 
independent random variables uniformly distributed in [0,2n).  

Each strip starts and ends at a circle, which encloses a region where two contours 
approach one another and tunnelling must be considered (the arbitrariness in placing 
the boundaries of the regions is irrelevant provided A / f c  9 1). Generically, two incoming 
and two outgoing strips (defined according to the sense of net current flow) meet at each 
circle (see figure 2). Let their respective values of Z ( s )  on the boundary by Z1, Z,, Z 3  
and Z4. The result of matching the solution of the Schrodinger equation inside the circle 
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V ,  is the saddle-point potential. 
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matrices Sj,2k.
The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion
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The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion
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¶Université Grenoble Alpes, CNRS Institut Fourier, 38000 Grenoble, France

1

✓
UCC |2j, 2ki

UCC |2j + 1, 2k � 1i
◆

:= S2j,2k

✓|2j, 2k � 1i
|2j + 1, 2ki

◆
,

✓
UCC |2j + 1, 2ki

UCC |2j + 2, 2k + 1i
◆

:= S2j+1,2k

✓ |2j + 2, 2ki
|2j + 1, 2k + 1i

◆
. (2)

According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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Figure 1: A Chalker–Coddington model with its incoming (solid arrows) and outgoing
links

matrices Sj,2k.
The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion
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and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
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UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2

Definition of U  :CC

Chalker-Coddington Model

Chirality Induced Interface Currents in the Chalker

Coddington Model

⇤†

Joachim Asch ‡, Olivier Bourget §, Alain Joye ¶

5/8/17

Abstract

We study transport properties of a Chalker–Coddington type model in the
plane which presents asymptotically pure anti-clockwise rotation on the left plane

instead
of 2

Jo

plane
instead
of 2

and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.

1 Introduction

By a Chalker–Coddington (aka: CC–model) we understand a unitary operator

UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map

S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:
R2

V ⌘ 0 V 6⌘ 0

⇤Supported by FONDECYT 1161732, and ECOS-Conicyt C15E10
†Supported by the LabEx PERSYVAL-Lab (ANR-11- LABX- 0025-01) funded by the French pro-

gram Investissement davenir
‡CNRS, CPT, Aix Marseille Université, Université de Toulon, Marseille, France, asch@cpt.univ-

mrs.fr
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
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purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2

✓
UCC |2j, 2ki

UCC |2j + 1, 2k � 1i
◆

:= S2j,2k

✓|2j, 2k � 1i
|2j + 1, 2ki

◆
,

✓
UCC |2j + 1, 2ki

UCC |2j + 2, 2k + 1i
◆

:= S2j+1,2k

✓ |2j + 2, 2ki
|2j + 1, 2k + 1i

◆
. (2)

According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2

ETH Zürich 3/9/18



✓
UCC |2j, 2ki

UCC |2j + 1, 2k � 1i
◆

:= S2j,2k

✓|2j, 2k � 1i
|2j + 1, 2ki

◆
,

✓
UCC |2j + 1, 2ki

UCC |2j + 2, 2k + 1i
◆

:= S2j+1,2k

✓ |2j + 2, 2ki
|2j + 1, 2k + 1i

◆
. (2)

According to the parity of the first index we will speak of odd and even scattering

S2j,2k

S2j+1,2k

(2j,2k)

(2j+1,2k)

Figure 1: A Chalker–Coddington model with its incoming (solid arrows) and outgoing
links

matrices Sj,2k.
The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion

2

Hilbert space:

Chirality Induced Interface Currents in the Chalker

Coddington Model

⇤†

Joachim Asch ‡, Olivier Bourget §, Alain Joye ¶

5/8/17

Abstract

We study transport properties of a Chalker–Coddington type model in the
plane which presents asymptotically pure anti-clockwise rotation on the left plane

instead
of 2

Jo

plane
instead
of 2

and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.

1 Introduction

By a Chalker–Coddington (aka: CC–model) we understand a unitary operator

UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map

S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:

⇤Supported by FONDECYT 1161732, and ECOS-Conicyt C15E10
†Supported by the LabEx PERSYVAL-Lab (ANR-11- LABX- 0025-01) funded by the French pro-

gram Investissement davenir
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Lemma: is unitary,

purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U
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Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)
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Denote the odd n–sphere by

Sn
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z 2 C
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X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.

Lemma 2.2. In case all scattering matrices are diagonal, i.e. tj,2k = 0 , |rj,2k| = 1,
the subspaces

Hj,k
� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}
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� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}

are invariant under UCC . The dynamics on those plaquettes is that of right turners
with representation in the corresponding basis
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is the total phase accumulated on the scattering events.
In case all scattering matrices are o↵-diagonal, i.e. rj,k = 0 , |tj,k| = 1, the

subspaces
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is the total phase accumulated on the scattering events.

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

4

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
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◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR. then

InL,nR := `

2
({nL,nR}⇥ Z;C) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
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and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.
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defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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Figure 1: A Chalker–Coddington model with its incoming (solid arrows) and outgoing
links

matrices Sj,2k.
The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion
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and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.
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defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map
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According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
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So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.
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‡CNRS, CPT, Aix Marseille Université, Université de Toulon, Marseille, France, asch@cpt.univ-

mrs.fr
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with representation in the corresponding basis
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0 0 q2j�2,2kr2j�2,2k 0

1

CCA

and spectrum e
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e
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is the total phase accumulated on the scattering events.
In case all scattering matrices are o↵-diagonal, i.e. rj,k = 0 , |tj,k| = 1, the
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Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

4

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
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⇤
M)
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0
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0
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0
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0|2� 1
2

⌘
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0
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µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR. then

InL,nR := `

2
({nL,nR}⇥ Z;C) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
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✓
UCC |2j, 2ki

UCC |2j + 1, 2k � 1i
◆

:= S2j,2k

✓|2j, 2k � 1i
|2j + 1, 2ki

◆
,

✓
UCC |2j + 1, 2ki

UCC |2j + 2, 2k + 1i
◆

:= S2j+1,2k

✓ |2j + 2, 2ki
|2j + 1, 2k + 1i

◆
. (2)

According to the parity of the first index we will speak of odd and even scattering
matrices Sj,2k.

The model provides an e↵ective description of one time step of the motion of
an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 15, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal
the motion is clockwise on (di↵erent) plaquettes. In the present contribution, we
investigate the spectral and transport properties on an interface made of arbitrary
scattering matrices between two phases of di↵erent chirality. In particular we suppose
that the motion is anti-clockwise in a left half-plane and clockwise in a right half-plane
as depicted in figure ??.

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.
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case has trivial Chern numbers [12]. In the present contribution, we investigate the
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Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:
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2 Properties of U
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Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.
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So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.
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,Parametrisation:
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According to the parity of the first index we will speak of odd and even scattering
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Figure 1: A Chalker–Coddington model with its incoming (solid arrows) and outgoing
links

matrices Sj,2k.
The model provides an e↵ective description of one time step of the motion of

an electron in a plane subject to a strong perpendicular magnetic field and electric
potential whose main physical characteristics are encoded by the scattering matrices.
For details on its known physical and mathematical features, we refer to [10, 16, 1, 2];
here we just mention that the great interest of this e↵ective model stems from its
ability to describe the delocalisation transition of the Quantum Hall e↵ect.

If all scattering matrices Sj,2k are o↵–diagonal then the motion is an anti-clockwise
rotation on four dimensional subspaces (aka: plaquettes); if they are all diagonal the
motion is clockwise on (di↵erent) plaquettes. It is known that certain random per-
turbations of these cases display dynamical localisation [2]. The critical case, in the
sense of stable delocalisation, is supposed to occur when all matrix entries are of mod-
ulus 1/

p
2, [10]. On the other hand it is known that the translation invariant critical

case has trivial Chern numbers [12]. In the present contribution, we investigate the
spectral and transport properties on an interface made of arbitrary scattering matrices
between two phases of di↵erent chirality. In particular we suppose that the motion
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Quantum Manhattan model

is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.

1

1

1

1

1

1

Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.
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Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)
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To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q
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t r
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, q 2 S1

, |r|2 + |t|2 = 1 (6)

So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.

Lemma 2.2. In case all scattering matrices are diagonal, i.e. tj,2k = 0 , |rj,2k| = 1,
the subspaces

Hj,k
� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}
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We observe that the clockwise and anti-clockwise phases induce boundary condi-
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is
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o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
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• On a strip & periodic b.c. ABJ ‘10

finite localisation length

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then
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To parametrize the scattering matrices Sj,2k, we use the homeomorphism
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, |r|2 + |t|2 = 1 (6)
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So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.

Lemma 2.2. In case all scattering matrices are diagonal, i.e. tj,2k = 0 , |rj,2k| = 1,
the subspaces

Hj,k
� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}

are invariant under UCC . The dynamics on those plaquettes is that of right turners
with representation in the corresponding basis
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Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.
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a.s.

an established expert in localization is further substanciated by the fact that his recent co-authors
are themselves leading experts in the field.

More precisely, the recent contributions of A. Elgart in localization include ....
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phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l
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(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR
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Chirality Induced Interface Currents in the Chalker

Coddington Model
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Abstract

We study transport properties of a Chalker–Coddington type model in the
plane which presents asymptotically pure anti-clockwise rotation on the left plane

instead
of 2

Jo

plane
instead
of 2

and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.

1 Introduction

By a Chalker–Coddington (aka: CC–model) we understand a unitary operator

UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map

S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:
R2
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So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.

Lemma 2.2. In case all scattering matrices are diagonal, i.e. tj,2k = 0 , |rj,2k| = 1,
the subspaces

Hj,k
� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}

are invariant under UCC . The dynamics on those plaquettes is that of right turners
with representation in the corresponding basis

UCC |Hj,k
�

=

0

BB@

0 0 0 q2j�1,2kr2j�1,2k

q2j,2kr2j,2k 0 0 0

0 q2j�1,2k�2r2j�1,2k�2 0 0

0 0 q2j�2,2kr2j�2,2k 0

1

CCA

and spectrum �

⇣
UCC |Hj,k

�

⌘
= e

↵R
2k,2j{1, i,�1,�i}, where

e

4↵R
2k,2j

= q2j,2kr2j,2kq2j�1,2k�2r2j�1,2k�2q2j�2,2kr2j�2,2kq2j�1,2kr2j�1,2k

is the total phase accumulated on the scattering events.
In case all scattering matrices are o↵-diagonal, i.e. rj,k = 0 , |tj,k| = 1, the

subspaces

Hj,k
 := span{|2j, 2ki, |2j + 1, 2ki, |2j + 1, 2k + 1i, |2j, 2k + 1i}

are invariant under UCC , and the dynamics on those plaquettes is that of left turners
with representation in the corresponding basis

UCC |Hj,k
 

=

0

BB@

0 0 0 q2j�1,2kt2j�1,2k

�q2j,2kt2j,2k 0 0 0

0 �q2j+1,2kt2j+1,2k 0 0

0 0 q2j,2k+2t2j,2k+2 0

1

CCA

and spectrum �

⇣
UCC |Hj,k

 

⌘
= e

↵L
2k,2j{1, i,�1,�i}, where

e

4↵L
2k,2j

= q2j,2kt2j,2kq2j+1,2kt2j+1,2kq2j,2k+2t2j,2k+2q2j�1,2kt2j�1,2k

is the total phase accumulated on the scattering events.

� (UCC(!)) = �pp (UCC(!))

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

4

a.s.
dynamical localisation

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

3

� (UCC(!)) = �pp (UCC(!))

(|r|, |t|) 2 S1 |r · t| ⌧ 1 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.
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finite localisation length

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U
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)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k
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◆
,

✓
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⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S
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2j+1,2k

✓ |2j + 1, 2ki
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◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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So S is parametrised by a function Z⇥ 2Z 7! S1 ⇥ S3, c.f.: figure ??.
One gets the following characterisations of the right and left turning phases, as

well as the corresponding definition of plaquettes.

Lemma 2.2. In case all scattering matrices are diagonal, i.e. tj,2k = 0 , |rj,2k| = 1,
the subspaces

Hj,k
� := span{|2j, 2ki, |2j, 2k � 1i, |2j � 1, 2k � 1i, |2j � 1, 2ki}

are invariant under UCC . The dynamics on those plaquettes is that of right turners
with representation in the corresponding basis

UCC |Hj,k
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=
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0 0 0 q2j�1,2kr2j�1,2k

q2j,2kr2j,2k 0 0 0
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⇣
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= q2j,2kr2j,2kq2j�1,2k�2r2j�1,2k�2q2j�2,2kr2j�2,2kq2j�1,2kr2j�1,2k

is the total phase accumulated on the scattering events.
In case all scattering matrices are o↵-diagonal, i.e. rj,k = 0 , |tj,k| = 1, the

subspaces

Hj,k
 := span{|2j, 2ki, |2j + 1, 2ki, |2j + 1, 2k + 1i, |2j, 2k + 1i}

are invariant under UCC , and the dynamics on those plaquettes is that of left turners
with representation in the corresponding basis

UCC |Hj,k
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is the total phase accumulated on the scattering events.

� (UCC(!)) = �pp (UCC(!))

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

4
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(|r|, |t|) 2 S1 |r · t| 6= 0 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.
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Interface

nL nR (even)

is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.

1

1

1

1

1

1

Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is
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o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR. then

InL,nR := `

2
({nL,nR}⇥ Z;C) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
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Special interfaces
n  = n   = 0L R

is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.
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Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

nL =

⇢
nL, nL even

nL � 1, nL odd
nR =

⇢
nR, nR even

nR + 1, nR odd

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI '
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We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.

3

is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.

1

1

1

1

1

1

Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.

3

n  = n   = 1L R

1

1

1

1

1

1

(a) A snake path

1

1

1

1

1

1

(b) An invariant plaquette

Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure 4a.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure 4b

3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
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tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
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the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure 4a.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure 4b

3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
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the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI '

5

shift

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

nL =

⇢
nL, nL even

nL � 1, nL odd
nR =

⇢
nR, nR even

nR + 1, nR odd

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI '

5

shift

ETH Zürich 3/9/18



Special interfaces
n  = n   = 0L R

is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.
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Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
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Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:
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Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l
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(Z), with a

winding snakelike motion, see figure 4a.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure 4b

3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.
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then
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UI := UCC |InL,nR
UI '
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Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
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then
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Arbitrary interface
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(a) A snake path
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(b) An invariant plaquette

Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure 4a.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure 4b

3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that

7
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Flux observable
is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.
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Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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UInL,nR
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UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
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Jo

circle
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UInL,nR
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and for nR odd:
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|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
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 ; for nR = 2pR the leftmost
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see figure ??
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
the continuous spectrum is not empty. We shall do so in two di↵erent ways: first
we use a topological argument, second we provide an explicit spectral analysis of the
relevant flux operator.

In InL,nR we consider the projection Q on the upper half strip defined as multipli-
cation by �([1,1)), the characteristic function of the upper half strip, i.e.:

Q (j, k) := �(k � 1) (j, k).

Consider the flux observable
� := U

⇤
IQUI �Q.

The flux � measures the di↵erence of the number of particles in the half strip at time
one and time zero. We shall prove that one particle per time step is lost from a full
half strip, i.e.:

Theorem 3.1. Let UCC = U(S) be such that

rj,2k = 0 if j < nL, tj,2k = 0 if j � nR

then it holds
Tr(�) = �1.

We deduce

Corollary 3.2.

�cont(UCC) = �cont(UInL,nR
) 6= ;.

We will now prove this result making use of the topological invariance of Tr�, due
to the fact that it is equal to the relative index of two projections, and the spectral
flow formula of Kitaev which is very handy for network models. To be self-contained
and to provide some background on our line of thought, we collect several concepts
and results from [5, 6, 14].

Definition 3.3. Let P,Q be selfadjoint projections such that P �Q is compact. Their
relative index is defined by

index(P,Q) := dimker(P �Q� 1)� dimker(P �Q+ 1).
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Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `
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({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are
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2. In the case where the strip `
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3. Models containing invariant plaquettes in the interface are readily constructed,
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Flux observable
is anti-clockwise in a left half-plane and clockwise in a right half-plane as depicted in
figure 2.

1

1

1

1

1

1

Figure 2: The invariant strip; the indicated transition amplitudes 1 on the boundaries
are imposed by the di↵erent chiralities

We observe that the clockwise and anti-clockwise phases induce boundary condi-
tions on the interface making it an invariant strip under UCC . Then we consider a
natural flux observable in configuration space and prove that the spectrum of UCC

restricted to the interface contains a non-trivial absolutely continuous component that
covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [11, 13]. The present point of view is in configu-
ration space and inspired by [15]. Implications concerning the absolutely continuous
spectrum seem to be new. For the sake of comparison, we recall that CC models
with certain types of random scattering matrices, restricted to a strip with periodic
boundary conditions displays dynamical localisation [1].

In the special case where the CC model is invariant under translations parallel to
the interface, we show that the continuous spectrum of its restriction to the interface
is purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined Quantum
Walks (see e.g. [3]) which we will do elsewhere.
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2
({nL,nR}⇥ Z) (8)
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UInL,nR
the restriction of UCC to InL,nR .
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UInL,nR

|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR
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Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are
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(Z) describing a current along the
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2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
the continuous spectrum is not empty. We shall do so in two di↵erent ways: first
we use a topological argument, second we provide an explicit spectral analysis of the
relevant flux operator.

In InL,nR we consider the projection Q on the upper half strip defined as multipli-
cation by �([1,1)), the characteristic function of the upper half strip, i.e.:

Q (j, k) := �(k � 1) (j, k).

Consider the flux observable
� := U

⇤
IQUI �Q.

The flux � measures the di↵erence of the number of particles in the half strip at time
one and time zero. We shall prove that one particle per time step is lost from a full
half strip, i.e.:

Theorem 3.1. Let UCC = U(S) be such that

rj,2k = 0 if j < nL, tj,2k = 0 if j � nR

then it holds
Tr(�) = �1.

We deduce

Corollary 3.2.

�cont(UCC) = �cont(UInL,nR
) 6= ;.

We will now prove this result making use of the topological invariance of Tr�, due
to the fact that it is equal to the relative index of two projections, and the spectral
flow formula of Kitaev which is very handy for network models. To be self-contained
and to provide some background on our line of thought, we collect several concepts
and results from [5, 6, 14].

Definition 3.3. Let P,Q be selfadjoint projections such that P �Q is compact. Their
relative index is defined by

index(P,Q) := dimker(P �Q� 1)� dimker(P �Q+ 1).

7
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The index has the following properties

Theorem 3.4. 1. index(P,Q) = dimRanP \KerQ� dimRanQ \KerP

2. If (P �Q)

2n+1 is trace class for some n 2 N0 then

index(P,Q) = Tr(P �Q)

2n+1
.

3. If P = U

⇤
QU for a unitary U then QUQ is Fredholm on RanQ and for its

Fredholm index it holds

index(U⇤
QU,Q) = �ind(QUQ) := dimKerQU

⇤
Q� dimKerQUQ.

4. If U⇤
QU �Q is compact then U

⇤n
QU

n �Q is compact for all n 2 N and

index(U⇤n
QU

n
, Q) = n index(U⇤

QU,Q).

5. If P (t) = U

⇤
(t)QU(t) with [0, 1] 7! U(t) is a norm–continuous family of unitary

operators then
index(P (t), Q) = index(P (0), Q) 8t

6.
index(U⇤

1QU1, Q) = index(U⇤
0QU0, Q)

for unitaries U1, U0 such that U1 � U0 is a compact operator.

Proof. The first four assertions were proven in [5, 6]. The last two assertions follow
the invariance properties of the Fredholm index of QUQ.

Theorem 3.5. In the Hilbert space `2
�
Z;Cd

�
consider a unitary operator U with the

d⇥ d matrix valued kernel U(x, y) eliminated
dis-
agree-
ment
about
:=:

Jo

eliminated
dis-
agree-
ment
about
:=:

U (x) =

X

y2Z

U(x, y) (y)

satisfies for an ↵ > 1 a positive constant c and all x 6= y

kU(x, y)kHS  c

|x� y|↵ . (10)

It holds with the half space projection Q (x) := �(x � 1) (x)

1. U

⇤
QU �Q is trace class and

index(U⇤
QU,Q) = Tr (U

⇤
QU �Q) =

X

z�1

X

y<1

�kU(z, y)k2HS � kU(y, z)k2HS

�

(11)
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) 6= ;.
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and results from [5, 6, 14].
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relative index is defined by
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The index has the following properties

Theorem 3.4. 1. index(P,Q) = dimRanP \KerQ� dimRanQ \KerP

2. If (P �Q)

2n+1 is trace class for some n 2 N0 then

index(P,Q) = Tr(P �Q)

2n+1
.

3. If P = U

⇤
QU for a unitary U then QUQ is Fredholm on RanQ and for its

Fredholm index it holds

index(U⇤
IQUI , Q) = �ind(QUIQ) := dimKerQU

⇤
Q� dimKerQUQ.

4. If U⇤
QU �Q is compact then U

⇤n
QU

n �Q is compact for all n 2 N and

index(U⇤n
QU

n
, Q) = n index(U⇤

QU,Q).

5. If P (t) = U

⇤
(t)QU(t) with [0, 1] 7! U(t) is a norm–continuous family of unitary

operators then
index(P (t), Q) = index(P (0), Q) 8t

6.
index(U⇤

1QU1, Q) = index(U⇤
0QU0, Q)

for unitaries U1, U0 such that U1 � U0 is a compact operator.

Proof. The first four assertions were proven in [5, 6]. The last two assertions follow
the invariance properties of the Fredholm index of QUQ.

Theorem 3.5. In the Hilbert space `2
�
Z;Cd

�
consider a unitary operator U with the

d⇥ d matrix valued kernel U(x, y) eliminated
dis-
agree-
ment
about
:=:

Jo

eliminated
dis-
agree-
ment
about
:=:

U (x) =

X

y2Z

U(x, y) (y)

satisfies for an ↵ > 1 a positive constant c and all x 6= y

kU(x, y)kHS  c

|x� y|↵ . (10)

It holds with the half space projection Q (x) := �(x � 1) (x)

1. U

⇤
QU �Q is trace class and

index(U⇤
QU,Q) = Tr (U

⇤
QU �Q) =

X

z�1

X

y<1

�kU(z, y)k2HS � kU(y, z)k2HS

�

(11)
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Deformation U’=U +FI

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces Hu �Hs such that UI = V � S + F , where V is unitary, S is a bilateral shift,
and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

Sj,2k = S

0
j,2k elsewhere. Then U

0 is unitary and U

0
I �UI =: F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}

is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].
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, elsewhere

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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� (UCC(!)) = �pp (UCC(!))

(|r|, |t|) 2 S1 |r · t| 6= 0 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

5

I

• Given , let s.t.

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.
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Figure 5: A finite rank perturbation of UI
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L
(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

...

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z
UInL,nR

|nL, 2k + 1i = p |nL, 2ki
UInL,nR

|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

...

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z
UInL,nR

|nL, 2k + 1i = p |nL, 2ki
UInL,nR

|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

3
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� (UCC(!)) = �pp (UCC(!))

(|r|, |t|) 2 S1 |r · t| 6= 0 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

5

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.
As a consequence, we get

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
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and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.
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Figure 5: A finite rank perturbation of UI
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L
(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.
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✓
U

⇤
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U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S
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2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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� (UCC(!)) = �pp (UCC(!))

(|r|, |t|) 2 S1 |r · t| 6= 0 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

5

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.
As a consequence, we get

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.
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� (UCC(!)) = �pp (UCC(!))

(|r|, |t|) 2 S1 |r · t| 6= 0 )

|r| 6= |t| |r| = |t| = 1p
2

Next we will show that the Chalker-Coddington model is uniformly Lipschitz in its
defining scattering matrices, (1). Denoting the model defined by S by UCC ⌘ UCC(S)
we have:

Lemma 2.3. There exists a c > 0 such that for all S,S0

kUCC(S)� UCC(S
0
)k  ckS� S0k1.

Proof. For the homeomorphism defined in (??) it holds for the Hilbert Schmidt norm
kMkHS = (Tr M

⇤
M)

1/2:

kS(q, r, t)� S(q

0
, r

0
, t

0
)kHS 

p
2

⇣
|q � q

0|+ �|r � r

0|2 + |t� t

0|2� 1
2

⌘

and we get

kUCC(S)� UCC(S
0
)k  c

✓
sup

µ2Z⇥2Z
|qµ � q

0
µ|+

�|rµ � r

0
µ|2 + |tµ � t

0
µ|2

� 1
2

◆

Remark that S1⇥S3 is path-connected so any two Chalker-Coddington models can
be continuously deformed into one another in the natural topology.

2.1 Interface between left and right phases

We now consider the situation where the scattering matrices (1) describe a left moving
phase and a right moving phase separated by a vertical interface InL,nR ⇢ l

2
(Z2

) which
turns out to be invariant:

Lemma 2.4. Let S in (1) be such that for nL  nR

Sj,2k is

⇢
o↵-diagonal , rj,2k = 0 if j < nL

diagonal , tj,2k = 0 if j � nR
(7)

Denote nL the largest even integer less or equal to nL and nR the smallest even
integer greater or equal to nR.

5

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

3

1

1

1

1

1

1

(n_L,0)

Figure 5: A finite rank perturbation of UI
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L
(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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2
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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Spectral consequences
• Lemma: 

Remarks 3.6. 1. The proof of theorem 3.5.2 provides (via Theorem 3.4.3) a very
explicit proof of the index theorem for Toeplitz matrix operators, i.e.:

index( bQc
M

b
Q) = �wind(det

c
M)

for the Fredholm index of the the operator of multiplication by c
M on the Hardy

space {f 2 L

2
�
S1
;Cd

�
;

ˇ

f(n) = 0, 8n  0}. See, for exemple, [4] for a topo-
logical proof. The explicit proof is well known in the scalar case, see [8].

2. The index is independent of the cut position, i.e.: for all y0 2 Z

index (U⇤
�([y0,1))U,�([y0,1))) = index (U⇤

�([1,1))U,�([1,1))) .

Proof. D := �([y0,1))� �([1,1))) is a finite rank projector so Tr (U

⇤
DU �D) =

TrU

⇤
DU � TrD = 0

After recalling the above background material we state the proof

Proof. (of Theorem 3.1) To prove the theorem we use the stability of the index,
Theorem 3.4.6. Let S be the U(2) valued map defining UCC . Let U 0 be the unitary

defined by S0 with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries, Sj,2k =

S

0
j,2k elsewhere, see figure (??). The index corresponding to U

0 is unchanged because
the modification to U

0
I � UI is of finite rank. In Kitaev’s formula (11) the only non

trivial matrix element left is the one of U 0
I(0, 1) on the left boundary of the strip whose

modulus equals 1, thus

index(U⇤
IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z
U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.

Proof. Denote Ppp(U), Pcont(U) the projections on the pure point and continuous
subspace of U . For any eigenvector ' of U , we have h', (U⇤

QU �Q)'i = 0, so that

Tr(Ppp(U)�Ppp(U)) = 0.
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Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,
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0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

Qc �(k � c) �c = U

⇤
IQcUI �Qc Tr(�c) = Tr(�), 8c 2 Z

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,
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X
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◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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Spectral consequences
• Lemma: 

Remarks 3.6. 1. The proof of theorem 3.5.2 provides (via Theorem 3.4.3) a very
explicit proof of the index theorem for Toeplitz matrix operators, i.e.:

index( bQc
M

b
Q) = �wind(det

c
M)

for the Fredholm index of the the operator of multiplication by c
M on the Hardy

space {f 2 L

2
�
S1
;Cd

�
;

ˇ

f(n) = 0, 8n  0}. See, for exemple, [4] for a topo-
logical proof. The explicit proof is well known in the scalar case, see [8].

2. The index is independent of the cut position, i.e.: for all y0 2 Z

index (U⇤
�([y0,1))U,�([y0,1))) = index (U⇤

�([1,1))U,�([1,1))) .

Proof. D := �([y0,1))� �([1,1))) is a finite rank projector so Tr (U

⇤
DU �D) =

TrU

⇤
DU � TrD = 0

After recalling the above background material we state the proof

Proof. (of Theorem 3.1) To prove the theorem we use the stability of the index,
Theorem 3.4.6. Let S be the U(2) valued map defining UCC . Let U 0 be the unitary

defined by S0 with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries, Sj,2k =

S

0
j,2k elsewhere, see figure (??). The index corresponding to U

0 is unchanged because
the modification to U

0
I � UI is of finite rank. In Kitaev’s formula (11) the only non

trivial matrix element left is the one of U 0
I(0, 1) on the left boundary of the strip whose

modulus equals 1, thus

index(U⇤
IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z
U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.

Proof. Denote Ppp(U), Pcont(U) the projections on the pure point and continuous
subspace of U . For any eigenvector ' of U , we have h', (U⇤

QU �Q)'i = 0, so that

Tr(Ppp(U)�Ppp(U)) = 0.
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• Theorem I: 

3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
the continuous spectrum is not empty. We shall do so in two di↵erent ways: first
we use a topological argument, second we provide an explicit spectral analysis of the
relevant flux operator.

In InL,nR we consider the projection Q on the upper half strip defined as multipli-
cation by �([1,1)), the characteristic function of the upper half strip, i.e.:

Q (j, k) := �(k � 1) (j, k).

Consider the flux observable
� := U

⇤
IQUI �Q.

The flux � measures the di↵erence of the number of particles in the half strip at time
one and time zero. We shall prove that one particle per time step is lost from a full
half strip, i.e.:

Theorem 3.1. Let UCC = U(S) be such that

rj,2k = 0 if j < nL, tj,2k = 0 if j � nR

then it holds
Tr(�) = �1.

We deduce

Corollary 3.2.

�cont(UCC) = �cont(UInL,nR
) 6= ;.

We will now prove this result making use of the topological invariance of Tr�, due
to the fact that it is equal to the relative index of two projections, and the spectral
flow formula of Kitaev which is very handy for network models. To be self-contained
and to provide some background on our line of thought, we collect several concepts
and results from [5, 6, 14].

Definition 3.3. Let P,Q be selfadjoint projections such that P �Q is compact. Their
relative index is defined by

index(P,Q) := dimker(P �Q� 1)� dimker(P �Q+ 1).
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}

12
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finite rank

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

3
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Remarks 3.6. 1. The proof of theorem 3.5.2 provides (via Theorem 3.4.3) a very
explicit proof of the index theorem for Toeplitz matrix operators, i.e.:

index( bQc
M

b
Q) = �wind(det

c
M)

for the Fredholm index of the the operator of multiplication by c
M on the Hardy

space {f 2 L

2
�
S1
;Cd

�
;

ˇ

f(n) = 0, 8n  0}. See, for exemple, [4] for a topo-
logical proof. The explicit proof is well known in the scalar case, see [8].

2. The index is independent of the cut position, i.e.: for all y0 2 Z

index (U⇤
�([y0,1))U,�([y0,1))) = index (U⇤

�([1,1))U,�([1,1))) .

Proof. D := �([y0,1))� �([1,1))) is a finite rank projector so Tr (U

⇤
DU �D) =

TrU

⇤
DU � TrD = 0

After recalling the above background material we state the proof

Proof. (of Theorem 3.1) To prove the theorem we use the stability of the index,
Theorem 3.4.6. Let S be the U(2) valued map defining UCC . Let U 0 be the unitary

defined by S0 with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries, Sj,2k =

S

0
j,2k elsewhere, see figure (??). The index corresponding to U

0 is unchanged because
the modification to U

0
I � UI is of finite rank. In Kitaev’s formula (11) the only non

trivial matrix element left is the one of U 0
I(0, 1) on the left boundary of the strip whose

modulus equals 1, thus

index(U⇤
IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z
U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.

Proof. Denote Ppp(U), Pcont(U) the projections on the pure point and continuous
subspace of U . For any eigenvector ' of U , we have h', (U⇤

QU �Q)'i = 0, so that

Tr(Ppp(U)�Ppp(U)) = 0.

10
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3 Index and spectrum
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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finite rank

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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is a wandering subspace in the sense of [18], i.e.:
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0
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nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
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M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, for all (j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;

for d := nR � nL + 1 the corresponding map
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2
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�⌦ C2 (13)
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Remarks 3.6. 1. The proof of theorem 3.5.2 provides (via Theorem 3.4.3) a very
explicit proof of the index theorem for Toeplitz matrix operators, i.e.:

index( bQc
M

b
Q) = �wind(det

c
M)

for the Fredholm index of the the operator of multiplication by c
M on the Hardy

space {f 2 L

2
�
S1
;Cd

�
;

ˇ

f(n) = 0, 8n  0}. See, for exemple, [4] for a topo-
logical proof. The explicit proof is well known in the scalar case, see [8].

2. The index is independent of the cut position, i.e.: for all y0 2 Z

index (U⇤
�([y0,1))U,�([y0,1))) = index (U⇤

�([1,1))U,�([1,1))) .

Proof. D := �([y0,1))� �([1,1))) is a finite rank projector so Tr (U

⇤
DU �D) =

TrU

⇤
DU � TrD = 0

After recalling the above background material we state the proof

Proof. (of Theorem 3.1) To prove the theorem we use the stability of the index,
Theorem 3.4.6. Let S be the U(2) valued map defining UCC . Let U 0 be the unitary

defined by S0 with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries, Sj,2k =

S

0
j,2k elsewhere, see figure (??). The index corresponding to U

0 is unchanged because
the modification to U

0
I � UI is of finite rank. In Kitaev’s formula (11) the only non

trivial matrix element left is the one of U 0
I(0, 1) on the left boundary of the strip whose

modulus equals 1, thus

index(U⇤
IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z

U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.

Proof. Denote Ppp(U), Pcont(U) the projections on the pure point and continuous
subspace of U . For any eigenvector ' of U , we have h', (U⇤

QU �Q)'i = 0, so that

Tr(Ppp(U)�Ppp(U)) = 0.
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2. for V the operator of multiplication by V (z) on `

2
�
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;Cd

�
:

�(V ) = S1
.

Proof. 1. Consider the continuous function

� : [0,1)⇥ S1 ! C �r(z) := det (rV (z)� I)

For r 6= 1 one has Ker (rV (z)� I) = {0} so in this case wind(�r) is well defined
continuous and integer valued. Now it holds

wind(�r) = wind(�0) = wind (det (�I)) = 0 80  r < 1.

For r > 1,

wind(�r) =

wind (det rI) + wind (detV ) + wind

✓
det

✓
I� 1

r

V

⇤
◆◆

=

wind (detV ) 6= 0.

This implies that z 7! det (V (z)� I) has a zero, thus 1 2 �(V (z1)) for a suitable z1.
For � 2 S1 replace V (z) by ¯

�V (z) and conclude that � 2 �(V (z�)).
2. �(V (z)) depends continuously on z thus for � 2 S1 the Lebesgue measure

µL (�(U(.)) \ (�� ",�+ ")) 6= 0 8" > 0 thus � 2 �(U).

It follows

Theorem 4.3. Under the assumption in equations (12) and (7) it holds

�sc(UCC) = ; and �ac(UCC) = S1
.

Proof. It is su�cient to show the assertions for UI as the spectrum outside the strip
I is explicit. By unitary equivalence the spectrum is the same as the one of the
multiplication operator by b

V on L2
(S1

;Cd
). The Fourier transform b

V is a trigonometric
polynomial thus analytic; so its eigenvalues can be chosen to be analytic [13]. Thus
the spectrum of the fibered operator consists of the ranges of a finite set of eigenvalues
made of absolutely continuous spectrum, see [16], Theorem XIII.86, which by Lemma
4.2, is the whole circle.
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Theorem 3.9. With the notations above,
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{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.
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IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z
U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.
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QU �Q)'i = 0, so that
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3 Index and spectrum

In the following we will use the notations �x(A), x 2 {pp, cont, ess, ac, sc} to denote
the pure point, continuous, essential, absolutely continuous, singular continuous parts
of the spectrum a normal operator A.

From a viewpoint of second quantisation we shall prove that the chiral boundary
condition forces one particle per time step to flow out of a half strip and deduce that
the continuous spectrum is not empty. We shall do so in two di↵erent ways: first
we use a topological argument, second we provide an explicit spectral analysis of the
relevant flux operator.

In InL,nR we consider the projection Q on the upper half strip defined as multipli-
cation by �([1,1)), the characteristic function of the upper half strip, i.e.:

Q (j, k) := �(k � 1) (j, k).

Consider the flux observable
� := U

⇤
IQUI �Q.

The flux � measures the di↵erence of the number of particles in the half strip at time
one and time zero. We shall prove that one particle per time step is lost from a full
half strip, i.e.:

Theorem 3.1. Let UCC = U(S) be such that

rj,2k = 0 if j < nL, tj,2k = 0 if j � nR

then it holds
Tr(�) = �1.

We deduce

Corollary 3.2.

�cont(UCC) = �cont(UInL,nR
) 6= ;.

We will now prove this result making use of the topological invariance of Tr�, due
to the fact that it is equal to the relative index of two projections, and the spectral
flow formula of Kitaev which is very handy for network models. To be self-contained
and to provide some background on our line of thought, we collect several concepts
and results from [5, 6, 14].

Definition 3.3. Let P,Q be selfadjoint projections such that P �Q is compact. Their
relative index is defined by

index(P,Q) := dimker(P �Q� 1)� dimker(P �Q+ 1).
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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finite rank

covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hs � H?

s such that UI = S � V + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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Figure 5: A finite rank perturbation of UI

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
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where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
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L
(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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• Consider 

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S0, , U 0

I = UI + F

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

Qc �(k � c) �c = U

⇤
IQcUI �Qc Tr(�c) = Tr(�), 8c 2 Z

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k
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Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}

12
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• Consider 

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S0, , U 0

I = UI + F

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

Qc �(k � c) �c = U

⇤
IQcUI �Qc Tr(�c) = Tr(�), 8c 2 Z

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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Figure 5: A finite rank perturbation of UI
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2. In the case where the strip `
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({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of
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(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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• Consider 

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S0, , U 0

I = UI + F

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

Qc �(k � c) �c = U

⇤
IQcUI �Qc Tr(�c) = Tr(�), 8c 2 Z

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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:

is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;

for d := nR � nL + 1 the corresponding map

InL,nR ! `

2
�
Z;Cd

�⌦ C2 (13)

13
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Figure 5: A finite rank perturbation of UI
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(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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• Consider 

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S0, , U 0

I = UI + F

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:
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Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,
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X
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◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ 0

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;

for d := nR � nL + 1 the corresponding map

InL,nR ! `

2
�
Z;Cd

�⌦ C2 (13)
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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Figure 5: A finite rank perturbation of UI
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L
(n ,0)L

(n ,1)L

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z

UInL,nR
|nL, 2k + 1i = p |nL, 2ki

UInL,nR
|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

...

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z
UInL,nR

|nL, 2k + 1i = p |nL, 2ki
UInL,nR

|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

nL =

⇢
nL, nL even

nL � 1, nL odd

�
nR =

⇢
nR, nR even

nR + 1, nR odd

�

...

k = 1

then
InL,nR := `

2
({nL,nR}⇥ Z) (8)

is invariant under UCC(S). Define

UInL,nR
the restriction of UCC to InL,nR .

UI := UCC |InL,nR
UI ' �(UI) = �ac(UI) = S1

The chiral boundary condition reads for any k 2 Z
UInL,nR

|nL, 2k + 1i = p |nL, 2ki
UInL,nR

|nR, 2ki = p |nL, 2k � 1i . (9)

where p 2 S1 is a site dependent phase factor. In addition it holds for nL odd: circle
and
nL

Jo

circle
and
nL

UInL,nR
|nL, 2ki = p |nL + 1, 2ki and UInL,nR

|nL + 1, 2k + 1i = p |nL, 2k + 1i ,
and for nR odd:

UInL,nR
|nR, 2k + 1i = p |nR � 1, 2k + 1i and UInL,nR

|nR � 1, 2ki = p |nR, 2ki .
Proof. By Lemma 2.2 we have that if nL = 2pL + 1 then the rightmost invariant
plaquettes on the left are HpL�1,k

 , if nL = 2pL : HpL�1,k
 ; for nR = 2pR the leftmost

invariant plaquettes on the right are HpR+1,k
� , for nR = 2pR � 1: HpR+1,k

�

Remarks 2.5. There is no general restriction to the dynamical behavior of UInL,nR
.

We give some exemples:

1. A sharp interface `

2
({0}⇥ Z;C) occurs for nL = nR = 0, and the dynamics

are

UI0,0 |0, 2k + 1i = q�1,2kt0,2k|0, 2ki
UI0,0 |0, 2ki = q0,2kr0,2k|0, 2k � 1i, 8k 2 Z.

Since all coe�cients at the right hand side have modulus one, we deduce that
UI0,0 is unitarily equivalent to the shift on l

2
(Z) describing a current along the

interface.

2. In the case where the strip `

2
({0, 1, 2}⇥ Z;C) occurs as I1,1 the restriction of

UI1,1 to the interface is also unitarily equivalent to the shift on l

2
(Z), with a

winding snakelike motion, see figure ??.

3. Models containing invariant plaquettes in the interface are readily constructed,
see figure ??

6

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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• Consider 

Hence, by cyclicity of the trace and Pcont(U)Ppp(U) = 0,

Tr(�) = Tr((Ppp(U) + Pcont(U))�((Ppp(U) + Pcont(U))))

= Tr(Pcont(U)�Pcont(U)) 6= 0.

UI $ S, U

0
I $ S0, , U 0

I = UI + F

�

0
= U

0
I
⇤
QU

0
I �Q = �|nL, 1ihnL, 1|

Tr(�

0
) = �1 = Tr(�)

The propagation induced by the chiral boundary condition being non-trivial, it is
instructive to study the spectrum of the flux observable �.

By remark 3.6.2 the flux through the horizontal interface is actually independent
of the cut position. Consider the flux observable through the cut at height c 2 Z i.e.:

�c := U

⇤
I �([c,1))UI � �([c,1)) on InL,nR .

Qc �(k � c) �c = U

⇤
IQcUI �Qc Tr(�c) = Tr(�), 8c 2 Z

An explicit computation yields the following

Lemma 3.8. The finite rank self-adjoint operator �c takes the following forms, de-
pending on the parameters.
If nL = 2pL, nR = 2pR, and c is even,

�c = �|2pR, cih2pR, c|+
X

plj<pR

✓ �|r2j,c|2 �r2j,ct2j,c

�r2j,ct2j,c |r2j,c|2
◆
,

where the matrices are expressed in the ordered basis {|2j, ci, |2j + 1, c� 1i}.
If c is odd,

�c = �|2pL, cih2pL, c|+
X

pL<jpR

✓ |t2j�1,c�1|2 �r2j�1,c�1t2j�1,c�1

�r2j�1,c�1t2j�1,c�1 �|t2j�1,c�1|2
◆
,

where the matrices are expressed in the ordered basis {|2j � 1, c� 1i, |2j, ci}.
In case nL = 2pL+1 and/or nR = 2pR� 1, the formulae above hold true with S2pL,2k

o↵-diagonal and/or S2pR�1,2k diagonal, forall k 2 Z.

As a consequence, we get
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0
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nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ {0}

and that
Hs :=

M

n2Z

U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;

for d := nR � nL + 1 the corresponding map

InL,nR ! `

2
�
Z;Cd

�⌦ C2 (13)
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Theorem 3.9. With the notations above,
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and
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Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.
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4.2 General translation invariant model and reduction to a fam-

ily of one dimensional quantum walks

Using a more carefully chosen partial Fourier transformation we now show that a
vertically translation invariant Chalker Coddington model can be represented as a direct
integral of a family of one dimensional quantum walks.

Proposition 4.4. Consider a Chalker Coddington Model UCC = UCC(S), assume
periodicity for S as in equation (12). On `

2
(Z)⌦C2 define the unitary Quantum Walk deux

fois S
Jo

deux
fois SUQW (y) := SC(y)

where with |+i = (1, 0), |�i = (0, 1),

S |ji ⌦ |+i := |j + 1i ⌦ |+i , S |ji ⌦ |�i := |j � 1i ⌦ |�i ,

C(y) |ji ⌦ v := |ji ⌦ Cj(y)v 8v 2 C2

C2j(y) := q2j

✓ �t2j r2je
iy

r2je
�iy

t2j

◆
, C2j+1(y) := q2j+1

✓
r2j+1 t2j+1

�t2j+1 r2j+1

◆
.
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
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⇤
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◆
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⇤
2j,2k
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◆
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✓
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⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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is a wandering subspace in the sense of [18], i.e.:
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Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;
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Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
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4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).
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Denote the odd n–sphere by
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:=

(
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2
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X
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)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q
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t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)
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Translation invariant case
• Assume

is a wandering subspace in the sense of [18], i.e.:

U

0
I
nL ? L 8n � 1.

By unitarity if follows
U

0
I
nL ? L 8n 2 Z \ {0}

and that
Hs :=

M

n2Z
U

0
I
nL

reduces U 0
I which onHs is a bilateral shift; c.f.: [18],ch.2. So �(S) = �ac(S) = S1.

U

0
I |Hs ' S

U

0
I |H?

s
= V

Remark 3.13. The idea to consider a wandering subspace was used by von Neumann
in his discussion of symmetric operators with non equal defect indices [19]; the idea to
use this to get information on the absolutely continuous spectrum is inspired by [9].

4 Translation Invariant Case

We can refine the spectral analysis of the CC model provided it possesses more sym-
metries. We assume in this section that the CC model is invariant under vertical
translations. In other words, the scattering matrices, see (1), are identical on all
scattering centers with equal horizontal components:

Sj,2k = Sj, 8(j, k) 2 Z2
. (12)

Firstly, for the case of the interface between di↵erent chiral phases, we shall show
in addition that �sc(UI) = ; and provide an independent proof that �ac(UI) = S1.
Secondly we characterise all vertically translation invariant Chalker Coddington models
on Z2 explicitly as one dimensional quantum walks.

4.1 Translation invariant interface

In this section we assume translation invariance, equation (12), and di↵erent chiral
phases, equation (7).

The periodicity of S implies a period-2 periodicity of UI . To exploit this we regroup
two horizontal slices in a vector and use Fourier transform; define for  2 InL,nR

 (k)j := ( (j, (2k � 1)), (j, 2k)) ;
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S |ji ⌦ |±i := |j ± 1i ⌦ |±i , S |ji ⌦ |�i := |j � 1i ⌦ |�i ,

C(y) |ji ⌦ v := |ji ⌦ Cj(y)v 8v 2 C2

C2j(y) := q2j

✓ �t2j r2je
iy

r2je
�iy

t2j

◆
, C2j+1(y) := q2j+1

✓
r2j+1 t2j+1

�t2j+1 r2j+1

◆
.

Then UCC is unitarily equivalent to the fibered operator

Z �

S1
UQW (y)

dy

2⇡

on L

2
�
S1
; `

2
(Z)⌦ C2

�
.

Proof. Define the unitary

F : `

2
�
Z2

;C
� ! L

2
(S1

)⌦ `

2
(Z;C)⌦ C2

by

F |j, 2ki := e

iky⌦|ji⌦|+i = e

iky⌦|j,+i , F |j, 2k + 1i := e

iky⌦|j � 1i⌦|�i = e

iky⌦|j � 1,�i .
By the definition of UCC(S), equations (5) we have

✓ FUCCF�1
e

iky ⌦ |2j,+i
FUCCF�1

e

�iy
e

iky ⌦ |2j,�i
◆

= S2j

✓
e

�iy
e

iky ⌦ |2j � 1,�i
e

iky ⌦ |2j + 1,+i
◆
,

✓FUCCF�1
e

iky ⌦ |2j + 1,+i
FUCCF�1

e

iky ⌦ |2j + 1,�i
◆

= S2j+1

✓
e

iky ⌦ |2j + 2,+i
e

iky ⌦ |2j,�i
◆
.

So C2j+1 = S

T
2j+1 and C2j =

✓
0 1

e

�iy
0

◆
S

T
2j

✓
1 0

0 e

iy

◆
which gives the result.
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finite matrix 
Proposition 4.5. Consider a Chalker Coddington Model UCC = UCC(S), assume
periodicity for S as in equation (12). For [0, 2⇡) 3 y 7! consider the unitary operator
defined on `

2
(Z) by the matrix MQW (y) :=

0

BBBBBBBBBBB@

4j #
. . .

0

0 e

�iy
r2jq2j t2jq2j

4j! t2j�1q2j�1 0 0

0 0 �t2j+1q2j+1 r2j+1q2j+1

�t2jq2j e

iy
r2jq2j 0 0

0 0 e

�iy
r2j+2q2j+2

r2j+1q2j+1 t2j+1q2j+1 0

0

. . .

1

CCCCCCCCCCCA

.

(16)
Then UCC is unitarily equivalent to

Z �

S1
MQW (y)

dy

2⇡

on L

2
�
S1
; `

2
(Z)

�
.

Proof. This representation follows in a general way from the representation as Quan-
tum Walk, see [3]. Explicitely, define the unitary

G : `

2
�
Z2

;C
� ! L

2
(S1

)⌦ `

2
(Z;C)

by
G |j, 2ki := e

iky ⌦ |2ji , G |j, 2k + 1i := e

iky ⌦ |2j � 1i . (17)

By the definition of UCC(S), equations (5) we have

✓ GUCCG�1
e

iky ⌦ |4ji
GUCCG�1

e

�iy
e

iky ⌦ |4j + 1i
◆

= S2j

✓
e

�iy
e

iky ⌦ |4j � 1i
e

iky ⌦ |4j + 2i
◆
,

✓GUCCG�1
e

iky ⌦ |4j + 2i
GUCCG�1

e

iky ⌦ |4j + 3i
◆

= S2j+1

✓
e

iky ⌦ |4j + 4i
e

iky ⌦ |4j + 1i
◆

which gives the result.

Remark 4.6. Up to a unitary equivalence by a y independent operator, we can assume
the matrix elements of the operator MQW (y) satisfy

r2j+1 = |r2j+1|, t2j = i|t2j|, 8 j 2 Z.
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, analytic

Remarks 3.6. 1. The proof of theorem 3.5.2 provides (via Theorem 3.4.3) a very
explicit proof of the index theorem for Toeplitz matrix operators, i.e.:

index( bQc
M

b
Q) = �wind(det

c
M)

for the Fredholm index of the the operator of multiplication by c
M on the Hardy

space {f 2 L

2
�
S1
;Cd

�
;

ˇ

f(n) = 0, 8n  0}. See, for exemple, [4] for a topo-
logical proof. The explicit proof is well known in the scalar case, see [8].

2. The index is independent of the cut position, i.e.: for all y0 2 Z

index (U⇤
�([y0,1))U,�([y0,1))) = index (U⇤

�([1,1))U,�([1,1))) .

Proof. D := �([y0,1))� �([1,1))) is a finite rank projector so Tr (U

⇤
DU �D) =

TrU

⇤
DU � TrD = 0

After recalling the above background material we state the proof

Proof. (of Theorem 3.1) To prove the theorem we use the stability of the index,
Theorem 3.4.6. Let S be the U(2) valued map defining UCC . Let U 0 be the unitary

defined by S0 with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries, Sj,2k =

S

0
j,2k elsewhere, see figure (??). The index corresponding to U

0 is unchanged because
the modification to U

0
I � UI is of finite rank. In Kitaev’s formula (11) the only non

trivial matrix element left is the one of U 0
I(0, 1) on the left boundary of the strip whose

modulus equals 1, thus

index(U⇤
IQUI , Q) = hnL, 1|U⇤

IQUI �Q |nL, 1i = �1.

Corollary 3.2 now follows from the following su�cient condition for delocalisation:

Corollary 3.7. Let U be a unitary operator on `2
�
Z;Cd

�
such that for a ↵ > 1, c > 0

U (x) =

X

y2Z

U(x, y) (y) with kU(x, y)kHS  c

|x� y|↵ 8x 6= y

then
Tr (�c) 6= 0 ) �cont(UCC) 6= ;.

Proof. Denote Ppp(U), Pcont(U) the projections on the pure point and continuous
subspace of U . For any eigenvector ' of U , we have h', (U⇤

QU �Q)'i = 0, so that

Tr(Ppp(U)�Ppp(U)) = 0.
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2. for V the operator of multiplication by V (z) on `

2
�
S1
;Cd

�
:

�(V ) = S1
.

Proof. 1. Consider the continuous function

� : [0,1)⇥ S1 ! C �r(z) := det (rV (z)� I)

For r 6= 1 one has Ker (rV (z)� I) = {0} so in this case wind(�r) is well defined
continuous and integer valued. Now it holds

wind(�r) = wind(�0) = wind (det (�I)) = 0 80  r < 1.

For r > 1,

wind(�r) =

wind (det rI) + wind (detV ) + wind

✓
det

✓
I� 1

r

V

⇤
◆◆

=

wind (detV ) 6= 0.

This implies that z 7! det (V (z)� I) has a zero, thus 1 2 �(V (z1)) for a suitable z1.
For � 2 S1 replace V (z) by ¯

�V (z) and conclude that � 2 �(V (z�)).
2. �(V (z)) depends continuously on z thus for � 2 S1 the Lebesgue measure

µL (�(U(.)) \ (�� ",�+ ")) 6= 0 8" > 0 thus � 2 �(U).

It follows

Theorem 4.3. Under the assumption in equations (12) and (7) it holds

�sc(UCC) = ; and �ac(UCC) = S1
.

Proof. It is su�cient to show the assertions for UI as the spectrum outside the strip
I is explicit. By unitary equivalence the spectrum is the same as the one of the
multiplication operator by b

V on L2
(S1

;Cd
). The Fourier transform b

V is a trigonometric
polynomial thus analytic; so its eigenvalues can be chosen to be analytic [13]. Thus
the spectrum of the fibered operator consists of the ranges of a finite set of eigenvalues
made of absolutely continuous spectrum, see [16], Theorem XIII.86, which by Lemma
4.2, is the whole circle.
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&

Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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Thm II:

4.2 General translation invariant model and reduction to a fam-

ily of one dimensional quantum walks

Using a more carefully chosen partial Fourier transformation we now show that a
vertically translation invariant Chalker Coddington model can be represented as a direct
integral of a family of one dimensional quantum walks.

Proposition 4.4. Consider a Chalker Coddington Model UCC = UCC(S), assume
periodicity for S as in equation (12). On `

2
(Z)⌦C2 define the unitary Quantum Walk deux

fois S
Jo

deux
fois SUQW (y) := SC(y)

where with |+i = (1, 0), |�i = (0, 1),

S |ji ⌦ |+i := |j + 1i ⌦ |+i , S |ji ⌦ |�i := |j � 1i ⌦ |�i ,

C(y) |ji ⌦ v := |ji ⌦ Cj(y)v 8v 2 C2

C2j(y) := q2j

✓ �t2j r2je
iy

r2je
�iy

t2j

◆
, C2j+1(y) := q2j+1

✓
r2j+1 t2j+1

�t2j+1 r2j+1

◆
.

Then UCC is unitarily equivalent to the fibered operator

Z �

S1
UQW (y)

dy

2⇡

on L

2
�
S1
; `

2
(Z)⌦ C2

�
.

Proof. Define the unitary

F : `

2
�
Z2

;C
� ! L

2
(S1

)⌦ `

2
(Z;C)⌦ C2

by

F |j, 2ki := e

iky⌦|ji⌦|+i = e

iky⌦|j,+i , F |j, 2k + 1i := e

iky⌦|j � 1i⌦|�i = e

iky⌦|j � 1,�i .

By the definition of UCC(S), equations (5) we have

✓ FUCCF�1
e

iky ⌦ |2j,+i
FUCCF�1

e

�iy
e

iky ⌦ |2j,�i
◆

= S2j

✓
e

�iy
e

iky ⌦ |2j � 1,�i
e

iky ⌦ |2j + 1,+i
◆
,

✓FUCCF�1
e

iky ⌦ |2j + 1,+i
FUCCF�1

e

iky ⌦ |2j + 1,�i
◆

= S2j+1

✓
e

iky ⌦ |2j + 2,+i
e

iky ⌦ |2j,�i
◆
.

So C2j+1 = S

T
2j+1 and C2j =

✓
0 1

e

�iy
0

◆
S

T
2j

✓
1 0

0 e

iy

◆
which gives the result.
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✓ �t2j r2je
iy

r2je
�iy

t2j
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✓
r2j+1 t2j+1

�t2j+1 r2j+1

◆
.

Then UCC is unitarily equivalent to the fibered operator
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2
�
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�
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2
�
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By the definition of UCC(S), equations (5) we have

✓ FUCCF�1
e

iky ⌦ |2j,+i
FUCCF�1

e

�iy
e

iky ⌦ |2j,�i
◆

= S2j

✓
e

�iy
e

iky ⌦ |2j � 1,�i
e

iky ⌦ |2j + 1,+i
◆
,

✓FUCCF�1
e

iky ⌦ |2j + 1,+i
FUCCF�1

e

iky ⌦ |2j + 1,�i
◆

= S2j+1

✓
e

iky ⌦ |2j + 2,+i
e

iky ⌦ |2j,�i
◆
.

So C2j+1 = S

T
2j+1 and C2j =

✓
0 1

e

�iy
0

◆
S

T
2j

✓
1 0

0 e

iy

◆
which gives the result.
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◆
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✓
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◆
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2
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�
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✓ FUCCF�1
e

iky ⌦ |2j,+i
FUCCF�1

e

�iy
e

iky ⌦ |2j,�i
◆

= S2j

✓
e

�iy
e

iky ⌦ |2j � 1,�i
e

iky ⌦ |2j + 1,+i
◆
,

✓FUCCF�1
e

iky ⌦ |2j + 1,+i
FUCCF�1

e

iky ⌦ |2j + 1,�i
◆
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✓
e

iky ⌦ |2j + 2,+i
e

iky ⌦ |2j,�i
◆
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T
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✓
0 1

e

�iy
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◆
S

T
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✓
1 0

0 e

iy

◆
which gives the result.
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covers the whole circle. This is independent of the details inside the interface. Our
argument makes use of a topological quantity which comes as the index of a pair of
projections. This has been used before for projections in energy space, in particular for
the proof that the quantum Hall conductance is an index [5, 6] and for the equivalence
of Bulk and Edge Conductance [12]. The present point of view is in configuration space
and inspired by [14]. Implications concerning the absolutely continuous spectrum seem
to be new. For the sake of comparison, we recall that CC models with certain types
of random scattering matrices, restricted to a strip with periodic boundary conditions
or in the whole of Z2, display dynamical localisation [1, 2].

In the special case the CC model is invariant under translations parallel to the
interface, we show that the continuous spectrum of its restriction to the interface is
purely absolutely continuous. On the other hand, showing the presence of absolutely
continuous spectrum by Mourre’s method requires more information on the model [3].
We remark that the present results can adapted for two-dimensional coined quantum
walks (see e.g. [3]) which we will do elsewhere.

2 Properties of U

CC

U

n

CC

n ! 1 ' �(U
CC

)

Next we discuss some basic properties of the model: its symmetry under parity, the
special cases of (anti-)clockwise motion and the continuous dependence on the defining
scattering matrices and the occurence of an invariant strip interface.

Lemma 2.1. i) For any collection 8 {Sj,2k 2 U(2)}(j,k)2Z2 , UCC is unitary.
ii) Let I be the involutive unitary parity operator defined by I|j, ki = (�1)

j+k|j, ki.
Then

IUCCI = �UCC ) �(UCC) = ��(UCC).

iii) The adjoint U⇤
CC reads

✓
U

⇤
CC |2j, 2k � 1i

U

⇤
CC |2j + 1, 2ki

◆
= S

⇤
2j,2k

✓ |2j, 2ki
|2j + 1, 2k � 1i

◆
,

✓
U

⇤
CC |2j + 2, 2ki

U

⇤
CC |2j + 1, 2k + 1i

◆
= S

⇤
2j+1,2k

✓ |2j + 1, 2ki
|2j + 2, 2k + 1i

◆
.

Denote the odd n–sphere by

Sn
:=

(
z 2 C

n+1
2
;

X

j

|zj|2 = 1

)
.

To parametrize the scattering matrices Sj,2k, we use the homeomorphism

S = q

✓
r �t

t r

◆
, q 2 S1

, |r|2 + |t|2 = 1 (6)

3

• Prop:

4.2 General translation invariant model and reduction to a fam-

ily of one dimensional quantum walks

Using a more carefully chosen partial Fourier transformation we now show that a
vertically translation invariant Chalker Coddington model can be represented as a direct
integral of a family of one dimensional quantum walks.
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2
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fois S
Jo
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C(y) |ji ⌦ v := |ji ⌦ Cj(y)v 8v 2 C2

C2j(y) := q2j

✓ �t2j r2je
iy

r2je
�iy

t2j

◆
, C2j+1(y) := q2j+1

✓
r2j+1 t2j+1

�t2j+1 r2j+1

◆
.

Then UCC is unitarily equivalent to the fibered operator

Z �

S1
UQW (y)

dy

2⇡

on L

2
�
S1
; `

2
(Z)⌦ C2

�
.

Proof. Define the unitary
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2
�
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2
(S1
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by
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e
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�iy
e
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◆
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✓
e

�iy
e

iky ⌦ |2j � 1,�i
e

iky ⌦ |2j + 1,+i
◆
,

✓FUCCF�1
e

iky ⌦ |2j + 1,+i
FUCCF�1

e

iky ⌦ |2j + 1,�i
◆
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✓
e

iky ⌦ |2j + 2,+i
e

iky ⌦ |2j,�i
◆
.
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T
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✓
0 1

e

�iy
0

◆
S

T
2j

✓
1 0

0 e

iy

◆
which gives the result.
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Chirality Induced Interface Currents in the Chalker

Coddington Model

⇤†

Joachim Asch ‡, Olivier Bourget §, Alain Joye ¶

5/8/17

Abstract

We study transport properties of a Chalker–Coddington type model in the
plane which presents asymptotically pure anti-clockwise rotation on the left plane

instead
of 2

Jo

plane
instead
of 2

and clockwise rotation on the right. Our main result is that the absolutely
continuous spectrum covers the whole unit circle. The result is of topological
nature and independent of the details of the model.

1 Introduction

By a Chalker–Coddington (aka: CC–model) we understand a unitary operator

UCC : `

2
(Z2

;C) ! `

2
(Z2

;C)

defined by a collection of 2⇥ 2 scattering matrices, i.e.: a map

S : Z2 ! U(2), (j, k) 7! Sj,2k 2 U(2). (1)

Denoting by |j, ki the canonical basis vectors of l2(Z2
;C), S defines UCC according

to figure ?? by:
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Theorem 3.9. With the notations above,

�(�c) =

⇢ {�1} [pLj<pR {+|r2j,c|,�|r2j,c|}, c even
{�1} [pL<jpR {+|t2j�1,c�1|,�|t2j�1,c�1|}, c odd,

and
Tr(�c) = �1, 8c 2 Z.

Remark 3.10. One sees that if limj!1 tj,c = 0 su�ciently fast for some c odd and
nR ! 1, then �c is trace class and �cont(UCC) 6= ;. A similar statement holds for c
even.

3.1 The shift and the absolutely continuous spectrum

To go beyond Corollary 3.2, we exploit the stability of the Fredholm index Tr(�c) and
that of the absolutely continuous spectrum under finite rank perturbations. The idea
is to unravel the existence of a shift within UI , modulo finite rank perturbations.

Theorem 3.11. There exists a decomposition of InL,nR into orthogonal closed sub-
spaces InL,nR = Hu � Hs such that UI = V � S + F , where V is unitary, S is a
bilateral shift, and F is a finite rank operator.
Consequently,

�ac(UCC) = S1
.

Remark 3.12. The point spectrum of UCC contains all eigenvalues of the restrictions
to individual plaquettes in the left and right moving phases, as described in Lemma
2.2. Other finite dimensional invariant subspaces may also occur, and contribute to
the point spectrum and singular continuous spectrum may be present as well.

Proof. Consider the projection on the upper half plane and its complement

Q = � ([1,1)) , Q

?
= I�Q.

Let U = U(S) and U

0 the same modification of U as in theorem 3.1 , see figure (??),

i.e.: U

0
= U(S0

) with S

0
j,0 :=

✓
1 0

0 1

◆
for all odd j between the strip boundaries,

S

0
j,2k = Sj,2k elsewhere. Then U

0 is unitary and U

0
I = UI + F is a finite rank operator

so �ac(U) = �ac(U
0
). It holds for a phase p 2 S1:

Q

?
U

0
IQ = p |nL, 0i hnL, 1| , QU

0
IQ

?
= 0.

Consequently
L := span {|nL, 1i}
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=>

• Kitaev’s Spectral flow formula:       on 

s.t.



Remarks:

• No conjugate operator for Mourre estimate

• Extensions to other Quantum Walks in  

• Inspiration Kitaev and Werner’s group work on 1D QW’s

• Bulk-edge correspondence for Floquet operators: 

Carpentier et al ’15, Graf-Tauber ‘17, Sadel-Schulz-Baldes ’17, Delplace et al ’17, 
Shapiro-Tauber ’18.

ETH Zürich 3/9/18

• Reminiscent of Iwatsuka type situations


