Towards a Rigorous Proof of Haldane's Photonic Bulk-edge Correspondence

joint work with Giuseppe De Nittis

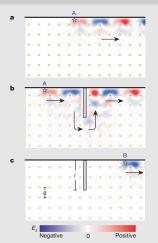
Max Lein

Advanced Institute of Materials Research, Tohoku University 2018.09.04@ETH Zürich

Quantum Hall Effect for Light

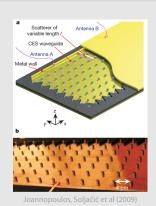
Predicted theoretically by Raghu & Haldane (2005) ...

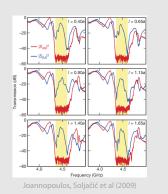
$$\begin{pmatrix} \overline{\varepsilon} & 0 \\ 0 & \overline{\mu} \end{pmatrix} \neq \begin{pmatrix} \varepsilon & 0 \\ 0 & \mu \end{pmatrix}$$
 symmetry breaking
$$\Rightarrow$$



Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)

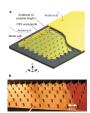




Haldane's Insight

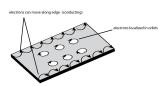
Topological effects are wave, not quantum phenomena!

Topological Effects: Phenomenological Similarities



Light

Coupled Oscillators



Ouantum

- Periodic structure → bulk band gap
- Breaking of time-reversal symmetries
- Unidirectional edge modes
- Robust under perturbations

Different manifestations of the same underlying physical principles!

Haldane's Photonic Bulk-Edge Correspondence

Conjecture

In a two-dimensional photonic crystals with boundary the difference of the number of left- and right-moving boundary modes

$$\mathrm{Ch_{bulk}} = T_{\mathrm{edge}} = \mathrm{net}\,\sharp\,\mathrm{of}\,\mathrm{edge}\,\mathrm{modes}$$

in bulk band gaps is a **topologically protected quantity and equals the Chern number** associated to the frequency bands below the bulk band gap.

Haldane's Photonic Bulk-Edge Correspondence

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathsf{net} \, \sharp \, \mathsf{of} \, \mathsf{edge} \, \mathsf{modes}$$

My Main Goal

Make the statement mathematically precise and provide a proof.

Proof of Haldane's Photonic Bulk-Edge Correspondence

Seems simple enough ...

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Comm. Math. Phys. **332**, pp. 221–260, 2014
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., Annals of Physics 350, pp. 568-587, 2014
- 3 Adapt existing techniques to prove bulk-boundary correspondences (relying on e. g. Hatsugai, Graf & Porta, Hayashi; Kellendonk & Schulz-Baldes)

Easy! ... No!

Proof of Haldane's Photonic Bulk-Edge Correspondence

Seems simple enough ...

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Comm. Math. Phys. **332**, pp. 221–260, 2014
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., Annals of Physics 350, pp. 568-587, 2014
- 3 Adapt existing techniques to prove bulk-boundary correspondences (relying on e. g. Hatsugai, Graf & Porta, Hayashi; Kellendonk & Schulz-Baldes)

Easy! ... No!

Main Messages of This Talk

- Explain why things are not so simple.
- Explain how to deal with the complications in Steps 1 & 2.
- Explain the obstacles to be overcome in Step 3.

Main Messages of This Talk

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Annals of Physics **396**, pp. 221–260, 2018
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018
- 3 Adapt existing techniques to prove bulk-boundary correspondences ... in progress

Main Messages of This Talk

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Annals of Physics **396**, pp. 221–260, 2018
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018
- Adapt existing techniques to prove bulk-boundary correspondences ... in progress

The Real-Valuedness Condition

Classical waves such as $(E, H) = (\overline{E}, \overline{H})$ are real-valued!

- Our earlier works start with the standard equations used in the physics community.
- These equations violate real-valuedness condition.
- We were aware of this problem and discussed it in one of our earlier works (Section 6 of De Nittis & L. Annals of Physics 350, pp. 568-587, 2014)
- Clarified thanks to discussions with Duncan Haldane and Kostva Bliokh

⇒ Mathematically correct results about unphysical equations.

The Real-Valuedness Condition

Classical waves such as $(E, H) = (\overline{E}, \overline{H})$ are real-valued!

- Our earlier works start with the standard equations used in the physics community.
- These equations violate real-valuedness condition.
- We were aware of this problem and discussed it in one of our earlier works.
 (Section 6 of De Nittis & L., Annals of Physics 350, pp. 568-587, 2014)
- Clarified thanks to discussions with Duncan Haldane and Kostva Bliokh.
 - ⇒ Mathematically correct results about unphysical equations.

The Real-Valuedness Condition

Classical waves such as $(E,H)=(\overline{E},\overline{H})$ are real-valued!

- Our earlier works start with the standard equations used in the physics community.
- These equations violate real-valuedness condition.
- We were aware of this problem and discussed it in one of our earlier works.
 (Section 6 of De Nittis & L., Annals of Physics 350, pp. 568–587, 2014)
- Clarified thanks to discussions with Duncan Haldane and Kostya Bliokh.

⇒ Mathematically correct results about unphysical equations.

- 1 Quantum vs. Classical
- 2 Maxwell's Equations in Linear Media
- 3 Topological Classification of Electromagnetic Media
- Obstacles For Proving the Photonic Bulk-Edge Correspondence
- 5 Da Capo

- 1 Quantum vs. Classical
- 2 Maxwell's Equations in Linear Media
- 3 Topological Classification of Electromagnetic Media
- 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence
- 5 Da Capo

Quantum vs. Classical Equations: a Single Spin

Idea

Start with the same equations of motion,

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix},$$

once in the quantum and then in the classical context.

- Math is trivial, everything is explicit
- Immediately transfers to many other hamiltonian equations as $J={\rm i}\sigma_2$ is the canonical symplectic form
- Conceptually applies to all classical wave equations

Symmetries of Classical and Quantum Spin Equations

Purpose

Anticipate symmetry classification of electromagnetic media

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix},$$

- What is the difference between the quantum and classical equations when it comes to symmetries?
- What types of symmetries does the classical equation possess (in the context of the Cartan-Altland-Zirnbauer classification)?

⇒ Requires us to work with complex Hilbert spaces

Symmetries of Classical and Quantum Spin Equations

Purpose

Anticipate symmetry classification of electromagnetic media

$$\mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{i} \, \omega_0 \\ +\mathbf{i} \, \omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix},$$

- What is the difference between the quantum and classical equations when it comes to symmetries?
- What types of symmetries does the classical equation possess (in the context of the Cartan-Altland-Zirnbauer classification)?
 - ⇒ Requires us to work with complex Hilbert spaces

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}=\begin{pmatrix}0&-\mathrm{i}\,\omega_0\\+\mathrm{i}\,\omega_0&0\end{pmatrix}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2 = H^*$ States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}} = \mathbb{C}^2$

Symmetrie

$$\sigma_{1,3} H \sigma_{1,3}^{-1} = -H$$
 (chiral)
 $\sigma_{2} H \sigma_{2}^{-1} = +H$ (ordin.)
 $C H C = \overline{H} = -H$ (+PH)
 $(\sigma_{1,3} C) H (\sigma_{1,3} C)^{-1} = +H$ (+TR)
 $(\sigma_{2} C) H (\sigma_{2} C)^{-1} = -H$ (-PH)

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2$ States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$\sigma_2 H \sigma_2^{-1} = +H$$
 (ording the content of the c

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2 = H^*$ States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}} = \mathbb{C}^2$

Symmetries

$$\begin{array}{ll} \sigma_{1,3} \, H \, \sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_2 \, H \, \sigma_2^{-1} = +H & \text{(ordin.)} \\ C \, H \, C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3} \, C) \, H \, (\sigma_{1,3} \, C)^{-1} = +H \, \text{(+TR)} \\ (\sigma_2 \, C) \, H \, (\sigma_2 \, C)^{-1} = -H & \text{(-PH)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i} \, \frac{\partial}{\partial t} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i} \, \omega_0 \\ +\mathrm{i} \, \omega_0 & 0 \end{pmatrix} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian:
$$H = \omega_0 \ \sigma_2$$
 States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

Symmetrie

 $\begin{array}{ll} \sigma_{1,3} \, H \, \sigma_{1,3}^{-1} = -H & \text{(chiral } \\ \sigma_2 \, H \, \sigma_2^{-1} = +H & \text{(ordin } \\ C \, H \, C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3} \, C) \, H \, (\sigma_{1,3} \, C)^{-1} = +H \, \text{(+TR)} \\ (\sigma_2 \, C) \, H \, (\sigma_2 \, C)^{-1} = -H & \text{(-PH)} \end{array}$

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}=\begin{pmatrix}0&-\mathrm{i}\,\omega_0\\+\mathrm{i}\,\omega_0&0\end{pmatrix}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}$$

$$\begin{array}{ll} \sigma_{1,3}\,H\,\sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_{2}\,H\,\sigma_{2}^{-1} = +H & \text{(ordin.)} \\ C\,H\,C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3}\,C)\,H\,(\sigma_{1,3}\,C)^{-1} = +H & \text{(+TR)} \\ (\sigma_{2}\,C)\,H\,(\sigma_{2}\,C)^{-1} = -H & \text{(-PH)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \sigma_2$ States: $\binom{M_x(t)}{M_v(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

Symmetries?

$$\begin{array}{ll} \sigma_{1,3}\,H\,\sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_{2}\,H\,\sigma_{2}^{-1} = +H & \text{(ordin.)} \\ C\,H\,C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3}\,C)\,H\,(\sigma_{1,3}\,C)^{-1} = +H\,\text{(+TR)} \\ (\sigma_{2}\,C)\,H\,(\sigma_{2}\,C)^{-1} = -H & \text{(-PH)} \end{array}$$

(chiral)

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0~\sigma_2=H^*$ States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}}=\mathbb{C}^2$

Symmetries

$$\begin{array}{ll} \sigma_{1,3}\,H\,\sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_{2}\,H\,\sigma_{2}^{-1} = +H & \text{(ordin.)} \\ C\,H\,C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3}\,C)\,H\,(\sigma_{1,3}\,C)^{-1} = +H\,\text{(+TR)} \\ (\sigma_{2}\,C)\,H\,(\sigma_{2}\,C)^{-1} = -H & \text{(-PH)} \end{array}$$

Classical

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{i}\,\omega_0\\ +\mathbf{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2$ States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$\begin{array}{ll} \sigma_{1,3}\,H\,\sigma_{1,3}^{-1} = -H & (\ref{eq:Hilbert})\\ (\mathrm{i}\sigma_2)\,H\,(\mathrm{i}\sigma_2)^{-1} = +H & (\ref{eq:Hilbert})\\ C\,H\,C = \overline{H} = -H & (+PH)\\ (\sigma_{1,3}\,C)\,H\,(\sigma_{1,3}\,C)^{-1} = +H\,(+TR)\\ (\sigma_2\,C)\,H\,(\sigma_2\,C)^{-1} = -H & (-PH) \end{array}$$

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2 = H^*$ States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}} = \mathbb{C}^2$

Symmetries

$$\begin{array}{ll} \sigma_{1,3} \, H \, \sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_2 \, H \, \sigma_2^{-1} = +H & \text{(ordin.} \\ C \, H \, C = \overline{H} = -H & \text{(+PH)} \\ \left(\sigma_{1,3} \, C\right) \, H \left(\sigma_{1,3} \, C\right)^{-1} = +H \, \text{(+TR)} \\ \left(\sigma_2 \, C\right) \, H \left(\sigma_2 \, C\right)^{-1} = -H & \text{(-PH)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

 $\begin{aligned} & \text{Hamiltonian: } H = \omega_0 \ \sigma_2 \\ & \text{States: } \left(\begin{smallmatrix} M_x(t) \\ M_{**}(t) \end{smallmatrix} \right) \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2 \end{aligned}$

Symmetries

C not defined on $\mathcal{H}_{\mathbb{R}}=\mathbb{R}^2$ σ_1 , $\mathrm{i}\sigma_2$ and σ_3 are real matrices \rightsquigarrow classical spin transformations

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}=\begin{pmatrix}0&-\mathrm{i}\,\omega_0\\+\mathrm{i}\,\omega_0&0\end{pmatrix}\begin{pmatrix}\psi_1(t)\\\psi_2(t)\end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0~\sigma_2=H^*$ States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}}=\mathbb{C}^2$

Symmetries

$$\begin{array}{ll} \sigma_{1,3} \ H \ \sigma_{1,3}^{-1} = -H & \text{(chiral)} \\ \sigma_2 \ H \ \sigma_2^{-1} = +H & \text{(ordin.)} \\ C \ H \ C = \overline{H} = -H & \text{(+PH)} \\ (\sigma_{1,3} \ C) \ H \ (\sigma_{1,3} \ C)^{-1} = +H \ (+\text{TR}) \\ (\sigma_2 \ C) \ H \ (\sigma_2 \ C)^{-1} = -H & \text{(-PH)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2$ States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$\begin{array}{ll} \sigma_{1,3}\,H\,\sigma_{1,3}^{-1} = -H & (\ref{eq:total_sigma}) \\ (i\sigma_2)\,H\,(i\sigma_2)^{-1} = +H & (\ref{eq:total_sigma}) \\ C\,H\,C = \overline{H} = -H & (+PH) \\ (\sigma_{1,3}\,C)\,H\,(\sigma_{1,3}\,C)^{-1} = +H\,(+TR) \\ (\sigma_2\,C)\,H\,(\sigma_2\,C)^{-1} = -H & (-PH) \end{array}$$

Quantum

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix}$$

Building blocks

Hamiltonian:
$$H=\omega_0~\sigma_2=H^*$$

States: $\begin{pmatrix} \psi_1(t) \\ \psi_2(t) \end{pmatrix} \in \mathcal{H}_{\mathbb{C}}=\mathbb{C}^2$

Symmetries

$$\begin{array}{ll} U_1 = \sigma_1 \quad \text{(chiral)} & T_1 = \sigma_1 \; C \quad \text{(+TR)} \\ U_2 = \sigma_2 \quad \text{(ordin.)} & T_2 = \sigma_2 \; C \quad \text{(-PH)} \\ U_3 = \sigma_3 \quad \text{(chiral)} & T_3 = \sigma_3 \; C \quad \text{(+TR)} \\ & C & \text{(+PH)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian:
$$H = \omega_0 \ \sigma_2$$

States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$\begin{split} V_1^{\mathbb{R}} &= \sigma_1 \quad (???) \\ V_2^{\mathbb{R}} &= \mathrm{i} \sigma_2 \quad (???) \\ V_3^{\mathbb{R}} &= \sigma_3 \quad (???) \end{split}$$

Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological Insulators (and many other techniques from quantum mechanics) only work for operators acting on *complex* Hilbert spaces

Two Ways to Work With Complex Hilbert Spaces

- Complexify classical equations (introduces unphysical degrees of freedom)
- ② Work with complex Ψ which represent real states $M=2{\rm Re}\,\Psi$ (establish 1-to-1 correspondence $\mathcal{H}_{\mathbb{C}}\leftrightarrow\mathcal{H}_{\mathbb{R}}$)

Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological Insulators (and many other techniques from quantum mechanics) only work for operators acting on *complex* Hilbert spaces

Two Ways to Work With Complex Hilbert Spaces

- Complexify classical equations (introduces unphysical degrees of freedom)
- ② Work with complex Ψ which represent real states $M=2{\rm Re}\,\Psi$ (establish 1-to-1 correspondence $\mathcal{H}_\mathbb{C} \leftrightarrow \mathcal{H}_\mathbb{R}$)

Complexifying the Classical Equations

Complexification

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix}M_x(t)\\M_y(t)\end{pmatrix}=\begin{pmatrix}0&-\mathrm{i}\,\omega_0\\+\mathrm{i}\,\omega_0&0\end{pmatrix}\begin{pmatrix}M_x(t)\\M_y(t)\end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \, \sigma_2 = H^*$

States: $M = \Psi_{\perp} + \Psi_{\perp} \in \mathcal{H}_{\mathbb{R}} \subset \mathcal{H}_{\mathbb{C}}$

Symmetries

 $V_1^{\mathbb{C}} = ???$

 $V_2^{\mathbb{C}} = ???$

 $V_2^{\mathbb{C}} = ???$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \sigma_2$

States: $\binom{M_x(t)}{M_{\cdot\cdot\cdot}(t)}\in\mathcal{H}_{\mathbb{R}}=\mathbb{R}^2$

Symmetries

 $V_1^{\mathbb{R}} = \sigma_1$

Complexifying the Classical Equations

Complexification

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{i}\,\omega_0\\ +\mathbf{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0~\sigma_2=H^*$ States: $M=\Psi_++\Psi_-\in\mathcal{H}_{\mathbb{R}}\subset\mathcal{H}_{\mathbb{R}}$

Symmetries

$$\begin{split} & \mathbb{1} \left|_{\mathcal{H}_{\mathbb{R}}} = C \right|_{\mathcal{H}_{\mathbb{R}}} & \text{none vs. +PH} \\ & \sigma_{1,3} \left|_{\mathcal{H}_{\mathbb{R}}} = \sigma_{1,3} \, C \right|_{\mathcal{H}_{\mathbb{R}}} & \text{chiral vs. +TR} \\ & i \sigma_{2} \left|_{\mathcal{H}_{\mathbb{R}}} = i \sigma_{2} \, C \right|_{\mathcal{H}_{\mathbb{R}}} & \text{ordin. vs. -PH} \end{split}$$

Tlassical

Fundamental equation

$$\mathrm{i} \, \frac{\partial}{\partial t} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i} \, \omega_0 \\ +\mathrm{i} \, \omega_0 & 0 \end{pmatrix} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix}$$

Building blocks

 $\begin{aligned} & \text{Hamiltonian: } H = \omega_0 \ \sigma_2 \\ & \text{States: } \left(\begin{smallmatrix} M_x(t) \\ M_y(t) \end{smallmatrix} \right) \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2 \end{aligned}$

$$V_1^{\mathbb{R}} = \sigma_1$$
 $V_2^{\mathbb{R}} = i\sigma_2$
 $V_2^{\mathbb{R}} = \sigma_2$

Complexifying the Classical Equations

Complexification

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0~\sigma_2=H^*$ States: $M=\Psi_++\Psi_-\in\mathcal{H}_{\mathbb{R}}\subset\mathcal{H}_{\mathbb{C}}$

Symmetries

- Redundant symmetry operations
- Different choices ⇒ different topological classifications!?

lassical

undamental equation

$$\mathrm{i} \, \frac{\partial}{\partial t} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i} \, \omega_0 \\ +\mathrm{i} \, \omega_0 & 0 \end{pmatrix} \begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2$ States: $\binom{M_x(t)}{M_x(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$V_1^{\mathbb{R}} = \sigma_1$$
 $V_2^{\mathbb{R}} = i\sigma_2$
 $V_2^{\mathbb{R}} = \sigma_2$

Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological Insulators (and many other techniques from quantum mechanics) only work for operators acting on *complex* Hilbert spaces

Two Ways to Work With Complex Hilbert Spaces

- Complexify classical equations (introduces unphysical degrees of freedom)
- ② Work with complex Ψ which represent real states $M=2{\rm Re}\,\Psi$ (establish 1-to-1 correspondence $\mathcal{H}_\mathbb{C} \leftrightarrow \mathcal{H}_\mathbb{R}$)

Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological Insulators (and many other techniques from quantum mechanics) only work for operators acting on *complex* Hilbert spaces

Two Ways to Work With Complex Hilbert Spaces

- Complexify classical equations

 (introduces unphysical degrees of freedom)
- ② Work with complex Ψ which represent real states $M=2{\rm Re}\,\Psi$ (establish 1-to-1 correspondence $\mathcal{H}_\mathbb{C}\leftrightarrow\mathcal{H}_\mathbb{R}$)

Schrödinger Formalism of Classical Spin Waves

Complexification

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0 \\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t) \\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0~\sigma_2=H^*$

States: $M=\Psi_++\Psi_-\in\mathcal{H}_{\mathbb{R}}\subset\mathcal{H}_{\mathbb{C}}$

Symmetries

$$\begin{split} & \mathbb{1} \left|_{\mathcal{H}_{\mathbb{R}}} = C \right|_{\mathcal{H}_{\mathbb{R}}} \\ & \sigma_{1,3} \left|_{\mathcal{H}_{\mathbb{R}}} = \sigma_{1,3} C \right|_{\mathcal{H}_{\mathbb{R}}} \\ & i \sigma_{2} \left|_{\mathcal{H}_{\mathbb{P}}} = i \sigma_{2} C \right|_{\mathcal{H}_{\mathbb{P}}} \end{split}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0\,\sigma_2$

States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

$$V_1^{\mathbb{R}} = \sigma_1$$

$$V_2^{\mathbb{R}}=\mathsf{i}\sigma_2$$

$$V_3^{\mathbb{R}} = \sigma$$

Schrödinger Formalism of Classical Spin Waves

$\omega > 0$ Representation

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi_{+,1}(t) \\ \psi_{+,2}(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathbf{i}\,\omega_0 \\ +\mathbf{i}\,\omega_0 & 0 \end{pmatrix} \begin{pmatrix} \psi_{+,1}(t) \\ \psi_{+,2}(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H=\omega_0\,\sigma_2=H^*$ States: $M=2{\rm Re}\,\Psi_+\in\mathcal{H}_{\mathbb{R}}$

Symmetries

 $V_1^{\mathbb{C}} = ???$ $V_2^{\mathbb{C}} = ???$ $V_2^{\mathbb{C}} = ???$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix} = \begin{pmatrix} 0 & -\mathrm{i}\,\omega_0\\ +\mathrm{i}\,\omega_0 & 0 \end{pmatrix}\begin{pmatrix} M_x(t)\\ M_y(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2$ States: $\binom{M_x(t)}{M_y(t)} \in \mathcal{H}_{\mathbb{R}} = \mathbb{R}^2$

Symmetries

 $V_1^\mathbb{R} = \sigma_1 \ V_2^\mathbb{R} = \mathrm{i}\sigma_2 \ V_2^\mathbb{R} = \sigma_2$

Schrödinger Formalism of Classical Spin Waves

Eliminate superfluous degree of freedom in complexified equations \rightsquigarrow Systematically identify $\mathbb{R}^2\cong\mathbb{C}$

$$\underbrace{M(t)}_{\text{real wave}} = 2 \text{Re} \qquad \underbrace{\Psi(t)}_{\text{0 wave}}$$

1-to-1 correspondence

Schrödinger Formalism of Classical Spin Waves

Eliminate superfluous degree of freedom in complexified equations \rightsquigarrow Systematically identify $\mathbb{R}^2 \cong \mathbb{C}$

$$\begin{split} M(t) &= \begin{pmatrix} \cos \omega_0 t & -\sin \omega_0 t \\ \sin \omega_0 t & \cos \omega_0 t \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \\ &= 2 \mathrm{Re} \, \Psi(t) = 2 \mathrm{Re} \left((a - \mathrm{i}b) \, \mathrm{e}^{-\mathrm{i}\omega_0 t} \Psi_+ \right) \end{split}$$

where $\Psi_+ = \begin{pmatrix} 1 \\ +\mathbf{i} \end{pmatrix}$ is the eigenvector of $H = \omega_0 \, \sigma_2$ to $+\omega_0 > 0$.

1-to-1 correspondence

Schrödinger Formalism of Classical Spin Waves

$\omega > 0$ Representation

Fundamental equation

$$\mathrm{i} \tfrac{\partial}{\partial t} \Psi(t) = \omega_0 \, \sigma_2 \, \Psi(t)$$

Building blocks

Hamiltonian: $H = \omega_0 \ \sigma_2 = H^*$ States: $\Psi(t) \in \mathcal{H}_+ = \operatorname{span}_{\mathbb{C}} \left\{ \begin{pmatrix} 1 \\ +i \end{pmatrix} \right\}$

Symmetries

 $V_1^{\mathbb{C}} = ???$ $V_2^{\mathbb{C}} = ???$ $V_2^{\mathbb{C}} = ???$

Classical

Fundamental equation

$$\mathrm{i} \tfrac{\partial}{\partial t} M(t) = \omega_0 \, \sigma_2 \, M(t)$$

Building blocks

Hamiltonian: $H = \omega_0 \, \sigma_2$ States: $M(t) = 2 \mathrm{Re} \, \Psi(t) \in \mathbb{R}^2$

Symmetries

 $V_1^\mathbb{R} = \sigma_1 \ V_2^\mathbb{R} = \mathrm{i}\sigma_2 \ V_2^\mathbb{R} = \sigma_2$

Translating Real Symmetries to $\omega>0$ Representation

Requirements

- $\begin{array}{cc} \mathbb{1} & M = 2 \mathrm{Re} \, \Psi \text{, then} \\ V_i^{\mathbb{R}} M = 2 \mathrm{Re} \, (V_i^{\mathbb{C}} \Psi) \end{array}$
- $\begin{array}{ll} \textbf{(2)} \ \ V_j^{\complement} \ \text{is a (anti)unitary on } \mathcal{H}_+\text{, i. e. it} \\ \text{maps } \omega>0 \ \text{waves onto } \omega>0 \\ \text{waves.} \end{array}$

Consequences

- 2 $V_j^{\mathbb{C}}$ must commute with $H = \omega_0 \sigma_0$

Translating Real Symmetries to $\omega>0$ Representation

Requirements

- $M=2\mathrm{Re}\,\Psi$, then $V_i^\mathbb{R}M=2\mathrm{Re}\,(V_i^\mathbb{C}\Psi)$
- 2 $V_j^{\mathbb{C}}$ is a (anti)unitary on \mathcal{H}_+ , i. e. it maps $\omega>0$ waves onto $\omega>0$ waves.

Consequences

- 2 $V_j^{\mathbb{C}}$ must commute with $H = \omega_0 \ \sigma_2$

Translating Real Symmetries to $\omega>0$ Representation

Real Symmetry	Complex Representative TI Classification	
$V_1^{\mathbb{R}} = \sigma_1$	$V_1^{\mathbb{C}} = \sigma_1 C$	+TR
$V_2^\mathbb{R}=\mathrm{i}\sigma_2$	$V_2^{\mathbb{C}}=\mathrm{i}\sigma_2$	ordinary
$V_3^{\mathbb{R}} = \sigma_3$	$V_3^{\mathbb{C}} = \sigma_3 C$	+TR

Translating Real Symmetries to $\omega > 0$ Representation

$\omega > 0$ Representation

Fundamental equation

$$\mathrm{i} \tfrac{\partial}{\partial t} \Psi(t) = \omega_0 \, \sigma_2 \, \Psi(t)$$

Building blocks

 $\begin{array}{l} \text{Hamiltonian: } H = \omega_0 \ \sigma_2 = H^* \\ \text{States: } \Psi(t) \in \mathcal{H}_+ = \operatorname{span}_{\mathbb{C}} \left\{ \left(\begin{smallmatrix} 1 \\ +\mathrm{i} \end{smallmatrix} \right) \right\} \end{array}$

Symmetries

$$\begin{array}{ll} V_1^{\mathbb{C}} = \sigma_1 \, C & (+\text{TR}) \\ V_2^{\mathbb{C}} = \mathrm{i}\sigma_2 & (\text{ordinary}) \\ V_3^{\mathbb{C}} = \sigma_3 \, C & (+\text{TR}) \end{array}$$

Classical

Fundamental equation

$$\mathrm{i} \tfrac{\partial}{\partial t} M(t) = \omega_0 \, \sigma_2 \, M(t)$$

Building blocks

 $\begin{aligned} & \text{Hamiltonian: } H = \omega_0 \, \sigma_2 \\ & \text{States: } M(t) = 2 \text{Re} \, \Psi(t) \in \mathbb{R}^2 \end{aligned}$

Symmetries

 $egin{aligned} V_1^\mathbb{R} &= \sigma_1 \ V_2^\mathbb{R} &= \mathrm{i}\sigma_2 \ V_3^\mathbb{R} &= \sigma_3 \end{aligned}$

Translating Real Symmetries to $\omega > 0$ Representation

Moral of the Story

- Not all "quantum" symmetries are symmetries of the classical equations
 - → Incompatible with the real-valuedness of classical waves
- "Schrödinger" form of classical equations necessary to identify the nature of these symmetries in the context of TIs
- C is not a meaningful symmetry of the "Schrödinger" form of the classical equations!
- No fermionic time-reversal symmetry

Ideas apply to all classical wave equations!

Quantum vs. Classical

00000000000

Applies directly to vacuum Maxwell equations

Spin → *In Vacuo* Maxwell Equations

$$H = \omega_0 \, \sigma_2 \quad \longrightarrow \quad \mathrm{Rot} = -\sigma_2 \otimes \nabla^{\times}$$

$$\begin{split} V_{1,3}^{\mathbb{R}} &= \sigma_{1,3} &\longrightarrow & V_{1,3}^{\mathbb{R}} &= \sigma_{1,3} \otimes \mathbb{1} \\ V_{2}^{\mathbb{R}} &= \mathrm{i}\sigma_{2} &\longrightarrow & V_{2}^{\mathbb{R}} &= \mathrm{i}\sigma_{2} \otimes \mathbb{1} \end{split}$$

Same Strategy

- Complexify classical equations
- 2 Eliminate superfluous states in complex Hilbert space
- 3 Identify complex implementation of the three symmetries

Complexification

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix} = \begin{pmatrix} 0 & +\mathbf{i}\,\nabla^\times \\ -\mathbf{i}\,\nabla^\times & 0 \end{pmatrix}\begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $M=-\sigma_2\otimes \nabla^\times=M^*$ States: $\Psi(t)\in L^2(\mathbb{R}^3,\mathbb{C}^6)$

Symmetries

$$\begin{array}{l} V_1^{\mathbb{C}} = (\sigma_1 \otimes \mathbb{1}) \, C & \text{(+TR)} \\ V_2^{\mathbb{C}} = i \sigma_2 \otimes \mathbb{1} & \text{(ordinary)} \\ V_2^{\mathbb{C}} = (\sigma_2 \otimes \mathbb{1}) \, C & \text{(+TR)} \end{array}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \mathbf{E}(t)\\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 & +\mathrm{i}\,\nabla^\times\\ -\mathrm{i}\,\nabla^\times & 0 \end{pmatrix}\begin{pmatrix} \mathbf{E}(t)\\ \mathbf{H}(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $M = -\sigma_2 \otimes \nabla^{\times}$ States: $\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{R}^6)$

Symmetries

$$egin{aligned} V_1^\mathbb{R} &= \sigma_1 \otimes \mathbb{1} \ V_2^\mathbb{R} &= \mathrm{i}\sigma_2 \otimes \mathbb{1} \ V_3^\mathbb{R} &= \sigma_3 \otimes \mathbb{1} \end{aligned}$$

Representing real, transversal EM Fields as complex $\omega>0$ waves

$$\underbrace{(\mathbf{E}(t),\mathbf{H}(t))}_{\text{real wave}} = 2 \mathrm{Re} \qquad \underbrace{\Psi(t)}_{\text{complex } \omega > 0 \text{ wave}}$$

$$\Longrightarrow \Psi \in \mathcal{H}_+ = \{ \text{complex } \omega > 0 \text{ waves} \}.$$

$\omega > 0$ Representation

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix} = \begin{pmatrix} 0 & +\mathbf{i}\,\nabla^\times \\ -\mathbf{i}\,\nabla^\times & 0 \end{pmatrix} \begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix}$$

Building blocks

 $\begin{aligned} & \text{Hamiltonian: } M = -\sigma_2 \otimes \nabla^{\times} = M^* \\ & \text{States: } \Psi(t) \in \left\{ \text{compl. } \omega > 0 \text{ waves} \right\} \end{aligned}$

Symmetries

$$\begin{array}{ll} V_1^{\mathbb{C}} = \left(\sigma_1 \otimes \mathbb{1}\right) C & \text{(+TR)} \\ V_2^{\mathbb{C}} = \mathrm{i}\sigma_2 \otimes \mathbb{1} & \text{(ordinary)} \\ V_2^{\mathbb{C}} = \left(\sigma_2 \otimes \mathbb{1}\right) C & \text{(+TR)} \end{array}$$

Classical

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix} = \begin{pmatrix}0\\-\mathbf{i}\,\nabla^{\times}&0\end{pmatrix}\begin{pmatrix}\mathbf{E}(t)\\\mathbf{H}(t)\end{pmatrix}$$

Building blocks

Hamiltonian: $M = -\sigma_2 \otimes \nabla^{\times}$ States: $\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{R}^6)$

Symmetries

$$egin{aligned} V_1^\mathbb{R} &= \sigma_1 \otimes \mathbb{1} \ V_2^\mathbb{R} &= \mathrm{i}\sigma_2 \otimes \mathbb{1} \ V_2^\mathbb{R} &= \sigma_2 \otimes \mathbb{1} \end{aligned}$$

Real Symmetry	Complex Representative	TI Classification	Meaning
$V_1^{\mathbb{R}} = \sigma_1 \otimes \mathbb{1}$	$V_1^{\mathbb{C}} = (\sigma_1 \otimes \mathbb{1}) C$	+TR	Flips helicity <i>and</i> arrow of time
$V_2^{\mathbb{R}}=\mathrm{i}\sigma_2\otimes\mathbb{1}$	$V_2^{\mathbb{C}}=\mathrm{i}\sigma_2\otimes\mathbb{1}$	ordinary	Dual symmetry
$V_3^{\mathbb{R}} = \sigma_3 \otimes \mathbb{1}$	$V_3^{\mathbb{C}} = (\sigma_3 \! \otimes \! \mathbb{1}) C$	+TR	Ordinary EM time-reversal

Media selectively break or preserve these symmetries!

$\omega > 0$ Representation

Fundamental equation

$$\mathbf{i}\frac{\partial}{\partial t}\begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix} = \begin{pmatrix} 0 \\ -\mathbf{i} \, \nabla^\times & 0 \end{pmatrix} \begin{pmatrix} \psi^E(t) \\ \psi^H(t) \end{pmatrix}$$

Building blocks

 $\mbox{Hamiltonian: } M = -\sigma_2 \otimes \nabla^\times = M^* \\ \mbox{States: } \Psi(t) \in \{\mbox{compl. } \omega > 0 \mbox{ waves} \}$

Symmetries

$$\begin{split} & \overset{\bullet}{V_1^{\mathbb{C}}} = (\sigma_1 \otimes \mathbb{1}) \, C & \text{ (+TR)} \\ & V_2^{\mathbb{C}} = \mathrm{i} \sigma_2 \otimes \mathbb{1} & \text{ (ordinary)} \\ & V_3^{\mathbb{C}} = (\sigma_3 \otimes \mathbb{1}) \, C & \text{ (+TR)} \end{split}$$

Classical

Fundamental equation

$$\mathrm{i}\frac{\partial}{\partial t}\begin{pmatrix} \mathbf{E}(t)\\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 & +\mathrm{i}\,\nabla^{\times}\\ -\mathrm{i}\,\nabla^{\times} & 0 \end{pmatrix}\begin{pmatrix} \mathbf{E}(t)\\ \mathbf{H}(t) \end{pmatrix}$$

Building blocks

Hamiltonian: $M = -\sigma_2 \otimes \nabla^{\times}$ States: $\begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} \in L^2(\mathbb{R}^3, \mathbb{R}^6)$

Symmetries

$$egin{aligned} V_1^\mathbb{R} &= \sigma_1 \otimes \mathbb{1} \ V_2^\mathbb{R} &= \mathrm{i}\sigma_2 \otimes \mathbb{1} \ V_2^\mathbb{R} &= \sigma_2 \otimes \mathbb{1} \end{aligned}$$

2 Maxwell's Equations in Linear Media

3 Topological Classification of Electromagnetic Media

4 Obstacles For Proving the Photonic Bulk-Edge Correspondence

5 Da Capo

Main Messages of This Talk

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Annals of Physics **396**, pp. 221–260, 2018
- 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018
- 3 Adapt existing techniques to prove bulk-boundary correspondences ... in progress

$$\begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H}(t) \\ -\nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(dynamical)}$$

$$\begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{(constraint)}$$

Constituent Parts

- Material weights phenomenologically describe properties of the medium
- Absence of sources

$$\begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H}(t) \\ -\nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(dynamical)}$$

$$\begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{(constraint)}$$

Constituent Parts

- Material weights phenomenologically describe properties of the medium
- Absence of sources

$$\begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H}(t) \\ -\nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(dynamical)}$$

$$\begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{(constraint)}$$

Constituent Parts

- Material weights phenomenologically describe properties of the medium
- Absence of sources

$$\begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\nabla \times \mathbf{H}(t) \\ -\nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(dynamical)}$$

$$\begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{(constraint)}$$

- Multiply both sides of dynamical Maxwell equations by i
- $\bullet \ W(x) = \left(\begin{smallmatrix} \varepsilon(x) & \chi^{EH}(x) \\ \chi^{HE}(x) & \mu(x) \end{smallmatrix} \right)$
- Introduce Rot $:= \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$ and Div $:= \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix}$

$$\begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\mathrm{i} \nabla \times \mathbf{H}(t) \\ -\mathrm{i} \nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{(dynamical)}$$

$$\begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} \begin{pmatrix} \varepsilon & \chi^{EH} \\ \chi^{HE} & \mu \end{pmatrix} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \text{(constraint)}$$

- Multiply both sides of dynamical Maxwell equations by i
- $\bullet \ W(x) = \left(\begin{smallmatrix} \varepsilon(x) & \chi^{EH}(x) \\ \chi^{HE}(x) & \mu(x) \end{smallmatrix}\right)$
- Introduce Rot $:= \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$ and Div $:= \begin{pmatrix} \nabla \\ \nabla \end{pmatrix}$

$$\begin{split} W & \mathrm{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} +\mathrm{i} \nabla \times \mathbf{H}(t) \\ -\mathrm{i} \nabla \times \mathbf{E}(t) \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \text{(dynamical)} \\ \begin{pmatrix} \nabla \cdot \\ \nabla \cdot \end{pmatrix} W \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \text{(constraint)} \end{split}$$

- Multiply both sides of dynamical Maxwell equations by i
- $\bullet \ W(x) = \left(\begin{smallmatrix} \varepsilon(x) & \chi^{EH}(x) \\ \chi^{HE}(x) & \mu(x) \end{smallmatrix} \right)$
- Introduce Rot $:= \begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$ and Div $:= \begin{pmatrix} \nabla \\ \nabla \end{pmatrix}$

$$\begin{split} W \, \mathrm{i} \, \tfrac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) &= \mathrm{Rot} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) \\ \mathrm{Div} \, W \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) &= 0 \end{split} \qquad \qquad \text{(constraint)}$$

- Multiply both sides of dynamical Maxwell equations by i
- $\quad \quad \bullet \ \, W(x) = \left(\begin{smallmatrix} \varepsilon(x) & \chi^{EH}(x) \\ \chi^{HE}(x) & \mu(x) \end{smallmatrix} \right)$
- Introduce Rot := $\begin{pmatrix} 0 & +i\nabla^{\times} \\ -i\nabla^{\times} & 0 \end{pmatrix}$ and Div := $\begin{pmatrix} \nabla \\ \nabla \end{pmatrix}$

$$\begin{split} W \, \mathrm{i} \, \frac{\partial}{\partial t} \left(\, \frac{\mathbf{E}(t)}{\mathbf{H}(t)} \, \right) &= \mathrm{Rot} \left(\, \frac{\mathbf{E}(t)}{\mathbf{H}(t)} \, \right) \\ \mathrm{Div} \, W \left(\, \frac{\mathbf{E}(t)}{\mathbf{H}(t)} \, \right) &= 0 \end{split} \qquad \qquad \text{(constraint)}$$

Usually material weights are $W \neq \overline{W}$ complex! \rightsquigarrow e. g. gyrotropic media (QHE of Light!)

Immediate Consequences

- Equations must be considered on subspaces complex Banach space $L^2(\mathbb{R}^3, \mathbb{C}^6)$
- Even if initial conditions are real, solutions $(\mathbf{E}(t), \mathbf{H}(t)) \neq (\overline{\mathbf{E}(t)}, \overline{\mathbf{H}(t)})$ acquire imaginary part over time!

$$\begin{split} W \, \mathrm{i} \, \frac{\partial}{\partial t} \left(\, \frac{\mathrm{E}(t)}{\mathrm{H}(t)} \, \right) &= \mathrm{Rot} \left(\, \frac{\mathrm{E}(t)}{\mathrm{H}(t)} \, \right) \\ \mathrm{Div} \, W \left(\, \frac{\mathrm{E}(t)}{\mathrm{H}(t)} \, \right) &= 0 \end{split} \qquad \qquad \text{(constraint)}$$

Usually material weights are $W \neq \overline{W}$ complex! \rightsquigarrow e. g. gyrotropic media (QHE of Light!)

Immediate Consequences

- Equations must be considered on subspaces complex Banach space $L^2(\mathbb{R}^3, \mathbb{C}^6)$
- Even if initial conditions are real, solutions $(\mathbf{E}(t), \mathbf{H}(t)) \neq (\overline{\mathbf{E}(t)}, \overline{\mathbf{H}(t)})$ acquire imaginary part over time!

$$\begin{aligned} W \, \mathrm{i} & \frac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = \mathrm{Rot} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) \end{aligned} \qquad \text{(dynamical)}$$

$$\mathrm{Div} & W \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = 0 \qquad \text{(constraint)}$$

Usually material weights are $W \neq \overline{W}$ complex!

 \rightsquigarrow e. g. gyrotropic media (QHE of Light!)

Immediate Consequences

- Equations must be considered on subspaces complex Banach space $L^2(\mathbb{R}^3, \mathbb{C}^6)$
- Even if initial conditions are real, solutions $(\mathbf{E}(t), \mathbf{H}(t)) \neq (\overline{\mathbf{E}(t)}, \overline{\mathbf{H}(t)})$ acquire imaginary part over time!

$$\begin{split} & \boldsymbol{W} \, \mathrm{i} \, \frac{\partial}{\partial t} \left(\, \mathbf{E}(t) \atop \mathbf{H}(t) \, \right) = \mathrm{Rot} \left(\, \mathbf{E}(t) \atop \mathbf{H}(t) \, \right) \\ & \mathrm{Div} \, \boldsymbol{W} \! \left(\, \mathbf{E}(t) \atop \mathbf{H}(t) \, \right) = 0 \end{split} \tag{dynamical}$$

Usually material weights are $W \neq \overline{W}$ complex!

Three Options

- ① Take the real part of the complex wave⇒ Breaks conservation of energy!
- ② Give up on real-valuedness of electromagnetic fields.

 → Inconsistent interpretation (complex Lorentz force!?!)
- 3 Modify equations of motion. → Correct choice

$$\begin{aligned} W \, \mathrm{i} & \frac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = \mathrm{Rot} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) \end{aligned} \qquad \text{(dynamical)}$$

$$\mathrm{Div} & W \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = 0 \qquad \text{(constraint)}$$

Usually material weights are $W \neq \overline{W}$ complex!

Three Options

- Take the real part of the complex wave⇒ Breaks conservation of energy!
- ② Give up on real-valuedness of electromagnetic fields.

 → Inconsistent interpretation (complex Lorentz force!?!)
- 3 Modify equations of motion. → Correct choice!

$$\begin{aligned} W \, \mathrm{i} & \frac{\partial}{\partial t} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = \mathrm{Rot} \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) \end{aligned} \qquad \text{(dynamical)}$$

$$\mathrm{Div} & W \left(\begin{smallmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{smallmatrix} \right) = 0 \qquad \text{(constraint)}$$

Usually material weights are $W \neq \overline{W}$ complex!

Three Options

- Take the real part of the complex wave ⇒ Breaks conservation of energy!
- ② Give up on real-valuedness of electromagnetic fields.

 → Inconsistent interpretation (complex Lorentz force!?!)
- **③** Modify equations of motion. ⋄ Correct choice

Real solutions linear combination of complex $\pm \omega$ waves:

$$(\mathbf{E},\mathbf{H})=\Psi_++\Psi_-=2\mathrm{Re}\,\Psi_\pm$$

Pair of equations (derived from Maxwell's equations for linear, dispersive media!)

$$\begin{split} \omega > 0: & \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: & \begin{cases} W_- \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, W_- \, \Psi_- = 0 \end{cases} \end{split}$$

$$W(t,x) = \overline{W(t,x)} \iff W_-(x) = \overline{W_+(x)}$$

Real solutions linear combination of complex $\pm \omega$ waves:

$$(\mathbf{E},\mathbf{H})=\Psi_++\Psi_-=2\mathrm{Re}\,\Psi_+$$

Pair of equations (derived from Maxwell's equations for linear, dispersive media!)

$$\begin{split} \omega > 0: & \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: & \begin{cases} \overline{W_+} \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, \overline{W_+} \, \Psi_- = 0 \end{cases} \end{split}$$

$$W(t,x) = \overline{W(t,x)} \iff W_{-}(x) = \overline{W_{+}(x)}$$

Real solutions linear combination of complex $\pm \omega$ waves:

$$(\mathbf{E},\mathbf{H})=\Psi_{+}+\Psi_{-}=2\mathrm{Re}\,\Psi_{+}$$

Pair of equations (derived from Maxwell's equations for linear, dispersive media!)

$$\begin{split} \omega > 0: & \begin{cases} W_+ \, \mathrm{i} \partial_t \Psi_+ = \mathrm{Rot} \, \Psi_+ \\ \mathrm{Div} \, W_+ \, \Psi_+ = 0 \end{cases} \\ \omega < 0: & \begin{cases} W_- \, \mathrm{i} \partial_t \Psi_- = \mathrm{Rot} \, \Psi_- \\ \mathrm{Div} \, W_- \, \Psi_- = 0 \end{cases} \end{split}$$

$$W(t,x) = \overline{W(t,x)} \iff W_-(x) = \overline{W_+(x)}$$

Physically Meaningful Equations Real solutions $(\mathbf{E}(t), \mathbf{H}(t)) = 2 \operatorname{Re} \Psi_{\perp}(t)$ where $\Psi_{\perp}(t)$ solves

$$\omega>0:\qquad \begin{cases} W_+\,\mathrm{i}\partial_t\Psi_+=\mathrm{Rot}\,\Psi_+\\ \mathrm{Div}\,W_+\,\Psi_+=0 \end{cases}$$

$$\mathcal{H}_+ = \{ \operatorname{complex} \omega > 0 \text{ states} \} \subsetneq \mathcal{H}_{\mathbb{C}_+} = \ker(\operatorname{Div} W_+)$$

Physically Meaningful Equations Real solutions $(\mathbf{E}(t), \mathbf{H}(t)) = 2 \operatorname{Re} \Psi_{\perp}(t)$ where $\Psi_{\perp}(t)$ solves

$$\omega>0:\qquad \begin{cases} W_+\,\mathrm{i}\partial_t\Psi_+=\mathrm{Rot}\,\Psi_+\\ \mathrm{Div}\,W_+\,\Psi_+=0 \end{cases}$$

- Compatibility with reality-condition baked in!
- Difference between physical and unphysical equations: defined on different subspaces of Banach space $L^2(\mathbb{R}^3,\mathbb{C}^6)$

$$\mathcal{H}_+ = \{ \operatorname{complex} \omega > 0 \text{ states} \} \subsetneq \mathcal{H}_{\mathbb{C}_+} = \ker(\operatorname{Div} W_+)$$

Physically Meaningful Equations

Real solutions $(\mathbf{E}(t)\,,\,\mathbf{H}(t))=2\mathrm{Re}\,\Psi_+(t)$ where $\Psi_+(t)$ solves

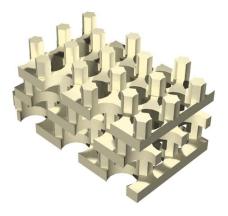
$$\omega>0:\qquad \begin{cases} W_{+}\,\mathrm{i}\partial_{t}\Psi_{+}=\mathrm{Rot}\,\Psi_{+}\\ \mathrm{Div}\,W_{+}\,\Psi_{+}=0 \end{cases}$$

- Compatibility with reality-condition baked in!
- Difference between physical and unphysical equations: defined on different subspaces of Banach space $L^2(\mathbb{R}^3, \mathbb{C}^6)$

$$\mathcal{H}_{+} = \{ \operatorname{complex} \omega > 0 \text{ states} \} \subsetneq \mathcal{H}_{\mathbb{C}_{+}} = \ker(\operatorname{Div} W_{+})$$

Schrödinger formalism for Maxwell's equations in non-dispersive media

Relevant Electromagnetic Media



Assumption (Material weights)

$$W_+(x) = \begin{pmatrix} \varepsilon(x) & \chi(x) \\ \chi(x)^* & \mu(x) \end{pmatrix}$$

- ① The medium is **lossless**. $(W_+^* = W_+)$
- ② W_+ describes a positive index medium. $(0 < c \, \mathbb{1} \le W_+ \le C \, \mathbb{1})$

Schrödinger Formalism of Maxwell's Equations

Theorem (De Nittis & L. (2018))

$$\begin{array}{c} \text{Real transversal states} \\ (\mathbf{E},\mathbf{H}) = 2 \mathrm{Re} \, \Psi \\ \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix} \frac{\partial}{\partial t} \begin{pmatrix} \psi^E \\ \psi^H \end{pmatrix} = \begin{pmatrix} +\nabla \times \psi^E \\ -\nabla \times \psi^H \end{pmatrix} \\ \end{array} \\ \longleftrightarrow \begin{cases} \begin{array}{c} \text{Complex states with } \omega > 0 \\ \Psi = P_+(\mathbf{E},\mathbf{H}) \\ M = W^{-1} \operatorname{Rot} \mid_{\omega > 0} = M^{*w} \\ \mathrm{i} \, \partial_t \Psi = M \Psi \end{array}$$

$$\begin{split} \mathcal{H} &= \left\{ \Psi \in L^2(\mathbb{R}^3, \mathbb{C}^6) \; \; \middle| \; \; \Psi \text{ is } \omega > 0 \text{ state} \right\} \\ &\left< \Phi, \Psi \right>_W = \int_{\mathbb{R}^3} \mathrm{d}x \, \Phi(x) \cdot W(x) \Psi(x) \\ &\quad \text{Energy scalar product} \end{split}$$

(All subscripts _ dropped to simplify notation.)

(De Nittis & L., Annals of Physics 396, pp. 221-260, 2018)

- 1 Quantum vs. Classical
- 2 Maxwell's Equations in Linear Media
- 3 Topological Classification of Electromagnetic Media
- 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence
- 5 Da Capo

Main Messages of This Talk

- Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Annals of Physics 396, pp. 221–260, 2018
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018
- 3 Adapt existing techniques to prove bulk-boundary correspondences ... in progress

Symmetries of the *In Vacuo* Maxwell Equations

$$\omega > 0: \qquad \begin{cases} \mathrm{i} \partial_t \Psi = \mathrm{Rot} \, \Psi \\ \mathrm{Div} \, \Psi = 0 \end{cases}$$

Real Symmetry	Complex Representative	TI Classification	Meaning
$V_1^{\mathbb{R}} = \sigma_1 \otimes \mathbb{1}$	$V_1^{\mathbb{C}} = (\sigma_1 \otimes \mathbb{1}) C$	+TR	Flips helicity <i>and</i> arrow of time
$V_2^{\mathbb{R}} = \mathrm{i} \sigma_2 \otimes \mathbb{1}$	$V_2^{\mathbb{C}}=\mathrm{i}\sigma_2\otimes\mathbb{1}$	ordinary	Dual symmetry
$V_3^{\mathbb{R}} = \sigma_3 \otimes \mathbb{1}$	$\boxed{V_3^{\mathbb{C}} = (\sigma_3 \otimes \mathbb{1})C}$	+TR	Ordinary EM time-reversal

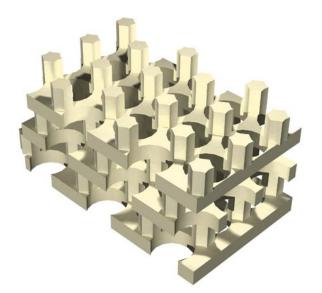
Media Breaking/Preserving Symmetries

$$\text{Medium has symmetry } V^{\mathbb{C}} \iff \begin{cases} \left[\operatorname{Rot} \,, V^{\mathbb{C}} \right] = 0 \text{ (vac. symm.)} \\ V^{\mathbb{C}} \text{ (anti)unitary on } \mathcal{H} \end{cases}$$

Media Breaking/Preserving Symmetries

Medium has symmetry
$$V^{\mathbb{C}} \iff [W, V^{\mathbb{C}}] = 0$$

Photonic Crystals: Periodic Electromagnetic Media

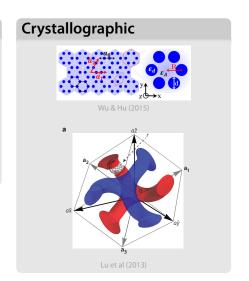


Material vs. Crystallographic Symmetries

Material

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}$$

- Properties of and relations between ε , μ and χ
- $V_1^{\mathbb{C}}$, $V_2^{\mathbb{C}}$ and $V_3^{\mathbb{C}}$

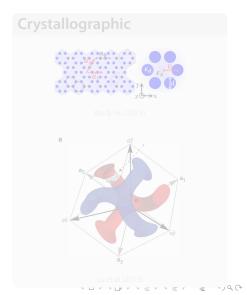


Material vs. Crystallographic Symmetries

Material

$$W = \begin{pmatrix} \varepsilon & \chi \\ \chi^* & \mu \end{pmatrix}$$

- Properties of and relations between ε , μ and χ
- $\bullet \ V_1^{\mathbb{C}}, V_2^{\mathbb{C}} \text{ and } V_3^{\mathbb{C}}$



Assumption

W has no crystallographic symmetries.

Theorem (De Nittis & L. (2017))

Non-gyrotropic

$$W = \left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix} \right) = \left(\begin{smallmatrix} \overline{\varepsilon} & \underline{0} \\ 0 & \overline{\mu} \end{smallmatrix} \right)$$

$$V_3^{\mathbb{C}} = (\sigma_3 \otimes \mathbb{1})\,C$$

Dual-symmetric, non-gyrotr.

$$W = \begin{pmatrix} \varepsilon & -\mathrm{i}\chi \\ +\mathrm{i}\chi & \varepsilon \end{pmatrix} = \begin{pmatrix} \overline{\varepsilon} & -\mathrm{i}\,\overline{\chi} \\ +\mathrm{i}\,\overline{\chi} & \overline{\varepsilon} \end{pmatrix}$$

$$V_1^{\mathbb{C}} = (\sigma_1 \otimes \mathbb{1}) C, \ V_3^{\mathbb{C}} = (\sigma_3 \otimes \mathbb{1}) C$$

Gyrotropic

$$W = \left(\begin{smallmatrix} \varepsilon & 0 \\ 0 & \mu \end{smallmatrix} \right) \neq \left(\begin{smallmatrix} \overline{\varepsilon} & \underline{0} \\ 0 & \overline{\mu} \end{smallmatrix} \right)$$

No symmetries

Magneto-electric

$$W = \left(\begin{smallmatrix} \varepsilon & \chi \\ \chi & \varepsilon \end{smallmatrix} \right) = \left(\begin{smallmatrix} \overline{\varepsilon} & \overline{\chi} \\ \overline{\chi} & \overline{\varepsilon} \end{smallmatrix} \right)$$

$$V_1^{\mathbb{C}} = (\sigma_1 \otimes \mathbb{1}) C$$

(De Nittis & L., arxiv:1710.08104 (2017))

Theorem (De Nittis & L. (2017))

Non-gyrotropic

Class AI

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.

Two +TR \implies 2 × Class AI

Realized, e. g. vacuum and YIG

Gyrotropic

Class A (Quantum Hall Class)

Realized, e.g. YIG for microwaves

Magneto-electric

Class AI

Realized, e. g. Tellegen media

4 different topological classes of EM media

(De Nittis & L., arxiv:1710.08104 (2017))

Theorem (De Nittis & L. (2017))

Non-gyrotropic

Class A

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.

Two +TR \implies 2 \times Class A

Realized, e. g. vacuum and YIG

Gyrotropic

Class A (Quantum Hall Class)

Realized, e.g. YIG for microwaves

Magneto-electric

Class AI

Realized, e. g. Tellegen media

Only one is topologically non-trivial in $d \leq 3$

(De Nittis & L., arxiv:1710.08104 (2017))

Conclusions from Topological Classification

- Some works proposed to use unphysical symmetries (e. g. fermionic time-reversal symmetries $V_{\rm f}=(\sigma_2\otimes \mathbb{1})\,C$)
- Class All cannot occur via material symmetries alone \rightsquigarrow No \mathbb{Z}_2 -valued Kane-Mele-type topological invariants supported!
- Tight-binding operators cannot have incompatible symmetries!

Maxwell's Equations in Linear Media

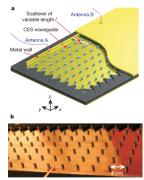
Topological Classification of Electromagnetic Media

Obstacles For Proving the Photonic Bulk-Edge Correspondence

Main Messages of This Talk

- 1 Rewrite Maxwell's equations in the form of a Schrödinger equation. De Nittis & L., Annals of Physics 396, pp. 221–260, 2018
- Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme.
 - De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018
- 3 Adapt existing techniques to prove bulk-boundary correspondences ... in progress

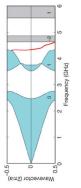
Physical Setting



Joannopoulos, Soljačić et al (2009)

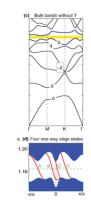
- Quasi-2d photonic crystal
- Topological photonic crystal of class A (i. e. W breaks $V_1^{\mathbb{C}}$ and $V_3^{\mathbb{C}}$)

A Physicist's POV of the Bulk-Edge Correspondence



Joannopoulos, Soljačić et al (2009)

 $0+1=1 \Rightarrow 1$ edge mode



Skirlo et al, PRL 113, 113904, 2014

$$0+0-2+4+2=4 \Rightarrow 4$$
 edge modes

Works as advertised!

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathrm{net}\,\sharp\,\mathrm{of}\,\mathrm{edge}\,\mathrm{modes}$$

- ① Define topological bulk invariant $T_{
 m bulk}$
- ② Define edge system (→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- Identify the topological observable ¬→ Poynting vector?

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathrm{net} \, \sharp \, \mathrm{of} \, \mathrm{edge} \, \mathrm{modes}$$

- f 0 Define topological bulk invariant $T_{
 m bulk}$
- ② Define edge system
 (→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- Identify the topological observable

 → Poynting vector?

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathsf{net} \,\sharp\, \mathsf{of} \,\mathsf{edge} \,\mathsf{modes}$$

- ① Define topological bulk invariant T_{bulk}
- ② Define edge system
 (→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- Identify the topological observable

 → Poynting vector?

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathsf{net} \,\sharp\, \mathsf{of} \,\mathsf{edge} \,\mathsf{modes}$$

- ① Define topological bulk invariant T_{bulk}
- ② Define edge system (→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- Identify the topological observable ~> Poynting vector?

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathsf{net} \,\sharp\, \mathsf{of} \,\mathsf{edge} \,\mathsf{modes}$$

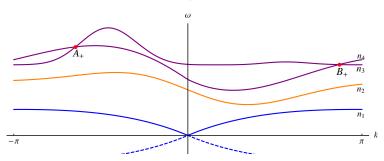
- ① Define topological bulk invariant T_{bulk}
- ② Define edge system
 (→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- **4** Identify the **topological observable** → Poynting vector?

Conjecture

$$T_{\mathrm{bulk}} = T_{\mathrm{edge}} = \mathrm{net}\,\sharp\,\mathrm{of}\,\mathrm{edge}\,\mathrm{modes}$$

- f 0 Define topological bulk invariant $T_{
 m bulk}$
- ② Define edge system(→ boundary conditions can break +TR symmetries!)
- Proof of "mathematical" bulk-edge correspondence
- Identify the topological observable ¬→ Poynting vector?

The Frequency Band Picture

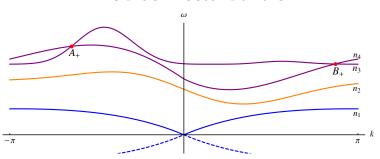


Theorem (De Nittis & L., 2014)

- Bloch bands and functions locally analytic away from crossings
- **2** ground state bands with \approx linear dispersion at k=0 and $\omega=0$

(Theorem 1.4 and Lemma 3.7 in De Nittis & L., Documenta Math. 19, pp. 63-101, 2014)

The Bloch Vector Bundle

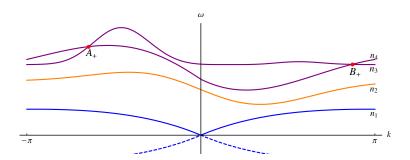


Proceed as Usual

- Select bulk frequency band gap.
- ② Define the "Fermi projection" $P(k) := \sum_{j=1}^n |\varphi_j(k)\rangle \langle \varphi_j(k)|$.
- Define the Bloch bundle

$$\mathcal{E}_{\mathbb{T}^*}(P): \bigsqcup_{k\in\mathbb{T}^*} \operatorname{ran} P(k) \stackrel{\pi}{\longrightarrow} \mathbb{T}^*$$

The Bloch Vector Bundle



Proposition

- ① $\mathcal{E}_{\mathbb{T}^*}(P)$ is only a bundle over the Brillouin torus \mathbb{T}^* , but not a *vector* bundle.
- $\text{ 2} \ \ \text{The restriction} \ \mathcal{E}_{\mathbb{T}^*\backslash\{0\}}(P) := \left. \mathcal{E}_{\mathbb{T}^*}(P) \right|_{\mathbb{T}^*\backslash\{0\}} \text{ is a vector bundle}.$

The Bloch Vector Bundle

Proposition

- ① $\mathcal{E}_{\mathbb{T}^*}(P)$ is only a bundle over the Brillouin torus \mathbb{T}^* , but **not** a *vector* bundle.
- $\text{ The restriction } \mathcal{E}_{\mathbb{T}^*\backslash\{0\}}(P) := \mathcal{E}_{\mathbb{T}^*}(P)\big|_{\mathbb{T}^*\backslash\{0\}} \text{ is a vector bundle.}$

Origin of the Problem

- $k \mapsto P_{gs}(k)$ is not continuous at k=0.
- $k\mapsto P(k)-P_{\rm gs}(k)$ is analytic at k=0. (The ground state bands are responsible for the bad behavior.)
- $\implies k \mapsto P(k)$ is continuous (in fact, analytic) only on $\mathbb{T}^* \setminus \{0\}$.

Idea 1

Classify the bundle over the entire Brillouin torus \mathbb{T}^*

$$\mathcal{E}_{\mathbb{T}^*}(P): \bigsqcup_{k\in\mathbb{T}^*} \operatorname{ran} P(k) \stackrel{\pi}{\longrightarrow} \mathbb{T}^*$$

- Only a bundle, not a vector bundle!
- Classification theory not well-developed

What is the topological invariant here?!?

Idea 2

Classify the bundle over $\mathbb{T}^* \setminus \{0\}$

$$\mathcal{E}_{\mathbb{T}^*\backslash\{0\}}(P):\bigsqcup_{k\in\mathbb{T}^*\backslash\{0\}}\operatorname{ran}P(k)\overset{\pi}{\longrightarrow}\mathbb{T}^*\backslash\{0\}$$

- Bona fide vector bundle
- $\mathbb{T}^* \setminus \{0\}$ deformation retracts to $\mathbb{S}^1 \Longrightarrow$

$$\operatorname{Vec}_k(\mathbb{T}^* \setminus \{0\}) \cong \operatorname{Vec}_k(\mathbb{S}^1) = 0$$

Chern number $\operatorname{Ch}_1(\mathcal{E}_{\mathbb{T}^*\setminus\{0\}}(P))=0$ well-defined, but always 0!

Idea 3

Extend the vector bundle over $\mathbb{T}^* \setminus B_{\varepsilon}$

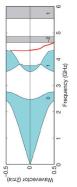
$$\mathcal{E}_{\mathbb{T}^*\backslash B_{\varepsilon}}(P): \bigsqcup_{k\in \mathbb{T}^*\backslash B_{\varepsilon}} \operatorname{ran} P(k) \stackrel{\pi}{\longrightarrow} \mathbb{T}^* \, \backslash \, B_{\varepsilon}$$

to a vector bundle over **T***

- Relative cohomology theory? Might work, but we need to construct a "natural" extension
- It seems that the Chern charge

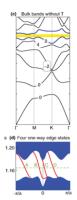
$$\int_{|k|=\varepsilon} \mathrm{d}k \operatorname{Tr} \bigl(\mathcal{A}_{\mathrm{gs}}(k) \bigr) = 0$$

vanishes. → Extension by vector bundle surgery possible?



Joannopoulos, Soljačić et al (2009)

 $0+1=1 \Rightarrow 1$ edge mode



Skirlo et al, PRL 113, 113904, 2014

$$0+0-2+4+2=4\Rightarrow 4$$
 edge modes

Chern charges of ground state bands 0

Idea 3

Extend the vector bundle over $\mathbb{T}^* \setminus B_{\varepsilon}$

$$\mathcal{E}_{\mathbb{T}^*\backslash B_{\varepsilon}}(P): \bigsqcup_{k\in \mathbb{T}^*\backslash B_{\varepsilon}} \operatorname{ran} P(k) \stackrel{\pi}{\longrightarrow} \mathbb{T}^* \, \backslash \, B_{\varepsilon}$$

to a vector bundle over **T***

- Relative cohomology theory? Might work, but we need to construct a "natural" extension
- It seems that the Chern charge

$$\int_{|k|=\varepsilon} \mathrm{d}k \operatorname{Tr} \bigl(\mathcal{A}_{\mathrm{gs}}(k) \bigr) = 0$$

vanishes. → Extension by vector bundle surgery possible?

Thank you for your attention!

Interaction of Time-Reversal & Crystallographic Symmetries

Talk Based On

- De Nittis & L., On the Role of Symmetries in Photonic Crystals, Annals of Physics 350, pp. 568–587, 2014
- De Nittis & L., The Schrödinger Formalism of Electromagnetism and Other Classical Waves — How to Make Quantum-Wave Analogies Rigorous, Annals of Physics 396, pp. 221–260, 2018
- De Nittis & L., Symmetry Classification of Topological Photonic Crystals, arXiv 1710.08104, 1–49, 2017
- De Nittis & L., Equivalence of Electric, Magnetic and Electromagnetic Chern Numbers for Topological Photonic Crystals, arxiv 1806.07783, pp. 1–33, 2018
- L., Taking Inspiration from Quantum-Wave Analogies Recent Results for Photonic Crystals, Macroscopic Limits of Quantum Systems — Munich, Germany, March 20–April 1, 2017, to appear in Springer Proceedings in Mathematics and Statistics, 2018

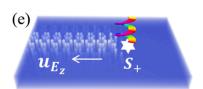
Interaction of Material and Crystallographic Symmetries

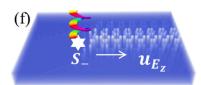
- Idea of real vs. complex implementation of symmetries works also for other symmetries (e. g. rotations, parity)
 - ⇒ Crystallographic symmetries can be handled within the Schrödinger formalism of classical electromagnetism
- Recent works from condensed matter physics on crystallographic Tls (e. g. by Shiozaki, Sato & Gomi, arxiv:1802.06694 (2018))

Example: "Spin-Valley Hall Effect"

Wu & Hu (2015)

- Edge modes topological
- Pseudospin degree of freedom in a time-reversal-symmetric medium
- $\begin{array}{l} \bullet \quad \text{Time-reversal symmetry} \\ T_3 \neq T_\uparrow \oplus T_\downarrow \text{ not blockdiagonal} \\ \Longrightarrow M_{\uparrow/\downarrow} \text{ class A (no symmetry)} \end{array}$
- Chern numbers $C_{\uparrow} = -C_{\downarrow} \neq 0$ possible
- Not in contradiction, edge modes come in ↑ / ↓ pairs
- ullet Topologically protected against perturbations which preserve T_3 symmetry and honeycomb structure





Wu & Hu (2015)

Derivation of Maxwell's Equations in Linear Media

Fundamental Equations

Maxwell's Equations in Media

Maxwell's equations

$$\begin{split} \mathbf{i} \frac{\partial}{\partial t} \begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} &= \begin{pmatrix} 0 & +\mathbf{i} \nabla^\times \\ -\mathbf{i} \nabla^\times & 0 \end{pmatrix} \begin{pmatrix} \mathbf{H} \\ \mathbf{E} \end{pmatrix} - \mathbf{i} \begin{pmatrix} J^D \\ J^B \end{pmatrix} \quad \text{(dynamical)} \\ \begin{pmatrix} \nabla \cdot \mathbf{D} \\ \nabla \cdot \mathbf{B} \end{pmatrix} &= \begin{pmatrix} \rho^D \\ \rho^B \end{pmatrix} \quad \quad \text{(constraint)} \end{split}$$

2 Constitutive relations

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \mathcal{W} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

3 Conservation of charge

$$\nabla \cdot J^{\sharp} + \rho^{\sharp} = 0, \quad \sharp = D, B$$

Fundamental Equations

Maxwell's Equations in Media

Maxwell's equations

$$\begin{split} i\frac{\partial}{\partial t}\begin{pmatrix} \mathbf{D}\\ \mathbf{B} \end{pmatrix} &= \begin{pmatrix} 0 & +i\nabla^\times\\ -i\nabla^\times & 0 \end{pmatrix}\begin{pmatrix} \mathbf{H}\\ \mathbf{E} \end{pmatrix} \qquad \text{(dynamical)} \\ \begin{pmatrix} \nabla\cdot\mathbf{D}\\ \nabla\cdot\mathbf{B} \end{pmatrix} &= \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad \qquad \text{(constraint)} \end{split}$$

2 Constitutive relations

$$\begin{pmatrix} \mathbf{D} \\ \mathbf{B} \end{pmatrix} = \mathcal{W} \begin{pmatrix} \mathbf{E} \\ \mathbf{H} \end{pmatrix}$$

3 Conservation of charge → neglect sources for simplicity

$$\nabla \cdot J^{\sharp} + \rho^{\sharp} = 0$$
, $\sharp = D$, E

Constitutive Relations for a Linear, Dispersive Medium

For a linear medium the constitutive relations maps a trajectory

$$(-\infty,t]\ni s\mapsto \big(\mathbf{E}(s),\mathbf{H}(s)\big)$$

onto

$$\begin{pmatrix} \mathbf{D}(t,x) \\ \mathbf{B}(t,x) \end{pmatrix} := \int_{-\infty}^t \mathrm{d}s \, W(t-s,x) \, \begin{pmatrix} \mathbf{E}(s,x) \\ \mathbf{H}(s,x) \end{pmatrix}$$

variation of medium to impinging em wave depends on the past

Constitutive Relations for a Linear, Dispersive Medium

$$\left(\mathbf{D}(t),\mathbf{B}(t)\right) := \int_{-\infty}^t \mathrm{d}s\, W(t-s) \left(\mathbf{E}(s),\mathbf{H}(s)\right)$$

Assumption (Constitutive relations)

We assume that
$$W(t,x)=\begin{pmatrix} \varepsilon(t,x) & \chi^{EH}(t,x) \\ \chi^{HE}(t,x) & \mu(t,x) \end{pmatrix} \in \mathrm{Mat}_{\mathbb{C}}(6)$$

- ① is real, $W = \overline{W}$, and
- **2** satisfies the causality condition W(t) = 0 for all t > 0.

Constitutive Relations for a Linear, Dispersive Medium

$$\big(\mathbf{D}(t),\mathbf{B}(t)\big) = \big(W*(\mathbf{E},\mathbf{H})\big)(t)$$

Assumption (Constitutive relations)

We assume that
$$W(t,x)=\begin{pmatrix} \varepsilon(t,x) & \chi^{EH}(t,x) \\ \chi^{HE}(t,x) & \mu(t,x) \end{pmatrix} \in \mathrm{Mat}_{\mathbb{C}}(6)$$

- ① is real, $W = \overline{W}$, and
- **2** satisfies the causality condition W(t) = 0 for all t > 0.

Fundamental Equations for Linear, Dispersive Media

Maxwell's equations

$$\begin{split} &\mathbf{i} \frac{\partial}{\partial t} \big(W * (\mathbf{E}, \mathbf{H}) \big)(t) = \mathrm{Rot} \big(\mathbf{E}(t), \mathbf{H}(t) \big) & \text{(dynamical)} \\ & \mathrm{Div} \big(W * (\mathbf{E}, \mathbf{H}) \big)(t) = 0 & \text{(constraint)} \end{split}$$

2 Constitutive relations

$$(\mathbf{D}(t), \mathbf{B}(t)) = (W * (\mathbf{E}, \mathbf{H}))(t)$$

3 Conservation of charge → neglect sources for simplicity

$$\nabla \cdot J^{\sharp} + \rho^{\sharp} = 0, \quad \sharp = D, E$$

Heuristically Neglecting Dispersion in Maxwell's Equations

$$\begin{split} \mathbf{i} & \frac{\partial}{\partial t} W * \Psi(t) = \operatorname{Rot} \Psi(t) \\ & \qquad \qquad \mathcal{F}^{-1} \\ & \qquad \omega \, \widehat{W}(\omega) \, \widehat{\Psi}(\omega) = \operatorname{Rot} \widehat{\Psi}(\omega) \\ & \qquad \qquad \qquad \mathcal{W}(\omega) \, \widehat{\Psi}(\omega) = \operatorname{Rot} \widehat{\Psi}(\omega) \\ & \qquad \qquad \mathcal{F} \\ & \qquad \qquad \widehat{W}(\pm \omega_0) \, \mathbf{i} \, \frac{\partial}{\partial t} \Psi_+(t) = \operatorname{Rot} \Psi_+(t) \end{split}$$

- Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.
- 2 Approximate material weight: $\widehat{W}(\pm\omega) \approx \widehat{W}(\pm\omega_0) = W_\pm$ frequencies $\pm\omega \approx \pm\omega_0$. $+\omega_0$ and $-\omega_0$ contributions necessary to reconstruct real solutions.
- 3 Undo Fourier transform to obtain dynamical equations in the absence of dispersion.

Heuristically Neglecting Dispersion in Maxwell's Equations

$$\begin{split} \mathrm{i} & \frac{\partial}{\partial t} W * \Psi(t) = \mathrm{Rot} \, \Psi(t) \\ & \qquad \qquad \mathcal{F}^{-1} \Bigg\downarrow \\ & \qquad \omega \, \widehat{W}(\omega) \, \widehat{\Psi}(\omega) = \mathrm{Rot} \, \widehat{\Psi}(\omega) \\ & \qquad \qquad \downarrow \\ & \qquad \qquad \pm \, \omega > 0 : \, \omega \, \widehat{W}(\pm \omega_0) \, \widehat{\Psi}(\omega) = \mathrm{Rot} \, \widehat{\Psi}(\omega) \\ & \qquad \qquad \mathcal{F} \Bigg\downarrow \\ & \qquad \qquad \widehat{W}(\pm \omega_0) \, \mathrm{i} \, \frac{\partial}{\partial t} \Psi_\pm(t) = \mathrm{Rot} \, \Psi_\pm(t) \end{split}$$

- Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.
- 2 Approximate material weights $\widehat{W}(\pm\omega) \approx \widehat{W}(\pm\omega_0) = W_\pm$ for frequencies $\pm\omega \approx \pm\omega_0$. $+\omega_0$ and $-\omega_0$ contributions necessary to reconstruct real solutions.
- 3 Undo Fourier transform to obtain dynamical equations in the absence of dispersion.

Heuristically Neglecting Dispersion in Maxwell's Equations

$$\begin{split} \mathrm{i} & \frac{\partial}{\partial t} W * \Psi(t) = \mathrm{Rot} \, \Psi(t) \\ & \qquad \\ \omega \, \widehat{W}(\omega) \, \widehat{\Psi}(\omega) = \mathrm{Rot} \, \widehat{\Psi}(\omega) \\ & \qquad \\ \pm \, \omega > 0 : \, \omega \, \widehat{W}(\pm \omega_0) \, \widehat{\Psi}(\omega) = \mathrm{Rot} \, \widehat{\Psi}(\omega) \\ & \qquad \\ \widehat{W}(\pm \omega_0) \, \mathrm{i} \, \frac{\partial}{\partial t} \Psi_\pm(t) = \mathrm{Rot} \, \Psi_\pm(t) \end{split}$$

- Apply inverse Fourier transform in time to go from time-dependent to frequency-dependent equations.
- 2 Approximate material weight: $\widehat{W}(\pm\omega)\approx\widehat{W}(\pm\omega_0)=W_\pm$ f frequencies $\pm\omega\approx\pm\omega_0$. $\pm\omega_0$ and $-\omega_0$ contributions necessary to reconstruct real solutions
- 3 Undo Fourier transform to obtain dynamical equations in the absence of dispersion.