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Quantum Hall Effect for Light

Predicted theoretically by Raghu & Haldane (2005) ...

(𝜀 0
0 𝜇) ≠ (𝜀 0

0 𝜇)

symmetry breaking

⎫}
⎬}⎭

⟹

Before we discuss the results of our measurements, we will first
describe how we arrived at this particular choice of experimental
system. We chose rods in air for the basic photonic-crystal geometry
because of ease of fabrication. We then performed a series of numerical
simulations for a variety of rod sizes and lattice constants on a model
2D photonic-crystal system to optimize the band structure and
compute corresponding band Chern numbers using material
parameters appropriate to a low-loss ferrite (Methods). Our numerical
simulations predicted that when the ferrite rods in this photonic
crystal are magnetized to manifest gyrotropic permeability (which
breaks time-reversal symmetry), a gap opens between the second
and third transverse magnetic (TM) bands. Moreover, the second,
third and fourth bands of this photonic crystal acquire Chern numbers
of 1, 22 and 1, respectively. This result follows from the C4v symmetry
of a non-magnetized crystal17. The results of our simulations for the
photonic crystal with metallic cladding are presented in Fig. 2. (Similar
numerical results were obtained in ref. 7, albeit using a different
material system and geometry.) Here we show the calculated field
patterns of a photonic CES residing in the second TM band gap
(between the second and the third bands). Because the sum of the
Chern numbers over the first and second bands is 1, exactly one CES
is predicted to exist at the interface between the photonic crystal and
the metal cladding. The simulations clearly predict that this photonic
CES is unidirectional. As side-scattering is prohibited by the bulk
photonic band gaps in the photonic crystal and in the metallic
cladding, the existence of the CES forces the feed dipole antennas
(which would radiate omnidirectionally in a homogeneous medium)
to radiate only towards the right (Fig. 2a, c). Moreover, the lack of
any backwards-propagating mode eliminates the possibility of
backscattering, meaning that the fields can continuously navigate
around obstacles, as shown in Fig. 2b. Hence, the scattering from the

obstacle results only in a change of the phase (compare Fig. 2a and
Fig. 2b) of the transmitted radiation, with no reduction in amplitude.

For CESs to be readily measurable in the laboratory (where it is
necessary to use a photonic crystal of finite and manageable size) they
must be spatially well localized, and this requires the photonic band
gaps containing the states to be large. The sizes of the band gaps that
contain CESs (and the frequencies at which they occur) are determined
by the gyromagnetic constants of the ferrite rods constituting the
photonic crystal. Under a d.c. magnetic field, microwave ferrites
exhibit a ferromagnetic resonance at a frequency determined by the
strength of the applied field18. Near this frequency, the Voigt
parameter, V 5 jmxyj/jmxxj (where mxx and mxy are diagonal and off-
diagonal elements of the permeability tensor, respectively), which is
a direct measure of the strength of the gyromagnetic effect, is of order
one. Such ferromagnetic resonances are among the strongest low-loss
gyrotropic effects at room temperature and subtesla magnetic fields.
Using ferrite rods composed of vanadium-doped calcium–iron–
garnet under a biasing magnetic field of 0.20 T (Methods and
Supplementary Information), we achieved a relative bandwidth of
6% for the second TM band gap (around 4.5 GHz in Fig. 3b). As
discussed earlier, this is the gap predicted to support a CES at the
interface of the photonic crystal with the metallic wall. We emphasize
again that band gaps with trivial topological properties (that is, for
which the Chern numbers of the bulk bands of lower frequencies sum
to zero), such as the first TM band gap (around 3 GHz in Fig. 3b), do
not support CESs. All of the insight gained from the model 2D photo-
nic-crystal system was then incorporated into the final design (Fig. 1).
To emulate the states of the 2D photonic crystal, the final design
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Figure 1 | Microwave waveguide supporting CESs. a, Schematic of the
waveguide composed of an interface between a gyromagnetic photonic-
crystal slab (blue rods) and a metal wall (yellow). The structure is
sandwiched between two parallel copper plates (yellow) for confinement in
the z direction and surrounded with microwave-absorbing foams (grey
regions). Two dipole antennas, A and B, serve as feeds and/or probes. A
variable-length (l) metal obstacle (orange) with a height equal to that of the
waveguide (7.0 mm) is inserted between the antennas to study scattering. A
0.20-T d.c. magnetic field is applied along the z direction using an
electromagnet (not shown). b, Top view (photograph) of the actual
waveguide with the top plate removed.
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Figure 2 | Photonic CESs and effects of a large scatterer. a, CES field
distribution (Ez) at 4.5 GHz in the absence of the scatterer, calculated from
finite-element steady-state analysis (COMSOL Multiphysics). The feed
antenna (star), which is omnidirectional in homogeneous media
(Supplementary Information), radiates only to the right along the CES
waveguide. The black arrow represents the direction of the power flow.
b, When a large obstacle (three lattice constants long) is inserted, forward
transmission remains unchanged because backscattering and side-scattering
are entirely suppressed. The calculated field pattern (colour scale) illustrates
how the CES wraps around the scatterer. c, When antenna B is used as feed
antenna, negligible power is transmitted to the left, as the backwards-
propagating modes are evanescent. a, lattice constant.
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Quantum Hall Effect for Light

... and realized experimentally by Joannopoulos et al (2009)

Joannopoulos, Soljačić et al (2009)
Joannopoulos, Soljačić et al (2009)
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Haldane’s Insight

Topological effects are wave,
not quantum phenomena!
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Topological Effects: Phenomenological Similarities

Light Coupled Oscillators
Quantum

Periodic structure ⇝ bulk band gap

Breaking of time-reversal symmetries

Unidirectional edge modes

Robust under perturbations

Different manifestations of the same underlying physical principles!
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture
In a two-dimensional photonic crystals with boundary the
difference of the number of left- and right-moving boundary
modes

Chbulk = 𝑇edge = net ♯ of edge modes

in bulk band gaps is a topologically protected quantity and equals
the Chern number associated to the frequency bands below the
bulk band gap.
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge = net ♯ of edge modes

MyMain Goal
Make the statement mathematically precise and provide a proof.
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Proof of Haldane’s Photonic Bulk-Edge Correspondence

Seems simple enough…
1 Rewrite Maxwell’s equations in the form of a Schrödinger equation.

De Nittis & L., Comm. Math. Phys. 332, pp. 221–260, 2014

2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer
scheme.
De Nittis & L., Annals of Physics 350, pp. 568–587, 2014

3 Adapt existing techniques to prove bulk-boundary correspondences
(relying on e. g. Hatsugai, Graf & Porta, Hayashi; Kellendonk & Schulz-Baldes)

Easy! …No!
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Main Messages of This Talk

Explain why things are not so simple.

Explain how to deal with the complications in Steps 1 & 2.

Explain the obstacles to be overcome in Step 3.
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Main Messages of This Talk

1 Rewrite Maxwell’s equations in the form of a Schrödinger equation.
De Nittis & L., Annals of Physics 396, pp. 221–260, 2018

2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer
scheme.
De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018

3 Adapt existing techniques to prove bulk-boundary correspondences
… in progress
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The Real-Valuedness Condition

Classical waves such as (E,H) = (E,H) are real-valued!

Our earlier works start with the standard equations used in the physics
community.

These equations violate real-valuedness condition.

We were aware of this problem and discussed it in one of our earlier works.
(Section 6 of De Nittis & L., Annals of Physics 350, pp. 568–587, 2014)

Clarified thanks to discussions with Duncan Haldane and Kostya Bliokh.

⟹ Mathematically correct results about unphysical equations.
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The Real-Valuedness Condition

Classical waves such as (E,H) = (E,H) are real-valued!

Our earlier works start with the standard equations used in the physics
community.

These equations violate real-valuedness condition.

We were aware of this problem and discussed it in one of our earlier works.
(Section 6 of De Nittis & L., Annals of Physics 350, pp. 568–587, 2014)

Clarified thanks to discussions with Duncan Haldane and Kostya Bliokh.

⟹ Mathematically correct results about unphysical equations.
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1 Quantum vs. Classical

2 Maxwell’s Equations in Linear Media

3 Topological Classification of Electromagnetic Media

4 Obstacles For Proving the Photonic Bulk-Edge Correspondence

5 Da Capo
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Quantum vs. Classical Equations: a Single Spin

Idea
Start with the same equations of motion,

i
𝜕
𝜕𝑡 (𝜓1(𝑡)

𝜓2(𝑡)) = ( 0 −i𝜔0
+i𝜔0 0 ) (𝜓1(𝑡)

𝜓2(𝑡)) ,

once in the quantum and then in the classical context.

Math is trivial, everything is explicit

Immediately transfers to many other hamiltonian equations as
𝐽 = i𝜎2 is the canonical symplectic form
Conceptually applies to all classical wave equations



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classification Bulk-Edge Correspondence Da Capo

Symmetries of Classical and Quantum Spin Equations

Purpose
Anticipate symmetry classification of electromagnetic media

i
𝜕
𝜕𝑡 (𝜓1(𝑡)

𝜓2(𝑡)) = ( 0 −i𝜔0
+i𝜔0 0 ) (𝜓1(𝑡)

𝜓2(𝑡)) ,

What is the difference between the quantum and classical
equations when it comes to symmetries?

What types of symmetries does the classical equation possess
(in the context of the Cartan-Altland-Zirnbauer classification)?

⟹ Requires us to work with complex Hilbert spaces
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries?
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (???)
(i𝜎2) 𝐻 (i𝜎2)−1 = +𝐻 (???)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝐶 not defined on ℋℝ = ℝ2

𝜎1, i𝜎2 and 𝜎3 are real matrices
⇝ classical spin transformations
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (chiral)
𝜎2 𝐻 𝜎−1

2 = +𝐻 (ordin.)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝜎1,3 𝐻 𝜎−1

1,3 = −𝐻 (???)
(i𝜎2) 𝐻 (i𝜎2)−1 = +𝐻 (???)
𝐶 𝐻 𝐶 = 𝐻 = −𝐻 (+PH)
(𝜎1,3 𝐶) 𝐻 (𝜎1,3 𝐶)−1 = +𝐻 (+TR)
(𝜎2 𝐶) 𝐻 (𝜎2 𝐶)−1 = −𝐻 (-PH)
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Symmetries of Classical and Quantum Spin Systems

Quantum

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓1(𝑡)
𝜓2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓1(𝑡)
𝜓2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: ( 𝜓1(𝑡)
𝜓2(𝑡) ) ∈ ℋℂ = ℂ2

Symmetries
𝑈1 = 𝜎1 (chiral) 𝑇1 = 𝜎1 𝐶 (+TR)
𝑈2 = 𝜎2 (ordin.) 𝑇2 = 𝜎2 𝐶 (-PH)
𝑈3 = 𝜎3 (chiral) 𝑇3 = 𝜎3 𝐶 (+TR)

𝐶 (+PH)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1 (???)
𝑉 ℝ

2 = i𝜎2 (???)
𝑉 ℝ

3 = 𝜎3 (???)
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Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological
Insulators (and many other techniques from quantum mechanics)
only work for operators acting on complex Hilbert spaces

TwoWays to Work With Complex Hilbert Spaces
1 Complexify classical equations

(introduces unphysical degrees of freedom)
2 Work with complex Ψ which represent real states 𝑀 = 2ReΨ

(establish 1-to-1 correspondence ℋℂ ↔ ℋℝ)
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Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological
Insulators (and many other techniques from quantum mechanics)
only work for operators acting on complex Hilbert spaces

TwoWays to Work With Complex Hilbert Spaces
1 Complexify classical equations

(introduces unphysical degrees of freedom)
2 Work with complex Ψ which represent real states 𝑀 = 2ReΨ

(establish 1-to-1 correspondence ℋℂ ↔ ℋℝ)
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Complexifying the Classical Equations

Complexification

Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: 𝑀 = Ψ+ + Ψ− ∈ ℋℝ ⊂ ℋℂ

Symmetries
𝑉 ℂ

1 = ???
𝑉 ℂ

2 = ???
𝑉 ℂ

3 = ???

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Complexifying the Classical Equations

Complexification

Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: 𝑀 = Ψ+ + Ψ− ∈ ℋℝ ⊂ ℋℂ

Symmetries
𝟙 ∣ℋℝ

= 𝐶 ∣ℋℝ
none vs. +PH

𝜎1,3 ∣ℋℝ
= 𝜎1,3 𝐶 ∣ℋℝ

chiral vs. +TR

i𝜎2 ∣ℋℝ
= i𝜎2 𝐶 ∣ℋℝ

ordin. vs. -PH

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Complexifying the Classical Equations

Complexification

Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: 𝑀 = Ψ+ + Ψ− ∈ ℋℝ ⊂ ℋℂ

Symmetries
• Redundant symmetry operations
• Different choices ⇒ different

topological classifications!?

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological
Insulators (and many other techniques from quantum mechanics)
only work for operators acting on complex Hilbert spaces

TwoWays to Work With Complex Hilbert Spaces
1 Complexify classical equations

(introduces unphysical degrees of freedom)
2 Work with complex Ψ which represent real states 𝑀 = 2ReΨ

(establish 1-to-1 correspondence ℋℂ ↔ ℋℝ)
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Consider Classical Equation on Complex Hilbert Space

Cartan-Altland-Zirnbauer classification scheme for Topological
Insulators (and many other techniques from quantum mechanics)
only work for operators acting on complex Hilbert spaces

TwoWays to Work With Complex Hilbert Spaces
1 Complexify classical equations

(introduces unphysical degrees of freedom)
2 Work with complex Ψ which represent real states 𝑀 = 2ReΨ

(establish 1-to-1 correspondence ℋℂ ↔ ℋℝ)
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Schrödinger Formalism of Classical Spin Waves

Complexification

Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: 𝑀 = Ψ+ + Ψ− ∈ ℋℝ⊂ ℋℂ

Symmetries
𝟙 ∣ℋℝ

= 𝐶 ∣ℋℝ
𝜎1,3 ∣ℋℝ

= 𝜎1,3 𝐶 ∣ℋℝ
i𝜎2 ∣ℋℝ

= i𝜎2 𝐶 ∣ℋℝ

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Schrödinger Formalism of Classical Spin Waves

𝜔 > 0 Representation

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓+,1(𝑡)
𝜓+,2(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝜓+,1(𝑡)
𝜓+,2(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: 𝑀 = 2ReΨ+ ∈ ℋℝ

Symmetries
𝑉 ℂ

1 = ???
𝑉 ℂ

2 = ???
𝑉 ℂ

3 = ???

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (𝑀𝑥(𝑡)
𝑀𝑦(𝑡)) = ( 0 − i𝜔0

+i𝜔0 0 ) (𝑀𝑥(𝑡)
𝑀𝑦(𝑡))

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: ( 𝑀𝑥(𝑡)

𝑀𝑦(𝑡) ) ∈ ℋℝ = ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Schrödinger Formalism of Classical Spin Waves

Eliminate superfluous degree of freedom in complexified equations
⇝ Systematically identify ℝ2 ≅ ℂ

𝑀(𝑡)⏟
real wave

= 2Re Ψ(𝑡)⏟
complex 𝜔 > 0 wave

1-to-1 correspondence
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Schrödinger Formalism of Classical Spin Waves

Eliminate superfluous degree of freedom in complexified equations
⇝ Systematically identify ℝ2 ≅ ℂ

𝑀(𝑡) = (cos𝜔0𝑡 − sin𝜔0𝑡
sin𝜔0𝑡 cos𝜔0𝑡 ) (𝑎

𝑏)

= 2ReΨ(𝑡) = 2Re((𝑎 − i𝑏) e−i𝜔0𝑡Ψ+)

where Ψ+ = ( 1
+i ) is the eigenvector of 𝐻 = 𝜔0 𝜎2 to +𝜔0 > 0.

1-to-1 correspondence
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Schrödinger Formalism of Classical Spin Waves

𝜔 > 0 Representation

Fundamental equation

i 𝜕
𝜕𝑡 Ψ(𝑡) = 𝜔0 𝜎2 Ψ(𝑡)

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: Ψ(𝑡) ∈ ℋ+ = spanℂ {( 1
+i )}

Symmetries
𝑉 ℂ

1 = ???
𝑉 ℂ

2 = ???
𝑉 ℂ

3 = ???

Classical

Fundamental equation

i 𝜕
𝜕𝑡 𝑀(𝑡) = 𝜔0 𝜎2 𝑀(𝑡)

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: 𝑀(𝑡) = 2ReΨ(𝑡) ∈ ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Translating Real Symmetries to 𝜔 > 0 Representation

Requirements
1 𝑀 = 2ReΨ, then

𝑉 ℝ
𝑗 𝑀 = 2Re (𝑉 ℂ

𝑗 Ψ)
2 𝑉 ℂ

𝑗 is a (anti)unitary on ℋ+, i. e. it
maps 𝜔 > 0 waves onto 𝜔 > 0
waves.

Consequences

1 𝑉 ℂ
𝑗 = {𝑉 ℝ

𝑗 (unitary)
𝑉 ℝ

𝑗 𝐶 (antiunitary)

2 𝑉 ℂ
𝑗 must commute with

𝐻 = 𝜔0 𝜎2



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classification Bulk-Edge Correspondence Da Capo

Translating Real Symmetries to 𝜔 > 0 Representation

Requirements
1 𝑀 = 2ReΨ, then

𝑉 ℝ
𝑗 𝑀 = 2Re (𝑉 ℂ

𝑗 Ψ)
2 𝑉 ℂ

𝑗 is a (anti)unitary on ℋ+, i. e. it
maps 𝜔 > 0 waves onto 𝜔 > 0
waves.

Consequences

1 𝑉 ℂ
𝑗 = {𝑉 ℝ

𝑗 (unitary)
𝑉 ℝ

𝑗 𝐶 (antiunitary)

2 𝑉 ℂ
𝑗 must commute with

𝐻 = 𝜔0 𝜎2
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Translating Real Symmetries to 𝜔 > 0 Representation

Real Symmetry
Complex

Representative
TI Classification

𝑉 ℝ
1 = 𝜎1 𝑉 ℂ

1 = 𝜎1 𝐶 +TR

𝑉 ℝ
2 = i𝜎2 𝑉 ℂ

2 = i𝜎2 ordinary

𝑉 ℝ
3 = 𝜎3 𝑉 ℂ

3 = 𝜎3 𝐶 +TR
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Translating Real Symmetries to 𝜔 > 0 Representation

𝜔 > 0 Representation

Fundamental equation

i 𝜕
𝜕𝑡 Ψ(𝑡) = 𝜔0 𝜎2 Ψ(𝑡)

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2 = 𝐻∗

States: Ψ(𝑡) ∈ ℋ+ = spanℂ {( 1
+i )}

Symmetries
𝑉 ℂ

1 = 𝜎1 𝐶 (+TR)
𝑉 ℂ

2 = i𝜎2 (ordinary)
𝑉 ℂ

3 = 𝜎3 𝐶 (+TR)

Classical

Fundamental equation

i 𝜕
𝜕𝑡 𝑀(𝑡) = 𝜔0 𝜎2 𝑀(𝑡)

Building blocks
Hamiltonian: 𝐻 = 𝜔0 𝜎2
States: 𝑀(𝑡) = 2ReΨ(𝑡) ∈ ℝ2

Symmetries
𝑉 ℝ

1 = 𝜎1
𝑉 ℝ

2 = i𝜎2
𝑉 ℝ

3 = 𝜎3
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Translating Real Symmetries to 𝜔 > 0 Representation

Moral of the Story
Not all “quantum” symmetries are symmetries of the classical
equations
⇝ Incompatible with the real-valuedness of classical waves

“Schrödinger” form of classical equations necessary to
identify the nature of these symmetries in the context of TIs

𝐶 is not ameaningful symmetry of the “Schrödinger” form of
the classical equations!

No fermionic time-reversal symmetry

Ideas apply to all classical wave equations!
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Applies directly to vacuumMaxwell equations
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Spin ⟶ In Vacuo Maxwell Equations

𝐻 = 𝜔0 𝜎2 ⟶ Rot = −𝜎2 ⊗ ∇×

𝑉 ℝ
1,3 = 𝜎1,3 ⟶ 𝑉 ℝ

1,3 = 𝜎1,3 ⊗ 𝟙
𝑉 ℝ

2 = i𝜎2 ⟶ 𝑉 ℝ
2 = i𝜎2 ⊗ 𝟙

Same Strategy
1 Complexify classical equations
2 Eliminate superfluous states in complex Hilbert space
3 Identify complex implementation of the three symmetries
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Schrödinger Formalism of In Vacuo Maxwell Equations

Complexification

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓𝐸(𝑡)
𝜓𝐻(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (𝜓𝐸(𝑡)
𝜓𝐻(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇× = 𝑀∗

States: Ψ(𝑡) ∈ 𝐿2(ℝ3, ℂ6)
Symmetries
𝑉 ℂ

1 = (𝜎1 ⊗ 𝟙) 𝐶 (+TR)
𝑉 ℂ

2 = i𝜎2 ⊗ 𝟙 (ordinary)
𝑉 ℂ

3 = (𝜎3 ⊗ 𝟙) 𝐶 (+TR)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (E(𝑡)
H(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (E(𝑡)
H(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇×

States: ( E(𝑡)
H(𝑡) ) ∈ 𝐿2(ℝ3, ℝ6)

Symmetries
𝑉 ℝ

1 = 𝜎1 ⊗ 𝟙
𝑉 ℝ

2 = i𝜎2 ⊗ 𝟙
𝑉 ℝ

3 = 𝜎3 ⊗ 𝟙
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Schrödinger Formalism of In Vacuo Maxwell Equations

Representing real, transversal EM Fields as complex 𝜔 > 0 waves

(E(𝑡),H(𝑡))⏟⏟⏟⏟⏟
real wave

= 2Re Ψ(𝑡)⏟
complex 𝜔 > 0 wave

⟹ Ψ ∈ ℋ+ = {complex 𝜔 > 0 waves}.
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Schrödinger Formalism of In Vacuo Maxwell Equations

𝜔 > 0 Representation

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓𝐸(𝑡)
𝜓𝐻(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (𝜓𝐸(𝑡)
𝜓𝐻(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇× = 𝑀∗

States: Ψ(𝑡) ∈ {compl. 𝜔 > 0 waves}
Symmetries
𝑉 ℂ

1 = (𝜎1 ⊗ 𝟙) 𝐶 (+TR)
𝑉 ℂ

2 = i𝜎2 ⊗ 𝟙 (ordinary)
𝑉 ℂ

3 = (𝜎3 ⊗ 𝟙) 𝐶 (+TR)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (E(𝑡)
H(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (E(𝑡)
H(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇×

States: ( E(𝑡)
H(𝑡) ) ∈ 𝐿2(ℝ3, ℝ6)

Symmetries
𝑉 ℝ

1 = 𝜎1 ⊗ 𝟙
𝑉 ℝ

2 = i𝜎2 ⊗ 𝟙
𝑉 ℝ

3 = 𝜎3 ⊗ 𝟙
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Schrödinger Formalism of In Vacuo Maxwell Equations

Real Symmetry
Complex

Representative
TI Classification Meaning

𝑉 ℝ
1 = 𝜎1 ⊗ 𝟙 𝑉 ℂ

1 = (𝜎1 ⊗𝟙) 𝐶 +TR
Flips helicity and
arrow of time

𝑉 ℝ
2 = i𝜎2 ⊗ 𝟙 𝑉 ℂ

2 = i𝜎2 ⊗ 𝟙 ordinary Dual symmetry

𝑉 ℝ
3 = 𝜎3 ⊗ 𝟙 𝑉 ℂ

3 = (𝜎3 ⊗𝟙) 𝐶 +TR
Ordinary EM
time-reversal

Media selectively break or preserve these symmetries!
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Schrödinger Formalism of In Vacuo Maxwell Equations

𝜔 > 0 Representation

Fundamental equation

i
𝜕

𝜕𝑡 (𝜓𝐸(𝑡)
𝜓𝐻(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (𝜓𝐸(𝑡)
𝜓𝐻(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇× = 𝑀∗

States: Ψ(𝑡) ∈ {compl. 𝜔 > 0 waves}
Symmetries
𝑉 ℂ

1 = (𝜎1 ⊗ 𝟙) 𝐶 (+TR)
𝑉 ℂ

2 = i𝜎2 ⊗ 𝟙 (ordinary)
𝑉 ℂ

3 = (𝜎3 ⊗ 𝟙) 𝐶 (+TR)

Classical
Fundamental equation

i
𝜕

𝜕𝑡 (E(𝑡)
H(𝑡)) = ( 0 + i∇×

−i∇× 0 ) (E(𝑡)
H(𝑡))

Building blocks
Hamiltonian: 𝑀 = −𝜎2 ⊗ ∇×

States: ( E(𝑡)
H(𝑡) ) ∈ 𝐿2(ℝ3, ℝ6)

Symmetries
𝑉 ℝ

1 = 𝜎1 ⊗ 𝟙
𝑉 ℝ

2 = i𝜎2 ⊗ 𝟙
𝑉 ℝ

3 = 𝜎3 ⊗ 𝟙
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1 Quantum vs. Classical

2 Maxwell’s Equations in Linear Media

3 Topological Classification of Electromagnetic Media

4 Obstacles For Proving the Photonic Bulk-Edge Correspondence

5 Da Capo
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Main Messages of This Talk

1 Rewrite Maxwell’s equations in the form of a Schrödinger equation.
De Nittis & L., Annals of Physics 396, pp. 221–260, 2018

2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer
scheme.
De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018

3 Adapt existing techniques to prove bulk-boundary correspondences
… in progress
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Maxwell’s Equations in Linear, Dispersionless Media

( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) 𝜕
𝜕𝑡 (E(𝑡)

H(𝑡)) = (+∇ ×H(𝑡)
−∇ × E(𝑡)) − (0

0) (dynamical)

(∇⋅
∇⋅) ( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) (E(𝑡)
H(𝑡)) = (0

0) (constraint)

Constituent Parts
Material weights phenomenologically describe properties of
the medium

Absence of sources
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Maxwell’s Equations in Linear, Dispersionless Media

( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) 𝜕
𝜕𝑡 (E(𝑡)

H(𝑡)) = (+∇ ×H(𝑡)
−∇ × E(𝑡)) − (0

0) (dynamical)

(∇⋅
∇⋅) ( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) (E(𝑡)
H(𝑡)) = (0

0) (constraint)

Constituent Parts
Material weights phenomenologically describe properties of
the medium

Absence of sources
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Maxwell’s Equations in Linear, Dispersionless Media

( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) 𝜕
𝜕𝑡 (E(𝑡)

H(𝑡)) = (+∇ ×H(𝑡)
−∇ × E(𝑡)) − (0

0) (dynamical)

(∇⋅
∇⋅) ( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) (E(𝑡)
H(𝑡)) = (0

0) (constraint)

Constituent Parts
Material weights phenomenologically describe properties of
the medium

Absence of sources
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Maxwell’s Equations in Linear, Dispersionless Media

( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) 𝜕
𝜕𝑡 (E(𝑡)

H(𝑡)) = (+∇ ×H(𝑡)
−∇ × E(𝑡)) − (0

0) (dynamical)

(∇⋅
∇⋅) ( 𝜀 𝜒𝐸𝐻

𝜒𝐻𝐸 𝜇 ) (E(𝑡)
H(𝑡)) = (0

0) (constraint)

Abbreviations and Notation
Multiply both sides of dynamical Maxwell equations by i

𝑊(𝑥) = ( 𝜀(𝑥) 𝜒𝐸𝐻(𝑥)
𝜒𝐻𝐸(𝑥) 𝜇(𝑥) )

Introduce Rot ∶= ( 0 +i∇×
−i∇× 0 ) and Div ∶= ( ∇⋅

∇⋅ )



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classification Bulk-Edge Correspondence Da Capo
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Maxwell’s Equations in Linear, Dispersionless Media
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Maxwell’s Equations in Linear, Dispersionless Media
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
𝜕𝑡 ( E(𝑡)

H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!
⇝ e. g. gyrotropic media (QHE of Light!)

Immediate Consequences
Equations must be considered on subspaces
complex Banach space 𝐿2(ℝ3, ℂ6)
Even if initial conditions are real, solutions
(E(𝑡) , H(𝑡)) ≠ (E(𝑡) , H(𝑡)) acquire imaginary part over time!
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
𝜕𝑡 ( E(𝑡)

H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!
⇝ e. g. gyrotropic media (QHE of Light!)

Immediate Consequences
Equations must be considered on subspaces
complex Banach space 𝐿2(ℝ3, ℂ6)
Even if initial conditions are real, solutions
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
𝜕𝑡 ( E(𝑡)

H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!
⇝ e. g. gyrotropic media (QHE of Light!)

Immediate Consequences
Equations must be considered on subspaces
complex Banach space 𝐿2(ℝ3, ℂ6)
Even if initial conditions are real, solutions
(E(𝑡) , H(𝑡)) ≠ (E(𝑡) , H(𝑡)) acquire imaginary part over time!
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
𝜕𝑡 ( E(𝑡)

H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!

Three Options
1 Take the real part of the complex wave

⟹ Breaks conservation of energy!
2 Give up on real-valuedness of electromagnetic fields.

⇝ Inconsistent interpretation (complex Lorentz force!?!)
3 Modify equations of motion. ⇝ Correct choice!
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
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H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!

Three Options
1 Take the real part of the complex wave

⟹ Breaks conservation of energy!
2 Give up on real-valuedness of electromagnetic fields.

⇝ Inconsistent interpretation (complex Lorentz force!?!)
3 Modify equations of motion. ⇝ Correct choice!
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Commonly Used, But Unphysical Maxwell’s Equations

𝑊 i 𝜕
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H(𝑡) ) = Rot ( E(𝑡)
H(𝑡) ) (dynamical)

Div𝑊( E(𝑡)
H(𝑡) ) = 0 (constraint)

Usually material weights are 𝑊 ≠ 𝑊 complex!

Three Options
1 Take the real part of the complex wave

⟹ Breaks conservation of energy!
2 Give up on real-valuedness of electromagnetic fields.

⇝ Inconsistent interpretation (complex Lorentz force!?!)
3 Modify equations of motion. ⇝ Correct choice
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Maxwell’s Equations for Gyrotropic Media

Real solutions linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ− = 2ReΨ±

Pair of equations
(derived from Maxwell’s equations for linear, dispersive media!)

𝜔 > 0 ∶ {𝑊+ i𝜕𝑡Ψ+ = RotΨ+
Div𝑊+ Ψ+ = 0

𝜔 < 0 ∶ {𝑊− i𝜕𝑡Ψ− = RotΨ−
Div𝑊− Ψ− = 0

𝑊(𝑡, 𝑥) = 𝑊(𝑡, 𝑥) ⟺ 𝑊−(𝑥) = 𝑊+(𝑥)
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Maxwell’s Equations for Gyrotropic Media

Real solutions linear combination of complex ±𝜔 waves:
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Maxwell’s Equations for Gyrotropic Media

Real solutions linear combination of complex ±𝜔 waves:

(E,H) = Ψ+ + Ψ− = 2ReΨ+

Pair of equations
(derived from Maxwell’s equations for linear, dispersive media!)
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Maxwell’s Equations for Gyrotropic Media

Physically Meaningful Equations
Real solutions (E(𝑡) , H(𝑡)) = 2ReΨ+(𝑡) where Ψ+(𝑡) solves

𝜔 > 0 ∶ {𝑊+ i𝜕𝑡Ψ+ = RotΨ+
Div𝑊+ Ψ+ = 0

Compatibility with reality-condition baked in!

Difference between physical and unphysical equations:
defined on different subspaces of Banach space 𝐿2(ℝ3, ℂ6)

ℋ+ = {complex 𝜔 > 0 states} ⊊ ℋℂ,⟂ = ker(Div𝑊+)
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Maxwell’s Equations for Gyrotropic Media

Physically Meaningful Equations
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Schrödinger formalism for Maxwell’s
equations in non-dispersivemedia
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Relevant Electromagnetic Media

Assumption (Material weights)

𝑊+(𝑥) = ( 𝜀(𝑥) 𝜒(𝑥)
𝜒(𝑥)∗ 𝜇(𝑥))

1 The medium is lossless.
(𝑊 ∗

+ = 𝑊+)
2 𝑊+ describes a positive

index medium.
(0 < 𝑐 𝟙 ≤ 𝑊+ ≤ 𝐶 𝟙)
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Schrödinger Formalism of Maxwell’s Equations

Theorem (De Nittis & L. (2018))

Real transversal states
(E,H) = 2ReΨ

(𝜀 𝜒
𝜒∗ 𝜇) 𝜕

𝜕𝑡 (𝜓𝐸

𝜓𝐻) = (+∇ × 𝜓𝐸

−∇ × 𝜓𝐻)

⎫}
⎬}⎭

⟷
⎧{{
⎨{{⎩

Complex states with 𝜔 > 0
Ψ = 𝑃+(E,H)

𝑀 = 𝑊 −1 Rot |𝜔>0 = 𝑀∗𝑊

i 𝜕𝑡Ψ = 𝑀Ψ

ℋ = {Ψ ∈ 𝐿2(ℝ3, ℂ6) ∣ Ψ is 𝜔 > 0 state}

⟨Φ, Ψ⟩𝑊 = ∫
ℝ3

d𝑥 Φ(𝑥) ⋅ 𝑊(𝑥)Ψ(𝑥)
Energy scalar product

(All subscripts + dropped to simplify notation.)
(De Nittis & L., Annals of Physics 396, pp. 221–260, 2018)
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1 Quantum vs. Classical

2 Maxwell’s Equations in Linear Media

3 Topological Classification of Electromagnetic Media

4 Obstacles For Proving the Photonic Bulk-Edge Correspondence

5 Da Capo
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Main Messages of This Talk

1 Rewrite Maxwell’s equations in the form of a Schrödinger equation.
De Nittis & L., Annals of Physics 396, pp. 221–260, 2018

2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer
scheme.
De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018

3 Adapt existing techniques to prove bulk-boundary correspondences
… in progress
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Symmetries of the In Vacuo Maxwell Equations

𝜔 > 0 ∶ {i𝜕𝑡Ψ = RotΨ
DivΨ = 0

Real Symmetry
Complex

Representative
TI Classification Meaning

𝑉 ℝ
1 = 𝜎1 ⊗ 𝟙 𝑉 ℂ

1 = (𝜎1 ⊗𝟙) 𝐶 +TR
Flips helicity and
arrow of time

𝑉 ℝ
2 = i𝜎2 ⊗ 𝟙 𝑉 ℂ

2 = i𝜎2 ⊗ 𝟙 ordinary Dual symmetry

𝑉 ℝ
3 = 𝜎3 ⊗ 𝟙 𝑉 ℂ

3 = (𝜎3 ⊗𝟙) 𝐶 +TR
Ordinary EM
time-reversal
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Media Breaking/Preserving Symmetries

Medium has symmetry 𝑉 ℂ ⟺ {[Rot , 𝑉 ℂ] = 0 (vac. symm.)
𝑉 ℂ (anti)unitary on ℋ
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Media Breaking/Preserving Symmetries

Medium has symmetry 𝑉 ℂ ⟺ [𝑊, 𝑉 ℂ] = 0
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Photonic Crystals: Periodic Electromagnetic Media
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Material vs. Crystallographic Symmetries

Material

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

Properties of and relations
between 𝜀, 𝜇 and 𝜒
𝑉 ℂ

1 , 𝑉 ℂ
2 and 𝑉 ℂ

3

Crystallographic

Wu & Hu (2015)

© 2013 Macmillan Publishers Limited.  All rights reserved. 

direct-product group of I4132 and inversion. The red gyroid in
Fig. 1a is defined by filling the inner space of the isosurface
( g(r) . 1.1) with high-refractive-index material (

!!
1

√
= n = 4) and

air otherwise. The magnetic permeability m is unity everywhere.
(These values for the dielectrics correspond to germanium and air
at optical frequencies.) The blue gyroid is the inversion counterpart
of the red gyroid with respect to the origin; the two gyroids do not
overlap in space. The band structures of both the SG photonic
crystal and the DG photonic crystal are plotted in Fig. 2a in
orange and blue, respectively. The SG photonic crystal26 has a
32% complete bandgap between the second and third bands from
0.42 to 0.58 in normalized frequencies. The DG photonic crystal
band structure26 contains a unique frequency-isolated threefold
degeneracy among the third, fourth and fifth bands at the centre
of the Brillouin zone (G), which is highlighted by green ellipses in
Fig. 2a. The first and second bands are almost degenerate, as are
the third and fourth bands, which concave downwards and touch
the fifth band, which concaves upwards. The threefold degenerate
point is well isolated in frequency from other states in the band
structure, making it an ideal starting point for applying
symmetry-breaking perturbations.

Line nodes and their flat surface bands
The threefold degeneracy of quadratic dispersions at G can be lifted
by breaking the I4132 space group without breaking P or T sym-
metries. This is done by replacing a part of the gyroid material
with two air-spheres (one on each gyroid). The first air-sphere is
placed in the red gyroid as illustrated in Fig. 1a, and the other is
its inversion counterpart in the blue gyroid (not shown in
Fig. 1a). This perturbation lifts the fifth band out of the threefold
degeneracy with the third and fourth bands at G, as shown in
Fig. 2b. The fourth and fifth bands cross one another linearly,
forming a closed line degeneracy around the G point in the (101)
plane through G, inside an otherwise complete frequency gap.
The area enclosed by this nodal line can be controlled by the
strength of the perturbations (the radii of the air-spheres).

Similar to the line-node semimetals27, the surface states associ-
ated with this line-node bulk bandstructure contain flat dispersion
bands. We constructed an interface between the DG and SG photo-
nic crystals by removing only the perturbed gyroid (Fig. 1c). The
suface states are trapped by the pseudo-gap of the DG and the full
gap of the SG. We define a termination parameter t (0 ≤ t , 1)
to indicate the periodically equivalent termination positions along
the [101] direction. t¼ 0 is set at the origin of the unit cell, as
shown in Fig. 1c.

Figure 3a shows one surface band in the bulk pseudo-gap of the
original DG photonic crystal of quadratic point degeneracy. When t
increases periodically, the surface dispersion, at every surface k
point, moves from the air band (conduction band) through the
pseudo-gap to the dielectric band (valence band)28. At G, the
surface dispersion is pinned into the bulk states at the degeneracy
point. The surface band of t¼ 0.0, except for the H−P region, is
very flat. The high density of states associated with the flat surface
dispersion is potentially useful for enhancing the light–matter inter-
actions at the surface. Even more interesting surface states are shown
in Fig. 3b for the line-node photonic crystal. The nodal line bulk
states project onto the (101) surface Brillouin zone as a closed line
that separates the surface Brillouin zone into two disconnected
areas. So, the surface dispersions can be flat bands in either of the
two regions in the Brillouin zone. The green dispersion in Fig. 3b
has all its frequencies nearly degenerate inside the line-node area,
while the red dispersion is relatively flat in the rest of the
Brillouin zone. The general features of the flat surface dispersions
do not change when the line-node photonic crystal is terminated
by other means. For example, when the SG photonic crystal is
replaced by air, one could selectively enhance, by changing the
surface terminations, the light emission of surface sources into
either radiative or non-radiative surface modes (that is, inside or
outside the light cone of air).

Phase diagrams of Weyl points under PT-breaking
In what follows, we break the PT symmetry to obtain Weyl points of
photons for the first time. We start by individually breaking P or T
of the DG photonic crystal, and then consider the general case
where P and T are broken simultaneously.

First, we break P while preserving T. Because T maps a Weyl
point at k to 2k with the same chirality (as velocities and sy
change signs), there must exist at least two other Weyl points,
both of opposite chirality, to neutralize the whole system. So, the
minimal number of Weyl points in this case has to be four. As
illustrated in Fig. 1a, we break P by placing only one air-sphere
on one of the gyroids (but not the other) at the middle point of
two neighbouring triple junctions. Under this pure P-breaking
perturbation, two pairs of Weyl points, shown in Fig. 2c, emerge
along G-N and G-H directions. The fact that all the Weyl
points appear along high-symmetry lines significantly simplifies
the analysis. There are no other states in the vicinity of the Weyl
points’ frequencies.
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Figure 1 | Real-space unit cell and reciprocal-space Brillouin zone of the
gyroid photonic crystals. a, Real-space geometry in a bcc unit cell where
a1 = (−1, 1, 1)a/2, a2 = (1,−1, 1)a/2 and a3 = (1, 1,−1)a/2. The two
identical gyroid structures in red and blue are high-refractive-index (n¼ 4)
materials; they are inversion pairs with respect to the origin (o). The
illustrated air-sphere of radius r (r/a¼0.13) located at (1/4,−1/8, 1/2)a is
only placed there when structural symmetry needs to be broken. b, The bulk
and (101) surface Brillouin zones of the bcc lattice. Weyl points and line
nodes investigated in this work lie in the green (101) plane through the
origin (G) of the bulk Brillouin zone, projecting onto the (101) surface
Brillouin zone. G-N is along [101] and G-H is along [010] (ŷ). c, An
air-isolated DG surface can be formed by terminating the perturbed gyroid
(red) but not the other (blue). The SG photonic crystal on top has a large
complete bandgap, as shown in Fig. 2a.
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Material vs. Crystallographic Symmetries

Material

𝑊 = ( 𝜀 𝜒
𝜒∗ 𝜇)

Properties of and relations
between 𝜀, 𝜇 and 𝜒
𝑉 ℂ

1 , 𝑉 ℂ
2 and 𝑉 ℂ

3

Crystallographic

Wu & Hu (2015)

© 2013 Macmillan Publishers Limited.  All rights reserved. 

direct-product group of I4132 and inversion. The red gyroid in
Fig. 1a is defined by filling the inner space of the isosurface
( g(r) . 1.1) with high-refractive-index material (

!!
1

√
= n = 4) and

air otherwise. The magnetic permeability m is unity everywhere.
(These values for the dielectrics correspond to germanium and air
at optical frequencies.) The blue gyroid is the inversion counterpart
of the red gyroid with respect to the origin; the two gyroids do not
overlap in space. The band structures of both the SG photonic
crystal and the DG photonic crystal are plotted in Fig. 2a in
orange and blue, respectively. The SG photonic crystal26 has a
32% complete bandgap between the second and third bands from
0.42 to 0.58 in normalized frequencies. The DG photonic crystal
band structure26 contains a unique frequency-isolated threefold
degeneracy among the third, fourth and fifth bands at the centre
of the Brillouin zone (G), which is highlighted by green ellipses in
Fig. 2a. The first and second bands are almost degenerate, as are
the third and fourth bands, which concave downwards and touch
the fifth band, which concaves upwards. The threefold degenerate
point is well isolated in frequency from other states in the band
structure, making it an ideal starting point for applying
symmetry-breaking perturbations.

Line nodes and their flat surface bands
The threefold degeneracy of quadratic dispersions at G can be lifted
by breaking the I4132 space group without breaking P or T sym-
metries. This is done by replacing a part of the gyroid material
with two air-spheres (one on each gyroid). The first air-sphere is
placed in the red gyroid as illustrated in Fig. 1a, and the other is
its inversion counterpart in the blue gyroid (not shown in
Fig. 1a). This perturbation lifts the fifth band out of the threefold
degeneracy with the third and fourth bands at G, as shown in
Fig. 2b. The fourth and fifth bands cross one another linearly,
forming a closed line degeneracy around the G point in the (101)
plane through G, inside an otherwise complete frequency gap.
The area enclosed by this nodal line can be controlled by the
strength of the perturbations (the radii of the air-spheres).

Similar to the line-node semimetals27, the surface states associ-
ated with this line-node bulk bandstructure contain flat dispersion
bands. We constructed an interface between the DG and SG photo-
nic crystals by removing only the perturbed gyroid (Fig. 1c). The
suface states are trapped by the pseudo-gap of the DG and the full
gap of the SG. We define a termination parameter t (0 ≤ t , 1)
to indicate the periodically equivalent termination positions along
the [101] direction. t¼ 0 is set at the origin of the unit cell, as
shown in Fig. 1c.

Figure 3a shows one surface band in the bulk pseudo-gap of the
original DG photonic crystal of quadratic point degeneracy. When t
increases periodically, the surface dispersion, at every surface k
point, moves from the air band (conduction band) through the
pseudo-gap to the dielectric band (valence band)28. At G, the
surface dispersion is pinned into the bulk states at the degeneracy
point. The surface band of t¼ 0.0, except for the H−P region, is
very flat. The high density of states associated with the flat surface
dispersion is potentially useful for enhancing the light–matter inter-
actions at the surface. Even more interesting surface states are shown
in Fig. 3b for the line-node photonic crystal. The nodal line bulk
states project onto the (101) surface Brillouin zone as a closed line
that separates the surface Brillouin zone into two disconnected
areas. So, the surface dispersions can be flat bands in either of the
two regions in the Brillouin zone. The green dispersion in Fig. 3b
has all its frequencies nearly degenerate inside the line-node area,
while the red dispersion is relatively flat in the rest of the
Brillouin zone. The general features of the flat surface dispersions
do not change when the line-node photonic crystal is terminated
by other means. For example, when the SG photonic crystal is
replaced by air, one could selectively enhance, by changing the
surface terminations, the light emission of surface sources into
either radiative or non-radiative surface modes (that is, inside or
outside the light cone of air).

Phase diagrams of Weyl points under PT-breaking
In what follows, we break the PT symmetry to obtain Weyl points of
photons for the first time. We start by individually breaking P or T
of the DG photonic crystal, and then consider the general case
where P and T are broken simultaneously.

First, we break P while preserving T. Because T maps a Weyl
point at k to 2k with the same chirality (as velocities and sy
change signs), there must exist at least two other Weyl points,
both of opposite chirality, to neutralize the whole system. So, the
minimal number of Weyl points in this case has to be four. As
illustrated in Fig. 1a, we break P by placing only one air-sphere
on one of the gyroids (but not the other) at the middle point of
two neighbouring triple junctions. Under this pure P-breaking
perturbation, two pairs of Weyl points, shown in Fig. 2c, emerge
along G-N and G-H directions. The fact that all the Weyl
points appear along high-symmetry lines significantly simplifies
the analysis. There are no other states in the vicinity of the Weyl
points’ frequencies.
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Figure 1 | Real-space unit cell and reciprocal-space Brillouin zone of the
gyroid photonic crystals. a, Real-space geometry in a bcc unit cell where
a1 = (−1, 1, 1)a/2, a2 = (1,−1, 1)a/2 and a3 = (1, 1,−1)a/2. The two
identical gyroid structures in red and blue are high-refractive-index (n¼ 4)
materials; they are inversion pairs with respect to the origin (o). The
illustrated air-sphere of radius r (r/a¼0.13) located at (1/4,−1/8, 1/2)a is
only placed there when structural symmetry needs to be broken. b, The bulk
and (101) surface Brillouin zones of the bcc lattice. Weyl points and line
nodes investigated in this work lie in the green (101) plane through the
origin (G) of the bulk Brillouin zone, projecting onto the (101) surface
Brillouin zone. G-N is along [101] and G-H is along [010] (ŷ). c, An
air-isolated DG surface can be formed by terminating the perturbed gyroid
(red) but not the other (blue). The SG photonic crystal on top has a large
complete bandgap, as shown in Fig. 2a.
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Topological Classification of EM Media

Assumption
𝑊 has no crystallographic symmetries.
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic

𝑊 = ( 𝜀 0
0 𝜇 ) = ( 𝜀 0

0 𝜇 )

𝑉 ℂ
3 = (𝜎3 ⊗ 𝟙) 𝐶

Dual-symmetric, non-gyrotr.

𝑊 = ( 𝜀 −i𝜒
+i𝜒 𝜀 ) = ( 𝜀 −i𝜒

+i𝜒 𝜀 )

𝑉 ℂ
1 = (𝜎1 ⊗ 𝟙) 𝐶, 𝑉 ℂ

3 = (𝜎3 ⊗ 𝟙) 𝐶

Gyrotropic

𝑊 = ( 𝜀 0
0 𝜇 ) ≠ ( 𝜀 0

0 𝜇 )

No symmetries

Magneto-electric

𝑊 = ( 𝜀 𝜒
𝜒 𝜀 ) = ( 𝜀 𝜒

𝜒 𝜀 )

𝑉 ℂ
1 = (𝜎1 ⊗ 𝟙) 𝐶

(De Nittis & L., arxiv:1710.08104 (2017))
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic
Class AI

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.
Two +TR ⟹ 2 × Class AI

Realized, e. g. vacuum and YIG

Gyrotropic
Class A (Quantum Hall Class)

Realized, e. g. YIG for microwaves

Magneto-electric
Class AI

Realized, e. g. Tellegen media

4 different topological classes of EMmedia

(De Nittis & L., arxiv:1710.08104 (2017))
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Topological Classification of EM Media

Theorem (De Nittis & L. (2017))

Non-gyrotropic
Class AI

Realized, e. g. dielectrics

Dual-symmetric, non-gyrotr.
Two +TR ⟹ 2 × Class AI

Realized, e. g. vacuum and YIG

Gyrotropic
Class A (Quantum Hall Class)
Realized, e. g. YIG for microwaves

Magneto-electric
Class AI

Realized, e. g. Tellegen media

Only one is topologically non-trivial in 𝑑 ≤ 3

(De Nittis & L., arxiv:1710.08104 (2017))
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Conclusions from Topological Classification

Some works proposed to use unphysical symmetries
(e. g. fermionic time-reversal symmetries 𝑉f = (𝜎2 ⊗ 𝟙) 𝐶)

Class AII cannot occur via material symmetries alone
⇝ No ℤ2-valued Kane-Mele-type topological invariants
supported!

Tight-binding operators cannot have incompatible
symmetries!
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1 Quantum vs. Classical

2 Maxwell’s Equations in Linear Media

3 Topological Classification of Electromagnetic Media

4 Obstacles For Proving the Photonic Bulk-Edge Correspondence

5 Da Capo
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Main Messages of This Talk

1 Rewrite Maxwell’s equations in the form of a Schrödinger equation.
De Nittis & L., Annals of Physics 396, pp. 221–260, 2018

2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer
scheme.
De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018

3 Adapt existing techniques to prove bulk-boundary correspondences
… in progress
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Physical Setting

Joannopoulos, Soljačić et al (2009)

Quasi-2d photonic crystal

Topological photonic crystal
of class A
(i. e. 𝑊 breaks 𝑉 ℂ

1 and 𝑉 ℂ
3 )
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A Physicist’s POV of the Bulk-Edge Correspondence

Joannopoulos, Soljačić et al (2009)

0 + 1 = 1 ⇒ 1 edge mode
Skirlo et al, PRL 113, 113904, 2014

0 + 0 − 2 + 4 + 2 = 4 ⇒ 4 edge modes

Works as advertised!
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge= net ♯ of edge modes

Tasks
1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
3 Proof of “mathematical” bulk-edge correspondence
4 Identify the topological observable ⇝ Poynting vector?
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Haldane’s Photonic Bulk-Edge Correspondence
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1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge= net ♯ of edge modes

Tasks
1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
3 Proof of “mathematical” bulk-edge correspondence
4 Identify the topological observable ⇝ Poynting vector?
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge= net ♯ of edge modes

Tasks
1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
3 Proof of “mathematical” bulk-edge correspondence
4 Identify the topological observable ⇝ Poynting vector?
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge= net ♯ of edge modes

Tasks
1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
3 Proof of “mathematical” bulk-edge correspondence
4 Identify the topological observable ⇝ Poynting vector?
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Haldane’s Photonic Bulk-Edge Correspondence

Conjecture

𝑇bulk = 𝑇edge= net ♯ of edge modes

Tasks
1 Define topological bulk invariant 𝑇bulk
2 Define edge system

(⇝ boundary conditions can break +TR symmetries!)
3 Proof of “mathematical” bulk-edge correspondence
4 Identify the topological observable ⇝ Poynting vector?
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The Frequency Band Picture

A+

n2

n-4

n-3

n-2

n-1

n1

n3
n4

A-

B-

B+

-p p
k

w

Theorem (De Nittis & L., 2014)
1 Bloch bands and functions locally analytic away from crossings

2 2 ground state bandswith ≈ linear dispersion at 𝑘 = 0 and 𝜔 = 0
3 𝑃gs(𝑘) discontinuous at 𝑘 = 0 (jump in dimensionality!)

(Theorem 1.4 and Lemma 3.7 in De Nittis & L., Documenta Math. 19, pp. 63–101, 2014)
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The Bloch Vector Bundle

A+

n2

n-4

n-3

n-2

n-1

n1

n3
n4

A-

B-

B+

-p p
k

w

Proceed as Usual
1 Select bulk frequency band gap.
2 Define the “Fermi projection” 𝑃(𝑘) ∶= ∑𝑛

𝑗=1 |𝜑𝑗(𝑘)⟩⟨𝜑𝑗(𝑘)|.
3 Define the Bloch bundle

ℰ𝕋∗(𝑃 ) ∶ ⨆
𝑘∈𝕋∗

ran𝑃(𝑘) 𝜋⟶ 𝕋∗

In Bloch-Floquet representation.
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The Bloch Vector Bundle

A+

n2

n-4

n-3

n-2

n-1

n1

n3
n4

A-

B-

B+

-p p
k

w

Proposition
1 ℰ𝕋∗(𝑃 ) is only a bundle over the Brillouin torus 𝕋∗, but not a

vector bundle.
2 The restriction ℰ𝕋∗ {0}(𝑃 ) ∶= ℰ𝕋∗(𝑃 )∣𝕋∗ {0} is a vector bundle.
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The Bloch Vector Bundle

Proposition
1 ℰ𝕋∗(𝑃 ) is only a bundle over the Brillouin torus 𝕋∗, but not a

vector bundle.
2 The restriction ℰ𝕋∗ {0}(𝑃 ) ∶= ℰ𝕋∗(𝑃 )∣𝕋∗ {0} is a vector bundle.

Origin of the Problem
𝑘 ↦ 𝑃gs(𝑘) is not continuous at 𝑘 = 0.
𝑘 ↦ 𝑃(𝑘) − 𝑃gs(𝑘) is analytic at 𝑘 = 0.
(The ground state bands are responsible for the bad behavior.)

⟹ 𝑘 ↦ 𝑃(𝑘) is continuous (in fact, analytic) only on 𝕋∗ {0}.
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Classification of the Bloch Bundle

Idea 1
Classify the bundle over the entire Brillouin torus 𝕋∗

ℰ𝕋∗(𝑃 ) ∶ ⨆
𝑘∈𝕋∗

ran𝑃(𝑘) 𝜋⟶ 𝕋∗

Only a bundle, not a vector bundle!

Classification theory not well-developed

What is the topological invariant here?!?
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Classification of the Bloch Bundle

Idea 2
Classify the bundle over 𝕋∗ {0}

ℰ𝕋∗ {0}(𝑃 ) ∶ ⨆
𝑘∈𝕋∗ {0}

ran𝑃(𝑘) 𝜋⟶ 𝕋∗ {0}

Bona fide vector bundle
𝕋∗ {0} deformation retracts to 𝕊1 ⟹

Vec𝑘(𝕋∗ {0}) ≅ Vec𝑘(𝕊1) = 0

Chern numberCh1(ℰ𝕋∗ {0}(𝑃 )) = 0 well-defined, but always 0!
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Classification of the Bloch Bundle

Idea 3
Extend the vector bundle over 𝕋∗ 𝐵𝜀

ℰ𝕋∗ 𝐵𝜀
(𝑃 ) ∶ ⨆

𝑘∈𝕋∗ 𝐵𝜀

ran𝑃(𝑘) 𝜋⟶ 𝕋∗ 𝐵𝜀

to a vector bundle over 𝕋∗

Relative cohomology theory? Might work, but we need to
construct a “natural” extension

It seems that the Chern charge

∫
|𝑘|=𝜀

d𝑘 Tr(𝒜gs(𝑘)) = 0

vanishes. ⇝ Extension by vector bundle surgery possible?
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Classification of the Bloch Bundle

Joannopoulos, Soljačić et al (2009)

0 + 1 = 1 ⇒ 1 edge mode
Skirlo et al, PRL 113, 113904, 2014

0 + 0 − 2 + 4 + 2 = 4 ⇒ 4 edge modes

Chern charges of ground state bands 0
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Classification of the Bloch Bundle

Idea 3
Extend the vector bundle over 𝕋∗ 𝐵𝜀

ℰ𝕋∗ 𝐵𝜀
(𝑃 ) ∶ ⨆

𝑘∈𝕋∗ 𝐵𝜀

ran𝑃(𝑘) 𝜋⟶ 𝕋∗ 𝐵𝜀

to a vector bundle over 𝕋∗

Relative cohomology theory? Might work, but we need to
construct a “natural” extension

It seems that the Chern charge

∫
|𝑘|=𝜀

d𝑘 Tr(𝒜gs(𝑘)) = 0

vanishes. ⇝ Extension by vector bundle surgery possible?
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Thank you for your attention!
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Interaction of Time-Reversal &
Crystallographic Symmetries
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Talk Based On

De Nittis & L., On the Role of Symmetries in Photonic Crystals, Annals of Physics
350, pp. 568–587, 2014

De Nittis & L., The Schrödinger Formalism of Electromagnetism and Other
Classical Waves—How toMake Quantum-Wave Analogies Rigorous, Annals of
Physics 396, pp. 221–260, 2018

De Nittis & L., Symmetry Classification of Topological Photonic Crystals, arXiv
1710.08104, 1–49, 2017

De Nittis & L., Equivalence of Electric, Magnetic and Electromagnetic Chern
Numbers for Topological Photonic Crystals, arxiv 1806.07783, pp. 1–33, 2018

L., Taking Inspiration fromQuantum-Wave Analogies—Recent Results for
Photonic Crystals, Macroscopic Limits of Quantum Systems — Munich,
Germany, March 20–April 1, 2017, to appear in Springer Proceedings in
Mathematics and Statistics, 2018
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Interaction of Material and Crystallographic Symmetries

Idea of real vs. complex implementation of symmetries works
also for other symmetries (e. g. rotations, parity)
⟹ Crystallographic symmetries can be handled within the

Schrödinger formalism of classical electromagnetism

Recent works from condensed matter physics on
crystallographic TIs (e. g. by Shiozaki, Sato & Gomi,
arxiv:1802.06694 (2018))
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Example: “Spin-Valley Hall Effect”

Wu & Hu (2015)
Edgemodes topological

Pseudospin degree of freedom in a
time-reversal-symmetric medium

Time-reversal symmetry
𝑇3 ≠ 𝑇↑ ⊕ 𝑇↓ not blockdiagonal
⟹ 𝑀↑/↓ class A (no symmetry)

Chern numbers 𝐶↑ = −𝐶↓ ≠ 0
possible

Not in contradiction, edge modes
come in ↑ / ↓ pairs

Topologically protected against
perturbations which preserve 𝑇3
symmetry and honeycomb
structure

Wu & Hu (2015)
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Derivation of
Maxwell’s Equations in Linear Media
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Fundamental Equations
Maxwell’s Equations in Media

1 Maxwell’s equations

i
𝜕
𝜕𝑡 (DB) = ( 0 +i∇×

−i∇× 0 ) (HE) − i(𝐽𝐷

𝐽𝐵) (dynamical)

(∇ ⋅ D
∇ ⋅ B) = (𝜌𝐷

𝜌𝐵) (constraint)

2 Constitutive relations

(DB) = 𝒲 (EH)

3 Conservation of charge

∇ ⋅ 𝐽 ♯ + 𝜌♯ = 0, ♯ = 𝐷, 𝐵
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Fundamental Equations
Maxwell’s Equations in Media

1 Maxwell’s equations

i
𝜕
𝜕𝑡 (DB) = ( 0 +i∇×

−i∇× 0 ) (HE) (dynamical)

(∇ ⋅ D
∇ ⋅ B) = (0

0) (constraint)

2 Constitutive relations

(DB) = 𝒲 (EH)

3 Conservation of charge ⇝ neglect sources for simplicity

∇ ⋅ 𝐽 ♯ + 𝜌♯ = 0, ♯ = 𝐷, 𝐵
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Constitutive Relations for a Linear, Dispersive Medium

For a linearmedium the constitutive relations maps a trajectory

(−∞, 𝑡] ∋ 𝑠 ↦ (E(𝑠),H(𝑠))

onto

(D(𝑡, 𝑥)
B(𝑡, 𝑥)) ∶= ∫

𝑡

−∞
d𝑠 𝑊(𝑡 − 𝑠, 𝑥) (E(𝑠, 𝑥)

H(𝑠, 𝑥))

⇝ reaction of medium to impinging emwave depends on the past
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Constitutive Relations for a Linear, Dispersive Medium

(D(𝑡),B(𝑡)) ∶= ∫
𝑡

−∞
d𝑠 𝑊(𝑡 − 𝑠) (E(𝑠),H(𝑠))

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 > 0.
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Constitutive Relations for a Linear, Dispersive Medium

(D(𝑡),B(𝑡)) = (𝑊 ∗ (E,H))(𝑡)∫
𝑡

−∞

Assumption (Constitutive relations)

We assume that 𝑊(𝑡, 𝑥) = ( 𝜀(𝑡, 𝑥) 𝜒𝐸𝐻(𝑡, 𝑥)
𝜒𝐻𝐸(𝑡, 𝑥) 𝜇(𝑡, 𝑥) ) ∈ Matℂ(6)

1 is real, 𝑊 = 𝑊 , and
2 satisfies the causality condition 𝑊(𝑡) = 0 for all 𝑡 > 0.
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Fundamental Equations for Linear, Dispersive Media

1 Maxwell’s equations

i 𝜕
𝜕𝑡(𝑊 ∗ (E,H))(𝑡) = Rot(E(𝑡),H(𝑡)) (dynamical)

Div(𝑊 ∗ (E,H))(𝑡) = 0 (constraint)

2 Constitutive relations

(D(𝑡),B(𝑡)) = (𝑊 ∗ (E,H))(𝑡)

3 Conservation of charge ⇝ neglect sources for simplicity

∇ ⋅ 𝐽 ♯ + 𝜌♯ = 0, ♯ = 𝐷, 𝐵



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classification Bulk-Edge Correspondence Da Capo

Heuristically Neglecting Dispersion in Maxwell’s Equations

i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

± 𝜔 > 0 ∶ 𝜔 𝑊(±𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

≈

��

± 𝜔 > 0 ∶ 𝜔 𝑊(±𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

𝑊(±𝜔0) i 𝜕
𝜕𝑡Ψ±(𝑡) = RotΨ±(𝑡)

ℱ
��

1 Apply inverse Fourier transform in
time to go from time-dependent to
frequency-dependent equations.

2 Approximate material weights
𝑊(±𝜔) ≈ 𝑊(±𝜔0) = 𝑊± for
frequencies ±𝜔 ≈ ±𝜔0.
+𝜔0 and −𝜔0 contributions
necessary to reconstruct real
solutions.

3 Undo Fourier transform to obtain
dynamical equations in the
absence of dispersion.
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i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��

i 𝜕
𝜕𝑡𝑊 ∗ Ψ(𝑡) = RotΨ(𝑡)

𝜔 𝑊(𝜔) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

ℱ−1

��
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± 𝜔 > 0 ∶ 𝜔 𝑊(±𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

≈

��

± 𝜔 > 0 ∶ 𝜔 𝑊(±𝜔0) Ψ̂(𝜔) = Rot Ψ̂(𝜔)

𝑊(±𝜔0) i 𝜕
𝜕𝑡Ψ±(𝑡) = RotΨ±(𝑡)

ℱ
��

1 Apply inverse Fourier transform in
time to go from time-dependent to
frequency-dependent equations.

2 Approximate material weights
𝑊(±𝜔) ≈ 𝑊(±𝜔0) = 𝑊± for
frequencies ±𝜔 ≈ ±𝜔0.
+𝜔0 and −𝜔0 contributions
necessary to reconstruct real
solutions.

3 Undo Fourier transform to obtain
dynamical equations in the
absence of dispersion.
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