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based on joint paper with D. Monaco, A. Pisante and S. Teufel
(Commun. Math. Phys. 359 (2018))

[1. Chern insulators vs ordinary insulators: the non-periodic case
work in progress with G. Marcelli and M. Moscolari
(preliminary results in one direction, conjecture in the other direction)

I1l. TRS ordinary vs Z, topological insulators: some results for periodic case
based on joint work with D. Fiorenza and D. Monaco
(Commun. Math. Phys. 343 (2016)) and further developments
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periodic* Hamiltonian -5 Fermi projector {P(k)}crs — Bloch bundle &p

(Kubo) _ _ i _ i
o8 i [T (PUOI0 PUO.0: POk = - Gi(er)
Transport Topology

» Math results & generalizations: [AS,, AG, Be, BES, BGKS, Gr, ES, .. .].
See also [AW] for the role of the Linear Response Ansatz.

> Recent generalizations to interacting electrons [GMP; BRF, MT].

» Other complementary explanations of the QHE are possible, but not covered
here [Laughlin, Frohlich, Halperin]. Some can be adapted to topological
insulators.

*) Periodic either with respect to magnetic translations (QHE) or with respect to
ordinary translations (Chern insulators)

G. Panati La Sapienza The Localization-Topology Correspondence 3/37



The predecessor: Transport-Topology Correspondence

G. Panati La Sapienza The Localization-Topology Correspondence 4 /37



Chern insulators and the Quantum Anomalous Hall effect
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Left panel: transverse and direct resistivity in a Quantum Hall experiment
Right panel: transverse and direct resistivity in a Chern insulator (histeresis cycle)

G. Panati

Picture: © A. J. Bestwick (2015)
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High-precision realization of robust quantum
anomalous Hall state in a hard ferromagnetic
topological insulator

Cui-Zu Chang™, Weiwei Zhao?*, Duk Y. Kim?, Haijun Zhang?, Badih A. Assaf*, Don Heiman®,
Shou-Cheng Zhang?, Chaoxing Liu Moses H. W. Chan? and Jagadeesh S. Moodera'**
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£

Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field

PRL 114, 187201 (2015)

A.J. Bestwick, 2 E.J. Fox,"? Xufeng Kou,® Lei Pan,’ Kang L. Wang,’ and D. Goldhaber-Gordon'*
'Department of Physics, Stanford University, Smnfard California 94305, USA
ZSmnford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,
2575 Sand Hill Road, Menlo Park, California 94025, USA
3Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
(Received 16 January 2015; revised manuscript received 16 March 2015; published 4 May 2015)
‘We report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin
film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization
in the Hall resistance to within a part per 10000 and a longitudinal resistivity under 1 Q per square,
with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior
are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature

dependence. Using the deviations as a we an unexpected effect
and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base
in a process adiabati
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Part |

The Localization-Topology Correspondence:

the periodic case

Joint work with D. Monaco, A. Pisante and S. Teufel
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How to measure localization of extended states?

» Our question: Relation between dissipationless transport, topology of the
Bloch bundle and localization of electronic states.
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How to measure localization of extended states?

» Our question: Relation between dissipationless transport, topology of the
Bloch bundle and localization of electronic states.

What is the relevant

notion of localization

for periodic quantum
systems?
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» Spectral type?? For ergodic random Schrddinger operators localization is

measured by the spectral type (opp, Cac, 0sc) [AW]. However, for periodic
systems the spectrum is generically purely absolutely continuous.
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How to measure localization of extended states?

» Our question: Relation between dissipationless transport, topology of the
Bloch bundle and localization of electronic states.

» Spectral type?? For ergodic random Schrddinger operators localization is
measured by the spectral type (opp, Cac, 0sc) [AW]. However, for periodic
systems the spectrum is generically purely absolutely continuous.

> Kernel of the Fermi projector?? For gapped periodic 1-body Hamiltonians
one has
|P#(X7y)‘ ~ ef)‘gap‘xfy\

as a consequence of Combes-Thomas theory [AS,, NNJ.

[AW] M. A1ZENMAN, S. WARZEL: Random operators, AMS (2015).
[AS2]  J. AvroN, R. SEILER, B. SIMON: Commun. Math. Phys. 159 (1994).
[NN]  A. NEncru, G. NENCIU: Phys. Rev B 47 (1993).
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The localization of electrons is
conveniently expressed by
Composite Wannier functions (CWFs)
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The localization of electrons is
conveniently expressed by
Composite Wannier functions (CWFs)

The Fermi projector P, reads, for {wa,} a system of CWFs,

elr,1<as<m

m

P, = ZZ |Wa ) (Way| -

a=1~vyelr
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The localization of electrons is
conveniently expressed by
Composite Wannier functions (CWFs)

The Fermi projector P,, reads, for {w; ~} a system of CWFs,

yelr,1<a<m

P, = ZZ |Wa,7> <Wa,v|-

a=1~vyelr

Notice that crucially

exist CWFs such that

P,(x,y)| ~ e deww x| -
| ,U( ?.y)| |Wa,'y(X)| :e_c‘x_»ﬂ
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The localization of electrons is
conveniently expressed by
Composite Wannier functions (CWFs)

The Fermi projector P,, reads, for {w; ~} a system of CWFs,

yelr,1<a<m
P, = ZZ |Wa ) (Way| -
a=1~vyelr
Notice that crucially
1P (x, y)| = e=Pseol—y] " exist CWFs such that
eI [War ()] 2 e~
(GAP CONDITION) =+ (TOPOLOGICAL TRIVIALITY)
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Theorem [MPPT]: The Localization Dichotomy for periodic systems

Under assumptions specified later, the following holds:

> either there exists oz > 0 and a choice of CWFs w = (w, ..., W,,) satisfying
Z/ 2P |, (x)[2dx < 400 for every 5 € [0, av);
a—1 /R

[MPPT]  MONACO, PANATI, PISANTE, TEUFEL: Commun. Math. Phys. 359 (2018).
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Theorem [MPPT]: The Localization Dichotomy for periodic systems

Under assumptions specified later, the following holds:

> either there exists oz > 0 and a choice of CWFs w = (w, ..., W,,) satisfying
Z/ 2P |, (x)[2dx < 400 for every 5 € [0, av);
a=1 R

» or for every possible choice of CWFs w = (w4, ..., w,,) one has

(X?)w = Z/ [x[? wa(x)[?dx = +oo.
a=1 Rd

Intermediate regimes are
forbidden!!

[MPPT]  MoNAco, PANATI, PISANTE, TEUFEL: Commun. Math. Phys. 359 (2018).
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Theorem [MPPT]: The Localization Dichotomy for periodic systems

Under assumptions specified later, the following holds:

> either there exists oz > 0 and a choice of CWFs w = (w, ..., W,,) satisfying
Z/ 2 W, (x))2dx < 400 for every 5 € [0, a);

» or for every possible choice of CWFs w = (w4, ..., w,,) one has

(X?)w = Z/ [x[? wa(x)[?dx = +oo.
a=1 R4

The result is largely
model-independent: it
holds for tight-binding as
well as continuum models

[MPPT]  MoNAco, PANATI, PISANTE, TEUFEL: Commun. Math. Phys. 359 (2018).
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Setting: Magnetic periodic Schrodinger operators

Chern insulators:  For d € {2,3}, consider the magnetic Schrédinger operator
Hr = 1 (=iVe — Ar())° + Vir(x)  acting in L3(R9)

where Ar and Vf are periodic with respect to I' = Span; {ay, ..., a4}
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Chern insulators:  For d € {2,3}, consider the magnetic Schrédinger operator
Hr = 1 (=iVe — Ar())° + Vir(x)  acting in L3(R9)

where Ar and Vf are periodic with respect to I' = Span; {ay, ..., a4}

Hence the modified Bloch-Floquet transform

Uk y) =D e KT 9)(y),  yeRY keR?

yer

provides a simultaneous decomposition of Hr and T,:

52}
Z/lHrL{*lz/ dk H(k) — with H(k) = 1( =iV, — Ar(y) + k)* + Vi(y).
B
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Setting: Magnetic periodic Schrodinger operators

Chern insulators:  For d € {2,3}, consider the magnetic Schrédinger operator
Hr = 1 (=iVe — Ar())° + Vir(x)  acting in L3(R9)

where Ar and Vf are periodic with respect to I' = Span; {ay, ..., a4}

Hence the modified Bloch-Floquet transform

UP)(k,y) =Y e KUN(Ty)(y),  yeRY keR?

yer

provides a simultaneous decomposition of Hr and T,:
@ 2
UHU = / dk H(k) with  H(k) = %( —iV, —Ar(y) + k) + Vi (y).
B

d
The operator H(k) acts in L2 (R?) := {¢ € L} (RY): T¢p =1 forall v € T}.
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The Bloch bundle and its topology

For each fixed k € RY, the operator H(k) has compact resolvent, so pure point
spectrum accumulating at +oo.

= ﬁ/»
>WW< o Question:  how can | read from the
picture whether TR-symmetry is broken?

-

e

Spectrum of H(k) as a function of k; (left).
Spectrum of Hr = ¥ H(k)dk (right).
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The Bloch bundle and its topology

For each fixed k € RY, the operator H(k) has compact resolvent, so pure point
spectrum accumulating at +oo0.

An isolated family of J Bloch bands.

Notice that the spectral bands may overlap.
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The Bloch bundle and its topology

For each fixed k € RY, the operator H(k) has compact resolvent, so pure point
spectrum accumulating at +oo0.

o Topology is encoded in the orthogonal
T ik L. . .
{0 R e projections on an isolated family of bands

B TENS

P.(k) = 2= o (H(K) —2z1) " dz

1 =Y ez, lun(k, ) (un(k, )]
;\_,//ﬁ e where C.(k) intersects the real line in
| | E_(k) and E, (k) (GAP CONDITION).

v

An isolated family of J Bloch bands.

Notice that the spectral bands may overlap.
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A model for Quantum Hall insulators

Quantum Hall insulators: For d € {2,3}, consider A(x) = £x A & with & a unit
vector

Hrp =3 (—-iVx - Ap(x))* + Vi (x) acting in L*(RY)

where Vf is periodic with respect to I' = Spany {a1,..., a4}
Assume moreover the commensurability condition for the magnetic field B = bé:

%B (yAY)€e2rQ forall 4,74 €Tl
Ordinary translations are replaced by the magnetic translations [Zak64]
(wa)(x) = e g (x — ) verl.
These commute with Hr p, but satisfy the pseudo-Weyl relations
TETE = ecBOMI TETE 5 5 e,
The Z9-symmetry is recovered at the price of considering a smaller lattice ', C T
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Assumptions
Consider A = Ar + Ap (periodic + linear) with A satisfying the commensurability
condition, and set

1

H(k) = 2(—iVy—A(y)+/§)2+ Vir(y) acting in HP, x € CY,

where HP = {1/) € LfOC(Rd) : Thf,’z/J =1, forall v € Fb} .

Assumption 1: The magnetic potential A = Ar + Ap and the scalar potential V-
are such that the family of operators H(k) is an entire analytic family in the sense
of Kato with compact resolvent.
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Assumptions

Consider A = Ar + Ap (periodic + linear) with A satisfying the commensurability
condition, and set

1

H(k) = E(—iVy—A(y)—l—/ﬁ)z—i—Vr(y) acting in HP, x € CY,

where ’Hf = {1/} € LfOC(Rd) : T,f,’d) =1, forall v € Fb} .

Assumption 1: The magnetic potential A = Ar + Ap and the scalar potential V-
are such that the family of operators H(k) is an entire analytic family in the sense
of Kato with compact resolvent.

If A= Ar is I-periodic, with fundamental unit cell Y, then it is sufficient to assume either:
@ A€ L®(Y;R?) when d =2o0r A€ L*(Y;R%) when d =3, and div A, Vi € L2 (R?) when
2<d<3

@ Ac L"(Y;R?) with r > 2 and Vi € LP(Y) with p > 1 when d =2, or A € L3(Y;R3) and
Vi € L3/2(Y) when d = 3 (compare [BS]).

[BS]  BIRMAN, SUSLINA: Algebra i Analiz 11 (1999). St. Petersburg Math. J. 11, (2000).
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Lemma: Let P.(k) be the spectral projector of H(k) corresponding to a set 0. (k) C
R such that the gap condition is satisfied. Then the family {P.(k)},cgs has the
following properties:

(P1) the map k — P.(k) is analytic from RY to B(H?);

(P2) the map k — P.(k) is 7-covariant, i.e.
P.(k4+X) =71(\) P.(k)T(A\)™'  VkeRY, VieT;.

where 7 : T} ~ Z7 — U(HP) is a unitary representation.
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Lemma: Let P, (k) be the spectral projector of H(k) corresponding to a set 0. (k) C
R such that the gap condition is satisfied. Then the family {P.(k)},cgs has the
following properties:

(P1) the map k — P.(k) is analytic from RY to B(H?);

(P2) the map k — P.(k) is 7-covariant, i.e.
P.(k4+X) =71(\) P.(k)T(A\)™'  VkeRY, VieT;.

where 7 : T} ~ Z7 — U(HP) is a unitary representation.

For the sake of simpler slides, here we consider the case 7 = 1.
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Lemma: Let P, (k) be the spectral projector of H(k) corresponding to a set 0. (k) C
R such that the gap condition is satisfied. Then the family {P.(k)},cgs has the
following properties:

(P1) the map k — P.(k) is analytic from RY to B(H?);

P5) the map k — P.(k) is 7- iant, I. e.
(P2) L (b9 15 - GTEITENT § Concretely, for the operator Hr

T(Nf(y) = eV f(y)

for f € 2

per

P.(k+X) =71(\) Pu(k)T(N) !

where 7 : T} ~ Z9 — U(HP) is a unitary (RY, dy) = H0.

For the sake of simpler slides, here we consider the case 7 = 1.
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Lemma: Let P, (k) be the spectral projector of H(k) corresponding to a set 0. (k) C
R such that the gap condition is satisfied. Then the family {P.(k)},cgs has the
following properties:

(P1) the map k — P.(k) is analytic from RY to B(H?);

(P2) the map k — P.(k) is 7-covariant, i.e.
P.(k4+X) =71(\) P.(k)T(A\)™'  VkeRY, VieT;.

where 7 : T} ~ Z7 — U(HP) is a unitary representation.

In view of (P1) and (P2) the ranges of P, (k) define a (smooth) Hermitian vector
bundle over Tf = Rd/rb. For d = 2, it is characterized by the Chern number

a(P) == 2 fpz Tro (P(k) (01, P(K), D, P(K)] ) dky A dks J

For the sake of simpler slides, here we consider the case 7 = 1.
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Wannier functions and their localization

IDEA: Wannier functions provide a reasonable
compromise between localization in energy and
localization in position space, as far as
compatible with the uncertainty principle.
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Wannier functions and their localization

IDEA: Wannier functions provide a reasonable
compromise between localization in energy and
localization in position space, as far as
compatible with the uncertainty principle.

They are associated at the energy window corresponding to P.(-) via

Definition: A Bloch frame is a collection {¢1, ..., ¢m} C L?(T¢,H?) such that:

(#1(k), - .., dm(k)) is an orthonormal basis of Ran P, (k) for a.e. k € R
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Wannier functions and their localization

IDEA: Wannier functions provide a reasonable
compromise between localization in energy and
localization in position space, as far as
compatible with the uncertainty principle.

They are associated at the energy window corresponding to P.(-) via

Definition: A Bloch frame is a collection {¢1,...,dn} C L2(T¢, HP) such that:

(#1(k), - .., dm(k)) is an orthonormal basis of Ran P, (k) for a.e. k € R

In general, a Bloch frame mixes different Bloch bands

da(k) = Z un(k) Una(k) for some unitary matrix U(k).

nel.
* Bloch funct.
G. Panati La Sapienza
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Wannier functions and their localization

IDEA: Wannier functions provide a reasonable
compromise between localization in energy and
localization in position space, as far as
compatible with the uncertainty principle.

They are associated at the energy window corresponding to P.(-) via

Definition: A Bloch frame is a collection {¢1,...,dn} C L2(T¢, HP) such that:

(#1(k), - .., dm(k)) is an orthonormal basis of Ran P, (k) for a.e. k € R

In general, a Bloch frame mix The ambiguity in the

| hoice is dubbed
oa(k) = Z un(k chotee 1s ubbe nitary matrix U(k).

Bloch gauge
"L+ Bloch fur ambiguity.
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The Bloch bundle

Competition between regularity
and periodicity is encoded by the
Bloch bundle

E=(E—TY).

Existence of continuous Bloch
frames is topologically obstructed
If Cl(P*) 75 0.

G. Panati La Sapienza The Localization-Topology Correspondence 18 / 37



Definition (CWFs): The composite Wannier functions {wi,...,w,} C L?(R9)
associated to a Bloch frame {¢1,...,¢n} are defined as

1

= — [ dke**¢,(k,x).
Bs| Jp,

wy(x) = (L{_lgba) (x)
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Bs| Jp,
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Localization of CWFs in ——— Smoothness of Bloch
.. BF transform .
position space frame in momentum space
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Definition (CWFs): The composite Wannier functions {w,...,wn} C L3(RY)
associated to a Bloch frame {¢1,...,¢n} are defined as

1

= — [ dke**¢,(k,x).
Bs| Jp,

wy(x) = (L{_lgba) (x)

Localization of CWFs in ——— Smoothness of Bloch
.. BF transform .
position space frame in momentum space

2
L 0 (P < [6alFre

[St]  STEIN: Interpolation of linear operators. Trans. Am. Math. Soc. 83 (1956)
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Definition (CWFs): The composite Wannier functions {w,...,wn} C L3(RY)
associated to a Bloch frame {¢1,...,¢n} are defined as

1

= — [ dke**¢,(k,x).
Bs| Jp,

wy(x) = (L{_lgba) (x)

Localization of CWFs in ——— Smoothness of Bloch
.. BF transform .
position space frame in momentum space

2
L 0 (P < [6alFre

Hence, by Sobolev theorem, for s > d/2 the existence of s-localized CWFs is
topologically obstructed.
But, for 2 < d < 3, still there might exist 1-localized CWFs, i.e. (X?), < +oc.

[St]  STEIN: Interpolation of linear operators. Trans. Am. Math. Soc. 83 (1956)
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Definition (CWFs): The composite Wannier functions {w,...,wn} C L3(RY)
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The constructive theorem

Theorem 1 [Monaco, GP, Pisante, Teufel '17]

Assume d < 3. Consider a magnetic periodic Schrodinger operator in L?(R) sati-
sfying the previous assumptions (Kato smallness + commensurability + gap).
Then we construct a Bloch frame in HS(T";H’") for every s <1 and,
correspondingly, a system of CWFs {w; .} such that

m
Z/d ()% |wary (X)X < 400 Wy eT,¥s < 1.
a=1 R
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The Localization-Topology Correspondence

Theorem 2 [Monaco, GP, Pisante, Teufel '17]

Assume d < 3. Consider a magnetic periodic Schrédinger operator in L?(RY) satisfying the
previous assumptions (Kato smallness + commensurability + gap).
The following statements are equivalent:

> Finite second moment: there exist CWFs {w, } such that
Z/ |Wa,yX)‘ dx < +o0 vy erT;
> Exponential localization: there exist CWFs {w, } and a > 0 such that
m
Z/ M w, ,(x)Pdx < +o0 Yy eT,B€0,a);
a=1 Rd

> Trivial topology: the family {P,(k)}, corresponds to a trivial Bloch bundle.
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Synopsis: symmetry, localization, transport, topology

Time-reversal Symmetry Broken
symmetry TR symmetry
\
Trivial Topology Non-trivial
Bloch bundle Bloch bundle
Exponentially loc. . Delocalized
. E Localization i i
Wannier functions — Wannier functions
38> 0:eXlw e [2(RY) {w, x| w) = +o0
" 1
Vanishing Transport Non-zero
Hall current Hall current
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Our result applies to all d < 3 and is largely model-independent, since it covers
both continuous and tight-binding models.
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Grassmanian reinterpretation

Gm(H):= {PeB(H):PP=P=P*TrP=m} (Grassmann manifold)
Wn(H) = {J:C™ — H linear isometry} (Stiefel manifold),
Notice that J = """, |tba) (ea|, where {2} C H is an m-frame. There is a natural map

m: Win(H) = Gm(H) sending each m-frame W = {41, ...,¥n} into the orthogonal projection
on its linear span, namely 7 : J — JJ* =37, |¢a) (¢ .
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m: Win(H) = Gm(H) sending each m-frame W = {41, ...,¥n} into the orthogonal projection
on its linear span, namely 7 : J — JJ* =37, |¢a) (¢ .

At least formally, W,,(#) is a principal bundle over G,,(H) with projection 7 and
fiber U/(C™). The data P and ® correspond to a commutative diagram:

where P € C>®(T9; B(H)) and ® € H5(T9; H™).
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At least formally, W,,(#) is a principal bundle over G,,(H) with projection 7 and
fiber U/(C™). The data P and ® correspond to a commutative diagram:

a(P) = %/ TrH(P(k) [0k, P(K), 8k2P(k)]> dky A dko

= om /Jrz Z2Im (01 Da(K), Ok, ba(k)) g, dky A dko.

* a=1
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Grassmanian reinterpretation

Gm(H):= {PeB(H):PP=P=P*TrP=m} (Grassmann manifold)
Wn(H) = {J:C™ — H linear isometry} (Stiefel manifold),

Notice that J = """, |tba) (ea|, where {2} C H is an m-frame. There is a natural map

m: Win(H) = Gm(H) sending each m-frame W = {41, ...,¥n} into the orthogonal projection
on its linear span, namely 7 : J — JJ* =37, |¢a) (¢ .

At least formally, W,,(#) is a principal bundle over G,,(H) with projection 7 and
fiber U/(C™). The data P and ® correspond to a commutative diagram:

Won(H) Since the set of m-frames

o . is not a linear space, the

‘ approximation of a given

Td & Gm () Sobolev map by smooth

maps might be

topologically obstructed.
where P € C°(T9; B(#)) and ® € H*(T?; H™).
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Approximation of a given Sobolev map

Theorem [Hang & Lin]

Let 2 < d < 3. Consider a compact, boundaryless, smooth submanifold M C R”.
If d = 3, assume moreover that the homotopy group (M) is trivial.
Then, every Sobolev map W € H'(T9, M) can be approximated by a sequence

(WO} ey © C°(T9, M) such that WO 5 v as ¢ — .

[HL] Hang, F.; LiN, F.H. : Topology of Sobolev mappings. |l. Acta Math. 2003.
[CHN]  CorNEAN, H.; HERBST, 1., NENCIU, G. : Ann. H. Poincaré. 2016.
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Let 2 < d < 3. Consider a compact, boundaryless, smooth submanifold M C R”.
If d = 3, assume moreover that the homotopy group m(M) is trivial.

Then, every Sobolev map W € H(T9, M) can be approximated by a sequence

{WO},cny € C=(T9, M) such that W(®) My as £ oo,

@ The result can be applied to the (finite-dimensional) Stiefel manifold
Wn(C"), using that mo(Wm,(C")) = 0 whenever n > m + 2 (here C" is
regarded as a Galerkin truncation of H).

[HL] Hang, F.; LiN, F.H. : Topology of Sobolev mappings. |l. Acta Math. 2003.
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Wn(C"), using that mo(Wm,(C")) = 0 whenever n > m + 2 (here C" is
regarded as a Galerkin truncation of H).

@ One has to reduce to a finite-dimensional space V,, ~ C"

@ One has to reduce covariance to periodicity, while staying in a k-independent
fiber Hilber space [CHN]
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Approximation of a given Sobolev map

Theorem [Hang & Lin]

Let 2 < d < 3. Consider a compact, boundaryless, smooth submanifold M C R”.
If d = 3, assume moreover that the homotopy group m(M) is trivial.

Then, every Sobolev map W € H(T9, M) can be approximated by a sequence

{WO},cny € C=(T9, M) such that W(®) My as £ oo,

@ The result can be applied to the (finite-dimensional) Stiefel manifold
Wn(C"), using that mo(Wm,(C")) = 0 whenever n > m + 2 (here C" is
regarded as a Galerkin truncation of H).

@ One has to reduce to a finite-dimensional space V,, ~ C"

@ One has to reduce covariance to periodicity, while staying in a k-independent
fiber Hilber space [CHN]

@ In our specific case, there is no obstruction to construct a Bloch frame with
regularity H*(T9; H™) for every s < 1, essentially via parallel transport
[construction in the paper].

[HL] Hang, F.; LiN, F.H. : Topology of Sobolev mappings. |l. Acta Math. 2003.
[CHN]  CorNEAN, H.; HERBST, 1., NENCIU, G. : Ann. H. Poincaré. 2016.
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Part 1l

The Localization-Topology Correspondence:

the non-periodic case

Work in progress with G. Marcelli and M. Moscolari
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A modified paradigm

> Recall the periodic TKNN paradigm:

(Kubo) — i _ i
& e [T (PU0[0PU. 0P ()] Jak = 5 Gi(er)
Transport Topology
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A modified paradigm

> Recall the periodic TKNN paradigm:

(Kubo) _ __ i _ i
& e LT (P[0 Pk, 01 PUO] k= - ()
Transport Topology

» In a non-periodic setting, the decomposition {P(k)} g« over the Brillouin
torus makes no sense, and so ij and the integral should be reinterpreted.
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(Kubo) _ __ i _ i
& e LT (P[0 Pk, 01 PUO] k= - ()
Transport Topology

» In a non-periodic setting, the decomposition {P(k)} g« over the Brillouin
torus makes no sense, and so ij and the integral should be reinterpreted.
> Inspired by [AS,], we can write

o) = 7 (iP|1X, PL DX, P1) )

where the trace per unit volume is T(A) = limp,_sge [An] 72 Tr(xa, AXA,)-
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where the trace per unit volume is T(A) = limp,_sgs [An] =2 Tr(xa, AXA,)-
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A modified paradigm

> Recall the periodic TKNN paradigm:

(Kubo) _ __ i _ i
& e LT (P[0 Pk, 01 PUO] k= - ()
Transport Topology

» In a non-periodic setting, the decomposition {P(k)} g« over the Brillouin
torus makes no sense, and so ij and the integral should be reinterpreted.
> Inspired by [AS,], we can write

. 1
o) = T (iP[1X4, PL DG, P )= 5= Gi(P)
™ N——
NC Topology?
where the trace per unit volume is T(A) = limp,_sgs [An] =2 Tr(xa, AXA,)-
> Analogy with the NCG approach to QHE [Co, Be, BES, Ke, ...]

Cup) = 7 (ip[01(+). 22(p) )

for p a projector in the rotation C*-algebra ~ NC torus. Here Ci(p) € Z.
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A modified paradigm

> Recall the periodic TKNN paradigm:

(Kubo) _ __ i _ i
& @ / T (P(0) [0 P(K), 0, P(R)] ) ak = 5= Cu(E)
Transport Topology

» In a non-periodic setting, the decomposition {P(k)} g« over the Brillouin
torus makes no sense, and so 0/9 and the integral should be reinterpreted.
> Inspired by [AS,], we can write

1
G =7 (iP [, PL DG, P ) = - Gi(P
Oxy 1 [ 1, ]7[ 2 ] “or 1( )
~——
NC Topology?

where the trace per unit volume is T(A) = limp,_sgs [An] =2 Tr(xa, AXA,)-

Questions for experts in NCG:

Is 7(-) a tracial state over a
C*-subalgebra of B(L?(R?))?
Which one? NCG?
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A modified paradigm

> Recall the periodic TKNN paradigm:

(Kubo) _ _ i _ i
& @ /T T (P(0) [0 P(K), 0, P(R)] ) ak = 5= Cu(E)
Transport Topology

» In a non-periodic setting, the decomposition {P(k)} g« over the Brillouin
torus makes no sense, and so (9/9 and the integral should be reinterpreted.
> Inspired by [AS,], we can write

1
G =7 (iP [, PL DG, P ) = - Gi(P
ny 1 1, s [A2 “on 1( )
——
NC Topology?

where the trace per unit volume is T(A) = limp,_sgs [An] =2 Tr(xa, AXA,)-

Question we adressed:

Is there any relation between
Ci(P) = 0 and the existence
of a well-localized GWB??
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Definition (Generalized Wannier basis) (compare with [NN93])

An orthogonal projector P acting in L2(R?) admits a G-localized generalized
Wannier basis (GWB) if there exist:

[NN93]  GH. NENcIU, A. NENCIU Phys. Rev. B 47 (1993)
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Definition (Generalized Wannier basis) (compare with [NN93])

An orthogonal projector P acting in L?(R?) admits a G-localized generalized
Wannier basis (GWB) if there exist:
(i) a Delone set I C R?, i.e. a discrete set such that 30 < r < R < 00 s.t.
(a) Vx € R? there is at most one element of I in the ball of radius r centred in x
(the set has no accumulation points);
(b) ¥x € R? there is at least one element of I in the ball of radius R centred in x
(the set is not sparse);

[NN93]  GH. NENcIU, A. NENCIU Phys. Rev. B 47 (1993)
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Definition (Generalized Wannier basis) (compare with [NN93])
An orthogonal projector P acting in L?(R?) admits a G-localized generalized
Wannier basis (GWB) if there exist:
(i) a Delone set I C R?, i.e. a discrete set such that 30 < r < R < 00 s.t.
(a) Vx € R? there is at most one element of I in the ball of radius r centred in x
(the set has no accumulation points);
(b) ¥x € R? there is at least one element of I in the ball of radius R centred in x
(the set is not sparse);
(ii) a localization function G (typically G(x) = (1 + |x|?)*/? for some s > 1), a
constant M > 0 independent of v € I' and an orthonormal basis of Ran P,
{¢w,a}wer,1gagm(7)<oo with m(’Y) < m, V’Y € F, Satis{:ying

/ Gllx —
R2

We call each 1, , a generalized Wannier function (GWF).

)2‘1/}7@()()‘2 dx < M.

[NN93]  GH. NENcIU, A. NENCIU Phys. Rev. B 47 (1993)
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Localization implies Chern triviality

Theorem - work in progress [Marcelli, Moscolari, GP]

Let P, be the Fermi projector of a reasonable Schrddinger operator in L2(R?).
Suppose that P, admits a generalized Wannier basis, {1 a}yer 1<a<m()<m. Which
is s.-localized in the sense

L@ b=l P dx < .
Then, if s, > 7 [provisional hypothesis], one has that

T (iPp [[Xh P.]. [Xe, Pu]]) - 0.
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Localization implies Chern triviality

Theorem - work in progress [Marcelli, Moscolari, GP]

Let P, be the Fermi projector of a reasonable Schrddinger operator in L2(R?).
Suppose that P, admits a generalized Wannier basis, {1 a}yer 1<a<m()<m. Which
is s.-localized in the sense

L@ b=l P dx < .

Then, if s, > 7 [provisional hypothesis], one has that Clearly, the optimal

statement would be

T<1Pu {[le Pu]v [Xa, Pu]]) = 0. for s, = 1, as in the
periodic case.

Technical difficulties.
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Localization implies Chern triviality

Theorem - work in progress [Marcelli, Moscolari, GP]

Let P, be the Fermi projector of a reasonable Schrddinger operator in L2(R?).
Suppose that P, admits a generalized Wannier basis, {1 a}yer 1<a<m()<m. Which
is s.-localized in the sense

L@ b=l P dx < .
Then, if s, > 7 [provisional hypothesis], one has that

T (iPp [[Xh P.]. [Xe, Pu]]) - 0.

in [NN93] it is proved that an exponentially localized GWB exists under
general hypothesis (I discrete): for d =1, P, XP, has discrete spectrum [!!!],
and a GWB is provided by its eigenfunctions

{1y.a} ¥ € odise(PuXP,) = T,ae {1,....,m(y)}.
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A simple but relevant observation

> Let )~<J = P, X; P,, be the reduced position operator. Then, by simple algebra

P, [[xl, P.]. X, PH]} - [)?1, )?2]. (1)
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A simple but relevant observation

> Let )~<J = P, X; P,, be the reduced position operator. Then, by simple algebra
Pu X0 Pl DR, Pul] = [X, %e] (1)

A\ If T(-) were cyclic, one would conclude that C;(P) is always zero.
(Hall transport would be always forbidden!).
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A simple but relevant observation

> Let )~<J = P, X; P,, be the reduced position operator. Then, by simple algebra
PM[[xl,PM],[X2,PH]] = [)?1,)?2]. (1)

A\ If T(-) were cyclic, one would conclude that C;(P) is always zero.
(Hall transport would be always forbidden!).

> Luckily for transport theory, 7(-) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pu = Z |1/}%a> <1/’v,a| (2)

7,4

where {1, ,} is a s-localized GWB, with s sufficiently large.
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A simple but relevant observation

> Let )~<J = P, X; P,, be the reduced position operator. Then, by simple algebra
PM[[xl,PM],[X2,PH]] = [)?1,)?2]. (1)

A\ If T(-) were cyclic, one would conclude that C;(P) is always zero.
(Hall transport would be always forbidden!).

> Luckily for transport theory, 7(-) is NOT cyclic in general.
Cyclicity is recovered if it happens that

P. = Z |1hy,a) (1] (2)
v,a
where {1, ,} is a s-localized GWB, with s sufficiently large.

> Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding Ci(P) = 0.
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A simple but relevant observation

> Let )~<J = P, X; P,, be the reduced position operator. Then, by simple algebra
PM[[xl,PM],[Xz,PH]] = [)?1,)?2]. (1)

A\ If T(-) were cyclic, one would conclude that C;(P) is always zero.
(Hall transport would be always forbidden!).

> Luckily for transport theory, 7(-) is NOT cyclic in general.
Cyclicity is recovered if it happens that

P. = Z |1hy,a) (1] (2)
v,a
where {1, ,} is a s-localized GWB, with s sufficiently large.

> Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding Ci(P) = 0.

» Boring details. Our estimates are far from being optimal.
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Part IlI

The Localization-Topology Correspondence:

Z, topological insulators, periodic case

Based on joint work with D. Fiorenza and D. Monaco
and on work by H. Cornean, D. Monaco and S. Teufel
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Time-reversal-symmetric systems

> Time-reversal symmetry (TRS) is represented by a anti-unitary operator ©,
such that
© =41 and H=0HO™
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Time-reversal-symmetric systems

> Time-reversal symmetry (TRS) is represented by a anti-unitary operator ©,
such that
© =41 and H=0HO™

> The sign & corresponds to the bosonic/fermionic case.
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Time-reversal-symmetric systems

> Time-reversal symmetry (TRS) is represented by a anti-unitary operator ©,
such that
0% =+1 and H=0Ho .
> The sign & corresponds to the bosonic/fermionic case.

» TRS insulators, either bosonic or fermionic, are always Chern trivial. Hence,
exponentially localized CWF exist.
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Time-reversal-symmetric systems

> Time-reversal symmetry (TRS) is represented by a anti-unitary operator ©,
such that
0% =+1 and H=0HOe .

> The sign & corresponds to the bosonic/fermionic case.

» TRS insulators, either bosonic or fermionic, are always Chern trivial. Hence,
exponentially localized CWF exist.

Does exist a system of
exponentially localized CWFs
compatible with TRS?
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Time-reversal-symmetric systems

> Time-reversal symmetry (TRS) is represented by a anti-unitary operator ©,
such that
0% =+1 and H=0HOe .

> The sign & corresponds to the bosonic/fermionic case.

» TRS insulators, either bosonic or fermionic, are always Chern trivial. Hence,
exponentially localized CWF exist.

Does exist a system of
exponentially localized CWFs
compatible with TRS?

The answer crucially depends on the fact that the symmetry is bosonic/fermionic.
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Definition: Time-Reversal-Symmetric Wannier functions

Spin-0 particle. H = L?(R?). Time-reversal operator (©1)(x) = ¥(x).

A system of CWF {w, ,} is TRS if each w, , is R-valued, namely

Way,a(X) = Wa a(x)

G. Panati La Sapienza The Localization-Topology Correspondence 33 /37



Definition: Time-Reversal-Symmetric Wannier functions
Spin-0 particle. H = L?(R?). Time-reversal operator (©1)(x) = ¥(x).
A system of CWF {w, ,} is TRS if each w, , is R-valued, namely

Way,a(X) = Wa a(x)

Spin-1 particle. H = [*(RY) ® C2. Spin-1 time-reversal operator is

given by
.1
o= (1 ® e*”z@) C=-i(l®0y)C
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Definition: Time-Reversal-Symmetric Wannier functions

Spin-0 particle. H = L?(R?). Time-reversal operator (©1)(x) = ¥(x).

A system of CWF {w, ,} is TRS if each w, , is R-valued, namely
Wy,a(X) = Wy 5(x)

Spin-1 particle. H = [*(RY) ® C2. Spin-1 time-reversal operator is

given by
o= (1 ® e*”zfm) C=—i(1®0)C

A system of CWF {w, ,} is TRS if (omitting )
wp(x) = Z (@Wa(x)>€ab
a=1

where the matrix € = (e,p) is unitary and skew-symmetric (reshuffling
matrix).
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Definition: Time-Reversal-Symmetric Wannier functions

Spin-0 particle. H = L?(R?). Time-reversal operator (©1)(x) = ¥(x)
A system of CWF {w, ,} is TRS if each w, , is R-valued, namely
Wy,a(X) = Wy 5(x)
Spin-1 particle. H = [*(RY) ® C2. Spin-1 time-reversal operator is
given by
o= (11 ® e*”fz(v) C=-i(1®0,)C
A system of CWF {w, ,} is TRS if (omitting ~)

For a single pair of C2-valued
Wannier functions wy, wy

where the n ( W1T ) ( wot

matrix). I |
wy W2

) symmetric (reshuffling

33 /37
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Bosonic case

Theorem [D. Fiorenza, D. Monaco, GP]

Consider the bosonic case ©2 = +1. Then, for any d < 3 one can always construct
a basis of exponentially localized time-reversal-symmetric (/. e. R-valued) composite
Wannier functions for P,.

In other words, there is no additional obstruction to impose the TRS constraint.

[FMP;1]  D. FIORENZA, D. MONACO, G. PANATI Ann. H. Poincaré 17 (2016)
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Fermionic case

Theorem [H. Cornean, D. Monaco, S. Teufel]

Consider the Fermionic case ©2 = —1..

[CMT]  H. CorNEAN, D. MoONACO, S. TEUFEL Rev. Math. Phys. 29(2017)

[GP] G.M. GRAF, M. Porta: Commun. Math. Phys. 324 (2013)
[FMP2]  D. FiorENzA, D. MoNACO, G. PANATI Commun. Math. Phys. 343 (2016)
[FK] L. Fu, C.L. KANE Phys. Rev. B 74 (2006).
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Fermionic case

Theorem [H. Cornean, D. Monaco, S. Teufel]

Consider the Fermionic case ©% = —1.
@ For d =1, one can always construct a system of exponentially localized TRS
composite Wannier functions.

[CMT]  H. CorNEAN, D. MoONACO, S. TEUFEL Rev. Math. Phys. 29(2017)

[GP] G.M. GRAF, M. Porta: Commun. Math. Phys. 324 (2013)
[FMP2]  D. FiorENzA, D. MoNACO, G. PANATI Commun. Math. Phys. 343 (2016)
[FK] L. Fu, C.L. KANE Phys. Rev. B 74 (2006).
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Fermionic case

Theorem [H. Cornean, D. Monaco, S. Teufel]

Consider the Fermionic case ©% = —1.
@ For d =1, one can always construct a system of exponentially localized TRS
composite Wannier functions.

@ For d = 2, one can construct a system of TRS composite Wannier functions
if and only if the Graf-Porta index Z(P,) vanishes [GP] .

[CMT]  H. CorNEAN, D. MoNACO, S. TEUFEL Rev. Math. Phys. 29(2017)

[GP] G.M. GRAF, M. Porta: Commun. Math. Phys. 324 (2013)
[FMP>]  D. FiorENzA, D. MoNAcoO, G. PANATI Commun. Math. Phys. 343 (2016)
[FK] L. Fu, C.L. KANE Phys. Rev. B 74 (2006).
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Fermionic case

Theorem [H. Cornean, D. Monaco, S. Teufel]

Consider the Fermionic case ©% = —1.
@ For d =1, one can always construct a system of exponentially localized TRS
composite Wannier functions.

@ For d = 2, one can construct a system of TRS composite Wannier functions
if and only if the Graf-Porta index Z(P,) vanishes [GP] .

Actually, one can prove that
I=6=A

(see D. Monaco's talk)

[CMT]  H. CorNEAN, D. MoNACO, S. TEUFEL Rev. Math. Phys. 29(2017)

[GP] G.M. GRAF, M. Porta: Commun. Math. Phys. 324 (2013)
[FMP>]  D. FiorENzA, D. MoNAcoO, G. PANATI Commun. Math. Phys. 343 (2016)
[FK] L. Fu, C.L. KANE Phys. Rev. B 74 (2006).
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Synoptic table for Z, top insulators |©° = —1,d =2

Vanishing Topology Non-vanishing
FKM index FKM indes

)
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Delocalized
TRS Wannier functions:
optimal decay??

Exponentially loc. Locplization
TRS Wannier functions
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optimal decay??

Exponentially loc. Locplization
TRS Wannier functions

Transport

7 A 7

G. Panati La Sapienza The Localization-Topology Correspondence 36 / 37



Synoptic table for Z, top insulators |©%* = —1,d =2

Vanishing Topology Non-vanishing
FKM index FKM indes

)

Delocalized
TRS Wannier functions:
optimal decay??

Exponentially loc. Locplization
TRS Wannier functions

Transport

7 A 7

Kubo formula for spin transport
See talk by G. Marcelli
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Thank you for your attention!!
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