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Plan of the talk
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(preliminary results in one direction, conjecture in the other direction)

III. TRS ordinary vs Z2 topological insulators: some results for periodic case
based on joint work with D. Fiorenza and D. Monaco
(Commun. Math. Phys. 343 (2016)) and further developments
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The predecessor: Transport-Topology Correspondence

I Idea originated in [TKNN 82] in the context of the Quantum Hall effect.

I Retrospectively, one can rephrase the idea as follows:

periodic* Hamiltonian
BF−→ Fermi projector {P(k)}k∈Td −→ Bloch bundle EP

σ(Kubo)
xy︸ ︷︷ ︸

Transport

= − i

(2π)2

∫
T2

Tr
(
P(k)[∂k1P(k), ∂k2P(k)]

)
dk =

1

2π
C1(EP)︸ ︷︷ ︸
Topology

I Math results & generalizations: [AS2, AG, Be, BES, BGKS, Gr, ES, . . . ].
See also [AW] for the role of the Linear Response Ansatz.

I Recent generalizations to interacting electrons [GMP; BRF, MT].

I Other complementary explanations of the QHE are possible, but not covered
here [Laughlin, Fröhlich, Halperin]. Some can be adapted to topological
insulators.

*) Periodic either with respect to magnetic translations (QHE) or with respect to

ordinary translations (Chern insulators)
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The predecessor: Transport-Topology Correspondence
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Chern insulators and the Quantum Anomalous Hall effect

Left panel: transverse and direct resistivity in a Quantum Hall experiment
Right panel: transverse and direct resistivity in a Chern insulator (histeresis cycle)

Picture: c© A. J. Bestwick (2015)
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Part I

The Localization-Topology Correspondence:

the periodic case

Joint work with D. Monaco, A. Pisante and S. Teufel
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How to measure localization of extended states?

I Our question: Relation between dissipationless transport, topology of the
Bloch bundle and localization of electronic states.

What is the relevant
notion of localization
for periodic quantum

systems?

I Spectral type?? For ergodic random Schrödinger operators localization is
measured by the spectral type (σpp, σac, σsc) [AW]. However, for periodic
systems the spectrum is generically purely absolutely continuous.

I Kernel of the Fermi projector?? For gapped periodic 1-body Hamiltonians
one has

|Pµ(x , y)| ' e−λgap|x−y |

as a consequence of Combes-Thomas theory [AS2, NN].

[AW] M. Aizenman, S. Warzel: Random operators, AMS (2015).
[AS2] J. Avron, R. Seiler, B. Simon: Commun. Math. Phys. 159 (1994).
[NN] A. Nenciu, G. Nenciu: Phys. Rev B 47 (1993).
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The localization of electrons is
conveniently expressed by

Composite Wannier functions (CWFs)

The Fermi projector Pµ reads, for {wa,γ}γ∈Γ,1≤a≤m a system of CWFs,

Pµ =
m∑

a=1

∑
γ∈Γ

|wa,γ〉 〈wa,γ | .

Notice that crucially

|Pµ(x , y)| ' e−λgap|x−y | ;

{
exist CWFs such that

|wa,γ(x)| ' e−c|x−γ|

(GAP CONDITION) ; (TOPOLOGICAL TRIVIALITY)
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Theorem [MPPT]: The Localization Dichotomy for periodic systems

Under assumptions specified later, the following holds:

I either there exists α > 0 and a choice of CWFs w̃ = (w̃1, . . . , w̃m) satisfying

m∑
a=1

∫
Rd

e2β|x| |w̃a(x)|2dx < +∞ for every β ∈ [0, α);

I or for every possible choice of CWFs w = (w1, . . . ,wm) one has

〈X 2〉w =
m∑

a=1

∫
Rd

|x |2 |wa(x)|2dx = +∞.

Intermediate regimes are
forbidden!!

The result is largely
model-independent: it

holds for tight-binding as
well as continuum models

[MPPT] Monaco, Panati, Pisante, Teufel: Commun. Math. Phys. 359 (2018).
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Setting: Magnetic periodic Schrödinger operators

Chern insulators: For d ∈ {2, 3}, consider the magnetic Schrödinger operator

HΓ = 1
2

(−i∇x − AΓ(x))2 + VΓ(x) acting in L2(Rd)

where AΓ and VΓ are periodic with respect to Γ = SpanZ {a1, . . . , ad}.

Hence the modified Bloch-Floquet transform

(U ψ)(k, y) :=
∑
γ∈Γ

e−ik·(y−γ) (Tγ ψ)(y), y ∈ Rd , k ∈ Rd

provides a simultaneous decomposition of HΓ and Tγ :

UHΓU−1 =

∫ ⊕
B

dk H(k) with H(k) = 1
2

(
− i∇y − AΓ(y) + k

)2
+ VΓ(y).

The operator H(k) acts in L2
per(Rd) :=

{
ψ ∈ L2

loc(Rd) : Tγψ = ψ for all γ ∈ Γ
}

.

G. Panati La Sapienza The Localization-Topology Correspondence 11 / 37



Setting: Magnetic periodic Schrödinger operators

Chern insulators: For d ∈ {2, 3}, consider the magnetic Schrödinger operator

HΓ = 1
2

(−i∇x − AΓ(x))2 + VΓ(x) acting in L2(Rd)

where AΓ and VΓ are periodic with respect to Γ = SpanZ {a1, . . . , ad}.

Hence the modified Bloch-Floquet transform

(U ψ)(k , y) :=
∑
γ∈Γ

e−ik·(y−γ) (Tγ ψ)(y), y ∈ Rd , k ∈ Rd

provides a simultaneous decomposition of HΓ and Tγ :

UHΓU−1 =

∫ ⊕
B

dk H(k) with H(k) = 1
2

(
− i∇y − AΓ(y) + k

)2
+ VΓ(y).

The operator H(k) acts in L2
per(Rd) :=

{
ψ ∈ L2

loc(Rd) : Tγψ = ψ for all γ ∈ Γ
}

.

G. Panati La Sapienza The Localization-Topology Correspondence 11 / 37



Setting: Magnetic periodic Schrödinger operators

Chern insulators: For d ∈ {2, 3}, consider the magnetic Schrödinger operator

HΓ = 1
2

(−i∇x − AΓ(x))2 + VΓ(x) acting in L2(Rd)

where AΓ and VΓ are periodic with respect to Γ = SpanZ {a1, . . . , ad}.

Hence the modified Bloch-Floquet transform

(U ψ)(k , y) :=
∑
γ∈Γ

e−ik·(y−γ) (Tγ ψ)(y), y ∈ Rd , k ∈ Rd

provides a simultaneous decomposition of HΓ and Tγ :

UHΓU−1 =

∫ ⊕
B

dk H(k) with H(k) = 1
2

(
− i∇y − AΓ(y) + k

)2
+ VΓ(y).

The operator H(k) acts in L2
per(Rd) :=

{
ψ ∈ L2

loc(Rd) : Tγψ = ψ for all γ ∈ Γ
}

.

G. Panati La Sapienza The Localization-Topology Correspondence 11 / 37



The Bloch bundle and its topology

For each fixed k ∈ Rd , the operator H(k) has compact resolvent, so pure point
spectrum accumulating at +∞.

Spectrum of H(k) as a function of kj (left).

Spectrum of HΓ =
∫⊕ H(k)dk (right).

Question: how can I read from the
picture whether TR-symmetry is broken?
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The Bloch bundle and its topology

For each fixed k ∈ Rd , the operator H(k) has compact resolvent, so pure point
spectrum accumulating at +∞.

An isolated family of J Bloch bands.

Notice that the spectral bands may overlap.

Topology is encoded in the orthogonal
projections on an isolated family of bands

P∗(k) = i
2π

∮
C∗(k)

(H(k)− z1)−1
dz

=
∑

n∈I∗ |un(k, ·)〉 〈un(k, ·)| .

where C∗(k) intersects the real line in
E−(k) and E+(k) (GAP CONDITION).
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A model for Quantum Hall insulators

Quantum Hall insulators: For d ∈ {2, 3}, consider Ab(x) = b
2c x ∧ ê with ê a unit

vector
HΓ,b = 1

2
(−i∇x − Ab(x))2 + VΓ(x) acting in L2(Rd)

where VΓ is periodic with respect to Γ = SpanZ {a1, . . . , ad}.
Assume moreover the commensurability condition for the magnetic field B = bê:

1

c
B · (γ ∧ γ′) ∈ 2πQ for all γ, γ′ ∈ Γ

Ordinary translations are replaced by the magnetic translations [Zak64]

(T b
γψ)(x) := eiγ·Ab(x) ψ(x − γ) γ ∈ Γ.

These commute with HΓ,b, but satisfy the pseudo-Weyl relations

T b
γT

b
γ′ = e

i
c B·(γ∧γ

′) T b
γ′T

b
γ γ, γ′ ∈ Γ.

The Zd -symmetry is recovered at the price of considering a smaller lattice Γb ⊂ Γ.
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Assumptions

Consider A = AΓ + Ab (periodic + linear) with Ab satisfying the commensurability
condition, and set

H(κ) =
1

2

(
− i∇y − A(y) + κ

)2
+ VΓ(y) acting in Hb

f , κ ∈ Cd ,

where Hb
f :=

{
ψ ∈ L2

loc(Rd) : T b
γψ = ψ, for all γ ∈ Γb

}
.

Assumption 1: The magnetic potential A = AΓ + Ab and the scalar potential VΓ

are such that the family of operators H(κ) is an entire analytic family in the sense
of Kato with compact resolvent.

If A = AΓ is Γ-periodic, with fundamental unit cell Y , then it is sufficient to assume either:

A ∈ L∞(Y ;R2) when d = 2 or A ∈ L4(Y ;R3) when d = 3, and divA,VΓ ∈ L2
loc(Rd ) when

2 ≤ d ≤ 3;

A ∈ Lr (Y ;R2) with r > 2 and VΓ ∈ Lp(Y ) with p > 1 when d = 2, or A ∈ L3(Y ;R3) and
VΓ ∈ L3/2(Y ) when d = 3 (compare [BS]).

[BS] Birman, Suslina: Algebra i Analiz 11 (1999). St. Petersburg Math. J. 11, (2000).
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Lemma: Let P∗(k) be the spectral projector of H(k) corresponding to a set σ∗(k) ⊂
R such that the gap condition is satisfied. Then the family {P∗(k)}k∈Rd has the
following properties:

(P1) the map k 7→ P∗(k) is analytic from Rd to B(Hb
f );

(P2) the map k 7→ P∗(k) is τ -covariant, i. e.

P∗(k + λ) = τ(λ)P∗(k) τ(λ)−1 ∀k ∈ Rd , ∀λ ∈ Γ∗b.

where τ : Γ∗b ' Zd −→ U(Hb
f ) is a unitary representation.

Concretely, for the operator HΓ

τ(λ)f (y) = eiλ·y f (y)

for f ∈ L2
per(Rd , dy) = H0

f .

In view of (P1) and (P2) the ranges of P∗(k) define a (smooth) Hermitian vector
bundle over Td

∗ := Rd/Γb. For d = 2, it is characterized by the Chern number

c1(P) := 1
2πi

∫
T2
∗

TrHb
f

(
P(k) [∂k1P(k), ∂k2P(k)]

)
dk1 ∧ dk2

For the sake of simpler slides, here we consider the case τ ≡ 1.
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Wannier functions and their localization

IDEA: Wannier functions provide a reasonable
compromise between localization in energy and

localization in position space, as far as
compatible with the uncertainty principle.

They are associated at the energy window corresponding to P∗(·) via

Definition: A Bloch frame is a collection {φ1, . . . , φm} ⊂ L2(Td
∗ ,Hb

f ) such that:

(φ1(k), . . . , φm(k)) is an orthonormal basis of RanP∗(k) for a.e. k ∈ Rd

In general, a Bloch frame mixes different Bloch bands

φa(k) =
∑
n∈I∗

un(k)︸ ︷︷ ︸
Bloch funct.

Una(k) for some unitary matrix U(k).

The ambiguity in the
choice is dubbed

Bloch gauge
ambiguity.
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The Bloch bundle

φ1(k)
φ2(k)

k

RanP∗(k) Competition between regularity
and periodicity is encoded by the
Bloch bundle

E = (E → Td
∗).

Existence of continuous Bloch
frames is topologically obstructed
if c1(P∗) 6= 0.

G. Panati La Sapienza The Localization-Topology Correspondence 18 / 37



Definition (CWFs): The composite Wannier functions {w1, . . . ,wm} ⊂ L2(Rd)
associated to a Bloch frame {φ1, . . . , φm} are defined as

wa(x) :=
(
U−1φa

)
(x) =

1

|Bb|

∫
Bb

dk eik·xφa(k, x).

Localization of CWFs in
position space

−−−−−−−→
BF transform

Smoothness of Bloch
frame in momentum space

∫
Rd

〈x〉2s |wa,γ(x)|2dx ←→ ||φa||2Hs (Td
∗,Hb

f )

Hence, by Sobolev theorem, for s > d/2 the existence of s-localized CWFs is
topologically obstructed.

But, for 2 ≤ d ≤ 3, still there might exist 1-localized CWFs, i. e. 〈X 2〉w < +∞.

NO! In the topologically
non-trivial case, does NOT

exist any system of
1-localized composite

Wannier functions!

[St] Stein: Interpolation of linear operators. Trans. Am. Math. Soc. 83 (1956)
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The constructive theorem

Theorem 1 [Monaco, GP, Pisante, Teufel ’17]
Assume d ≤ 3. Consider a magnetic periodic Schrödinger operator in L2(Rd) sati-
sfying the previous assumptions (Kato smallness + commensurability + gap).
Then we construct a Bloch frame in Hs(Td ;Hm) for every s < 1 and,
correspondingly, a system of CWFs {wa,γ} such that

m∑
a=1

∫
Rd

〈x〉2s |wa,γ(x)|2dx < +∞ ∀γ ∈ Γ,∀s < 1.
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The Localization-Topology Correspondence

Theorem 2 [Monaco, GP, Pisante, Teufel ’17]
Assume d ≤ 3. Consider a magnetic periodic Schrödinger operator in L2(Rd ) satisfying the

previous assumptions (Kato smallness + commensurability + gap).

The following statements are equivalent:

I Finite second moment: there exist CWFs {wa,γ} such that

m∑
a=1

∫
Rd

〈x〉2|wa,γ(x)|2dx < +∞ ∀γ ∈ Γ;

I Exponential localization: there exist CWFs {wa,γ} and α > 0 such that

m∑
a=1

∫
Rd

e2β|x||wa,γ(x)|2dx < +∞ ∀γ ∈ Γ, β ∈ [0, α);

I Trivial topology: the family {P∗(k)}k corresponds to a trivial Bloch bundle.
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Synopsis: symmetry, localization, transport, topology

G. Panati La Sapienza The Localization-Topology Correspondence 22 / 37



References

First column: existence of exponentially localized CWFs

[Ko] Kohn, W., Phys. Rev. 115 (1959) (m = 1, d = 1, even)
[dC] des Cloizeaux, J., Phys. Rev. 135 (1964) (m = 1, any d , even)
[NeNe1] Nenciu, A.; Nenciu, G., J. Phys. A 15 (1982) (any m, d = 1)
[Ne1] Nenciu, G., Commun. Math. Phys. 91 (1983) (m = 1, any d)
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Grassmanian reinterpretation

Gm(H) :=
{
P ∈ B(H) : P2 = P = P∗,TrP = m

}
(Grassmann manifold)

Wm(H) := {J : Cm → H linear isometry} (Stiefel manifold),

Notice that J =
∑m

a=1 |ψa〉 〈ea|, where {ψa} ⊂ H is an m-frame. There is a natural map

π : Wm(H)→ Gm(H) sending each m-frame Ψ = {ψ1, . . . , ψm} into the orthogonal projection

on its linear span, namely π : J 7→ JJ∗ =
∑m

a=1 |ψa〉 〈ψa| .

At least formally, Wm(H) is a principal bundle over Gm(H) with projection π and
fiber U(Cm). The data P and Φ correspond to a commutative diagram:

where P ∈ C∞(Td ;B(H)) and Φ ∈ Hs(Td ;Hm).

c1(P) =
1

2πi

∫
T2
∗

TrH
(
P(k) [∂k1P(k), ∂k2P(k)]

)
dk1 ∧ dk2

=
1

2πi

∫
T2
∗

m∑
a=1

2 Im 〈∂k1φa(k), ∂k2φa(k)〉H dk1 ∧ dk2.

Since the set of m-frames
is not a linear space, the
approximation of a given
Sobolev map by smooth

maps might be
topologically obstructed.
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Approximation of a given Sobolev map

Theorem [Hang & Lin]
Let 2 ≤ d ≤ 3. Consider a compact, boundaryless, smooth submanifold M ⊂ Rν .
If d = 3, assume moreover that the homotopy group π2(M) is trivial.
Then, every Sobolev map Ψ ∈ H1(Td ,M) can be approximated by a sequence

{Ψ(`)}`∈N ⊂ C∞(Td ,M) such that Ψ(`) H1

−→ Ψ as `→∞.

The result can be applied to the (finite-dimensional) Stiefel manifold
Wm(Cn), using that π2(Wm(Cn)) = 0 whenever n ≥ m + 2 (here Cn is
regarded as a Galerkin truncation of H).
One has to reduce to a finite-dimensional space Vn ' Cn

One has to reduce covariance to periodicity, while staying in a k-independent
fiber Hilber space [CHN]
In our specific case, there is no obstruction to construct a Bloch frame with
regularity Hs(Td ;Hm) for every s < 1, essentially via parallel transport
[construction in the paper].

[HL] Hang, F.; Lin, F.H. : Topology of Sobolev mappings. II. Acta Math. 2003.
[CHN] Cornean, H.; Herbst, I., Nenciu, G. : Ann. H. Poincaré. 2016.
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Part II

The Localization-Topology Correspondence:

the non-periodic case

Work in progress with G. Marcelli and M. Moscolari
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A modified paradigm

I Recall the periodic TKNN paradigm:

σ(Kubo)
xy︸ ︷︷ ︸

Transport

= − i

(2π)2

∫
T2

Tr
(
P(k)

[
∂k1P(k), ∂k2P(k)

])
dk =

1

2π
C1(EP)︸ ︷︷ ︸
Topology

I In a non-periodic setting, the decomposition {P(k)}k∈Td over the Brillouin
torus makes no sense, and so ∂kj and the integral should be reinterpreted.

I Inspired by [AS2], we can write

σ(Kubo)
xy = T

(
iP
[
[X1,P], [X2,P]

])

=:
1

2π
C1(P)︸ ︷︷ ︸

NC Topology?

where the trace per unit volume is T (A) = limΛn↗Rd |Λn|−1 Tr(χΛn AχΛn).

I Analogy with the NCG approach to QHE [Co, Be, BES, Ke, . . . ]

C1(p) ' τ
(
ip
[
∂1(p), ∂2(p)

])
for p a projector in the rotation C∗-algebra ' NC torus. Here C1(p) ∈ Z.

Questions for experts in NCG:

Is T (·) a tracial state over a
C∗-subalgebra of B(L2(Rd))?

Which one? NCG?

Question we adressed:

Is there any relation between
C1(P) = 0 and the existence

of a well-localized GWB??
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Definition (Generalized Wannier basis) (compare with [NN93])

An orthogonal projector P acting in L2(R2) admits a G-localized generalized
Wannier basis (GWB) if there exist:

(i) a Delone set Γ ⊆ R2, i. e. a discrete set such that ∃ 0 < r < R <∞ s.t.

(a) ∀x ∈ R2 there is at most one element of Γ in the ball of radius r centred in x
(the set has no accumulation points);

(b) ∀x ∈ R2 there is at least one element of Γ in the ball of radius R centred in x
(the set is not sparse);

(ii) a localization function G (typically G (x) = (1 + |x |2)s/2 for some s ≥ 1), a
constant M > 0 independent of γ ∈ Γ and an orthonormal basis of RanP,
{ψγ,a}γ∈Γ,1≤a≤m(γ)<∞ with m(γ) ≤ m∗ ∀γ ∈ Γ, satisfying∫

R2

G (|x − γ|)2|ψγ,a(x)|2 dx ≤ M.

We call each ψγ,a a generalized Wannier function (GWF).

[NN93] Gh. Nenciu, A. Nenciu Phys. Rev. B 47 (1993)
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Wannier basis (GWB) if there exist:

(i) a Delone set Γ ⊆ R2, i. e. a discrete set such that ∃ 0 < r < R <∞ s.t.

(a) ∀x ∈ R2 there is at most one element of Γ in the ball of radius r centred in x
(the set has no accumulation points);

(b) ∀x ∈ R2 there is at least one element of Γ in the ball of radius R centred in x
(the set is not sparse);

(ii) a localization function G (typically G (x) = (1 + |x |2)s/2 for some s ≥ 1), a
constant M > 0 independent of γ ∈ Γ and an orthonormal basis of RanP,
{ψγ,a}γ∈Γ,1≤a≤m(γ)<∞ with m(γ) ≤ m∗ ∀γ ∈ Γ, satisfying∫

R2

G (|x − γ|)2|ψγ,a(x)|2 dx ≤ M.

We call each ψγ,a a generalized Wannier function (GWF).

[NN93] Gh. Nenciu, A. Nenciu Phys. Rev. B 47 (1993)
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Localization implies Chern triviality

Theorem - work in progress [Marcelli, Moscolari, GP]

Let Pµ be the Fermi projector of a reasonable Schrödinger operator in L2(R2).

Suppose that Pµ admits a generalized Wannier basis, {ψγ,a}γ∈Γ,1≤a≤m(γ)<m∗ , which
is s∗-localized in the sense∫

R2

(1 + |x − γ|2)s∗ |ψγ,a(x)|2 dx ≤ M.

Then, if s∗ ≥ 7 [provisional hypothesis], one has that

T
(
iPµ
[
[X1,Pµ], [X2,Pµ]

])
= 0.

Clearly, the optimal
statement would be
for s∗ = 1, as in the

periodic case.
Technical difficulties.d = 1 in [NN93] it is proved that an exponentially localized GWB exists under

general hypothesis (Γ discrete): for d = 1, PµXPµ has discrete spectrum [!!!],
and a GWB is provided by its eigenfunctions

{ψγ,a} γ ∈ σdisc(PµXPµ) =: Γ, a ∈ {1, . . . ,m(γ)} .
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A simple but relevant observation

I Let X̃j := Pµ Xj Pµ be the reduced position operator. Then, by simple algebra

Pµ
[
[X1,Pµ], [X2,Pµ]

]
=
[
X̃1, X̃2

]
. (1)

If T (·) were cyclic, one would conclude that C1(P) is always zero.
(Hall transport would be always forbidden!).

I Luckily for transport theory, T (·) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pµ =
∑
γ,a

|ψγ,a〉 〈ψγ,a| (2)

where {ψγ,a} is a s-localized GWB, with s sufficiently large.

I Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding C1(P) = 0.

I Boring details. Our estimates are far from being optimal.

G. Panati La Sapienza The Localization-Topology Correspondence 30 / 37



A simple but relevant observation

I Let X̃j := Pµ Xj Pµ be the reduced position operator. Then, by simple algebra

Pµ
[
[X1,Pµ], [X2,Pµ]

]
=
[
X̃1, X̃2

]
. (1)

If T (·) were cyclic, one would conclude that C1(P) is always zero.
(Hall transport would be always forbidden!).

I Luckily for transport theory, T (·) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pµ =
∑
γ,a

|ψγ,a〉 〈ψγ,a| (2)

where {ψγ,a} is a s-localized GWB, with s sufficiently large.

I Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding C1(P) = 0.

I Boring details. Our estimates are far from being optimal.

G. Panati La Sapienza The Localization-Topology Correspondence 30 / 37



A simple but relevant observation

I Let X̃j := Pµ Xj Pµ be the reduced position operator. Then, by simple algebra

Pµ
[
[X1,Pµ], [X2,Pµ]

]
=
[
X̃1, X̃2

]
. (1)

If T (·) were cyclic, one would conclude that C1(P) is always zero.
(Hall transport would be always forbidden!).

I Luckily for transport theory, T (·) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pµ =
∑
γ,a

|ψγ,a〉 〈ψγ,a| (2)

where {ψγ,a} is a s-localized GWB, with s sufficiently large.

I Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding C1(P) = 0.

I Boring details. Our estimates are far from being optimal.

G. Panati La Sapienza The Localization-Topology Correspondence 30 / 37



A simple but relevant observation

I Let X̃j := Pµ Xj Pµ be the reduced position operator. Then, by simple algebra

Pµ
[
[X1,Pµ], [X2,Pµ]

]
=
[
X̃1, X̃2

]
. (1)

If T (·) were cyclic, one would conclude that C1(P) is always zero.
(Hall transport would be always forbidden!).

I Luckily for transport theory, T (·) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pµ =
∑
γ,a

|ψγ,a〉 〈ψγ,a| (2)

where {ψγ,a} is a s-localized GWB, with s sufficiently large.

I Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding C1(P) = 0.

I Boring details. Our estimates are far from being optimal.

G. Panati La Sapienza The Localization-Topology Correspondence 30 / 37



A simple but relevant observation

I Let X̃j := Pµ Xj Pµ be the reduced position operator. Then, by simple algebra

Pµ
[
[X1,Pµ], [X2,Pµ]

]
=
[
X̃1, X̃2

]
. (1)

If T (·) were cyclic, one would conclude that C1(P) is always zero.
(Hall transport would be always forbidden!).

I Luckily for transport theory, T (·) is NOT cyclic in general.
Cyclicity is recovered if it happens that

Pµ =
∑
γ,a

|ψγ,a〉 〈ψγ,a| (2)

where {ψγ,a} is a s-localized GWB, with s sufficiently large.

I Indeed, in this case the series obtained by plugging (2) in (1) converges
absolutely, hence the series can be conveniently rearranged to obtain
cancelations of clusters of terms, yielding C1(P) = 0.

I Boring details. Our estimates are far from being optimal.

G. Panati La Sapienza The Localization-Topology Correspondence 30 / 37



Part III

The Localization-Topology Correspondence:

Z2 topological insulators, periodic case

Based on joint work with D. Fiorenza and D. Monaco
and on work by H. Cornean, D. Monaco and S. Teufel
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Time-reversal-symmetric systems

I Time-reversal symmetry (TRS) is represented by a anti-unitary operator Θ,
such that

Θ2 = ±1 and H = ΘHΘ−1.

I The sign ± corresponds to the bosonic/fermionic case.

I TRS insulators, either bosonic or fermionic, are always Chern trivial. Hence,
exponentially localized CWF exist.

Question:

Does exist a system of
exponentially localized CWFs

compatible with TRS?

The answer crucially depends on the fact that the symmetry is bosonic/fermionic.
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Definition: Time-Reversal-Symmetric Wannier functions

Θ2 = 1 Spin-0 particle. H = L2(Rd). Time-reversal operator (Θψ)(x) = ψ(x).
A system of CWF {wγ,a} is TRS if each wγ,a is R-valued, namely

wγ,a(x) = wγ,a(x)

Θ2 = −1 Spin- 1
2

particle. H = L2(Rd)⊗ C2. Spin- 1
2

time-reversal operator is
given by

Θ =
(
1⊗ e−iπ

1
2
σ2

)
C = −i(1⊗ σ2)C

A system of CWF {wγ,a} is TRS if (omitting γ)

wb(x) =
m∑

a=1

(
Θwa(x)

)
εab

where the matrix ε = (εab) is unitary and skew-symmetric (reshuffling
matrix).

Example

For a single pair of C2-valued
Wannier functions w1,w2(

w↑1

w↓1

)
=

(
w2
↓

w2
↑

)
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Bosonic case

Theorem [D. Fiorenza, D. Monaco, GP]

Consider the bosonic case Θ2 = +1. Then, for any d ≤ 3 one can always construct
a basis of exponentially localized time-reversal-symmetric (i. e. R-valued) composite
Wannier functions for Pµ.

In other words, there is no additional obstruction to impose the TRS constraint.

[FMP1] D. Fiorenza, D. Monaco, G. Panati Ann. H. Poincaré 17 (2016)
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Fermionic case

Theorem [H. Cornean, D. Monaco, S. Teufel]

Consider the Fermionic case Θ2 = −1.

For d = 1, one can always construct a system of exponentially localized TRS
composite Wannier functions.

For d = 2, one can construct a system of TRS composite Wannier functions
if and only if the Graf-Porta index I(Pµ) vanishes [GP] .

[CMT] H. Cornean, D. Monaco, S. Teufel Rev. Math. Phys. 29(2017)
[GP] G.M. Graf, M. Porta: Commun. Math. Phys. 324 (2013)
[FMP2] D. Fiorenza, D. Monaco, G. Panati Commun. Math. Phys. 343 (2016)
[FK] L. Fu, C.L. Kane Phys. Rev. B 74 (2006).

Actually, one can prove that

I = δ = ∆

(see D. Monaco’s talk)
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Synoptic table for Z2 top insulators Θ2 = −1, d = 2

Vanishing
FKM index

Topology←→ Non-vanishing
FKM indes

m

Exponentially loc.
TRS Wannier functions

Localization←→
Delocalized

TRS Wannier functions:
optimal decay??

??
Transport←→ ??

Kubo formula for spin transport

See talk by G. Marcelli
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Thank you for your attention!!
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