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Abstract: We study the occurrence of global gauge anomalies in the coset models of
two-dimensional conformal field theory that are based on gauged WZW models. A
complete classification of the non-anomalous theories for a wide family of gauged rigid
adjoint or twisted-adjoint symmetries of WZW models is achieved with the help of
Dynkin’s classification of Lie subalgebras of simple Lie algebras.

1. Introduction

Bosonic sigma models with the metric action functional possess rigid symmetries in-
duced by isometries of their target space. Such rigid symmetries may be gauged by
the minimal coupling to the gauge fields of the isometry group. The gauged action
is then invariant under arbitrary local gauge transformations. The minimal coupling
does not work, however, for the topological Wess–Zumino term in the action functional
of the sigma model, if such is present. In particular, it was shown in [1,2] for the two-
dimensional sigma model with the Wess–Zumino term corresponding to a closed 3-form
H on the target space that the gauging of rigid symmetries requires satisfying certain
conditions. Such conditions assure the absence of local gauge anomalies and guarantee
the existence of a gauging procedure that results in an action functional invariant un-
der infinitesimal local gauge transformations. The infinitesimal gauge invariance of the
gauged action implies its invariance under all “small” local gauge transformations, i.e.,
the ones that are homotopic to unity. As was observed in [3], it is possible, however, that
the gauged action exhibits global gauge anomalies that lead to its non-invariance under
some “large” local gauge transformations non-homotopic to unity. The phenomenon was
analyzed in detail for sigma models on closed worldsheets in [3] and on worldsheets with
boundaries and defects in [4]. In the case of Wess–Zumino–Witten (WZW) models of
conformal field theory with Lie group G = G̃/Z as the target, where G̃ is the universal
covering group of G and Z is a subgroup of the center Z̃ of G̃, with the Wess–Zumino
term corresponding to the bi-invariant closed 3-form Hk = k

12π
tr(g−1dg)3, the local
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gauge anomalies are absent for a restricted class of rigid symmetries. These include the
symmetries induced by the adjoint action g �→ hgh−1 on G for h ∈ G̃/Z̃ , or by its
twisted versions g �→ hgω(h)−1, for h ∈ G̃/Zω, where ω is an automorphism of G̃
and Zω = {z ∈ Z̃ | zω(z)−1 ∈ Z} is the subgroup of elements in Z̃ that acts trivially. In
these cases, the global gauge anomalies may occur for the target groups G that are not
simply connected (corresponding to the so called non-diagonal WZW models). They are
detected by a cohomology class ϕ ∈ H2(G̃/Zω ×G, U (1)) that can be easily computed.
Class ϕ is invariant under the action of γ ∈ G̃/Zω on G̃/Z̃ω × G given by

(h, g) �→ (γ hγ −1, γ gω(γ )−1). (1.1)

The simplest case when the anomaly class is nontrivial corresponds to G = SU (3)/Z3
at level k = 1 or to G = SU (4)/Z4 at level k = 2, both with ω = I d . Some other
cases with global gauge anomalies for ω = I d were cited in [3]. In Sect. 3 of the
present paper, we obtain the full list of connected compact simple target groups G for
which the WZW model with the gauged (twisted) adjoint action of G̃/Z̃ω exhibits global
gauge anomalies. In the twisted case, we consider only outer automorphisms ω since
for inner automorphisms the twisted adjoint action may be reduced to the untwisted
one by conjugating it with a right translation on G which is a rigid symmetry of the
WZW theory. The classes of outer automorphisms of G̃ modulo inner automorphisms
are generated by automorphisms of the Lie algebra g that preserve the set of simple roots
inducing a symmetry of the Dynkin diagram of g. Global gauge anomalies occur only
for (non-simply connected) groups G with Lie algebras g = Ar , Dr , e6 in the Cartan
classification of simple Lie algebras.1

Gauged WZW models serve to construct coset G/H models [5,6] of the two-
dimensional conformal field theory [7–10]. In such models, one restricts the gaug-
ing to the (possibly twisted) adjoint action on the target group of the subgroup � =
H̃/(Zω ∩ H̃) ⊂ G̃/Zω, where H̃ a closed connected subgroup of G̃ (simply-connected
or not). Global gauge anomalies are now detected by the pullback cohomology class in
H2(� × G, U (1)). Sects. 4 and 5 are devoted to finding out when the latter is nontrivial
for groups G as before and for a wide class of subgroups H̃ ⊂ G̃ (the nontriviality of
the pullback class depends only on the subgroup H̃ modulo conjugation by elements
of G̃ and it may occur only if the original anomaly class ϕ is nontrivial, hence for Lie
algebras g enumerated above). Closed connected subgroups H̃ ⊂ G̃ are in one-to-one
correspondence to Lie subalgebras h ⊂ g. We obtain the complete list of cases with
global gauge anomalies for subgroups H̃ with the Lie algebra h which is a semisimple
regular subalgebra of g (i.e. such that the roots of h form a subset of roots of g). The
complete classification (modulo conjugation) of regular subalgebras of simple Lie al-
gebras was obtained in the classical work of Dynkin [11]. The complete classification
of all semisimple subalgebras of simple Lie algebras is not known explicitly, except for
low ranks and may be complicated. We give the complete list of non-regular semisimple
subalgebras h of g = e6 corresponding to subgroups H̃ ⊂ G̃ that lead to global gauge
anomalies. For g = Ar and g = Dr , we limit ourselves to a few examples of anomalous
subgroups H̃ ⊂ G̃ for which h is a non-regular semisimple subalgebra of g.

As discussed in [3] for the untwisted case, the presence of global gauge anomalies of
the type studied here renders the G/H coset models inconsistent on the quantum level

1 We consider the compact real forms g of complex simple Lie algebras that are in one-to-one correspon-
dence with their complexifications gC.
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(barring accidental degeneracies of the affine characters). Hence the importance of the
classification of the anomalous cases.

2. No-Anomaly Condition

The WZ contribution to the action of the WZW model corresponding to the closed 3-form
Hk on a connected compact simple Lie group G = G̃/Z with Z ⊂ Z̃ may be defined
(modulo 2π ) whenever the periods of Hk (i.e. its integrals over closed 3-cycles) belong
to 2πZ. For the standard normalization of the invariant negative-definite quadratic form
tr on the Lie algebra g in which long roots (viewed as elements of itg, where tg is the
Cartan subalgebra of g) have length squared 2, this happens for levels k ∈ KG ⊂ Z.
If G = G̃ then KG = Z whereas KG may be a proper subset of Z if G = G̃/Z with
Z nontrivial (i.e. �= {1}). Sets KG of admissible levels are explicitly known [12,13].
Besides, for G = SO(2r)/Z2 with r even (where KG = Z when 4|r and KG = 2Z if
4� |r ), there are two different consistent choices of the WZ term of the action. The details
of the construction of the WZ contribution exp

[
i SW Z

� (g)
]

to the Feynman amplitude of
the sigma-model field g : � → G defined on a closed oriented worldsheet �, discussed
e.g. in [14,15], will not interest us here beyond the fact that the result is invariant under
the composition of fields g with the left or right action of (fixed) elements of group G.
The action functional with the (twisted) adjoint symmetry of the WZW model gauged
is a functional of field g and of gauge-field A, a g-valued 1-form on �. It has the form

SW Z
� (g, A) = SW Z

� (g) + k
4π

∫
tr

(
(g−1dg)ω(A) + (dg)g−1 A + g−1 Agω(A)

)
(2.1)

(for the untwisted case, ω = I d). The local gauge transformations h : � → G̃/Zω act
on the sigma model and gauge fields by

h g = hgω(h)−1, h A = h Ah−1 + hdh−1. (2.2)

Note that Zω = Z̃ for ω = I d. It is easy to show that the invariance of the gauged
Feynman amplitudes under such transformations:

exp
[
i SW Z

� (h g, h A)
]

= exp
[
i SW Z

� (g, A)
]

(2.3)

is equivalent to the identity

exp
[
i SW Z

� (h g)
]

exp
[
i SW Z

� (g)+ ik
4π

∫
�

tr
(
g−1dgω(h−1dh) + (dg)g−1h−1dh + g−1(h−1dh)gω(h−1dh)

)] =1,

(2.4)

see Appendix A. The ratio on the left hand side belongs always to U (1). It coincides
with the evaluation of the anomaly class ϕ ∈ H2(G̃/Zω × G, U (1)) on the 2-cocycle
that is the image of the fundamental class of � under the map (h, g) : � → G̃/Zω × G.

A simple analysis [3] of the structure of cohomology group H2(G̃/Zω × G, U (1))

based on the Künneth Theorem shows that class ϕ is trivial if and only if identity (2.4)
holds for � = S1 × S1 and

h(eiσ1 , eiσ2) = eiσ1 M̃ , g(eiσ1 , eiσ2) = eiσ2 M (2.5)
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where M̃, M ∈ itg and are such that, in terms of the exponential map with values in G̃,

z̃ ≡ e2iπ M̃ ∈ Zω and z ≡ e2iπ M ∈ Z . (2.6)

Both M̃ and M have to belong to the coweight lattice P∨(g) ⊂ itg dual to the weight
lattice of g and composed of M ∈ itg s.t. exp[2iπ M] ∈ Z̃ . For (h, g) given by Eqs. (2.5),
the left hand side of Eq. (2.4) is easily computable giving rise to the identity

cz̃ω(z̃)−1,z exp
[
−2iπk tr(Mω(M̃))

]
= 1 (2.7)

which holds for all M̃, M ∈ P∨(g) as above if and only if there are no global gauge
anomalies for the WZW model with gauged (twisted) adjoint action of G̃/Z̃ω on the
target group G. In Eq. (2.7),

Z2 
 (z, z′) �→ cz,z′ ∈ U (1) (2.8)

is a k-dependent bihomomorphism in Hom(Z ⊗ Z , U (1)) whose explicit form may be
extracted from Appendix 2 of [12]. For cyclic Z ≡ Zp generated by z0 = e2iπθ for
θ ∈ P∨(g),

czm
0 ,zn

0
= exp[−iπkmn tr(θ2)]. (2.9)

For the only case with non-cyclic Z , we shall explicit cz,z′ in Sect. 3.4.4. In the untwisted
case with ω = I d, condition (2.7) reduces to the requirement that

exp
[
−2iπk tr(M M̃)

]
= 1. (2.10)

If we gauge only the adjoint action of H̃/(Z̃ω ∩ H̃) then there are no global gauge
anomalies if and only if identity (2.7) holds under the additional restriction that, as an
element of G̃, exp[2iπ M̃] ∈ H̃ .

It is enough to check the above conditions for M̃, M in different classes modulo the
coroot lattice Q∨(g) (composed of M̃ ∈ itg s.t. exp[2iπ M̃] = 1 in G̃) since tr M̃ M ∈ Z

if M̃ ∈ P∨(g) and M ∈ Q∨(g) or vice versa. In particular, if Z = {1}, i.e. if G is
simply connected, then conditions (2.7) and (2.10) are always satisfied so that there
are no global gauge anomalies in that case. In the sequel, we shall describe for each
Lie algebra g the center Z̃ of the corresponding simply connected group G̃ in terms of
coweights of g. Then choosing a Lie subalgebra h ⊂ g, we shall restrict elements M̃

by requiring that e2iπ M̃ ∈ H̃ . Note that e2iπ M̃ ∈ H̃ if and only if e2iπ M̃ ∈ gH̃ g−1

for g ∈ G̃ and e2iπ M̃ ∈ Z̃ . Hence the no-anomaly conditions coincide for conjugate
subgroups H̃ ⊂ G̃. Thus it is enough to consider one Lie subalgebra h ⊂ g in each
class of subalgebras related by inner automorphisms of g. We may also require that the
Cartan subalgebra th of h be contained in the Cartan subalgebra tg of g. Then e2iπ M̃ ∈ H̃
if and only if there is q∨ ∈ Q∨(g) such that M̃ + q∨ ∈ ith. This is the condition that we
shall impose on M̃ .

The no-anomaly conditions for Lie subalgebras h ⊂ g related by outer automor-
phisms ω′ of g are also related. Indeed, it is easy to see that the expression on the right
hand side of Eq. (2.4) for gauge transformation h and fields g coincides with the similar
expression for gauge transformation ω′(h) and field ω′(g) if in the latter case subgroup



Global Gauge Anomalies in Coset Models of Conformal Field Theory 1375

Z ⊂ Z̃ is replaced by ω′(Z) and the twist ω by ω′ωω′−1. The only exception is the case
of G = SO(2r)/Z2 for even r and odd k where one may also have to interchange the
two different consistent choices of the theory, see Sect. 3.4.4.

Summarizing: the necessary and sufficient condition for the absence of global gauge
anomalies requires that Eq. (2.7) holds for all M̃, M ∈ P∨(g) such that

z̃ ≡ e2iπ M̃ ∈ Zω ∩ H̃ and z ≡ e2iπ M ∈ Z . (2.11)

In the untwisted case, this reduces to the condition2

k tr(M M̃) ∈ Z for all M̃, M ∈ P∨(g) s.t. z̃ ∈ H̃ , z ∈ Z . (2.12)

The no-anomaly conditions for subgroups H̃ ⊂ G̃ corresponding to Lie subalgebras
h ⊂ g related by inner (outer) automorphisms of g coincide (are simply related).

3. Cases with h = g

As the first step, we shall consider the cases with h = g for all simple algebras g

according to the Cartan classification, and for arbitrary nontrivial subgroups Z ⊂ Z̃ . If
there are no global gauge anomalies in that case, then the anomalies are absent also for
other h ⊂ g. In other words, upon restricting h to a smaller subalgebra, the anomalies
may only disappear. In this way, a lot of trivial cases can be already treated without
specifying the subalgebra h. We shall then consider in the next section the classification
of subalgebras h ⊂ g up to conjugation only for the remaining cases: those with possible
anomalies.

3.1. Case Ar = su(r + 1), r ≥ 1. Lie algebra g = Ar , corresponding to group
G̃ = SU (r + 1), is composed of traceless anti-hermitian matrices of size r + 1. Its
Cartan subalgebra tg may be taken as the subalgebra of diagonal traceless matrices with
imaginary entries. We define ei ∈ itg, i = 1, . . . , r + 1, as a diagonal matrix with the
j’s diagonal entry equal to δi j , so that tr(ei e j ) = δi j . Roots (viewed as elements of itg)
and coroots of su(r + 1) have then the form ei − e j for i �= j and the standard choice of
simple roots is αi = ei − ei+1, i = 1 . . . r . The center Z̃ ∼= Zr+1 may be generated by
z = e2iπθ with θ = λ∨

r = (1/(r + 1))
∑r+1

i=1 ei − er+1 where λ∨
i denotes the i-th simple

coweight satisfying tr(λ∨
i α j ) = δi j . Subgroups Z of Z̃ are of the form Z ∼= Zp with

p|(r + 1), and may be generated by zq = e2iπqθ for r + 1 = pq. The admissible levels
for the WZW model based on group G = G̃/Zp are:

k ∈ 2Z if p even and q odd,

k ∈ Z otherwise,
(3.1)

see [12,13]. If we now represent M and M̃ in the Euclidian space spanned by vectors ei ,

M = aqθ =
(

a

p
, . . . ,

a

p
,−ar

p

)
, a ∈ Z, (3.2)

M̃ = ãθ =
(

ã

r + 1
, . . . ,

ã

r + 1
,− ãr

r + 1

)
, ã ∈ Z, (3.3)

the condition for M in (2.11) is satisfied and e2iπ M̃ ∈ Z̃ .

2 In the conformal filed theory terminology [16], condition (2.12) means that the monodromy charge Q J ( J̃ )

for the simple currents J̃ and J corresponding to the central elements z̃ and z has to vanish modulo 1.
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3.1.1. Untwisted case. If ω = I d, the global gauge invariance for h = g is assured if

k tr(M M̃) = k
raã

p
∈ Z. (3.4)

In particular, k ∈ pZ is a sufficient condition for the absence of global anomalies. Recall
that p divides r + 1. This implies that p and r are relatively prime. Hence k ∈ pZ is also
a necessary condition for the absence of the anomalies if there are no further restrictions
on the values of ã, i.e. if h = g. Taking into account restrictions (3.1), this leads to the
first result:

Proposition 3.1. The untwisted coset models corresponding to Lie algebra g = su(r+1),
subgroups Z ∼= Zp, r + 1 = pq, and arbitrary subalgebras h do not have global gauge
anomalies if k ∈ pZ. The models with h = g and with k /∈ pZ for p > 1 odd or q even,
or with k ∈ 2Z\pZ for p > 2 even and q odd are anomalous.

3.1.2. Twisted case. For r > 1, there is one nontrivial outer automorphism of su(r + 1).
It maps simple root αi to αr+1−i so that for M̃ given by Eq. (3.3),

ω(M̃) = ω(ãθ) =
(

ãr

r + 1
,

−ã

r + 1
, . . . ,

−ã

r + 1

)
, ã ∈ Z. (3.5)

The condition

e2iπ M̃ ω(e−2iπ M̃ ) = e4iπ ãθ ∈ Z (3.6)

reduces to the requirement

q|ã for q odd and
q

2
|ã for q even. (3.7)

It follows that Zω ∼= Zp for q odd and Zω ∼= Z2p for q even. From Eq. (2.9), we obtain

cz̃ω(z̃)−1,z = exp

[
−2iπk

ãar

p

]
(3.8)

and from Eqs. (3.2) and (3.5),

exp[−2iπk tr(Mω(M̃))] = exp

[
−2iπk

aã

p

]
(3.9)

so that the no-anomaly condition (2.7) reduces to the identity

exp[−2iπkaãq] = 1 (3.10)

which always holds implying

Proposition 3.2. The twisted coset models corresponding to Lie algebra g = su(r + 1),
subgroups Z ∼= Zp, r + 1 = pq, and arbitrary subalgebras h do not have global gauge
anomalies.

3.2. Case Br = so(2r + 1), r ≥ 2. Lie algebra g = Br , corresponding to group
G̃ = Spin(2r + 1), is composed of real antisymmetric matrices of size 2r + 1. The
Cartan algebra tg may be taken as composed of r blocks
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(
0 −ti
ti 0

)
(3.11)

placed diagonally, with the last diagonal entry vanishing. Let ei ∈ itg denote the matrix
corresponding to t j = iδi j . With the normalization such that tr(ei e j ) = δi j , roots of g
have the form ±ei ± e j for i �= j and ±ei , and one may choose αi = ei − ei+1 for
i = 1 . . . r − 1 and αr = er as the simple roots. The center Z̃ ∼= Z2 is generated by
z = e2iπθ with θ = λ∨

1 = e1, and the only nontrivial subgroup of the center is Z = Z̃ .
If we describe M and M̃ in the Euclidian space spanned by vectors ei , it is enough to
take

M = aθ = (a, 0, . . . , 0) , M̃ = ãθ = (ã, 0, . . . , 0) , a, ã ∈ Z. (3.12)

Lie algebra sor+1 does not have nontrivial outer automorphisms. For ω = I d, the global
gauge invariance is assured if

k tr(M M̃) = kaã ∈ Z (3.13)

which is always the case leading to

Proposition 3.3. The coset models corresponding to Lie algebra g = so(2r + 1) and
any subalgebra h do not have global gauge anomalies.

3.3. Case Cr = sp(2r), r ≥ 3. Lie algebra g = Cr , corresponding to group G̃ =
Sp(2r), is composed of antihermitian matrices X of size 2r such that 
X is symmetric,
with 
 built of r blocks

ω =
(

0 −1
1 0

)
(3.14)

placed diagonally. The Cartan algebra tg may be taken as composed of r blocks tiω
placed diagonally. Let ei ∈ itg denote the matrix corresponding to t j = iδi j . With the
normalization tr(ei e j ) = 2δi j , roots of g have the form (1/2)(±ei ± e j ) for i �= j and
±ei . The simple roots may be chosen as αi = (1/2)(ei − ei+1) for i = 1, . . . r − 1 and
αr = er . The center Z̃ ∼= Z2 is generated by z = e2iπθ with θ = λ∨

r = (1/2)
∑r

i=1 ei ,
and its only nontrivial subgroup is Z = Z̃ . We then take M and M̃ in the Euclidian space
spanned by vectors ei of the form

M = aθ =
(a

2
, . . . ,

a

2

)
M̃ = ãθ =

(
ã

2
, . . . ,

ã

2

)
a, ã ∈ Z. (3.15)

Lie algebra sp(2r) does not have nontrivial outer automorphisms. For ω = I d, taking
into account the normalization of tr, we obtain:

k tr(M M̃) = k
aãr

2
, (3.16)

ensuring the global gauge invariance if it is an integer. The admissible levels k are

k ∈ Z if r is even, (3.17)

k ∈ 2Z if r is odd, (3.18)

see [12,13], so that the above condition is always satisfied leading to

Proposition 3.4. The coset models corresponding to Lie algebra g = sp(2r) and any
subalgebra h do not have global gauge anomalies.
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3.4. Case Dr = so(2r), r ≥ 4. Lie algebra g = Dr , corresponding to group G̃ =
Spin(2r), is composed of real antisymmetric matrices of size 2r . The Cartan algebra tg
may be taken as composed of r blocks

ω =
(

0 −ti
ti 0

)
(3.19)

placed diagonally. Let us denote by ei ∈ itg the matrix corresponding to t j = iδi j . With
the normalization tr(ei e j ) = δi j , roots of g have the form ±ei ± e j for i �= j , and the
simple roots may be chosen as αi = ei − ei+1 for i = 1 . . . r − 1 and αr = er−1 + er .

Case of r odd. If r is odd, the center Z̃ ∼= Z4 is generated by z = e2iπθ with θ = λ∨
r =

(1/2)
∑r

i=1 ei . The possible nontrivial subgroups are Z = Z̃ and Z ∼= Z2, generated by
z2. In particular, Spin(2r)/Z2 = SO(2r). Taking the general form of M and M̃ in the
Euclidian space spanned by vectors ei ,

M = aθ =
(a

2
, . . . ,

a

2

)
, a ∈ Z if Z ∼= Z4,

a ∈ 2Z if Z ∼= Z2,

M̃ = ãθ =
(

ã

2
, . . . ,

ã

2

)
, ã ∈ Z.

(3.20)

The admissibility condition for the levels in the corresponding WZW models are [13]:

k ∈ 2Z if Z ∼= Z4, (3.21)

k ∈ Z if Z ∼= Z2. (3.22)

3.4.1. Untwisted case. If ω = I d then the global gauge invariance is assured if the
quantity

k tr(M M̃) = k
aãr

4
, (3.23)

is an integer. The latter holds for

k ∈ 4Z if Z ∼= Z4, (3.24)

k ∈ 2Z if Z ∼= Z2. (3.25)

Comparing to to the admissibility conditions (3.21), we deduce the following

Proposition 3.5. The untwisted coset models corresponding to Lie algebra g = so(2r),
r odd, and any subalgebra h do not have global gauge anomalies for

k ∈ 4Z if Z ∼= Z4 (3.26)

k ∈ 2Z if Z ∼= Z2. (3.27)

The models with h = g and k ∈ 2Z with odd k/2 for Z ∼= Z4 or with k odd for Z ∼= Z2
are anomalous.

3.4.2. Twisted case. There is only one nontrivial outer automorphism ω of so(2r) with
odd r , It exchanges the simple roots αr−1 and αr and does not change the other ones.
Thus, taking M and M̃ given by (3.20), we get

ω(M̃) = ã ω(λ∨
r ) = ãλ∨

r−1 = −ãλ∨
r + ãq∨ = −M̃ + ãq∨ (3.28)
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Table 1. Subgroups of Z̃(Spin(2r)) ∼= Z2 × Z2, r even, and their generators

Subgroup Z Type Generator(s) zi

Z̃ Z2 × Z2 z1, z2
Z1 := Z2 × {1} Z2 z1
Z2 := {1} × Z2 Z2 z2
Zdiag Z2 z1z2

where q∨ ∈ Q∨(Dr ). The condition

e2iπ M̃ ω(e−2iπ M̃ ) = e4iπ ãθ ∈ Z (3.29)

is always satisfied whatever the subgroup Z ∼= Z4 or Z2 considered. From Eq. (2.9), we
obtain

cz̃ω(z̃)−1,z = exp

[
−iπk

ãar

2

]
(3.30)

and from Eqs. (3.20) and (3.28),

exp
[
−2iπk tr(Mω(M̃))

]
= exp

[
+iπk

aãr

2

]
(3.31)

so that the no-anomaly condition (2.7) always holds implying

Proposition 3.6. The twisted coset models corresponding to Lie algebra g = so(2r), r
odd, subgroups Z ∼= Z4 or Z2, and arbitrary subalgebras h do not have global gauge
anomalies.

Case of r even. If r is even, the center Z̃ ∼= Z2 × Z2 is generated by z1 = e2iπθ1 with
θ1 = λ∨

r = (1/2)
∑r

i=1 ei and z2 = e2iπθ2 with θ2 = λ∨
1 = e1. The possible nontrivial

subgroups are given in Table 1.
Here, SO(2r) = Spin(2r)/Z2. The general form of M and M̃ in the Euclidian space

spanned by vectors ei is

M = a1θ1 + a2θ2 =
(a1

2
+ a2,

a1

2
, . . . ,

a1

2

)
, a1, a2 ∈ Z if Z = Z̃ ,

a1 ∈ Z, a2 = 0 if Z = Z1,

a1 = 0, a2 ∈ Z if Z = Z2,

a1 = a2 ∈ Z if Z = Zdiag,

M̃ = ã1θ1 + ã2θ2 =
(

ã1

2
+ ã2,

ã1

2
, . . . ,

ã1

2

)
, ã1, ã2 ∈ Z.

(3.32)

In this case, the conditions for admissible levels of the WZW model are [13]:

k ∈ Z if r/2 is even for any Z ,

r/2 is odd for Z = Z2,

k ∈ 2Z if r/2 is odd and Z = Z̃ , Z1 or Zdiag.

(3.33)
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3.4.3. Untwisted case. If ω = I d then the global gauge invariance is assured if

k tr(M M̃) = k

(
a1ã1r

4
+

a1ã2

2
+

a2ã1

2
+ a2ã2

)
, (3.34)

is an integer. This holds for k ∈ 2Z, whatever the subgroup considered. Comparing to
the admissibility conditions (3.33), we deduce the following

Proposition 3.7. The untwisted coset models corresponding to Lie algebra g = so(2r),
r even, and any subalgebra h do not have global gauge anomalies if k ∈ 2Z. The models
with h = g and with k odd for r/2 even and any nontrivial Z, or with k odd for r/2 odd
and Z = Z2, are anomalous.

3.4.4. Twisted case. For r > 4, there is only one nontrivial outer automorphism ω of
so(2r), which is the same as the one described in the case of r odd: it interchanges the
simple roots αr−1 and αr . Thus, taking M and M̃ given by (3.32), we get

ω(M̃) = ã1ω(θ1) + ã2ω(θ2) = ã1λ
∨
r−1 + ã2λ

∨
1

= ã1λ
∨
r + (ã1 + ã2)λ

∨
1 + ã1q∨ = M̃ + ã1θ2 + ã1q∨ (3.35)

where q∨ ∈ Q∨(Dr ). The condition

e2iπ M̃ ω(e−2iπ M̃ ) = e−2iπ ã1θ2 ∈ Z (3.36)

is satisfied for arbitrary ã1 if Z = Z̃ or Z2, and for ã1 = 0 mod 2 if Z = Z1 or Zdiag .
For Z = Z̃ , the expression for bihomomorphism (2.8) extracted from [12] reads:

cz
m1
1 z

m2
2 ,z

n1
1 z

n2
2

=
(

± exp

[
iπk

2

])m1n2−m2n1

exp

[
− iπk

2
(m1n1

r

2
+m1n2 +m2n1+2m2n2)

]

(3.37)

for mi , ni ∈ Z, with the sign ± corresponding to the two choices of WZ action functional.
For the cyclic subgroups of Z̃ , the above expression reduces to the one given by Eq. (2.9).
We have:

cz̃ω(z̃)−1,z = ( ± 1)a1ã1 exp[iπk(a1ã1 + a2ã1)] (3.38)

and, from Eqs. (3.32) and (3.35),

exp[−2iπk tr(Mω(M̃))] = exp
[
−iπk

(
(
r

2
+ 1)a1ã1 + a1ã2 + a2ã1

)]
. (3.39)

Hence the no-anomaly condition (2.7) requires that

(±1)a1ã1 exp
[
−iπk

( r

2
a1ã1 + a1ã2

)]
= 1 (3.40)

Considering each subgroup Z and the corresponding values of a1, a2, ã1, and ã2, and
recalling the conditions (3.33) for the admissible levels of the corresponding WZW
model, we deduce the
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Proposition 3.8. The twisted coset model corresponding to Lie algebra g = so(2r),
r > 4 even and arbitrary subalgebra do not have anomalies for Z = Z̃ (+ theory), Z1
and Zdiag if k is even, and for Z = Z2 if k ∈ Z. The twisted models with h = g for
Z = Z̃ (- theory) and k even, and for Z = Z̃ , Z1 or Zdiag and k odd, r/2 > 2 even, are
anomalous.

For r = 4, there are more nontrivial outer automorphisms, because the symmetries
of the diagram of D4 form the permutation group S3 (the well known “triality”). They
belong to two conjugacy classes, the one composed of cyclic permutations of order 2,

ω1 : α3 → α4 → α3, ω2 : α1 → α3 → α1, ω3 : α1 → α4 → α1, (3.41)

and the one containing cyclic permutations of order 3,

ω4 : α1 → α4 → α3 → α1, ω−1
4 : α1 → α3 → α4 → α1. (3.42)

The no-anomaly conditions for twists ω and ω′ωω′−1 in the same conjugacy class are
related, as was discussed at the end of Sect. 2: they coincide if in the latter case subgroup
Z ⊂ Z̃ is replaced by ω′(Z). The only exception is the case Z = Z̃ for odd k where one
has also to interchange the ± theories if ω′ is cyclic of order 2. It is straightforward to
see that

ω4ω1ω
−1
4 = ω2, ω−1

4 ω1ω4 = ω3 (3.43)

and

ω4(Z1) = Zdiag, ω4(Z2) = Z1, ω4(Zdiag) = Z2. (3.44)

The results of Proposition 3.8 still hold for r = 4 and twist ω1 and the ones for r = 4
and twists ω2 and ω3 follow from the latter by using the above remark (or by a direct
calculation) giving:

Proposition 3.9. The twisted coset models corresponding to Lie algebra g = so(8) with
twist ω1 and arbitrary subalgebra do not have anomalies for Z = Z̃ (+ theory), Z1 and
Zdiag if k is even, and for Z = Z2 if k ∈ Z. The models with h = g for Z = Z̃ (- theory)
and k even, and for Z = Z̃ , Z1 or Zdiag and k odd are anomalous. The results for twist
ω2 (ω3) are as the ones for twist ω1 except for the permutation (3.44) of the subgroups
Z → ω4(Z) (Z → ω−1

4 (Z)).

For the cyclic outer automorphismω4 of order 3, taking M and M̃ given by Eqs. (3.32),
we obtain:

ω4(M̃) = (ã1 + ã2)θ1 + ã1θ2 + ã1q∨ (3.45)

where q∨ ∈ Q∨(D4). The condition

e2iπ M̃ ω4(e
−2iπ M̃ ) = exp[2iπ(−ã2θ1 + (ã2 − ã1)θ2)] ∈ Z (3.46)

is satisfied for arbitrary ã1, ã2 if Z = Z̃ , and for ã1 = ã2, ã2 = 0, ã1 = 0, all mod 2,
if Z = Z1, Z2 or Zdiag respectively. Expression (3.37) for the bihomomorphism gives
here:

cz̃ω4(z̃)−1,z = (±1)−a2ã2+a1ã1−a1ã2 exp[iπk(a1ã1 + a2ã1 − a2ã2)] (3.47)
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From Eqs. (3.32) and (3.35),

exp[−2iπk tr(Mω4(M̃))] = exp
[−iπk (a1ã1 + a2ã1 + a2ã2)

]
(3.48)

so that the no-anomaly condition (2.7) becomes

(±1)−a2ã2−a1ã2+a1ã1 = 1. (3.49)

Considering each subgroup Z and the corresponding values of a1, a2, ã1, and ã2, and
recalling the admissible values (3.33) of the level, we deduce

Proposition 3.10. The twisted coset models corresponding to Lie algebra g = so(8),
outer automorphism ω4 and arbitrary subalgebra do not have anomalies for Z = Z̃ (+
theory) and Z = Z1, Z2 or Zdiag. The models with h = g and Z = Z̃ (- theory) is
anomalous.

The results for the twist ω−1
4 may be deduced from the above proposition if we observe

that ω−1
4 may be obtained from ω4 by the conjugation by any cyclic outer automorphism

ω′ of order 2. Hence the conditions for the absence or the presence of anomalies for the
theory twisted by ω−1

4 are as for the ones for the twist ω4 except for the exchange of the
± theories for Z = Z̃ and k odd leading to

Proposition 3.11. The twisted coset models corresponding to Lie algebra g = so(8),
outer automorphism ω−1

4 and arbitrary subalgebra do not have anomalies for Z = Z̃
((−)k theory) and Z = Z1, Z2 or Zdiag. The models with h = g, and Z = Z̃ ((−)k+1

theory) is anomalous.

This may be confirmed by a direct calculation.

3.5. Case e6. The imaginary part itg of the complexification of the Cartan subalgebra tg
ofg = e6 may be identified with the subspace of R

7 orthogonal to the vector (1, . . . , 1, 0),
with the scalar product inherited from R

7. The simple roots may be taken as αi = ei −ei+1

for i = 1 . . . 5 and α6 = (1/2)(−e1 − e2 − e3 + e4 + e5 + e6) + (1/
√

2)e7, where ei are
the vectors of the canonical basis of R

7. The center Z̃ ∼= Z3 is generated by z = e2iπθ

with θ = λ∨
5 = (1/6)(e1 + e2 + e3 + e4 + e5 − 5e6) + (1/

√
2)e7. The only nontrivial

subgroup is Z = Z̃ . The general form of M and M̃ in the Euclidian space spanned by
vectors ei is

M = aθ =
(

a

6
, . . . ,

a

6
,
−5a

6
,

a√
2

)
a ∈ Z,

M̃ = ãθ =
(

ã

6
, . . . ,

ã

6
,
−5ã

6
,

ã√
2

)
ã ∈ Z.

(3.50)

3.5.1. Untwisted case. If ω = I d then the global gauge invariance is assured if

k tr(M M̃) = k
4aã

3
, (3.51)

is an integer. This holds for k ∈ 3Z. Since all integer levels k ∈ Z are admissible [12,13],
we deduce

Proposition 3.12. The untwisted coset models corresponding to Lie algebra g = e6 and
arbitrary subalgebra h do not have global gauge anomalies if k ∈ 3Z. The models
Z = Z3, h = g and k ∈ Z\3Z are anomalous.
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3.5.2. Twisted case. There is only one nontrivial outer automorphism ω of e6, which
exchanges the simple roots α1 and α2 with α5 and α4 and does not change the other
ones. Thus, taking M and M̃ given by (3.50), we get

ω(M̃) = ãω(λ∨
5 ) = ãλ∨

1 = −ãλ∨
5 + ãq∨ = −M̃ + ãq∨ (3.52)

where q∨ ∈ Q∨(e6). The condition

e2iπ M̃ ω(e−2iπ M̃ ) = e4iπ ãθ ∈ Z (3.53)

is always satisfied for Z = Z̃ . From Eq. (2.9), we obtain

cz̃ω(z̃)−1,z = exp[−2iπk
4ãa

3
] (3.54)

and from Eqs. (3.50) and (3.52),

exp[−2iπk tr(Mω(M̃))] = exp

[
+2iπk

4aã

3

]
(3.55)

so that the no-anomaly condition (2.7) always holds implying

Proposition 3.13. The twisted coset models corresponding to Lie algebra g = e6, sub-
group Z ∼= Z3 and arbitrary subalgebras h do not have global gauge anomalies.

3.6. Case e7. The imaginary part itg of the complexification of the Cartan subalgebra tg
of g = e7 may be identified with the subspace of R

8 orthogonal to the vector (1, . . . , 1)

with the simple roots αi = ei − ei+1 for i = 1 . . . 6 and α7 = (1/2)(−e1 − e2 − e3 −
e4 + e5 + e6 + e7 + e8), where ei are the vectors of the canonical basis of R

8. The center
Z̃ ∼= Z2 is generated by z = e2iπθ with θ = λ∨

1 = (1/4)(3,−1, . . . ,−1, 3). The only
nontrivial subgroup is Z = Z̃ . The general form of M and M̃ in the Euclidian space
generated by ei is

M = aθ =
(

3a

4
,
−a

4
, . . . ,

−a

4
,

3a

4

)
a ∈ Z,

M̃ = ãθ =
(

3ã

4
,
−ã

4
, . . . ,

−ã

4
,

3ã

4

)
ã ∈ Z.

(3.56)

Lie algebra e7 does not have nontrivial outer automorphisms so that we may take ω = I d.
The global gauge invariance is then assured if the quantity

k tr(M M̃) = k
3aã

2
, (3.57)

is an integer. This holds for k ∈ 2Z. The condition for admissible levels also requires in
this case that k ∈ 2Z [12,13] so that we deduce:

Proposition 3.14. The coset models corresponding to Lie algebra g = e7 and any sub-
algebra h do not have global gauge anomalies.

3.7. Case g2, f4 and e8. The center of the simply connected groups corresponding to
Lie algebras g = g2, f4 or e8 is trivial : Z̃ ∼= {1} so that there are no nontrivial subgroups
Z in that case and we infer:
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Proposition 3.15. The coset models corresponding to Lie algebras g = g2, f4 or e8 and
any subalgebra h do not have global gauge anomalies.

4. Regular Subalgebras

Looking back at the previous section, the global gauge anomalies of the coset models
may appear only for g = Ar , Dr and e6 in the untwisted case, and only for g = Dr
with even r in the twisted case (note that these are all simply laced Lie algebras). Now
we have to specify the Lie subalgebra h of a simple algebra g to see in which cases the
anomalies survive the restriction of the symmetry group. The first class of semisimple
subalgebras that we shall consider are the regular ones, introduced by Dynkin in [11]. A
Lie subalgebra h of an algebra g is called regular if, for a choice of the Cartan subalgebra
tg ⊂ g (defined up to conjugation), its complexification is of the form

hC = tCh ⊕
(

⊕
α∈�h⊂�g

Ceα

)

(4.1)

where th ⊂ tg is a Cartan subalgebra of h. Subalgebra h is semisimple if α ∈ �h

implies that −α ∈ �h and if α ∈ �h span tCh . �h is then the set of roots of h.

Construction of regular subalgebras. There is a nice diagrammatic method to obtain all
the regular semisimple subalgebras of a given semisimple algebra (up to conjugation),
proposed by Dynkin in [11] and summarized in [17]. We briefly describe it here:

1. Take the Dynkin diagram of the ambient algebra g, and adjoin to it a node corre-
sponding to the lowest root δ = −φ (negative of the highest root φ) of g, obtaining
the extended Dynkin diagram of g.

2. Remove arbitrarily one root from this diagram, in order to obtain at most r +1 different
diagrams, which may split into orthogonal subdiagrams.

3. Reapply the firsts two steps to each connected subdiagram obtained above, until no
new diagram appears. This way one gets all the regular subalgebras h ⊂ g of maximal
rank.

4. Remove again an arbitrarily root from each diagram, and apply the full procedure to
each connected subdiagram obtained this way (including the last step).

The algorithm stops when no root can be removed, hence one will obtain all the regular
subalgebras of g.

4.1. Regular semisimple subalgebras of Ar . The semisimple regular subalgebras of Ar
are given in [11] (Chapter II, Table 9) and have the form:

h = Ar1 ⊕ · · · ⊕ Arm , r1 + 1 + · · · + rm + 1 ≤ r + 1 (4.2)

The embedding of h in g realizing the ideals Ari as diagonal blocks in the matrices of
Ar is unique up to an inner automorphism of Ar . Taking M and M̃ as given in Eqs. (3.2)
and (3.3) we must require that M̃ + q∨ ∈ ith, for some q∨ ∈ Q∨(Ar ). Looking block
by block, we obtain the conditions

ã(ri + 1)

r + 1
∈ Z ∀i = 1, . . . , m (4.3)
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and that

ã

r + 1
∈ Z (4.4)

if the inequality in (4.2) is strict. The latter condition implies that (3.4) holds eliminating
possible global gauge anomalies. We may then limit ourselves to the case when the
inequality in (4.2) is saturated. This implies that For i = 1, . . . , m, we may then rewrite
conditions (4.3) as

ã(ri + 1) = qi (r + 1) qi ∈ Z. (4.5)

In what follows, we shall denote by, respectively, u1 ∧ · · · ∧ un and u1 ∨ · · · ∨ un the
greatest common divisor and the least common multiple of u1, . . . , un . Dividing both
sides of Eq. (4.5) by (r + 1) ∧ (ri + 1), we get

ã
ri + 1

(r + 1) ∧ (ri + 1)
= qi

r + 1

(r + 1) ∧ (ri + 1)
(4.6)

so that r+1
(r+1)∧(ri +1)

| ã (ri +1)
(r+1)∧(ri +1)

. Using the fact that r+1
(r+1)∧(ri +1)

and ri +1
(r+1)∧(ri +1)

are rela-

tively prime, we infer that r+1
(r+1)∧(ri +1)

|ã, i.e. that

ã ∈ r + 1

(r + 1) ∧ (ri + 1)
Z ∀i = 1, . . . , m (4.7)

which leads, according to Proposition B.1 of Appendix B, to the condition

ã ∈
(

r + 1

(r + 1) ∧ (r1 + 1)
∨ · · · ∨ r + 1

(r + 1) ∧ (rm + 1)

)
Z (4.8)

This property can be reformulated, using Proposition B.2 of Appendix B, as

ã ∈
(

r + 1

(r + 1) ∧ (r1 + 1) ∧ · · · ∧ (rm + 1)

)
Z (4.9)

Since we assumed that r1 + 1 + · · · + rm + 1 = r + 1, condition (4.9) may be simplified to

ã ∈
(

r + 1

(r1 + 1) ∧ · · · ∧ (rm + 1)

)
Z (4.10)

In order to guarantee that the quantity (3.4) is an integer for every a and ã, ensuring the
global gauge invariance, it is enough to compute it for a = 1 and

ã = r + 1

(r1 + 1) ∧ · · · ∧ (rm + 1)
. (4.11)

Denoting (r1 + 1) ∧ · · · ∧ (rm + 1) = l, and r + 1 = pq, the quantity (3.4) becomes

k tr(M M̃) = k
rq

l
= kr

q/(q ∧ l)

l/(q ∧ l)
. (4.12)

Finally, recalling that l|(r + 1) and, consequently, l
q∧l and r are relatively prime, we

infer that the right hand side of Eq. (4.12) is be an integer if and only if

k ∈ l

q ∧ l
Z. (4.13)

Taking into account condition (3.1) for admissible levels, we are now able to state
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Proposition 4.1. The untwisted coset models built with Lie algebra g = Ar , subgroup
Z ∼= Zp for (r + 1) = pq and any regular subalgebra h = Ar1 ⊕ · · · ⊕ Arm do not have
global gauge anomalies for

• r1 + 1 + · · · rm + 1 < r + 1 k ∈
{

2Z if p even and q odd

Z otherwise

• r1 + 1 + · · · rm + 1 = r + 1 k ∈

⎧
⎪⎪⎨

⎪⎪⎩

l

q ∧ l
Z ∩ 2Z if p even and q odd

l

q ∧ l
Z otherwise

where l = (r1 + 1) ∧ · · · ∧ (rm + 1). The other untwisted models with admissible levels
are anomalous.

Example 1: g = A4 = su(5). The center Z̃ ∼= Z5 of the corresponding group has
only one nontrivial subgroup, Z = Z̃ ∼= Z5, so with p = 5 odd and q = 1 odd with
the previous notations. The admissible levels are k ∈ Z, according to (3.1). Following
Proposition 3.1, the regular subalgebra h = g leads to the condition k ∈ 5Z for non-
anomalous models. Then, applying the last proposition above, the cases h = A1, A1 ⊕
A1 ≡ 2A1, A2 and A3 leads to non-anomalous models for every k ∈ Z, because here
we have r1 +1+ · · · rm +1 < r +1 = 5. For h = A2 ⊕ A1, we have an equality. However,
l = (r1 + 1) ∧ (r2 + 1) = 3 ∧ 2 = 1, so l/(l ∧ q) = 1 and the model has no anomalies
for every k ∈ Z. Consequently, the only anomalous models corresponding to g = A4

and h regular are those with h = g, Z = Z̃ and k ∈ Z\5Z.

Example 2: g = A5 = su(6). Here the center Z̃ ∼= Z6 has three nontrivial subgroups :
Z ∼= Z6, Z3 and Z2 with the respective admissible levels k ∈ 2Z, Z and 2Z. The models
corresponding to the case h = g will be non-anomalous for

k ∈
⎧
⎨

⎩

6Z if Z ∼= Z6

3Z if Z ∼= Z3

2Z if Z ∼= Z2.

(4.14)

Regular subalgebras h = A1, 2A1, A2, A2 ⊕ A1, A3 and A4 correspond to the strict
inequality for ranks in the proposition above, so there will be no anomalies for these
models with

k ∈
{

2Z if Z ∼= Z6 or Z2

Z if Z ∼= Z3.
(4.15)

Computation shows that h = 2A2 leads to non-anomalous models for the same k as for
h = g, and that the models corresponding to h = A3 ⊕ A1 and to 3A1 have no anomalies
for k ∈ 2Z if Z ∼= Z6 or Z2 and for k ∈ Z if Z ∼= Z3. Thus, the anomalous models
corresponding to g = A5 have either h = g or h = 2A2, where k ∈ 2Z\6Z for Z ∼= Z6
and k ∈ Z\3Z for Z ∼= Z3.

4.2. Regular semisimple subalgebras of Dr . The semisimple regular subalgebras of Dr
are given in [11] (Chapter II, Table 9) and have the form:

h = Ar1 ⊕ · · · ⊕ Arm ⊕ Ds1 ⊕ · · · ⊕ Dsn (4.16)
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where r1 + 1 + · · · + rm + 1 + s1 + · · · sn ≤ r .3 The embedding of Dsi subalgebras realizes
them as diagonal blocks in Dr . Instead of giving an explicit embedding of subalgebras
Ari , it is enough to see that Al is trivially embedded in Dl+1, by sending the l simple roots
α

Al
i of Al to the l first simple roots α

Dl+1
i of Dl+1. Then, the Serre construction allows us to

reconstruct the full structure of Al , embedded in Dl+1, which is then easily embedded in
Dr as a diagonal block. The embedding of h into g described above is unique, up to inner
automorphisms of g, except for even r if there are no Dsi and r1 +1+ · · ·+rm +1 = r with
all ri odd. In the latter case there is a second independent embedding of Ar1 ⊕· · ·⊕ Arm

into Dr that sends the simple roots of Arm to the last rm + 1 simple roots of Dr omitting
αr−1. That embedding is related to the previous one by the outer automorphism ω of Dr
that permutes roots αr1 and αr , but not by an inner automorphism. Recall that the coroot
lattice Q∨(Dr ) is composed of vectors

q∨ =
r∑

i=1

q∨
i ei with q∨

i ∈ Z and
r∑

i=1

q∨
i ∈ 2Z. (4.17)

Case of r odd. Taking M and M̃ as given in (3.20), we shall impose the condition
e2iπ M̃ ∈ H̃ . On the Lie-algebra level, we have to show that for some q∨ ∈ Q∨(g),
M̃ + q∨ belongs to ith. Looking block by block, we infer that

ã(ri + 1)

2
∈ Z, i = 1, . . . , m, (4.18)

and that

ã

2
∈ Z (4.19)

if r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r . The condition that the sum of components of
vectors in Q∨(so(2r)) is even imposes the additional requirement that

ãr

2
∈ 2Z, (4.20)

i.e. ã ∈ 4Z, in the absence of Dsi components in h, [in that case conditions (4.18) and
(4.19) imply already that ã ∈ 2Z]. Re-examining the quantity (3.23) which has to be
an integer with the above restrictions in mind and taking into account the conditions for
admissible levels, we deduce

Proposition 4.2. The untwisted coset models built with Lie algebra g = so(2r), r odd,
and a regular subalgebra h = Ar1 ⊕ · · · ⊕ Arm ⊕ Ds1 ⊕ · · · ⊕ Dsn do not have global
gauge anomalies for the following cases

• r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r with all ri odd and k ∈
{

4Z if Z ∼= Z4

2Z if Z ∼= Z2

• r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r or
r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r and some ri even

}
k ∈

{
2Z if Z ∼= Z4

Z if Z ∼= Z2

The other untwisted models with admissible levels are not globally gauge invariant.

3 To take into account all the possible cases with this formula, we may need to consider D2 instead of 2A1
and D3 instead of A3 to respect the inequality. See examples below.
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Remark. In particular, the global gauge anomalies present if h = g for Z = Z4 and k ∈
2Z, k/2 odd, or for Z = Z2 and k odd, disappear for h = Ar1 ⊕· · ·⊕Arm ⊕Ds1 ⊕· · ·⊕Dsn

if r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r or if r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r with
some ri even. Note that if there no Dsi and r1 + 1 + · · · + rm + 1 = r then all ri cannot
be odd.

Example: g = D5 = so(10). The admissible levels are k ∈ 2Z for Z = Z̃ ∼= Z4 and
k ∈ Z for Z ∼= Z2. According to Proposition 3.5, there are no gauge anomalies in the
case h = g for

k ∈
{

4Z if Z ∼= Z4

2Z if Z ∼= Z2.
(4.21)

For regular subalgebra h = A1, 2A1 ∼= D2, A2, A3 ∼= D3, D4, the inequality on the
ranks is strict so there are no anomalies for

k ∈
{

2Z if Z = Z4

Z if Z = Z2.
(4.22)

In the case h = A4 and A2 ⊕ A1, the rank inequality is saturated and there is one ri even,
so (4.22) still gives the no-anomaly condition for k. D5 admits also D3⊕D2 ∼= A3⊕2A1,
A1 ⊕ D3 ∼= A3 ⊕ A1, A2 ⊕ D2 ∼= A2 ⊕ 2A1, 2D2 ∼= 4A1 and A1 ⊕ D2 ∼= 3A1, see
[17] or the method described above, where only the left hand sides respect the inequality
for ranks and should be used to extract the no-anomaly conditions. For A2 ⊕ D2, 2D2
and A1 ⊕ D2 either the inequality for ranks is saturated and there is an even ri or the
inequality for ranks is strict, hence there are no anomalies for levels satisfying (4.22).
Finally, for D3 ⊕ D2 and A1 ⊕ D3 the rank inequality is saturated by there is no even
ri and the gauge anomalies persist for Z ∼= Z4 if k ∈ 2Z\4Z and for Z ∼= Z2 if k odd.

Case of r even. Taking M and M̃ as given in (3.32) and following the same reasoning
as for the case of r odd, we get the same conditions:

ã1(ri + 1)

2
∈ Z, i = 1, . . . , m, (4.23)

and, if r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r ,

ã1

2
∈ Z (4.24)

Additionally, if there are no Dsi components in h, then

ã1
r

2
+ ã2 ∈ 2Z for the 1st embedding

ã1

( r

2
− 1

)
+ ã2 ∈ 2Z for the 2nd embedding

(4.25)

(the last two conditions differ only if all ri are odd and the rank inequality is saturated
because in the other cases ã1 has to be even). Examining the quantity (3.34) which has
to be an integer with this information in mind and taking into account the admissibility
conditions for the levels, we deduce
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Proposition 4.3. The untwisted coset models built with Lie algebra g = so(2r), r even,
and a regular subalgebra h = Ar1 ⊕ · · · ⊕ Arm ⊕ Ds1 ⊕ · · · ⊕ Dsn do not have global
gauge anomalies for the following cases

• r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r with all ri odd

k ∈

⎧
⎪⎨

⎪⎩

2Z for any Z

Z if r/2 even, no Dsi and Z = Z1 for the 1st embedding

Z if r/2 even, no Dsi and Z = Zdiag for the 2nd embedding

• r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r or

r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r and some ri even

}

k ∈

⎧
⎪⎨

⎪⎩

2Z if Z = Z̃ , Z1 or Zdiag

Z if Z = Z2

Z if r/2 even, no Dsi and any Z

The other untwisted models with admissible levels are not globally gauge invariant.

Remark. In particular, the global gauge anomalies present if h = g for Z = Z2 and k odd
disappear for h = Ar1 ⊕· · ·⊕ Arm ⊕ Ds1 ⊕· · ·⊕ Dsn if r1 +1+· · ·+rm +1+s1 +· · · sn < r
or if r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r with some ri even.

Example: g = D4 = so(8). Here r and r/2 are both even, so all levels k ∈ Z are
admissible for all Z and there are no anomalies in the case h = g for k even according
to Proposition 3.7, whereas the cases with k odd are anomalous. The possible (proper,
nontrivial) subalgebras h are: A1, A2, 2A1, A3 (the latter two with 2 inequivalent em-
beddings), D2, D3, 2D2 and A1 ⊕ D2. Note that the two embeddings of 2A1 and that of
D2 are related by the outer automorphisms of D4 and similarly for the two embeddings
of A3 and the one of D3. For regular subalgebra h = A1 or A2, the inequality on ranks
is strict and there are no Dsi so there are no anomalies for k ∈ Z for all Z . For D2 or D3,
the rank inequality is still strict and there are no anomalies for k even and all Z and for k
odd and Z = Z2. For A1 ⊕ D2 or 2D2, the rank inequality is saturated and there are no
anomalies for even k and any Z . Finally, for 2A1 or A3 the rank inequality is saturated
and there are no Dsi so there are no anomalies for k even and any Z and for k odd and
Z = Z1 for the 1st embedding and Z = Zdiag for the 2nd one.

Recall from Sect. 3.4.4 that the twisted coset models for g = so(2r) = h with r > 4
even have gauge anomalies for Z = Z̃ (- theory) if k is even and for Z = Z̃ , Z1 or Zdiag
if k is odd for r/2 even. These are the cases where the no-anomaly condition (3.40) may
be violated. The restriction e2iπ M̃ ∈ H̃ for h = Ar1 ⊕ · · · ⊕ Arm ⊕ Ds1 ⊕ · · · ⊕ Dsn

if r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r or if r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r
with some ri even imposes the condition ã1 ∈ 2Z removing the anomalies in the case
Z = Z̃ (- theory) for k even and, if, additionally, there are no Dsi components in h, also
for Z �= Z2 and k odd. If there are no Dsi and r1 + 1 + · · · + rm + 1 = r with all ri odd
then for k odd (r/2 even) the anomalies for Z = Z̃ are removed for the + theory in the
case of the 1st embedding and for the − theory in the case of the 2nd embedding, and
for Z = Z1, Zdiag in the case of both embeddings. We obtain this way

Proposition 4.4. The twisted coset models built with Lie algebra g = so(2r), r > 4
even, and a regular subalgebra h = Ar1 ⊕ · · · ⊕ Arm ⊕ Ds1 ⊕ · · · ⊕ Dsn do not have
global gauge anomalies for the following cases
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• r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r with all ri odd

k ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2Z if Z = Z̃ (+ theory) or Z = Z1, Zdiag

Z if Z = Z2

Z if r/2 even, no Dsi and Z = Z̃ (+ theory) for the 1st embedding

Z if r/2 even, no Dsi and Z = Z̃ (- theory) for the 2nd embedding

Z if r/2 even, no Dsi and Z = Z1, Zdiag

• r1 + 1 + · · · + rm + 1 + s1 + · · · sn < r or

r1 + 1 + · · · + rm + 1 + s1 + · · · sn = r and some ri even

}

k ∈

⎧
⎪⎨

⎪⎩

2Z if Z = Z̃ , Z1 or Zdiag

Z if Z = Z2

Z if r/2 even, no Dsi and Z = Z̃ , Z1, Zdiag

The other twisted models with admissible levels are not globally gauge invariant.

The above results also hold for the coset model with g = so(8) with twist ω1, see
(3.41). Hence, for h = A1 or A2 there are no gauge anomalies. For D2 or D3 there are
no anomalies if k is even for any Z and if k is odd for Z = Z2. For A1 ⊕ D2 or 2D2

there are no anomalies if k is even for Z = Z̃ (+ theory) or Z = Z1, Z2, Zdiag or if k is
odd and Z = Z2. Finally, for 2A1 or A3 there are no anomalies for Z = Z̃ (+ theory for
the 1st embedding, − theory for the 2nd one) and for Z = Z1, Z2, Zdiag . In accordance
with the discussion of Sect. 3.4.4, we may obtain the result for twist ω2 from the one for
ω1 by applying the permutation Z → ω4(Z) induced by the outer automorphism ω4 on
the cyclic subgroups of Z̃ , see Eqs. (3.44), and on the one h → ω4(h) on subalgebras
(modulo inner automorphisms) induced by the action (3.42) of ω4 on simple roots:

ω4(A1) = A1, ω4(A2) = A2, ω4((2A1)
(1)) = (2A1)

(2), ω4((2A1)
(2)) = D2,

ω4(A(1)
3 ) = A(2)

3 , ω4(A(2)
3 ) = D3, ω4(D2) = (2A1)

(1), ω4(D3) = A(1)
3 ,

ω4(2D2) = 2D2, ω4(A1 ⊕ D2) = A1 ⊕ D2. (4.26)

where the superscript (i), i = 1, 2, labels the independent embeddings. Similarly, the
result for twist ω3 from the one for ω1 by applying the inverse permutations Z → ω−1

4 (Z)

and h → ω−1
4 (h). For twists ω4, ω

−1
4 , the the remaining gauge anomalies are lifted if

h = A1 or A2 imposing the restrictions ã1, ã2 ∈ 2Z resulting in

Proposition 4.5. The twisted coset models built with Lie algebra g = so(8) with twist ω4
have global gauge anomalies for regular subalgebras h = 2A1, A3, D2, D3,2D2, A1 ⊕
D2 and Z = Z̃ (- theory). The other cases of coset models with Lie algebra so(8) and
twist ω4 are without anomalies.

Similarly

Proposition 4.6. The twisted coset models built with Lie algebra g = so(8) with twist
ω−1

4 have global gauge anomalies for regular subalgebras h = 2A1, A3, D2, D3,2D2

and A1 ⊕ D2 and Z = Z̃ ((−)k theory). The other cases of coset models with Lie algebra
so(8) and twist ω−1

4 are without anomalies.
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4.3. Regular semisimple subalgebras of e6. In this case with fixed rank r = 6, one can
establish a complete list of regular semisimple subalgebras, up to conjugation, with an
embedding, however, that is not explicit [11,17]. We shall only need the embedding of
simple roots in the ambient algebra which is enough to reconstruct the full embedding
using the Serre construction. The element M and M̃ will be described employing the
explicit realization of the coweight and coroot lattices of e6,

P∨(e6) =
⎧
⎨

⎩

(
a

6
+ q1, . . . ,

a

6
+ q6,

b√
2

)
∣∣∣
∣∣∣

a, b, q1, . . . , q6 ∈ Z

a + q1 + · · · + q6 = 0

a + b ∈ 2Z

⎫
⎬

⎭
(4.27)

and the coroot lattice Q∨(e6) is defined the same way but adding the condition a ∈ 3Z.
We shall consider only the untwisted coset models because the twisted ones are non-
anomalous, see Proposition 3.13. Taking M and M̃ in P∨(e6) with the corresponding
coefficients, the quantity (3.51) becomes

k tr(M M̃) = k
aã

3
+ m, with m ∈ Z (4.28)

Now, specifying a subalgebra h ⊂ e6 and requiring that e2iπ M̃ ∈ Z̃ ∩ H̃ , two possibilities
arise: if one can show that ã ∈ 3Z then the previous quantity is an integer for every k ∈ Z

and all the corresponding coset models are globally gauge invariant. Otherwise, if there
exist an element M̃ such that ã /∈ 3Z, then we have to require k ∈ 3Z to have a
globally gauge invariant coset model, and the other coset models are anomalous. Before
examining the anomaly problem for every regular subalgebra of e6, one can make four
remarks:

• if there are no anomalies for a given subalgebra h of e6 (ã ∈ 3Z), then the regular
subalgebras that are smaller (and will be obtained from the Dynkin diagram of h by
the procedure described above) lead also to the condition ã ∈ 3Z, inheriting it from
h. In other words, the regular subalgebra with no anomalies protects the cases of its
regular subalgebras. Consequently, we will look only at the cases where the anomalies
are present and treat the problem by decreasing rank.

• Among the regular subalgebras generated by the algorithm described at the beginning
of Sect. 4, many can still be mapped into each other by the conjugations that normalize
te6 (and induce on it Weyl group transformations) and, as a result, they lead to the
same condition for the absence of anomalies. We may then consider only one regular
subalgebra in each class of subalgebras related by Weyl group transformations. In
particular, there are Weyl group transformations that permute the simple roots αi and
δ = −φ according to the symmetries of the extended Dynkin diagrams (see, e.g.,
Appendix B of [18]) and they permit to restrict the count of regular subalgebras.

• The subalgebras related by the outer automorphism of e6 lead to the same no-anomaly
condition, see the remark at the end of Sect. 2.

• Since e2iπ M̃ ∈ Z̃ ∩ H̃ if and only if M̃ ∈ P∨(g) and M̃ + q∨ ∈ ith ⊂ itg for
some q∨ ∈ Q∨(e6), it is enough to check the no-anomaly condition (2.12) only for
M̃ ∈ P∨(g) perpendicular to the orthogonal complement it⊥h of ith in itg.

We now consider the regular semisimple subalgebras, beginning by those of rank 6 and
then decreasing the rank. Subspace it⊥h (which is small for high ranks) is computed for

each subalgebra and we look at the consequences of the condition M̃ ⊥ it⊥h on M̃ .
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Table 2. it⊥h for the regular subalgebras of e6 of rank 5 and 4 and consequences for ã; the simple roots αi of
e6 and its lowest root δ are used to generate the regular subalgebras [17]

h Simple roots of h Basis of it⊥h M̃

D5 α1, α2, α3, α4, α6

(
1, 1, 1, 1, 1, −5, 3

√
2
)

ã ∈ 3Z

A3 ⊕ 2A1 α1, α2, α3 ⊕ δ ⊕ α5 (1, 1, 1, 1,−2, −2, 0) ã ∈ 3Z

A4 ⊕ A1 α1, α2, α3, α4 ⊕ δ (1, 1, 1, 1, 1, −5, 0) ã ∈ 3Z

A5 α1, α2, α3, α4, α5 (0, 0, 0, 0, 0, 0, 1) ã ∈ 2Z

2A2 ⊕ A1 α1, α2 ⊕ α4, α5 ⊕ α6

(
1, 1, 1, −1,−1,−1, 3

√
2
)

ã ∈ Z

2A2 α1, α2 ⊕ α4, α5 (1, 1, 1, −1,−1,−1, 0) ã ∈ 2Z

(0, 0, 0, 0, 0, 0, 1)

Upon using the protection property and the Weyl transformations described above, as
well as the outer automorphism of e6, only a few cases have to be treated. The explicit
computation is given in Table 2. The subalgebras of rank 6 are not represented because
we have t⊥h = ∅, so there is no supplementary condition for M̃ and there are always
anomalies if k /∈ 3Z. Only subalgebras of rank 5 and 4 have potential anomalies, the ones
of lower ranks being protected by a possible inclusion into non-anomalous subalgebras.

We are thus able to state

Proposition 4.7. The untwisted coset models built with Lie algebra g = e6 and any
regular subalgebra h do not have global gauge anomalies for every k ∈ Z, except for
the cases h = e6, A5 ⊕ A1, 3A2, of rank 6, A5, 2A2 ⊕ A1, of rank 5, and 2A2 of rank
4, where the only globally gauge invariant models are those with k ∈ 3Z.

5. R-Subalgebras and S-Subalgebras

The regular subalgebras are not the only possible Lie subalgebras for a given ambient
Lie algebra. We can use them, however, to classify all the remaining ones. Let h be a
semisimple subalgebra of g. Let R(h) be a minimal regular subalgebra of g containing
h (up to conjugation). If R(h) = g, then h is called an S-subalgebra. Otherwise, it is
called an R-subalgebra. For the exceptional simple algebras, the classification of R- and
S-subalgebras has been achieved by Dynkin in [11]. The case of other simple algebras
was discussed in [19] with less explicit results. In this section, we first treat completely
the case of non-regular subalgebras of the exceptional Lie algebra g = e6 which may
have anomalies and then we consider some examples of non-regular subalgebras of
classical Lie algebras.

Dynkin index. Consider a simple Lie subalgebra h ⊂ g of a semisimple Lie algebra g
and the corresponding embedding ι. The relation

trg(ι(X))2 = j trhX2 for X ∈ h (5.1)

where the invariant quadratic forms trg and trh have the normalizations described in
the beginning of Sect. 2, defines the scalar factor j (independent of X ), called Dynkin
index, which is always an integer [11]. Moreover, j is invariant under composition of ι

with inner (and outer) automorphisms of g, so that it depends on the class of equivalent
embeddings.
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5.1. Simple nonregular subalgebras of e6.

Subalgebras of rank 1. According to Dynkin, the subalgebra h = A1 can be embedded in
several different ways in e6, as regular, R- and S-subalgebra and the embedding ι is fully
characterized by the embedding of the simple coroot α∨ of A1. Recall the compatibility
condition for M̃ in the anomaly problem

e2iπ M̃ ∈ H̃ ∩ Z̃ ⊆ Z(H̃), (5.2)

where Z(H̃) = {1, e2iπι(λ∨)} with λ∨ = 1
2α∨ is the center of H̃ which is either trivial (if

1 = e2iπι(λ∨) and H̃ ∼= SO(3)) or is isomorphic to Z2 (if 1 �= e2iπι(λ∨) and H̃ ∼= SU (2)).
Looking at the embedding of λ∨ in e6, three possibilities can occur

1. If ι(λ∨) /∈ P∨(e6) then Z̃ ∩ H̃ = {1} and M̃ is a coroot of e6, so the quantity (3.51)
is always an integer and there are no anomalies for this model.

2. If ι(λ∨) ∈ Q∨(e6) then M̃ is still only a coroot of e6, and there are no anomalies too.
3. If ι(λ∨) ∈ P∨(e6)\Q∨(e6) then anomalies are possible and we have to check that

the quantity (3.51) is an integer for M̃ = ι(λ∨) looking at the corresponding value
for ã, see Eq. (4.28).

The explicit embeddings are given in [11] (Chapter III, Table 18), and the computation
of the intersection with the roots of e6 is done in Table 3 for each subalgebra of rank
1: the possibility 3 never occurs, so there are no anomalies for the corresponding coset
models for any k ∈ Z.

Simple S-subalgebras of rank > 1. Following [11] (Chapter IV, Table 24), there exist
four S-subalgebras of e6 of rank > 1: h = A2, g2, C4 and f4. For the cases g2 and f4,
the center of the corresponding group is Z(H̃) ∼= {1}. Then M̃ can be only a coroot of
e6 and the quantity (3.51) is always an integer. For the two remaining cases, the explicit
embedding is still given in [11], and the strategy is the same as for rank one: we look how
the generating element ι(λ∨) of Z(H̃) intersects with the lattices of e6 and check which
possibility occurs among those listed in the case of rank one (except that we would also
have to check that for the low multiples of λ∨ if ι(λ∨) were not in Q∨(g)). The results
are described in Table 4 from which we infer that there are no gauge anomalies for all
simple S-subalgebras of e6.

Simple R-subalgebras of rank > 1. We only need to look at the R-subalgebras h with
potential anomalies. Indeed, the subalgebra R(h) is regular, so has been already treated.
If R(h) corresponds to a model without anomalies, then it protects also the R-subalgebra
h included in it and there will be no anomalies for the model built with h. The list of the R-
subalgebras of e6 is given in [11] (Chapter IV, Table 25), but without explicit embedding.
There remain five cases with potential anomalies: h = A2, with R(h) = A5, 2A2, 3A2,
and h = A3 or C3 with R(h) = A5. If R(h) is simple, then the embedding of h in R(h)

is given in [17] (Table XIII), considering h as an S-subalgebra of R(h).
If R(h) is only semisimple, the problem of the embedding is treated in [20], where

several inequivalent embeddings of h in e6 appear. For the h = A2 and R(h) = 3A2,
the two inequivalent embeddings are the following, denoting by α̃∨

1 and α̃∨
2 the simple

coroots of A2.

ι1(α̃
∨
1 ) = α∨

1 + α∨
5 + δ∨ ι2(α̃

∨
1 ) = α∨

1 + α∨
4 + δ∨ (5.3)

ι1(α̃
∨
2 ) = α∨

2 + α∨
4 + α∨

6 ι2(α̃
∨
2 ) = α∨

2 + α∨
5 + α∨

6 (5.4)
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Table 3. The embedding of element λ∨ for rank 1 subalgebras and its intersection with the lattices of e6

R(h) Index ι(λ∨) Compatibility

A1 1
(

0, 0, 0, 0, 0, 0, 1√
2

)
/∈ P∨(e6)

2A1 2
(

1
2 , 0, 0, 0, 0, −1

2 , 1√
2

)
/∈ P∨(e6)

3A1 3
(

1
4 , 1

4 , 1
4 , −1

4 , −1
4 , −1

4 , 3
2
√

2

)
/∈ P∨(e6)

A2 4
(

0, 0, 0, 0, 0, 0,
√

2
)

∈ Q∨(e6)

A2 ⊕ A1 5
(

1
2 , 0, 0, 0, 0, −1

2 ,
√

2
)

/∈ P∨(e6)

A2 ⊕ 2A1 6
(

1
2 , 1

2 , 0, 0, −1
2 , −1

2 ,
√

2
)

/∈ P∨(e6)

2A2 8
(

1, 0, 0, 0, 0, −1,
√

2
)

∈ Q∨(e6)

2A2 ⊕ A1 9
(

3
4 , 1

4 , 1
4 , −1

4 , −1
4 , −3

4 , 5
2
√

2

)
/∈ P∨(e6)

A3 10
(

1
2 , 0, 0, 0, 0, −1

2 , 3√
2

)
/∈ P∨(e6)

A3 ⊕ A1 11
(

1
2 , 1

2 , 0, 0, −1
2 , −1

2 , 3√
2

)
/∈ P∨(e6)

A3 ⊕ 2A1 12
(

1
2 , 1

2 , 1
2 , −1

2 , −1
2 , −1

2 , 3√
2

)
∈ Q∨(e6)

A4 20
(

1, 0, 0, 0, 0, −1, 2
√

2
)

∈ Q∨(e6)

A4 ⊕ A1 21
(

1, 1
2 , 0, 0, −1

2 , −1, 2
√

2
)

/∈ P∨(e6)

D4 28
(

1
2 , 1

2 , 1
2 , −1

2 , −1
2 , −1

2 , 5√
2

)
∈ Q∨(e6)

D5(a1) 30
(

1, 1
2 , 0, 0, −1

2 , −1, 5√
2

)
/∈ P∨(e6)

A5 35
(

3
2 , 1

2 , 0, 0, −1
2 , −3

2 , 5√
2

)
/∈ P∨(e6)

A5 ⊕ A1 36
(

3
2 , 1

2 , 1
2 , −1

2 , −1
2 , −3

2 , 5√
2

)
∈ Q∨(e6)

D5 60
(

3
2 , 1

2 , 1
2 , −1

2 , −1
2 , −3

2 , 7√
2

)
∈ Q∨(e6)

e6(a1) 84
(

2, 1, 0, 0, −1,−2, 4
√

2
)

∈ Q∨(e6)

e6 156
(

5
2 , 3

2 , 1
2 , −1

2 , −3
2 , −5

2 , 11√
2

)
∈ Q∨(e6)

Table 4. The embedding of element λ∨ for simple S-subalgebras of e6 and its intersection with the lattices

h R(h) Index ι(λ∨) Compatibility

A2 e6 9
(

1
2 , 1

2 , 1
2 , −1

2 , −1
2 , −1

2 , 3√
2

)
∈ Q∨(e6)

C4 e6 1
(

1
2 , 1

2 , 1
2 , −1

2 , −1
2 , −1

2 , 1√
2

)
∈ Q∨(e6)

where we have exchanged α∨
4 and α∨

5 . The other possible exchanges are equivalent to
ι1 or ι2 [20]. For R(h) = 2A2, the two embeddings are given by similar formulas but
with omission of α∨

6 and δ∨. Again, in order to find Z(H̃) ∩ Z̃ , we have to check how
the generating element ι(λ∨) of Z(H̃) intersects with the lattices of e6. An explicit
calculation is done in Table 5, and this time potential anomalies occur. Then, looking at
the value of ã for M̃ = ι(λ∨), we deduce an, eventually more restrictive, condition on
level k required to avoid the anomalies (to exclude the anomalies in the case of A3 ⊂ A5,
we also have to observe that ι(2λ∨) ∈ Q∨(e6)).
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Table 5. The embedding of element λ∨ for simple R-subalgebras of e6 and its intersection with the lattices

h R(h) Index ι(λ∨) Compatibility ã

A2 2A2(ι1) 2
(

1
3 , 1

3 , −2
3 , 2

3 , −1
3 , −1

3 , 0
)

/∈ P∨(e6)

A2 2A2(ι2) 2
(

1
3 , 1

3 , −2
3 , 1

3 , 1
3 , −2

3 , 0
)

∈ P∨(e6)\Q∨(e6) 2

A2 3A2(ι1) 3 (0, 0, −1, 1, 0, 0, 0) ∈ Q∨(e6)

A2 3A2(ι2) 3
(

0, 0,−1, 2
3 , 2

3 , −1
3 , 0

)
/∈ P∨(e6)

A2 A5 5
(

2
3 , 2

3 , −1
3 , 2

3 , −1
3 , −4

3 , 0
)

∈ P∨(e6)\Q∨(e6) 4

A3 A5 2
(

1
2 , 1

2 , −1
2 , 1

2 , −1
2 , −1

2 , 0
)

/∈ P∨(e6)

C3 A5 1
(

1
2 , 1

2 , 1
2 , −1

2 , −1
2 , −1

2 , 0
)

/∈ P∨(e6)

In case of potential anomalies, the explicit value of ã that enters quantity (4.28) is given

This way, we obtain the general result for simple nonregular subalgebras of e6

Proposition 5.1. The untwisted coset models with g = e6 and any simple, nonregular
subalgebra h do not have global gauge anomalies for k ∈ Z except for the R-subalgebras
h = A2 with R(h) = A5 and h = A2 with R(h) = 2A2 embedded via ι2. For those
subalgebras, the global gauge invariance requires that k ∈ 3Z.

5.2. Semisimple nonregular subalgebras of e6. Let h be a semisimple subalgebra of e6:

h = n⊕
i=1

hi (5.5)

where the hi are simple, and the corresponding subgroups are denoted by H̃i . The case
n = 1 has been already treated above, so we now deal with n ≥ 2. First, suppose that
one of the hi considered as a simple subalgebra leads to anomalies: there exists M̃i such
that e2iπ M̃i ∈ H̃i ∩ Z̃ which imposes k ∈ 3Z to ensure that the quantity (3.51) is integral.
Then, taking M̃ = M̃i but now embedded in h, we shall still have to impose k ∈ 3Z to
have a globally gauge invariant model with semisimple Lie algebra h. In other words,
semisimple algebras composed of simple ideals with at least one leading to anomalies are
also anomalous. However, the inverse is not true: one can have a semisimple subalgebra
corresponding to an anomalous model with all its simple ideals without any anomaly.
For example, the model with regular subalgebra 2A2 of e6 is anomalous for k ∈ Z\3Z

whereas the one with A2 (still regular) is globally gauge invariant for every k ∈ Z.
Thus we need to check all the cases where all the simple ideals correspond to models
without anomaly. To do that, we need to consider the elements

∑n
i=1 αi ι(λ

∨
i ) where

αi ∈ Z and λi are the generating elements of the center of the H̃i , which have all been
described above in the simple case (Tables 3, 4, 5), and ι : h → e6 is the embedding.
Comparing how these elements are compatible with the coroot and coweight lattices
of e6, the anomaly problem is reduced to the three possibilities described in the simple
case 5.1.

S-subalgebras. In [11] (Chapter V, Table 39) one can find all the S-subalgebra of e6
and their including relations. It turns out that subalgebra h = g2 ⊕ A2 (with the explicit
embedding given in [11], Chapter V, Table 35) leads to an anomaly if k ∈ Z\3Z, and
that the other semisimple nonsimple S-subalgebras of e6 are protected.
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Table 6. Semisimple nonsimple R-subalgebras of e6 with possible anomalies and the conditions on k required
for their absence

h R(h) {R(hi )} Indices No anomaly for

A2 ⊕ A1 A5 ⊕ A1 A5, A1 2,1 k ∈ 3Z

A3 ⊕ A1 A5 ⊕ A1 A5, A1 2,1 k ∈ Z

C3 ⊕ A1 A5 ⊕ A1 A5, A1 1,1 k ∈ Z

A1 ⊕ A1 A5 ⊕ A1 A5, A1 35,1 k ∈ Z

(A2(ι1) ⊕ A1) ⊕ A1 A5 ⊕ A1 A5, A1 2,3,1 k ∈ Z

(A2(ι2) ⊕ A1) ⊕ A1 A5 ⊕ A1 A5, A1 2,3,1 k ∈ 3Z

(2A1) ⊕ A1 A5 ⊕ A1 A5, A1 8,3,1 k ∈ Z

A1 ⊕ (2A2) A2 ⊕ (2A2) A2, 2A2 4,1,1 k ∈ 3Z

A2 ⊕ A2(ι1) A2 ⊕ (2A2) A2, 2A2 1,2 k ∈ Z

A2 ⊕ A2(ι2) A2 ⊕ (2A2) A2, 2A2 1,2 k ∈ 3Z

A1 ⊕ A2(ι2) A2 ⊕ (2A2) A2, 2A2 4,2 k ∈ 3Z

A1 ⊕ A1 ⊕ A2 A2 ⊕ A2 ⊕ A2 A2, A2, A2 4,4,1 k ∈ Z

A2(ι2) ⊕ A1 A5 A5 2,3 k ∈ 3Z

A1 ⊕ A2(ι2) A1 ⊕ (2A2) A1, 2A2 1,2 k ∈ 3Z

A1 ⊕ A1 ⊕ A2 A1 ⊕ A2 ⊕ A2 A1, A2, A2 1,4,1 k ∈ Z

R-subalgebras. The end of [17] proposes a method to construct all the semisimple
R-subalgebras: the idea is to take the semisimple S-subalgebras of the semisimple reg-
ular subalgebras of e6, treating each semisimple ideal independently. The semisimple
S-subalgebras are described for the classical algebras up to rank 6 in [17], which is
enough to construct all the semisimple R-subalgebras of e6. However, we only need
to treat the R-subalgebras h where the regular subalgebras R(h) lead to an anomaly
problem, because the other cases are protected against anomalies. The computation is
given in Table 6, using the fact that one ideal leads to an anomaly or computing the
elements of the center as described before. Note that for the nonsimple S-subalgebra
A2 ⊕ A1 ⊂ A5, A2 is actually embedded in A2 ⊕ A2 [17], so the question of the two
inequivalent embeddings ι1 and ι2 arises also here, as in 5.1. Working by decreasing
rank, we have excluded some algebras from this Table since they are protected by the
ones of higher rank that do not have anomalies.

Putting all that together, we obtain the following result:

Proposition 5.2. The untwisted coset models with g = e6 and any nonregular nonsimple
semisimple subalgebra h do not have global gauge anomaly for k ∈ Z, except for the S-
subalgebra h = g2 ⊕ A2 and the R-subalgebras appearing in Table 6 with the condition
k ∈ 3Z which exhibit global gauge anomaly for k ∈ Z\3Z.

5.3. Examples of nonregular subalgebras of classical Lie algebras. The semisimple
nonregular subalgebra of classical algebra has been classified explicitly in [17] only up
to rank 6. The general classification proposed by Dynkin in [19] is less explicit and does
not allow us to treat the anomaly problem in a general form as for regular subalgebras.
Here we only give some example of classical algebras, but the method is always the
same once the explicit embedding of a subalgebra is known : as for e6, we need to look
how the embedding of the generating element of the center of the considered subalgebra
is compatible with the coroot lattice of the ambient algebra.

Nonregular semisimple subalgebras of A4. The coroot lattice of A4 is given by

P∨(A4) =
{(

a

5
+ q1, . . . ,

a

5
+ q4,−4a

5
− q1 − · · · − q4

)∣∣∣∣ a, q1, . . . q4 ∈ Z

}
(5.6)
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and the coweight lattice Q∨(A4) is given by the same formula but with a = 0. According
to [17], A4 admits two S-subalgebras which are simple: A1 and B2. For h = A1, the
embedding of the generating element λ∨ of the center of the corresponding group is
given by

ι(λ∨) = (2, 1, 0,−1,−2) ∈ Q∨(A4) (5.7)

so the quantity k tr(M M̃) will be integral for every k ∈ Z and there will be no anomaly
for this model. For h = B2, one have

ι(λ∨) = (1, 0, 0, 0,−1) ∈ Q∨(A4) (5.8)

which leads to the same conclusion. As we have seen in the regular case, all regular
subalgebras of A4 (except A4) leads to non-anomalous models. We immediately con-
clude that all the R-subalgebra of A4 are protected by their regular R(h), so there is
also no anomaly for these models. Finally, the only anomalous models corresponding
to g = A4 and an arbitrary semisimple subalgebra are those with h = g, Z = Z̃ ∼= Z5
and k ∈ Z\5Z.

S-subalgebras of A5. The coroot lattice of A5 is given by

P∨(A5) =
{(

a

6
+ q1, . . . ,

a

6
+ q5,−5a

6
− q1 − · · · − q5

)∣∣∣
∣ a, q1, . . . q5 ∈ Z

}
(5.9)

and the coweight lattice Q∨(A5) is given by the same formula but with a = 0. According
to [17], A5 admits six S-subalgebras : A1, A2, A3, C3, A1⊕ A1 and A2⊕ A1. For h = A1,
one has

ι(λ∨) =
(

5

2
,

3

2
,

1

2
,−1

2
,−3

2
,−5

2

)
, (5.10)

see Table VI of [17], whereas for h = A2, A3 and C3, one has

ι(λ∨) =
(

2

3
,

2

3
,−1

3
,

2

3
,−1

3
,−1

3

)
,

(
1

2
,

1

2
,−1

2
,

1

2
,−1

2
,−1

2

)
,

(
1

2
,

1

2
,

1

2
,−1

2
,−1

2
,−1

2

)
, (5.11)

respectively, see the last 3 entries of Table 5 above. In all 4 cases, ι(λ∨) ∈ P∨(A5)\Q∨(A5).
Taking ι(λ∨) = M̃ with ã = 3, 4, 3, 3, respectively, and appropriate q̃i , and M ∈
P∨(A5) such that e2iπ M ∈ Z ∼= Zp, we obtain

tr(M M̃) = 5aã

p
+ n, (5.12)

where n ∈ Z. There will be no anomaly for k such that k tr(M M̃) ∈ Z. For ã = 3, this
imposes on k the same restrictions that the admissibility conditions (3.1), so that the
untwisted coset theories corresponding to the S-subalgebras h = A1, A3, C3 ⊂ A5 do
not have anomalies. For the S-subalgebra h = A2, we obtain the non-anomalous models
with admissible levels for

k ∈
⎧
⎨

⎩

Z ∩ 2Z = 2Z if Z ∼= Z2

3Z if Z ∼= Z3

3Z ∩ 2Z = 6Z if Z ∼= Z6

(5.13)
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The other untwisted models corresponding to the S-subalgebra h = A2 ⊂ A5 and
non-trivial subgroups Z are anomalous.

There are no conceptual or technical difficulties to obtain the no-anomaly conditions
on k for other subalgebras of A5, and also for other classical algebra g, once the embed-
dings are known, but there is no general result so each case has to be treated separately.
The previous examples show that different anomaly conditions could appear according
to the subalgebra considered.

6. Conclusions

We have studied above the conditions for the absence of global gauge anomaly in the
coset models of conformal field theory derived from WZW models with connected simple
compact groups G = G̃/Z as the targets by gauging a subgroup of the rigid adjoint or
twisted-adjoint symmetries G 
 g �→ hgω(h)−1 ∈ G, where ω is a, possible trivial,
automorphism of G. The full group of such symmetries is equal to G̃/Zω, where Zω

is the maximal subgroup of the center Z̃ of the universal covering group G̃ of G for
which the (twisted) adjoint action is well defined. We considered both the coset models
where the full group G̃/Zω was gauged and the ones where the gauging concerned only a
closed connected subgroup of G̃/Zω. Global gauge anomalies obstructing the invariance
of the Feynman amplitudes of the theory under “large” gauge transformations non-
homotopic to unity may appear only for non-simply connected groups G corresponding
to Lie algebras g of types Ar , Dr and e6 (that are all simply-laced). Using the results
[11,17,20] on the classification of semisimple Lie subalgebras of simple Lie algebras,
we obtained a complete list of non-anomalous coset models (without boundaries) for
groups G with the Lie algebra Ar , Dr or e6 if the gauged symmetry subgroup ⊂ G̃/Zω

corresponds to a regular Lie subalgebra h ⊂ g or, for g = e6, to any semisimple Lie
subalgebra. The global gauge anomalies that appear in the other coset model should
render them inconsistent on the quantum level, as was argued in [3].

Appendices

A. Gauge-Invariance Condition

Here we prove the equivalence between relations (2.3) and (2.4). From Eq. (2.1), we
have to show that

k
4π

∫
tr

(
(h g−1dh g)ω(h A) + (dh g)hg−1h A + h g−1h Ah gω(h A)

)

− k
4π

∫
tr

(
(g−1dg)ω(A) + (dg)g−1 A + g−1 Agω(A)

)

= − k
4π

∫

�

tr
(

g−1dgω(h−1dh) + (dg)g−1h−1dh +g−1(h−1dh)gω(h−1dh)
)

(A.1)

But

k
4π

∫
tr

(
(h g−1dh g)ω(h A) + (dh g)h g−1h A + h g−1 Ah gω(h A)

)

− k
4π

∫
tr

(
(g−1dg)ω(A) + (dg)g−1 A + g−1 Agω(A)

)
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= k
4π

∫
tr

(
ω(h)g−1h−1 d(hgω(h)−1)ω(h Ah−1 + hdh−1)

+ d(hgω(h)−1)ω(h)g−1h−1(h Ah−1 + hdh−1)

+ ω(h)g−1h−1(h Ah−1 + hdh−1)hgω(h)−1ω(h Ah−1 + hdh−1)
)

− k
4π

∫
tr

(
(g−1dg)ω(A) + (dg)g−1 A + g−1 Agω(A)

)

= k
4π

∫
tr

(
g−1((h−1dh)g + (dg) − gω(h−1dh))ω(A + (dh−1)h)

+ ((dh)g + h(dg) − hgω(h−1dh))g−1h−1(h Ah−1 + hdh−1)

+ ω(h)g−1h−1(h Ah−1 + hdh−1)hgω(h)−1ω(h Ah−1 + hdh−1)
)

− k
4π

∫
tr

(
(g−1dg)ω(A) + (dg)g−1 A + g−1 Agω(A)

)

= k
4π

∫
tr

(
g−1(h−1dh)gω(A − h−1dh)− (g−1dg)ω(h−1dh) − ω(h−1dh)ω(A)

+ (h−1dh)(A − h−1dh) − (dg)g−1(h−1dh) − gω(h−1dh)g−1(A − h−1dh)

− g−1(h−1dh)gω(A − h−1dh)

− g−1(A − h−1dh)gω(h−1dh) − g−1(h−1dh)gω(h−1dh)
)

= k
4π

∫
tr

(
−(g−1dg)ω(h−1dh)

− (dg)g−1(h−1dh) − g−1(h−1dh)gω(h−1dh)
)

(A.2)

which establishes identity (A.1).

B. Arithmetical Properties

For a, b ∈ Z we denote a ∧ b the greatest common divisor and a ∨ b the least common
multiple of a and b.

Proposition B.1. Let k1, . . . ks ∈ Z and k ∈ Z such that ∀i = 1 . . . s, k ∈ ki Z, then

k ∈ (k1 ∨ · · · ∨ ks) Z (B.1)

The demonstration is done by induction on s.

Proposition B.2. Let k1, . . . ks ∈ Z such that ∀i = 1 . . . s, ki = a

a ∧ bi
with a, b1, . . . ,

bs ∈ Z, then

k1 ∨ · · · ∨ ks = a

a ∧ b1 ∧ · · · ∧ bs
(B.2)

The demonstration is done by induction on s:

• s = 2

a

a ∧ b1
∨ a

a ∧ b2
=

a2

(a ∧ b1)(a ∧ b2)
a

a ∧ b1
∧ a

a ∧ b2

(B.3)
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using ab = (a ∧ b)(a ∨ b). Then we can rewrite the denominator:

a

a ∧ b1
∧ a

a ∧ b2
= a

(a ∧ b2) ∧ (a ∧ b1)

(a ∧ b2)(a ∧ b1)
, (B.4)

thus

a

a ∧ b1
∨ a

a ∧ b2
= a

a ∧ b1 ∧ a ∧ b2
= a

a ∧ b1 ∧ b2
. (B.5)

• Suppose the result true for s ≥ 2, the result for s +1 is trivially true, using the induction
hypothesis at rank s, then 2.
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V., Vinárek, J. (eds.) WSGP5 Proceedings of the Winter School eometry and Physics, pp. 73–107. Circolo
Matematico di Palermo, Palermo (1985)

6. Goddard, P., Kent, A., Olive, D.: Virasoro algebras and coset space models. Phys. Lett. B 152, 88–92 (1985)
7. Bardakci, K., Rabinovici, E., Säring, B.: String models with c < 1 components. Nucl. Phys. B 299,

151–182 (1988)
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