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Bulk-Edge Correspondence for Two-
Dimensional Floquet Topological Insulators

Gian Michele Graf and Clément Tauber

Abstract. Floquet topological insulators describe independent electrons
on a lattice driven out of equilibrium by a time-periodic Hamiltonian,
beyond the usual adiabatic approximation. In dimension two, such sys-
tems are characterized by integer-valued topological indices associated
with the unitary propagator, alternatively in the bulk or at the edge of a
sample. In this paper, we give new definitions of the two indices, relying
neither on translation invariance nor on averaging, and show that they
are equal. In particular, weak disorder and defects are intrinsically taken
into account. Finally, indices can be defined when two driven samples are
placed next to one another either in space or in time and then shown to
be equal. The edge index is interpreted as a quantized pumping occurring
at the interface with an effective vacuum.

1. Introduction

Bulk—edge correspondence is a crucial concept in the context of quantum Hall
effect and topological insulators. From the topological point of view, the bulk
properties of an infinite sample can be deduced by looking at the gapless
modes, propagating at the edge of a sample with boundary, and vice versa
[5,8,9]. This duality is commonly observed in physical systems where both
bulk and edge index are well understood. Sometimes it is even assumed to fill
the lack of interpretation of a bulk invariant, the physics at the edge being
usually more intuitive. In any case, a proof of this correspondence is as much
a mathematical challenge as a helpful identity for physics.

In analogy with topological insulators, it was recently realized that topo-
logical phases could arise in periodically driven systems. The initial proposal
was to induce topology on a two-dimensional sample through a time-periodic
perturbation of a trivial material, e.g., by irradiation of graphene [10,15] or
semiconductor quantum wells by microwaves [13], but it was then realized that
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a large class of time-periodic Hamiltonians of independent electrons may sup-
port topological properties, as long as the unitary propagator after one period
is gapped [11,19].

For samples that are also space-translation invariant, Rudner et al. [19]
defined a topological bulk index that is integer valued and equal to the number
of edge modes that appear in the spectrum for associated dynamics on a strip
geometry. Moreover, an explicit definition of the edge index and a proof of the
bulk—edge correspondence was proposed in [19], but with the extra assumption
that the unitary propagator is also periodic in time. Recently, the requirement
of spatial invariance has been dropped and similar result was obtained for dis-
ordered systems [7], or [21] where averaging over fluxes threading the sample
has been used. An interacting model was proposed in [12]. Finally, the bulk
invariant has been generalized to the cases with time-reversal or chiral symme-
try [3,4,6], and bulk—edge correspondence for one-dimensional chiral systems
was studied in [1].

In this paper, we give new definitions for both the bulk and edge index
that do not require space-translation invariance of the Hamiltonian, nor aver-
aging, and show a general proof of the bulk—edge correspondence. We only
assume that the Hamiltonian is local (short range), periodic and regular
enough in time. The construction works as soon as the bulk one-period propa-
gator has a spectral gap. If space-translation invariance is present though, the
definition generalizes the existing one. If not, it applies to weakly disordered
systems, see Remark 3.13. Moreover, in this approach the edge index is inter-
preted as a quantized pumping of charges after one cycle. Exploiting a duality
between space and time (see Sect.3.3), we show that this pumping actually
occurs at the interface with an effective vacuum, computed from the original
Hamiltonian and depending on the spectral gap under consideration.

The concept of topological pump and the study of periodically driven
system in this context are not new, but until recently the adiabatic hypothesis
has been always implied. From Thouless’ original work [22] to more recent
and abstract considerations [16], the driving was always assumed to be slow
enough in order to use the adiabatic theorem. In particular, the time-dependent
spectrum of the Hamiltonian is the relevant object of interest, and usually a
persistent gap all along the driving is assumed. We stress that Floquet topolog-
ical insulators and in particular the present work are not placed in this frame.
Here the driving can be arbitrary and we do not make any assumption on
the spectrum of the Hamiltonian, but only on the corresponding propagator.
Finally note that this notion of non-adiabatic quantized pumping has already
been observed in [21].

The paper is organized as follows. First Sect. 2 describes the context of
Floquet topological insulators for which the construction applies. The main
results are then stated in Sect.3. The definition of bulk and edge indices, as
well as the bulk—edge correspondence, is done in two steps. Inspired by [19], we
first assume that the bulk propagator is periodic in time. The edge invariant
is interpreted as charge pumping and can be identified with an index of pair
of projections [2]. The bulk index is a mixture of commutative (in time) and
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non-commutative (in space) expression of the odd Chern number [17]. For
the general case, we define the bulk and edge index through a relative time
evolution that allows to reduce matters to the previous case, by considering an
effective Hamiltonian for each spectral gap of the bulk propagator. The index
of an interface is also defined to provide a simple interpretation of this effective
Hamiltonian.

Section 4 then studies the locality and continuity properties of bulk and
edge propagators, required for the indices to be well defined, and compares
these propagators. All this is established through the notion of confinement [5]
and switch functions [2]. The proofs are finally detailed in Sect. 5, mostly fol-
lowing the statements of Sect. 3 but postponing some computations to “Appen-
dix A.” Although the mathematical expressions of the indices look similar to
those for topological insulators, the operators involved are quite different and
indeed describe another physics.

Finally, note that shortly after this work was completed an independent
result on similar matters was proposed in [20]. Based on K-theory, it extends
this bulk—edge correspondence to every dimension, but the physical interpre-
tation is less immediate than in the functional analysis approach. Moreover,
our work does not rely on any covariance property.

2. Floquet Topological Insulators
2.1. Bulk and Edge Hamiltonians

We consider a tight-binding model of independent electrons on the two-
dimensional lattice Z2. The bulk Hilbert space is Hp = ¢?(Z?) ® C, where
CV accounts for internal degrees of freedom (sub-lattice, spin, orbital, etc.).
For m € Z?, we denote by the usual ket notation |m) € ¢?(Z?) the state local-
ized at site m and (m| its corresponding bra. For any operator K on Hg and
m,n € Z?, the kernel Ky n = (m|K|n) is a matrix of size N. According to
the context, |m| = |m1|+|m2| and | Km n| denotes the operator norm of finite
matrices. The operator norm on the full Hilbert space Hg is denoted by || K.
The electrons are ruled by a family of one-particle Hamiltonians Hpg(t),
namely a self-adjoint operator on Hp for each t € R. In the context of Floquet
topological insulators, we assume that it satisfies some further assumptions.

Definition 2.1 (Bulk Hamiltonian). Let Hp(t) : Hp — Hp be a family of

self-adjoint operators for ¢t € R. We say that Hp is a bulk Hamiltonian if it is
1. time-periodic: 3T € R so that Hp(t +T) = Hp(t) for all t € R,

2. local: 31, C > 0 independent of  so that for any ¢ € [0,7] and m,n € Z?

|Hp (t)mn| < Cetim=nl, (2.1)

w is called the locality exponent,
3. piecewise strongly conlinuous: the map t — Hg(t) is strongly continuous
except possibly for jump discontinuities.
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Note that because of Condition 1, the parameter ¢ is reduced to a compact
interval so that the uniform bound in Condition 2 is equivalent to a family of
time-dependent bounds for ¢ € [0,T].

Remark 2.2 (Physical models covered). Any time-periodic Hamiltonian that
for each t is a finite range or exponentially decaying hopping term is a bulk
Hamiltonian in the sense of Definition 2.1. Moreover, piecewise constant Hamil-
tonians (e.g., as in [19]) are also allowed thanks to Condition 3. However we
do not require space-translation invariance for a bulk Hamiltonian so that
any disordered configuration can be implemented through Hp a priori, see
Remark 3.13 below. Finally we do not require a spectral gap uniform in times,
in contrast to adiabatic theory.

Remark 2.3 (Underlying topology). We define a norm on local operators which
is suited to bulk Hamiltonians. For fixed p let

|A]l, = inf{C |Vt €[0,T] Vm,ne€Z® [A(t)mn|<Ce ™21 (2.2)

which satisfies |[-[|, < [|-[|, for A < p.
This local norm will be used for homotopy considerations.

The edge system is described by considering only a half-plane, which we
take to be N x Z C Z2, so that the edge Hilbert space is Hg = (N x Z) @ CV.
Bulk and edge spaces are related through the partial isometry

t:Hg — Hg, i Hg — HEg, (2.3)

where ¢ is the canonical injection of Hg in Hp and ¢* is the canonical truncation
of Hp to Hg. In particular, they satisfy

0= Idyy, w' = P, (2.4)

where P; : Hg — Hp is the projection on states supported in the right half-
plane n; > 0.

Definition 2.4 (Edge Hamiltonian). For a given bulk Hamiltonian Hg(t), the
edge Hamiltonian Hg(t) : Hg — Hg is the family of self-adjoint operators
defined by

HE(t) = L*HB(t)L. (25)

Properties 1-3 of Hg, Hp are inherited to Hg, Hg. In particular, ”HE”u <
| Hgll,-

As a sharp cut of the bulk space, this edge Hamiltonian corresponds to
Dirichlet boundary condition, but an extra term confined near the boundary
can actually be added to the previous definition without changing the topolog-
ical aspects, see Proposition 5.1 below, allowing the implementation of other
local boundary conditions or defects at the edge.
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2.2. Propagator

The spectrum of a time-dependent Hamiltonian H(t) at any given time will
not be of importance. Instead we shall consider the time evolution operator
generated by H(t), see, e.g., [18, Theorem. X.69].

Definition 2.5 (Propagator) Let H(t) be a family of bounded Hamiltonians on
a Hilbert space H, with ¢ — H(t) strongly continuous. The unitary propa-
gator U(t,s) € U(H) is a two-parameter family of unitary operators strongly
continuous in ¢ and s satisfying

U(t,t) = Idy, U(t,m)U(r,s) =U(t,s), (2.6)
and so that for any ¥ € H, @4(t) = U(t, s)1 is the unique solution of
.d
iges()=Hes(t),  ¢s(s) =2 (2.7)

where we have set i = 1. H(t) is called the generator of U(t, s).

If the Hamiltonian has jump discontinuities, the propagator is defined
piecewise but remains strongly continuous even at the discontinuity points
thanks to (2.6). Note that in the case of a time-independent Hamiltonian H,
the propagator is given by

Ult,s) = e it=5)H (2.8)
and satisfies U(t + 7,5 + 1) = U(t,s) for any 7 € R. If H(t +T) = H(t)
is periodic in time, then that property survives for 7 = T, which implies

Ut+T,s)=U(t,0)U(T,s) by (2.6). As a result, the whole family U(t,s) is
determined by its restriction U(t) = U(t,0) to the compact interval 0 < ¢ < T
and its long-time behavior by just U(T'). The spectrum of U(T) thus carries
essential information about the solutions of (2.7). This is the so-called Floquet
theory. Because U(t) is unitary, its spectrum o[U(t)] belongs to S!, and at
t =T we denote

e T c o[U(T)] C S? (2.9)
so that € has the dimension of an energy. Because it is defined modulo 27 /T,
it is rather called quasi-energy, in analogy with quasi-momentum in Bloch
theorem. Indeed the eigenstates of U(T') provide solutions to (2.7) that are
time-periodic up to the phase e 17T,

2.3. Stroboscopic Gap Assumption

The topological aspects can be characterized through the propagator of a bulk
Hamiltonian.

Definition 2.6 (Floquet Topological Insulator). We say that Hgp(t), a bulk
Hamiltonian in the sense of Definition 2.1, is a Floquet topological insulator if
the corresponding unitary propagator at t = T, Ug(T') has a spectral gap.

As illustrated in Fig. 1, the spectrum of Ug(T) is typically constituted
of one or several bands (of arbitrary nature) separated by gaps. By extension
we also speak about quasi-energy ¢ when eiT¢ is in a spectral gap of Ug(T).
Moreover, note that assumption of a “stroboscopic” spectral gap, i.e., only for
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FIGURE 1. Example of spectrum for Ug(T) with two quasi-
energy bands and gaps

Up(T), is sufficient to define the topological indices. The gap assumption may
fail at some intermediate times, i.e., for Ug(t), 0 <t < T.

Remark 2.7. The term “insulator” is somewhat misleading here as its meaning
is purely mathematical: The existence of a spectral gap. The physical interpre-
tation is not obvious since the spectrum of a unitary operator lives on a circle,
so there is no ground state (in fact energy is not even conserved) and thus
no notion of Fermi energy. The analogy with (time independent) topological
insulators should then be used with care. Some attempt of interpretation is
given in Sect. 3.3 below.

3. Bulk-Edge Correspondence

The main result of this paper is to define a bulk and edge index and to show
that they coincide, for each spectral gap of Ug(T'). The indices are, respectively,
defined in terms of the bulk and edge propagators Ug and Ug, generated by
the corresponding Hamiltonians. To do so, the first thing to establish is that
Ug and Ug are both local when Hp is, see Sect. 4.2 below. The operations of
truncating space and generating time evolution do not commute, so that the
truncated bulk propagator does not equal that of the edge. The important
point however is that

|D(t)mn| < Ce Ame=nzle=Aml = D) = Ug(t) — *Us(t) (3.1)

for some C' > 0 and 0 < A < pu, see Proposition4.10. Namely the difference
D is confined near the edge since it is exponentially decaying in direction 1,
compare with (2.1). The bulk and edge indices are then defined using switch
functions [2].

Definition 3.1. A switch function A : Z — R is a function so that A(n) = 1
(resp. 0) for n large and positive (resp. negative). We also call switch function
and denote by A the multiplicative operator acting on ¢2(Z), and by A; a
switch function A;(n) = A(n;) in direction i acting on £%(Z?) or £*(N x Z).

For instance A can be a step function, in which case it is a projection,
such as P; in (2.4). The commutator with a switch function allows to confine
a local operator in a particular direction and is a powerful tool to eventually
end up with trace class expressions. This is detailed in Sect. 4.1.
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FIGURE 2. (Left) Zg compares the density in the upper right
quadrant between times ¢ = 0 and ¢ = 7. Only the electrons
localized at the edge contribute since Ug(T") = I. (Right) Bulk
and edge spectra. The latter might be gapless but only with
extra states confined at the boundary

3.1. The Case of a Time-Periodic Propagator

The definition and properties of the indices, as well as the bulk—edge corre-
spondence, are first established under the auxiliary assumption that the bulk
propagator satisfies:

Us(T) =1, (32)
where [ is the identity. Although not really physical, this situation still belongs
to the Floquet Topological Insulators in the sense of Definition 2.6 since the
spectrum of U (T) is degenerated to {1} so that S*\ {1} constitutes a canonical
spectral gap (see Fig. 2 right). The general case, treated in the next section, is
nothing but a reduction to this particular one.

Proposition 3.2 (Edge index definition). Let Hg be a bulk Hamiltonian so that
Ugs(T) = I. Let Hg and Ug the associated edge Hamiltonian and propagator,
and Ay a switch function in direction 2 on Hg. The edge index

Tis = Trye, (UE(T) As, UE(T)]) (3.3)

1s well defined and integer valued, independent of the choice of As, and con-
tinuous in Hy (in local norm) as long as Ug(T) = 1.

In that case Ug(T) = I + D(T) so that Ug is time-periodic up to a
correction confined at the edge. The index has the interpretation of a non-
adiabatic quantized charge pumping [21]: It counts the net number of particles
that have moved into the upper half-plane within a period. In fact, by the
independence on Ay, we may pick Ay = P», the projection associated with
that half-plane, so that

Tp = Ty, (U;}(T)PQUE(T) - PQ) (3.4)
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indeed computes the difference in the number of particles therein at times
separated by a period. Moreover, the net transport takes place near the edge
because far away from it we may pretend Ug(T) =1 by (3.1, 3.2). See Fig. 2.
As we shall see (3.4) is the index of a pair of projection [2] and hence an
integer.

Proposition 3.3 (Bulk index definition). Let Hg be a bulk Hamiltonian and Ug
the corresponding propagator such that Ug(T) = I. The bulk index

1T . .
IB = 5/ dt TrHB (UgatUB |:UB[A1, UB], UB[AQ, UB]:|) (35)
0
is well defined and independent of the choice of the switch function A; in

direction i = 1,2. It is moreover an integer depending continuously on Hg (in
local norm) as long as Ug(T') = I.

The bulk—edge correspondence then provides a physical interpretation of
the bulk index! through the edge picture. The main result, proved in Sect. 5.1,
is indeed

Theorem 3.4 (Bulk-edge correspondence). Let Hg be a bulk Hamiltonian so
that Ug(T) = I. Then
Ip =TIg. (3.6)

Finally note that this approach generalizes the one from [19] where trans-
lation invariance in space is assumed, namely

Hg(t)mn = He(t)om—m  Vm,n € Z? (3.7)
which is then also true for Up(t), Hg(t) and Ug(t) (only in direction 2 for
the edge operators). We denote by Ug(t, k1, k2) : T3 — U(CN) and Ug(t, k2) :
T2 — U(L*(N) @ CV) their corresponding Fourier transform.

Proposition 3.5 (Translation-invariant case). Let Hg be a bulk Hamiltonian
that is translation invariant, then Ty is the winding number of Ug(T) along
kg, i.e.,

i 27

IE = % dkz TYZQ(N)(@CN ((/]E*(T, kg)a]@U/E(T, kg)) (38)
0

and Iy is the 3d-winding number of (/]\B, namely
1 % o~ T~k g =% —
I = 7@/ dtdkidks trew (UB o0Up [UB (9k1 Ug, Up 8k2UB])- (3.9)
T3

Note that a more geometric way to write (3.9) is to use the language of
differential forms, namely

Ig =

242 /]rs trew ((ﬁ]\; dﬁ\B)AB)v (3.10)

which is the degree or odd Chern number [4,17]. Finally a disordered system
has been considered in [21] where a finite sample is threaded by fluxes whose

1 It was recently identified with a magnetization density in a particular system [14].
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parameter space is a torus. That torus replaces the Brillouin zone of the space-
periodic case. Thus, the expression of the bulk invariant there is analogue
o (3.9) by averaging over those fluxes, even though it is evident, at least
heuristically, that there is no dependence on them in the thermodynamic limit.

3.2. The General Case

In the general case, Ug(T') # I, we shall define a bulk and edge index for each
spectral gap of Ug(T') by deforming the latter to I and therefore come back to
the previous case. Before doing that we establish the bulk—edge correspondence
in a more general context. Consider two bulk Hamiltonians Hg; and Hg»
together with their respective propagators Up,; and Ug which are assumed
to satisfy
Up1(T) =Ug(T). (3.11)
We join the two Hamiltonians to a single one by placing their times
intervals back to back, so to speak with opposite arrow of time. Explicitly, we
define the relative Hamiltonian as
He(t) = {2HB’1(2t)7 0<t<T/2)
re —QHB’2<2(T - t)), (T/2 <t < T)
where the rescaling allows to keep the period T. By periodicity the second
entry can be written more symmetrically to the first one as —2Hgp o(—t) for
—T/2 < t < 0. The Hamiltonians comply with Definition2.1 despite jump
discontinuities at ¢ = T'/2 and T'. The corresponding evolution is
Bjrel U2 (2(T — 1)), (T/2<t<T)
with continuity at ¢t = T'/2 by (3.11). It satisfies Up ye1(7') = 1 as intended.
Indeed, the construction from the previous section applies.

(3.12)

(3.13)

Corollary 3.6 (Relative bulk—edge correspondence). Let Hg 1 and Hg o be two
bulk Hamiltonians such that Ug1(T) = Up2(T). Consider the relative Hamil-
tonian Hpyel, cf. (3.12), and the associated propagator Up e, as well as
HEg yol = t"Hp re1t and Ug re1. The relative bulk and edge indices, defined by

I]r361 = IB[UB,rel] Irel = IE[UE,reI(T)]a (314)

satisfy all the properties of Propositions 3.2 and 3.5, and moreover Theorem 3.4
applies, namely
et = 7l (3.15)

Given a single bulk Hamiltonian Hp, it is still possible to define bulk
and edge indices through this relative construction. The required second
Hamiltonian Hy will be chosen as time independent and in such a way that
Up(T) = e 'THo je. as alogarithm of Ug(T).

Definition 3.7 (Effective Hamiltonian). Let Hp be a bulk Hamiltonian and
pick ¢ so that e™7* belongs to a gap of Ug(T). The effective Hamiltonian is
defined on ‘Hp by

i
Hfy = 7 log 7. Un(T) (3.16)
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through spectral decomposition of Ug(T'), where —T'¢ is the branch cut of the
logarithm, defined by log,, (e'?) = i¢ for a — 27 < ¢ < a.

It will be shown in Proposition 5.6 that Hp, is local. It thus conforms with
Definition 2.1, since its other conditions hold true obviously. The pair Hg, Hg
satisfy (3.11), so that we have the general result:

Theorem 3.8 (Bulk—edge correspondence). Let Hg be a bulk Hamiltonian and
e so that e7'T¢ belongs to a gap of Us(T). Consider the relative Hamiltonian
HE o, defined by (3.12) with Hg,1 = Hp and Hp 2 = Hy, from Definition 3.7,
and the associated relative operators UR o, Hp o and Ug . The bulk and
edge indices

Ip(e) = Ip[Ugpals  Ze(e) = Ip[Ug 1a(T)] (3.17)
satisfy all the properties of Proposition 3.2 and 3.5, and moreover Theorem 3.4

applies, namely

This is nothing but a specific case of Corollary 3.6: We constructed a
relative evolution that fulfills the assumption of the previous section, namely
Hg . is a bulk Hamiltonian and Ug ,,(7) = I. The influence of the choice of
€ is summarized by the next two statements:

Lemma 3.9. Let Hg be a bulk Hamiltonian and ¢, €' so that e'7¢ and e iTe’
belong to a gap of Ug(T). Then
2
e+2n /T

HET — Hg = =1 (3.19)

and for 0 <&’ —e < 2mw/T
/ 2

HE — H = %Pw,, (3.20)
where P. . is the spectral projection of Ug(T') associated with the spectrum
between e 1€ and e 1T clockwise.

Proposition 3.10 (Influence of €). Let Hg be a bulk Hamiltonian and e, £ so
that e~ and e=T¢" belong to a gap of Ug(T). Then

Ip(e +2m/T) = Ip(e) (3.21)
and for 0 <& —e < 2m/T
Ig(') — Ip(e) = (P- o), (3.22)
where
o(P) = —2ni Tr(P[[Al,P], [A27P]]) €z (3.23)

is the non-commutative Chern number (or Kubo-Streda formula [2]) of P.

We have Zg(e) = Ip(e’) when e and &' belong to the same gap, by
P. .- = 0. Similarly (3.22) implies (3.21) by P. . = I if ¢’ /" ¢+ 27. Note that
(3.19) also implies (3.21) through U;‘Qﬂ/T(t) = Ug(t)e 2™/T . In regard to
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(a)
Iy

FIGURE 3. a Example of spectrum of Ug(T") with gap indices
T} related by Chern numbers ¢; of the bands through Z5™ —
T& = ¢;. b For a time-independent Hamiltonian, the index of
the “gap at infinity” always vanishes so that gap indices and
Chern numbers are equivalent here

the operator seen in (3.5) that change contributes a commutator, which leaves
the trace and hence the index unaffected.

A typical situation is illustrated in Fig.3: To each gap of Ug(T) one
associates a single index 7y, and indices between two distinct gaps are related
through the Chern number of the band in between, so that the set of Chern
numbers only gives the relative value of the gap indices. Finally note that
Theorem 3.8 generalizes 3.4 since when Ug(T') = I then Hf = 0 for every
0 < & < 27 so that Zp(e) coincides with Zp from the previous section.

Remark 3.11. For a time-independent bulk Hamiltonian Hj, the set of gap
invariants is equivalent to the set of Chern numbers, as illustrated in Fig. 3b.
Indeed the spectrum of e~ "7Ho consists in winding the spectrum of Hy around
the unit circle. Here T is arbitrary but as long as T < (27)/AE where AE
is the bandwidth of Hy, the propagator e 7o possesses a “gap at infinity”
coming from the gluing of the trivial gaps of Hy at £oo. When taking the
branch cut in this gap (e.g., at € = Eyi, — 1 for 7 small enough), one has
Hg = Hy, so that Ug,; = Ug 2 in the relative evolution. A direct computation
shows that Z5° = 0 which sets a reference value for Zg. Thus, the other gap
indices are in one-to-one correspondence with the set of Chern numbers by
(3.22).

Finally, this construction is stable under continuous deformations.

Corollary 3.12 (Homotopy invariance). Let Hg o and Hg 1 be two bulk Hamil-
tonians related by a homotopy Hg s of bulk Hamiltonians for s € [0,1]. Assume
the existence of € so that for every s, e 1 belongs to a gap of U s(T). Then

Ipo(e) =TIp.1(e) and Ieo(e) =Ig1(e) (3.24)
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The proof of it follows from the continuity of the indices, and the fact
that Ug — Hp is continuous, see Proposition 5.7.

Remark 3.13 (Weak disorder). Any disordered configuration can be imple-
mented through Hg and the construction works as long as a spectral gap is
open. Moreover, Theorem 3.8 is deterministic in the sense that the definition
of 7y and Zy, and the bulk—edge correspondence are valid for any configuration
and do not rely on ergodicity or average computation. Finally, the indices are
continuous in Hp in the sense of Remark 2.3, so that they coincide for two
close configurations.

For example this covers the model developed in [21], but more generally
take HY = Hp + AV¥ with H translation invariant, {V*},cq a random
potential and small ) so that, from 0 to A\, e"'7¢ is in a spectral gap of UK (T).
Then 7§ (¢) = Z§ (¢) for any w € Q and 7§ (¢) = Ip(e), the latter corresponding
to A =0.

3.3. Index of an Interface and Space-Time Duality

Though the invariants Zg(e) and Zg(e) of Theorem 3.8 are mathematically
well defined and coincide, the physical interpretation of the relative evolution
and effective Hamiltonian are not obvious. Here we propose a more intuitive
reformulation by replacing the edge with an interface.

Consider again the general relative evolution of Corollary 3.6. For two
bulk Hamiltonians Hp ; and Hp o such that Up 1(T) = Up2(T) we define the
relative Hamiltonian Hp el and deduce Ug rel, HE rel = t"Hp reit and Ug rel-
In particular,

BT Un o (2T — ) U o(T)Us 1 (T), (T/2 <t < T)
with Ug re(T) = UE’Q(T)UEJ(T), so that the edge index of Corollary 3.6 can
be reformulated as, cf. (3.3),

T = Ty, ([Ag, Upo 1 (T)]Ugs 1 (T) = [Aa, Ug o(T)] UE’Q(T)). (3.26)

The expression looks like the difference of two edge indices from Proposition 3.2
except that the trace cannot be split since Up 1(T') = Up2(T) differ from I.
However that suggests:

Definition 3.14. (Interface Hamiltonian) Let Hg 1 and Hg 2 be two bulk Hamil-

tonians and Hiyy be a bulk Hamiltonian that also satisfies |Hin(f)mmn| <
Ce#HInilg=nlma=nz| Then define

Hl(t) = PlHBJ(t)Pl + (1 — Pl)HBQ(t)(l — Pl) + Hint(t)- (327)

This interface Hamiltonian is a bulk Hamiltonian acting on Hp and gluing

Hg 1 and Hp > on each half of the sample through a perturbation Hj,; confined
to the interface, as illustrated in Fig. 4.

Proposition 3.15 (Interface index). Let Hg1 and Hp o be two bulk Hamilto-
nians such that Ug1(T) = Up,o(T) = Ug(T). Consider the interface Hamil-
tonian Hy from Definition 3.14 and its evolution Uy. Then the interface indez,
defined by

(3.25)
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Hps L T Hine Hp

| n €7
0
FIGURE 4. Interface between two samples
t t
T T
—2Hpo(2(T — t
EZ( (. . .)v)v T/2 Hpa(t) Hp: (1)
2Hp:1(21) 2
; €
A 0 ny € N ‘ 0 n

FI1GURE 5. Duality of space and time. Left: relative evolution
on a sample with an edge. Right: evolution on the interface
between two samples

Ty = Trye, (U Un(T) (A2, UsUI(T)) ). (3.28)

1s well defined, integer valued, independent of the choice of Ao and independent
of Hiny. Moreover,

T =T, (3.29)

where Iﬁel is the relative edge index (3.17) associated with Hg1 and Hg ».

Proposition 3.15 establishes a duality between space and time. It tells
that the relative index Zi! (and consequently ZE! through the bulk—edge cor-
respondence) is nothing but the index Zj of a sharp interface between two
samples ruled by Hg 1 and Hg 2, as illustrated in Fig. 5. Moreover, a smooth
gluing through Hi, confined around the interface leads to the same index.

Remark 3.16 (Effective vacua). In the context of Theorem 3.8, where Hp 1 =
Hp and Hp, = HE, we deduce Zp(e) = Zg(e) = Zi(e). So the bulk index
counts the number of topological edge modes appearing at the interface
between the original and an effective sample ruled by Hf. Hence, the lat-
ter plays the role of a vacuum that selects the gap of Ug(T) around e~ 7€,
in analogy with the choice of Fermi energy. This vacuum depends on the sys-
tem but is described by a time-independent and local dynamics, and there are
as many distinct vacua as gaps in Ug(T). By expanding the commutators in
(3.26), we have

Ti(e) = Trpeg (UE(T)AQUE(T) - e—iTHEAQeiTH%), (3.30)

so that the interpretation of Fig.2 still holds: Zg(¢) measures the charge
pumped in the upper quadrant, but relatively to the dynamics of the effec-
tive vacuum. This ensures that the index is well defined and the pumping
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remains quantized. Finally if Ug(T") = I then H§ = 0 for every 0 < € < 27 so
the only effective vacuum is the usual one.

4. Properties of Bulk and Edge Propagator

The indices are defined through trace expressions involving Ug or Ug. In this
section, we study their properties and compare them. Before we recall a series
of lemmas relating local and trace class operators through the notion of con-
finement [5].

4.1. Locality, Confinement and Switch Functions

In the following, we say that f : Z? or N x Z — R is a Lipschitz function (of
constant 1) if it satisfies

[f(m) = f(n)| < jm—n|,  Vm,n ez (4.1)

For A > 0 we denote by e™ and e~/ the multiplicative operators on Hg or
‘Hg. We shall first rephrase the notion of locality appearing in Definition 2.1.

Lemma 4.1. Let A be a local operator on Hp or Hg with locality exponent
w >0, then
Al < 1Al e(u) (4.2)

with ¢(p) < oo and
Vo< A<op le=* AeM — 4| < [A[l,,b(A) < o0 (4.3)
for any Lipschitz function f where b(\) — 0, (A — 0).

Proof. We apply the Holmgren-Schur estimate

1Al < |114]]| = maX( sup > |Amn|, m n) (4.4)
mez? nez?

and estimate |[|A[|| < Cc(p) with e(u) = > cpe e #l for any C as in the
definition (2.2) of the local norm. We then pass to the infimum over C. As for
the second inequality we estimate

[(e= AeM — A)mn| = ‘e_’\f(m)Am,ne*f(“) — Am,n‘
< CemHim=nl(Am-nl _ 1) (4.5)

where we have used |e* — 1| < el®l — 1 and (4.1), so as to obtain
lle™ Aer — AJl| < [|A]l, b(N) (4.6)

with b(\) = 3, cze e #MI(eAMl — 1) < oco. Finally b(\) — 0, (A — 0) by
dominated convergence. 0

Corollary 4.2. Let A be a local operator on Hp or Hg with locality exponent
u, then
VO<A<p Hef’\fAeAfH < B\ ”A”u (4.7)
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with By > 0 and for any Lipschitz function f. Conversely if e~ AeM s
bounded for some X > 0 and any f Lipschitz then it is local, namely ||A||, <
supy He_’\fAe’\fH.

Proof. The first statement is an immediate consequence of the previous lemma,
and the triangle inequality. The second one is proved by taking for any m,n €
Z2, the Lipschitz function f(p) = |p — m| leading to

|Amn| = [(m]eMe™ AeMeMn)| < He_)‘fAeAfH e Alm-n|, (4.8)

where we have used Cauchy-Schwarz inequality and the fact that |m) and |n)
are normalized. g

Thus, locality of A as by Remark 2.3 is equivalent to the boundedness
of e=M AeM | up to a change from p to A < . We then refine this notion by
considering Lipschitz functions in direction ¢ as Lipschitz functions f;(n) =
f(n;). We observe that f; + fo is again Lipschitz, i.e., with constant 1.

Definition 4.3. A bounded operator A on Hp or Hg is called, for i,j = 1,2,
i g
e i-local (or local in direction i) if it exists A > 0 so that e™MiAeMi is
bounded for any Lipschitz function f; in direction 3.
e i-confined (or confined in direction i) if it exists A > 0 so that AeM™! is
bounded.
e simultaneously i-confined and j-local if it exists A > 0 so that e=*/i
AeMieAnil is bounded.
The bounds are meant uniformly in f;. The suprema provide norms associated
with each property.

For example, in analogy with Lemma4.1 and Corollary 4.2, Eq. (3.1) for
D and Definition 3.14 of H;,; means that these two operators are simultane-
ously 1-confined and 2-local. Another way to produce i-confined operators is
to use switch functions from Definition 3.1.

Lemma 4.4. Let A be a local operator and A; a switch function in direction i.
Then [A;, A] is simultaneously i-confined and j-local with corresponding norm
bounded in terms of [|A] ,.

Proof. We rewrite
e Mi[A;, AleMieAml = oM (A A(L - Ay) — (1 - Ay) AN )eMier™l (4.9)
The first term reads
e MiN AL — Ay)eMieAnil
= Aje i L e A=) gAUT =) L (1 — Ay )it Inil) (4.10)

The middle factor is bounded by (4.7) and the other two are by the
support property of the switch function. The second term in (4.9) is similarly
bounded. g
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Lemma 4.5. For i = 1,2 and j # i let A; be simultaneously i-confined and
j-local, and A; a switch function in direction j. Then [A;, A;] and A;A; are
trace class with matching bonds on the norms.

Proof. Similar to the previous proof we write
[Aj, Ai]e)‘lm‘e’\‘"” = AineAIni‘ (]. —Aj)e)‘lnjl — (]. —Aj)Aie’\ln”Aje’\I"jl (411)

and see that each term is bounded by the same arguments. Then we write

[Aj, Ai] = [Aj, AgJeMmileXnil . =il g=Alnsl, (4.12)

The second factor is obviously trace class, and so is [A;, A;]. Similarly
AiAje/\lnile)\lnj\ = A;erlnil .e*MnilAje)\lﬂz‘\e)\\nj\ (4.13)
is bounded, so that A;A; is trace class. O

This lemma, combined with the previous one, will be of particular interest
when A; = [A;, A] for A local or A; = D from Proposition4.10 below. We
finally need:

Lemma 4.6. Let A; be a switch function in direction i = 1,2 and A an operator
such that [A;, A] is trace class. Then

Tr([A;, A]) = 0. (4.14)

Proof. Note that only [A;, A] is trace class so that we cannot open the com-
mutator and separate the traces. However this allows to compute the trace
through the diagonal kernel (take H = ¢2(Z?) for concreteness)

Tr([AiyA]) = Z ([Ai7A])n,n = Z A(ni)An,n - An,nA(ni) =0. (4.15)

This result is the analogue of a vanishing integral of a total derivative. O

4.2. Locality and Continuity of Propagators

In this section, we show that the propagator is local when the Hamiltonian is,
and that the propagator is continuous in the Hamiltonian with respect to the
local norm.

Proposition 4.7. Let Hp be a bulk Hamiltonian in the sense of Definition 2.1,
W its locality exponent, and Ug the corresponding unitary propagator. Then

Vte[0,T] VO< A< e MUs(t)eM — Up(t)]| < ax (4.16)
for any Lipschitz function f on Z?, and with a independent of t and ay — 0,

(A—0).

Proof. In order to work with bounded operators we define for a Lipschitz
function f its bounded version f,, = nf/(n + |f|) for n € N, which is again
Lipschitz and so that f,, — f when n — oo. Define

Vo(t) = e M Ug(t)eMr — Up(t), (4.17)
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which is bounded for every n € N, with V,,(0) = 0. Thus,

dV,(s)

<
vl < [0

ds. (4.18)

Using that Ug(t)p satisfies Schrodinger equation (2.7) for every ¢ € Hp, we
deduce

Hdv \ 67/ Hp (5)Un (s)e — Hi()Us )|
= H “Mn Hp(s)eMn — HB(S))e_’\f"UB(s)e)‘f"
+HB(S)(e Af" UB(s)eAf" — Us(s)) H . (4.19)

Since Hp is local it is bounded uniformly in time by Lemma4.1 and ||Hg(s)| <
| Hgll, c(p), we furthermore deduce

VeI < /0 (18], (c(k) + b)) [Vals)ll + [ Hpll, b(N)ds,  (4.20)

where ¢(p) and b(\) are independent of ¢ and n and b(A\) — 0 when A — 0.
We then get by application of Gronwall Lemma and the fact that e” —1 < ze”
forx >0

1V, (2)]| < ||HB||#b()\)tel‘HBH“(C(H)+b()\))t
< |[Hg]|, b(A)TelHplu (et tbOIT = o (4.21)

uniformly in ¢ € [0,7] and n € N. Thus, V = e~ Uge* — Ug is well defined
and V,,(t) converges strongly to V(¢). In particular, ||V (¢)|| < ay, and from
the previous expression we see that ay — 0 when A — 0. 0

By Corollary 4.2, this last proposition shows that Up is local for any
exponent A < p. Furthermore we have:

Proposition 4.8. Let Hg be a bulk Hamiltonian in the sense of Definition 2.1,
with locality exponent u. Then the map Hg — Ug is continuous (uniformly in
time) with the respective norms |-, and [|-|| for A < p.

Proof. Let Hp,; and Hpp2 be two bulk Hamiltonians and Ug 1, Ugz their
propagators. For A < p and f a Lipschitz function we compute

le™/ (Up.1 = Up2) )|

/ ds|le™ (Hp1Ug,1 — Hp,2Ug2)(s)eM ||
0

t
< [ as(BlHzAl, ] Uns - Una)(5)e|
0

+ B | Hg — Hppal|, [[e ™ Us o Af||) (4.22)

where we have used Corollary 4.2 for Hg ;1 and Hp 1 — Hp 2 with some constant
B > 0. Adding Ug,2 — Ug 2 in the last norm, by Proposition 4.7 and Grénwall



726 G. M. Graf, C. Tauber Ann. Henri Poincaré

inequality as in the previous proof we deduce

le™™ (Upa = Ua)(t)e || < B'||Hpa — Ha o, (1 + ax)TeP 1o lT
(4.23)
uniformly in time so that ||Ug; — Up ||, is similarly bounded. O

Finally note that all this discussion naturally extends to the edge Hilbert
space Hg since Hg satisfies similar properties of Hg by construction, thus all
the proofs remain unchanged.

Corollary 4.9. Let Hgp be a bulk Hamiltonian in the sense of Definition 2.1,
Hg the corresponding edge Hamiltonian defined in 2.4 and Ug the associated
propagator. Then Lemma 4.1 holds for Hg and Proposition 4.7 and 4.8 hold
for Ug.

4.3. Comparing Bulk and Edge Propagator

As announced in the beginning of Sect. 3, we prove identity (3.1) that compares
the edge propagator and the truncated bulk one and is crucial for the proof of
bulk—edge correspondence.

Proposition 4.10. Let Hg and Hg be a bulk and its corresponding edge Hamil-
tonian, and Ug and Ug the respective propagators. Define

D(t) = UE(t> — L*UB(t)L. (424)
Then for 0 < X\ < u where u is the locality exponent of Hg, D(t) is 1-confined

and 2-local on Hg, uniformly in t € [0,T]. Moreover, the map Hp +— D(t) is
continuous in the relevant norms.

Proof. Asin proof of Proposition 4.7 we start with bounded version of Lipschitz
functions, namely fY = pfa/(p+|f2]), and similarly f = pni/(p +n1). Then
for ¢ € [0,T] we compute

e M D(t)eME M

= M2 (Us(t) — L*UB(t)L)e)‘fge)‘ff

t /4 P
= fe*)‘ngE(t)/ ds@s(Ug(s)L*UB(s)Le)‘f2 e’\f1>
0

t
= —e_)‘ngE(t)/ ds Ug(s)i(Hg(s)e* — " Hg(s))Ug(s)t AME MY
0

t
=i / dse MU (1)U (s)* Ha(s)(1 — P)Ug(s)eeM2eMT | (4.25)
0
where we used 0;Up = —iHgUp and 9,U};, = iU, Hg, Definition 2.4 of Hy and
property (2.4). Then we write
WeFME = oFME eFME = BT (4.26)
where on the right-hand side each equation is the natural extension of et*/ 2 on

Hg, that we denote by the same symbol, and similarly for e=*7 since —=mn
has also a natural extension on Z2. Thus, we can rewrite the integrand as
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e MU (U (s)* He(s)(1 — Py)Ug(s)ieM2 M
— e MUR ()M L e MU (s)eME L e M H (s)eME L (1 — P)eMT
ce M e Mg (s)e  MEMT (4.27)

Note that (1 — P;)eMT is bounded uniformly in p € N. By Lemma 4.1, Propo-
sition4.7 and Corollary 4.9, each one of the remaining factor is uniformly
bounded in s € [0,7] and p € N. Then so is the operator appearing on the
Lh.s. of (4.25). Since the estimate is independent of p, it strongly converges to
e—/\sz(t)e)\h

e’ which is also bounded uniformly in ¢ € [0,7]. More precisely

le™2D(t)eM2er || < BT |Us||5, | Hsll, [Usl, (4.28)
with a constant B > 0. The continuity follows from (4.27) by Corollary 4.9. O

5. Proofs

We mostly follows the order of statements of Sect.3. First we assume that
Ug(T) = I and prove the bulk-edge correspondence, then check that it also
applies to the relative evolution with effective Hamiltonian in the general case.
In between some extra properties are established, such as the invariance under
change in boundary condition and additivity property of the bulk index.

5.1. Periodic Unitary Propagator

Proof of Proposition 3.2. When Ug(T) = I, Proposition4.10 reduces to
Ug(T) = I + D(T) with D(T) simultaneously 1-confined and 2-local. In par-
ticular,

[A2, Up(T)] = [A2, D(T)] (5.1)
is trace class according to Lemma 4.5, so that Zg is well defined. Then for two
switch functions Ay and Kz, the difference in the corresponding indices reads

T — To = T (Up(T) (A2 = K2)D(T) = D(T)(Az = R2))). (5.2)

Since Ag — /~\2 is compactly supported in direction 2, it is 2-confined, and even
obviously simultaneously 1-local and 2—conﬁned~. Applying again Lemma4.5,
we deduce that (Ay — A2)D(T) and D(T)(As — Ag) are separately trace class,
so that we can split the trace into two parts that are actually equal by cyclicity
and the fact that US(T) and D(T) = I — Ug(T') commute, so that Zg = Zg.

In particular, we can compute Zg with A; = P, that is also a projection.
Rewriting

Ty = Trp (U (T) PaUp(T) — P3) = Ind(U(T) PaUg (T), P2) (5.3)
we recognize the index of a pair of projections (see [2]) defined by

Ind(P,Q) = dimker(P — Q — 1) — dimker(P —Q + 1) € Z. (5.4)

Indeed, when (P — Q)?"*! is trace class for some n > 0 , then

vm>n  Tr((P—Q)*) = Tr((P - Q)*™) = Ind(P, Q). (5.5)
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In our case, P = UL(T)P2Ug(T), Q@ = P, and n = 0 gives (5.3) which is an
integer by the definition above. The continuity of Hg — Tr([Ps, D(T')]) follows
by Proposition4.10 and Lemma4.5. It implies that of Zg by (5.1). O

Since Zg is continuous and integer valued, it is constant. As a conse-
quence, we have:

Proposition 5.1 (Influence of the boundary condition). Let Hg be a bulk Hamil-
tonian so that Ug(T) = I. Consider the alternative edge Hamiltonian

Hy(t) = " Hy ()1 + Huo(t) (5.6)

with Hyc a self-adjoint operator on Hy that is simultaneously 1-confined and
2-local. Let Ug and Ig the associated propagator and edge index. Then Iy = Iy
where Iy, corresponds to Hyp. = 0.

Proof. First note that Iffg is still local. Thus, adapting the proof of Proposi-
tion4.10 where we replace Hg by Hg + Hyp. and using the fact that Hy is
1-confined and 2-local, we end up with

Ug(T) = I + D(T) (5.7)

with D(T) 1-confined and 2-local, so that Ig is well defined and shares the
properties of Proposition3.2. In particular, it is now continuous in both Hg
and Hy. in the relevant norms. Moreover, note that Hg and Hg are homotopic
through

H(t) =" Hp(t)t + sHpe(t) (5.8)
for s € [0,1]. By Corollary4.9 this induces a homotopy U, from Ug to Ug
which preserves Hg and Ug. Thus, 7 = Ig. ]

In the translation-invariant case, the bulk Hamiltonian satisfies (Hg)m,n
(t) = (HB)o,n—m(t) and induces this property on Ug, but also on the edge oper-
ators Hg and Ug in direction 2, namely (Ug)mn(?) =
(UE)(m1,0),(n1,ns—ms) (t). In that case, we define the Fourier transform of Ug in
direction 2 by

Up(t ko) = D e k22 (U)o p, (1) (5.9)
no€ZL
Noticing that ¢2(N x Z) = ¢2(N) ® £?(Z), this operator is defined for each pair
(m1,m1) € N2 so that [/JE(t,k‘g) acts on £2(N) @ CV. Since Uy is local from
Corollary 4.9, this Fourier transform is well defined and even smooth in k.

Lemma 5.2. Let A and B be bour/L\ded and tj\”anslation—invariant operators on
0%(Z) with C*-Fourier transform A(k) and B(k), and A a switch function. If
A[A, B] is trace class then

27
Tre z) (A[A,B]) = (AXB)oo :i/ k0. B k), (5.10)

027T

where X is the position operator.
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Proof. Since A[A, B] is trace class, its trace can be computed through its diag-
onal kernel:

Trez) (AN B]) = 37 ApoBap(ha) = Ap) = > Aot/ Byo  (5:11)
P,qEL p’'EZ

which gives the first equality. We have used A, , = Ao ¢—p, similarly for B,
the change in variables ¢ — p’ = g — p and the fact that

> (AW +p)—Ap) =’ (5.12)

PEZL

for any p’ € Z and any switch A. The second equality is a standard Fourier
computation. O

By Proposition 3.2, we know that Up(T")[Ag, Ug(T')] is trace class, so that
we can apply the previous lemma in direction 2

. 27 de ok P
IE = lTrgz(N)®CN / T (UE (T, kz)akz UE(T, kQ)) (513)
0

™

Finally, since Ug(T) = I + D(T') where both D and Ug are 2-local, their
respective Fourier transform D(T, k) and U/';;(T, ko) are smooth in ko, so that
8k2(/]E(t, ko) = 8k2f)(T, ky) is 1-confined on £?(N)®C¥, namely it is trace class
for each ko. Hence, trace and integral can be exchanged in the last formula.
This proves identity (3.8) of Proposition 3.5.

Proof of Proposition 3.3. By Proposition 4.7 Uy is local, then by Lemma 4.4
UL [As, Ug] is i-confined and j-local so that the product of two such terms for
i # j is trace class according to Lemma4.5, so Zp is well defined. Then for
two switch functions in direction 1, consider their difference AA; and the cor-
responding difference of indices. We open the inner commutator and separate
traces, as we can by Lemma4.5. Then we conjugate by Up the expression
under the first one, so as to obtain

AL ;/OT 0t T, ((atUB)UE [AAl, [AQ,UB]UED

Ty, (UgatUB [AAl, U [As. UB]] ) (5.14)

Each term is vanishing: Since AA; is 1-confined, one can open the outer com-
mutator in each one. Up to algebraic manipulation, we get for the first one

Trsy, ((8tUB)U]§ [AAl, [As, UB}UED
= 0, Try, ([UB, AQ]UgAAl) + Trpg, ([UBAng, (8tUB)U]’§AA1])
(5.15)

The first term vanishes when integrated over ¢ since Up is t-periodic. As for
the second

[UsA2Ug, (0. Ug)USAA;] = Ug[Az, Us(0:Us)Us AN Ug|Up (5.16)
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Since AA; is compactly supported it is l-confined, so that UJ(0:Ug)
USAAMN Ug is simultaneously 1-confined and 2-local and the commutator of
it with Ao is trace class according to Lemma4.5, and with vanishing trace
according to Lemma4.6. Thus, the first part of (5.14) vanishes, and similarly
for the second, so that Zy is independent of the choice of A;. We proceed
analogously for As.

To show that Zp is an integer, we identify it with a non-commutative odd
Chern number [17]. Since Up is periodic in time, consider its inverse Fourier
transform along the time direction. Namely for p,q € Z define Uy, 4, = Up 4—p
where

. 1 [T om
o= = /0 Us (£)e FPLdt (5.17)

that acts on Hp ® ¢?(Z). Then consider the following operator appearing in
(3.5) up to cyclicity

0= [Ug[Al,UBL Ug[A27UBﬂU§ =~ 0= [U*[Al,U], U*[A2,U]]U*
(5.18)
since Up and Uy are t-periodic and Ay, Ay naturally extends to Hp ® (2(Z).
Hence, by Lemmab5.2 in direction ¢t for A = O, B = Ug and A; a switch
function in direction ¢, we finally get

Ty = —inTrayere (00, 01|07 (A1, 0, (A2, 0])) = G (5.19)

This identifies Zg with C3, the non-commutative version of the odd Chern
number in dimension 3, see [17]. In particular, Zg € Z. Finally the continuity
is given by opening the double commutator in expression (3.5) of Zg, and
noticing that

Ug(t)[Ar, Us(1)|Ug (8)[A2, U (t)] = —[Ar, Ug(#)][A2, Us(?)] (5.20)

is trace class by Lemma4.5, and similarly for the second term where 1 < 2.
Then consider Ug; and Ug o so that Ug 1(T) = Up2(T) = I and denote by
v one of their common locality exponent. By introducing a mixed term, and
inspecting the proof of Lemma4.4

H([Ah Up 1 ()][A2, U1 (8)] — [Ar, Uj o (8)][A2, Up 2(t)])eMmerIna!
< B(|Usall, + 1Us2ll, ) IUs1 — Usall, (5.21)

for A < v, uniformly in time, so that Ug +— [A1, US][A2, Ug] is continuous with
respect to |||, and trace norm ||-||,. By composition with continuous functions,
we deduce that U +— Ig is continuous in |||, and by Proposition4.8 that
Hp + Ig is continuous in [|-||, as long as Ug(T) = I. O

Before proving the bulk—edge correspondence, we establish another prop-
erty of the bulk index that will be used in the general case when Uy is not
anymore time-periodic. The proof of this proposition is purely algebraic but
quite tedious, we postpone it to “Appendix A.1,” so as not to overburden the
reading.
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Proposition 5.3 (Additivity of the bulk index). Consider U and V' two unitary
propagators satisfying U(T) = V(T) = 1. Then

Ig|UV] = Ig[U] + Zg[V] (5.22)
where UV (t) = U(t)V(t) on Hp.

As we did for the edge index, we can also at the expression of Zg when the
bulk Hamiltonian is translation invariant in space. In that case (Ug)mn(t) =
(UB)on-m(t) and we define its Fourier transform

Us(t, ki, ko) = > e M (Up)om(t) (5.23)

nez?

that defines Ug : T3 — U(N), where T2 = [0,7] x [0,27]?, namely a
matrix valued function periodic in time and quasi-momentum. In analogy with
Lemma 5.2, we have

Lemma 5.4. Let A, B and C be three bounded and translation-invariant oper-
ators on (*(Z?) with C* Fourier transform denoted by /T, B and C. Let Ay
and Ay be two switch functions in direction 1 and 2. If A[A1, B[Az, O] is trace
class then

. A%k
Trgas) (Al BlAs, C) = (AXiBXaChoo = 2 [ 55

a7 A (B, C).

(5.24)

The proof is completely similar to the one of Lemma5.2, one dimension
higher. If we rewrite the operator appearing in the definition (3.5) of the bulk
index as

[UE[AhUBL UE[A%UB]} = —[A1, Uj[A2, Ug]] + [A2, U[A1, U],  (5.25)

each term is separately trace class by Lemma4.5 since Ug is local. The locality
also implies that (7?3 is smooth in k; and k2. We then apply Lemma 5.4 to each
part of (5.25) to end up with identity (3.9) of Proposition 3.5.

Finally, the proof of the bulk—edge correspondence is based on a partial
result that improves Proposition 4.10.

Lemma 5.5. Let Hg be a bulk Hamiltonian and Hg, U, Ug the corresponding
edge Hamiltonian and bulk and edge propagator. For any switch function in
direction 2

A(t) = [Ag, Ug(t)|Ug(t) — " [A2, Us(8)]Ug (t)e (5.26)

is trace class on Hg for every t € [0,T].
Proof. From Proposition 4.10, we have that Ug(t) = +*Up(t)t + D(t). We put
this expression of Ug in the definition of A, use the fact that t*As = Ast™ and

Aot = 1Ay where on the right-hand side we mean the extension of Ay on Hpg,
and that «* = P;. We end up with

A = [N, Ugl[Pr, Ugle + ¢*[Aa, UgleD* + [Ag, D|(¢*Uje + D) (5.27)
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where each term is separately trace class by using that Up is local, D is 1-
confined and 2-local, P; is also a switch function and by applying Lemmas 4.4
and 4.5. 0

Proof of Theorem 3.4. We start by the edge index that we rewrite for con-
venience

T = Trp, ([AQ, UE(T)]U;g(T)). (5.28)

In order to restore a time dependence we introduce a cutoff in direction 1.
For r € N take Q1 = Xn,<r on Hg and note that @1, = I — P;, where
P, is a also a switch function. Since Ug(T") = I the operator in the previous
expression of Zg, is nothing but A(7") which is trace class. Moreover, @1, — I
strongly when r — oo, so that

Ty = lim Tp T = Tiwg ([AQ, UE(T)]UP’E(T)QM) (5.29)
Then we can rewrite
T T
Zi = [ a0t (M2 UeUE0QL) = [ atL)  (530)
0 0
Indeed

1,(t) = Tergs ([Ao, U (D) UE (@)
T ([A2, Us (DU ()" (~iHi) (D@1 ) (5.31)

is trace class by Lemmas4.4 and 4.5 since Ug, Hg and 0;Ug = —iHgUg are
local and @) , is trivially 1-confined and 2-local simultaneously. From now on
we drop the time dependence in I,.(t). By Lemma4.6, we have

0 = Tryg, ([Az. (0:UB) U Q1))
= Try, ([A2, 5tUE]UEQ1,r) + Trug (8tUE[A27 UEQLT]) (5.32)

where on the r.h.s the first term appears in I,.(¢) and the second one can
be expanded by using that [As, Q1] = 0, [A2, U] = —Up[A2, Ug|Ug and
(0,Ug)U, = —iHg. We end up with

I, (t) = Trsg, ([AQ, Ue)U; [Prr iHE]) (5.33)

where we have also used that [Hg, Q1] = [P1,r, Hg]. This expression can now
be recast as a bulk expression. By Lemmab5.5, Definition 2.4 of Hg, and by
denoting ¢* Py, = Py ,.* where on the right-hand side P;, = xn,>r on Hp,
and similarly with ¢, we get

I.(t) = Trp, (ﬁ (A, Us]U3 [Py, iHg + o [[As, Us)Ug, P

[Prr i Bl + A[Py,r ,iHE]) (5.34)
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where we have used that «v* = P; and ¢*¢ = I. The traces of the last two terms
vanish in the limit 7 — oc. Indeed both [[A2, Ug]Uf;, Pi] and A are trace class
according to Lemmas 4.5 and 5.5, respectively, and P , — 0 strongly, so that

Tro, (L* [[As, Us)Us, PA] [Py ,iHg + APy, ,iHE]> — 0. (535)

Finally note that for any trace class operator O on Hg one has Try,, (0) =
Try,, (LOL*), so that

I,(t) = Trpg, ([AQ, Us]US|Pr, iHB]Pl) +o(1) (5.36)

where we have used again that 1.* = P;, P? = P; and the cyclicity of trace.

The next step is to show that P; can be omitted in the previous expres-
sion. Intuitively, [Py, Hg| is confined along n; = r so that its contribution
for n1 < 0 vanishes exponentially when r is big enough. More explicitly we
compute

Tro, ([AQ, Us)US [Py, iHg)(1 — Pl))
= Ty, (le[(l — P,),iHg][As, UB]Ug) ~0 (5.37)

where we used that P;,(1 — P;) = 0 and the cyclicity of the trace. Since
[(1—Py),1Hg]|[A2, Ug]U} is trace class and P; , — 0 strongly then the previous
expression vanishes in the limit » — oo. Moreover, the trace on the l.h.s. can
be split into two traces so that

I(t) = Tryg, ([A2, Us)ULIPL. ,iHB]) +o(1) (5.38)

as announced. This expression is nothing but (5.33) where we have replaced
every E by B and up to corrections vanishing in the limit » — oo, even when
integrated over the compact interval [0, T.

The final step is to get back the expression of the bulk index as in (3.5).
First we rewrite iHg = —(9,Up)Uf;. Then we have the following identity

Ty, (A2, UslU3 [(0.U8) U, P
= T, (00U [Py, Us]UR, (Ao, UsUR))

+ %atTrHB ([[Az, Usl, P1,T} Ug)- (5.39)

This identity is purely algebraic but quite tedious to show so we postpone
the computation to “Appendix A.2.” Since Up is periodic, the second term
vanishes when integrated over time. Conjugating the first one by Ug and Up
and putting all together, we get
1 T
T = lim o [ dtTew, (UR0Us [USIPL,  Usl, Uslhe,Us]] ) (5.40)

T—00 0

but on the right-hand side we recognize the bulk index expression, that is
independent of the choice of switch function. In particular, P; , can be replaced
by P; or any Aq, so that the limit is trivial and we get Zg = Zg. O
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5.2. General Case

In the general case, the bulk—edge correspondence is a corollary of Theorem 3.4,
so we only need to check that this theorem applies, namely that the effective
Hamiltonian Hf from Definition 3.7 has the required properties, in particular
that it is local. By spectral decomposition

Us(T) = /S AP = Hp = % /S log_.(\)AP(Y) (5.41)

where the integration is done over the unit circle and dP()) is the spectral
measure of Ug(T).

Proposition 5.6. Let Hf be an effective Hamiltonian constructed from a bulk
Hamiltonian Hg. Then HY is local, namely it exists \* > 0 such that for
0< A< A"

le ™ HgeMN — HE || < By (5.42)

for any Lipschitz function f. Moreover, By — 0 for A — 0.

Proof. As in the proof of Proposition 4.7, we consider bounded f,, instead of
f to work with bounded operators, get a uniform estimate independent of n
allowing to consider the n — oo limit. We compute Hg through the resolvent
formula L
. i
HB = 727711? . dz log_Ts(Z)RUB (Z) (543)
where Ry, (2) = (Ug(T) — z)~! and T is illustrated in Fig. 6. In particular, one
has L
_ i
e MnHEMn = “oaT Fdz log_r.(2)Ru, (%), (5.44)
where we defined U, (T) = e M»Ug(T)e M.
The usual resolvent identity leads to

Ru, (2) (1 + (UA(T) = Us (1)) Rusy () = Ruy (2). (5.45)

First we have )

I'< Fteommy (5.46)

||RUB (Z) <

|-

—iTe

FI1GURE 6. Contour I to compute the logarithm with branch
cut in the spectral gap of Ug(T)
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where n = inf.cr (dist(z,o(U(T)))) > 0. Then from Proposition 4.7, we know
that for A sufficiently small, let say A < A* one has

1Un(T) = Us(T)[| < ax <n (5.47)
independently from n. This implies that 1+ (U, (T) — Up(T)) Ry, (2) is invert-
ible for z € I'. Thus,

1

< . (5.48
TNy (5.48)

IR0 ) = |Ro ) (14 D) - Ua(T) A ()

so that Ry, (z) is bounded independently from n. We compute

37 L4208 )Ry, ()~ Ruy(2) (6.4

then again by the resolvent identity and the previous estimates

ef’\f"HEeAf" — Hg = —

1 1
|Ru, (2) — Rug (2)|| = [|Ru, (2)(Us(T) — Un(T)) Rug (2)|| 557;—-aA(1*}]
(5.50)
Finally
— F‘ (5N
e MrHgM — HE <|—s lo R — 5.51
l B Bl <5 sup{|log(a)[} - =0 =6 (551)

for A < \* such that ay < 7. The term on the r.h.s. is finite, independent of n
and goes to 0 when A\ — 0. Thus, we have the same when n — oo, leading to
the result. O

We then study the influence on the choice of €, first on Hf then on the
bulk index. The proof of Lemma3.9 is straightforward. Both identities come
from the spectral decomposition (5.41) and the properties of the logarithm.
The first one from the fact that log,,,, = log, +27i and the second from

0, (0<¢<a)
log,,/ (¢'?) —log, (¢'?) = { 27, (a < p < a') . (5.52)
0, (o <¢<2m)

As we shall see, (3.19) tells us that we can restrict € to any interval of
length 27/T and (3.20) compares two effective Hamiltonians in that interval.
—iTe

In particular, they coincide when e and e~ T’ belong to the same gap.

Proof of Proposition 3.10. By construction, Hf is time independent, so
that the relative evolution is

U (21), (0<t<T/2)

U ailt) = {exp (—i2(T —t)Hg), (T/2<t<T) " (5.53)
From (3.19), we deduce U];Cifr/T = U ;o Ura where
I (0<t<T/2)
Uialt) = { exp ( (T — t)Q%I), (T/2<t<T) (5:54)
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that also satisfy Urq(T') = I. Moreover, Zg[Urq] = 0 since Uyq acts trivially on
‘Hg, so that by the additivity from Proposition 5.3 we deduce Zg(e 4 27/T) =
IB (E)

Similarly, for 0 < &’ —& < 27 we get from (3.20) that U§ ., = U, Up. _,
where Up__, is similar to Upq but with P. . instead of I in (5.54). It is then
shown in “Appendix A.3” that

IB[UP,E,E/} = —2miTr (Ps,e’ |:[A17 Ps,a’]7 [A27 PE,E/:I:| PE,E/) = C(Pa,s’) S/
(5.55)
which is the Kubo-Stieda formula or non-commutative Chern number of P ./
from the Quantum Hall effect [2]. We conclude by the additivity property of
Iy from Proposition 5.3. 0

We finally deal with continuity properties.

Proposition 5.7. It exists A\, v > 0 such that Ug — Hpy is continuous with
respect to ||-||, and ||-||\ as long as e T lies in a spectral gap of Ug(T).

Proof. Let Ug 1(T) and U 2(T) with e 'T¢ belonging to a common spectral
gap. Take 0 < A < A* from Proposition5.6 so that Hf ; and Hf 5 are both
local with common exponent \. Similarly to the proof of Proposition 5.6
efAf(HE,l - H§72)e)‘f
1 i _
=37 g dzlog_r.(2)Ry,,;(2)e ’\f(UB,l - UB72)(T)G/\fRU2f (2)
(5.56)

where U;; = e M Up ;(T)eM, T is a contour common to U 1(T) and Up o(T),
and where we have used the resolvent identity. We know from the previ-
ous proof that Ry,, and Ry,, are both bounded for z € T'. By Proposi-
tion 4.7 and Corollary 4.2, we know that e (Up 1 —Up_2)(T)e* is bounded by
(U1 — Us,2)l|, for some v > X. Thus,

He_/\f(HEJ - H}%Q)e/\f

| <B|[(Us,1 — Usp) (5.57)

I,

and consequently we have a similar estimate for |[(Hg ; — Hp 5)| x- O

Together with Proposition4.8, we deduce that Hg — Ufg ,, is continu-
ous, respectively, with ||| , and |[|-][,. This proves Corollary 3.12 on homotopy
invariance of Zp.

5.3. Interface Index Properties

Note that one can also embed the edge Hamiltonians instead of gluing the bulk
ones. Namely by considering N_ = Z\N, Hy = ?(N_ x Z) @ CN, 1 : Hy —
Hgp and * : Hp — Hp, one has

Hy=(Hg1" + L_H];za*_ + Hing (5.58)

where we have defined Hy = ¢* Hpt, namely the edge Hamiltonian on the
other half space, and used (2.4) and similarly ¢* ¢ = Ing and ¢t =1-PF;.
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Lemma 5.8. Let H; be the interface Hamiltonian from Definition 3.14. Then
the corresponding propagator satisfies

Ul(t) = LUE71(t)L* + L,UETQ(t)Li + Dl(t> (559)

where Ug , is generated by Hy and Dy (t) is simultaneously 1-confined and
2-local.

Proof. From (5.58) and Definition 3.14
*Hro = Hg1 + " Higt, (5.60)
where (* Hiyit being simultaneously 1-confined and 2-local on Hg plays the
role of a boundary condition as in Proposition5.1, and Hj that of the bulk
Hamiltonian for Hg ;. In particular, by adapting the proof of Proposition 4.10
UE’l(t) = L*Ul(t)L + DI,l(t) = PUP = L(UE,l — Dl’l)L* (5.61)
where Dy is simultaneously 1-confined and 2-local and where we have used
(2.4). Similarly:
(1—P1)U[(1—P1) :Lf(UE?’Q—DLQ)L*? (562)
on the other half space. By decomposing U} over subspaces associated with P;
and 1 — P; we get
Uy = U t™ + L_UE_72L>1 — D11t —o_Diott + PUI(1—P1) + (1 - P)UtP
(5.63)
Each of the last four terms is simultaneously 1-confined and 2-local from the

properties of Dy;, Dr2 and the fact that U is local. Together they define
Dy. O

Proof of Proposition 3.15. From Lemma5.8 we get Up(T) in terms of
Ug1(T) and Ug2(T), but since the corresponding bulk propagator are not
I, we need to normalize Uy(T) as in (3.28). In particular, consider the special
interface

Hgo(t) = tHg o™ + L_H];QLi + P Hgo(1—P)+ (1— P )Hg2P1  (5.64)
which is nothing but an interface decomposition of Hp 2. Lemma 5.8 gives
Upa(T) = W a(T)* + 1_Ug o (T)e* + Dy(T) (5.65)
Hence, by Lemma 5.8 applied for Uy and Ug > we deduce after some algebra

Up 2 UL(T) = U sUs 1 (T)" + 1 Tdy—t* + D(T) (5.66)

where we have used ¢* ¢ = 0 and ¢*¢_ = 0 and where ﬁ(T ) is simultaneously 1-
confined and 2-local. Finally, from Proposition 4.10 and the fact that Up 1 (T') =
Up2(T) we deduce at t =T

U];QUEJ =1+ L*UE,Q[Pl, UByl]L + L*UE,QLDl + D; (L*UBJL + Dl) (567)
where each term except I is simultaneously 1-confined and 2-local. Putting
all together, we deduce that [Ag, U ,Ur(T')] is trace class so that Z; is finite.

Similarly to the proof of Proposition 3.5, Z; can be identified with an index of
a pair of projections so it is integer valued, independent of Ay and continuous
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(with the local norm) in Up 2 and U;. In particular, consider the deformation
of the previous derivation to the sharp interface where the two halves are
disconnected

Hy=Hg1 + 1 Hgy',  Hpo=uHgs" + 1 Hg " (5.68)

In that case the corresponding evolutions are also disconnected so that in (5.66)
D(T) =0, and we deduce Z; = Zi! from expression (3.26) and Try, (1OL*) =
TI‘HE (O) O

Appendix A. Some Algebraic Computations

A.1. Additivity of the Bulk Index

Here we prove Proposition 5.3. It is purely algebraic but quite tedious. From
the definition (3.5) of Zg, we compute

Tr (UV)*8,(UV) {(UV)* (A1, UV], (UV)*[As, UV}]

= T U U [U* [A, U], U [A2, U] | 4+ Tr vVFarV [V* [As, V],V [Ag, V]|

T U0,U [ [Ag, VIV, U [, U] | + T U 0,U (U (A, U], [A2, V]V?]
T U 0,U [ [As, VIV, [A2, VIV*] 4+ T (V)7 [U%[A1,U], U [A2,U]] 8 =R
+Tx (0:V)V* [ [Ar, VIV, U* [Ag, U] | + Tr (0:V)V* [U%[A1, U], [Ag, V]V*]

(A1)

where we have used Leibniz rule for 9, and [A;,-] and the cyclicity of trace
(note that each written term is trace class by Lemmad4.5 as long as U and V
are local). The two first terms in the latter equation correspond to the index
of U and V when integrated over time. After a bit of algebra, one can check
that the remaining last three lines are actually equal to

R= =T [Ay, U [Ao, U (QV)V* ~ U*9U A2, V] V"
= T [A2, U OU [Ao, VIV* = U [A1,U] @)V
= Teo, (U [A1, U] [Aa, VIV* = U [A2, U] [, V] V). (A.2)

The first two terms are trace class with vanishing trace according to
Lemma4.6, and the last one is a total time derivative that vanishes when
integrated over time since U and V are periodic by assumption. Thus, R van-
ishes when integrated from 0 to T so that (A.1) leads to the expected result.
Note that this proof is nothing but the one given in [4] in the periodic case
adapted to the derivatives [A;, -] for the space directions.

A.2. Proof of Identity (5.39)

In the following, all the traces involved are finite using that Ugp is local and
Lemma4.4 and 4.5. On the one hand, we can expand
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Teres A2, Us|U3 [(0:UB) U, Pr]) = Terg, ([A2, Us)Us [0:Us, P13 )
— Terey ([A2: UnlUs 0:UnUf U, 1., 1UR) (A.3)
and on the other hand we notice that, due to Lemma4.6
0 = Trey [[As, Un]US (DUn)U3, Prr| = Trse, (Ao, Us]U3 [(Us)U, Prr))
+ Trp, ([[AQ, UsU% ,PLT} (8tUB)U§). (A.4)
The first term is the one of interest, and the second can be expanded
Tergy ([[A2, UslUs « Pur | (0iU)U3 ) = Trerg, ([[A2, Us), Pr.p | U (01U U )
T, ([AQ, Us]Us; [Us, PL UL atUBUg). (A.5)

Then we rewrite the first term appearing here using an integration by parts,
namely

TYHB([[Az, Usl, Pl,r} Ug (8tUB)U1§)
= 0, Trp, ([[AQ, Usl, PLT} U;;) T o ( [[Az, aUg), PLT} Ug) (A.6)
Finally, similarly as before,
Teres ( |[A2, 01U, o | U3 )
— Ty ([[00Us, Pr.r) Az |U3)
- —TrHB([[&UB,PL,.]Ug,AgD + Ty, ([@UB, Pl [Ug,Ag]) (A7)

where the first term vanishes by Lemma4.6. Putting together the last three
equations, we deduce

Ty, (A2, UslUf [(0.U8) U, Prs))
= 0Ty, (|[A2. Vel Prr | U3 ) = T, (U5, Asl (01U, Pry] )
+ Ty (A2, UslUs [Us, ProJUS D1UBUR ). (A.8)

Noticing that [Uf, Ao] = —Uf[Us, A2)Us; and summing (A.3) and (A.8) we get
identity (5.39).
A.3. Proof of Identity (5.55)

We first rewrite P = P, .» and Tr = Try,. Note that P is a spectral projector
of Ug(T) so it is also local and all the following traces are finite. By definition
the first half of the time integral is trivial for Up. . (defined similarly to
(5.54)). So that up to a change in variables

T
Ts|Upeo] = %/ dtTr(P {e%i%P[Al,e—zm%P]762m%P[A27e—2m%PH)7
0
(A.9)
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where we have used the fact that e 2™ 7P = =277 P4 [ — P. Then we notice
that, since P2 = P

P|[A1, P], [A2, P]|P = =PAy(I = P)AoP + PAs(I — P)ALP

= P[[A, P), P[A2, P]| P+ P[P[A1, P], [A2, P] | P
(A.10)

" Te(P[P[A1, P, P[A2, P] | P) =0 (A.11)

Then expanding e 2™7F = ¢~ 277 P 4 [ — P in the trace of the previous
integral we are left after some algebra with

it _ il
( |:62mT Al e 27”TP],627”TP|:A2,6 27r1TP:|:|)

(c (27”) —1)Tr(P[[A1,P],[AQ,P]]P), (A.12)

which leads to (5.55) after integration over ¢.
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