
Ann. Henri Poincaré 19 (2018), 709–741
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Abstract. Floquet topological insulators describe independent electrons
on a lattice driven out of equilibrium by a time-periodic Hamiltonian,
beyond the usual adiabatic approximation. In dimension two, such sys-
tems are characterized by integer-valued topological indices associated
with the unitary propagator, alternatively in the bulk or at the edge of a
sample. In this paper, we give new definitions of the two indices, relying
neither on translation invariance nor on averaging, and show that they
are equal. In particular, weak disorder and defects are intrinsically taken
into account. Finally, indices can be defined when two driven samples are
placed next to one another either in space or in time and then shown to
be equal. The edge index is interpreted as a quantized pumping occurring
at the interface with an effective vacuum.

1. Introduction

Bulk–edge correspondence is a crucial concept in the context of quantum Hall
effect and topological insulators. From the topological point of view, the bulk
properties of an infinite sample can be deduced by looking at the gapless
modes, propagating at the edge of a sample with boundary, and vice versa
[5,8,9]. This duality is commonly observed in physical systems where both
bulk and edge index are well understood. Sometimes it is even assumed to fill
the lack of interpretation of a bulk invariant, the physics at the edge being
usually more intuitive. In any case, a proof of this correspondence is as much
a mathematical challenge as a helpful identity for physics.

In analogy with topological insulators, it was recently realized that topo-
logical phases could arise in periodically driven systems. The initial proposal
was to induce topology on a two-dimensional sample through a time-periodic
perturbation of a trivial material, e.g., by irradiation of graphene [10,15] or
semiconductor quantum wells by microwaves [13], but it was then realized that
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a large class of time-periodic Hamiltonians of independent electrons may sup-
port topological properties, as long as the unitary propagator after one period
is gapped [11,19].

For samples that are also space-translation invariant, Rudner et al. [19]
defined a topological bulk index that is integer valued and equal to the number
of edge modes that appear in the spectrum for associated dynamics on a strip
geometry. Moreover, an explicit definition of the edge index and a proof of the
bulk–edge correspondence was proposed in [19], but with the extra assumption
that the unitary propagator is also periodic in time. Recently, the requirement
of spatial invariance has been dropped and similar result was obtained for dis-
ordered systems [7], or [21] where averaging over fluxes threading the sample
has been used. An interacting model was proposed in [12]. Finally, the bulk
invariant has been generalized to the cases with time-reversal or chiral symme-
try [3,4,6], and bulk–edge correspondence for one-dimensional chiral systems
was studied in [1].

In this paper, we give new definitions for both the bulk and edge index
that do not require space-translation invariance of the Hamiltonian, nor aver-
aging, and show a general proof of the bulk–edge correspondence. We only
assume that the Hamiltonian is local (short range), periodic and regular
enough in time. The construction works as soon as the bulk one-period propa-
gator has a spectral gap. If space-translation invariance is present though, the
definition generalizes the existing one. If not, it applies to weakly disordered
systems, see Remark 3.13. Moreover, in this approach the edge index is inter-
preted as a quantized pumping of charges after one cycle. Exploiting a duality
between space and time (see Sect. 3.3), we show that this pumping actually
occurs at the interface with an effective vacuum, computed from the original
Hamiltonian and depending on the spectral gap under consideration.

The concept of topological pump and the study of periodically driven
system in this context are not new, but until recently the adiabatic hypothesis
has been always implied. From Thouless’ original work [22] to more recent
and abstract considerations [16], the driving was always assumed to be slow
enough in order to use the adiabatic theorem. In particular, the time-dependent
spectrum of the Hamiltonian is the relevant object of interest, and usually a
persistent gap all along the driving is assumed. We stress that Floquet topolog-
ical insulators and in particular the present work are not placed in this frame.
Here the driving can be arbitrary and we do not make any assumption on
the spectrum of the Hamiltonian, but only on the corresponding propagator.
Finally note that this notion of non-adiabatic quantized pumping has already
been observed in [21].

The paper is organized as follows. First Sect. 2 describes the context of
Floquet topological insulators for which the construction applies. The main
results are then stated in Sect. 3. The definition of bulk and edge indices, as
well as the bulk–edge correspondence, is done in two steps. Inspired by [19], we
first assume that the bulk propagator is periodic in time. The edge invariant
is interpreted as charge pumping and can be identified with an index of pair
of projections [2]. The bulk index is a mixture of commutative (in time) and
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non-commutative (in space) expression of the odd Chern number [17]. For
the general case, we define the bulk and edge index through a relative time
evolution that allows to reduce matters to the previous case, by considering an
effective Hamiltonian for each spectral gap of the bulk propagator. The index
of an interface is also defined to provide a simple interpretation of this effective
Hamiltonian.

Section 4 then studies the locality and continuity properties of bulk and
edge propagators, required for the indices to be well defined, and compares
these propagators. All this is established through the notion of confinement [5]
and switch functions [2]. The proofs are finally detailed in Sect. 5, mostly fol-
lowing the statements of Sect. 3 but postponing some computations to “Appen-
dix A.” Although the mathematical expressions of the indices look similar to
those for topological insulators, the operators involved are quite different and
indeed describe another physics.

Finally, note that shortly after this work was completed an independent
result on similar matters was proposed in [20]. Based on K-theory, it extends
this bulk–edge correspondence to every dimension, but the physical interpre-
tation is less immediate than in the functional analysis approach. Moreover,
our work does not rely on any covariance property.

2. Floquet Topological Insulators

2.1. Bulk and Edge Hamiltonians

We consider a tight-binding model of independent electrons on the two-
dimensional lattice Z

2. The bulk Hilbert space is HB = �2(Z2) ⊗ C
N , where

C
N accounts for internal degrees of freedom (sub-lattice, spin, orbital, etc.).

For m ∈ Z
2, we denote by the usual ket notation |m〉 ∈ �2(Z2) the state local-

ized at site m and 〈m| its corresponding bra. For any operator K on HB and
m,n ∈ Z

2, the kernel Km,n ≡ 〈m|K|n〉 is a matrix of size N . According to
the context, |m| = |m1|+ |m2| and |Km,n| denotes the operator norm of finite
matrices. The operator norm on the full Hilbert space HB is denoted by ‖K‖.

The electrons are ruled by a family of one-particle Hamiltonians HB(t),
namely a self-adjoint operator on HB for each t ∈ R. In the context of Floquet
topological insulators, we assume that it satisfies some further assumptions.

Definition 2.1 (Bulk Hamiltonian). Let HB(t) : HB → HB be a family of
self-adjoint operators for t ∈ R. We say that HB is a bulk Hamiltonian if it is

1. time-periodic: ∃T ∈ R so that HB(t + T ) = HB(t) for all t ∈ R,
2. local: ∃μ, C > 0 independent of t so that for any t ∈ [0, T ] and m,n ∈ Z

2

|HB(t)m,n| ≤ Ce−μ|m−n| ; (2.1)

μ is called the locality exponent,
3. piecewise strongly continuous: the map t �→ HB(t) is strongly continuous

except possibly for jump discontinuities.
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Note that because of Condition 1, the parameter t is reduced to a compact
interval so that the uniform bound in Condition 2 is equivalent to a family of
time-dependent bounds for t ∈ [0, T ].

Remark 2.2 (Physical models covered). Any time-periodic Hamiltonian that
for each t is a finite range or exponentially decaying hopping term is a bulk
Hamiltonian in the sense of Definition 2.1. Moreover, piecewise constant Hamil-
tonians (e.g., as in [19]) are also allowed thanks to Condition 3. However we
do not require space-translation invariance for a bulk Hamiltonian so that
any disordered configuration can be implemented through HB a priori, see
Remark 3.13 below. Finally we do not require a spectral gap uniform in times,
in contrast to adiabatic theory.

Remark 2.3 (Underlying topology). We define a norm on local operators which
is suited to bulk Hamiltonians. For fixed μ let

‖A‖μ = inf{C | ∀t ∈ [0, T ] ∀m,n ∈ Z
2 |A(t)m,n| ≤ Ce−μ|m−n|}, (2.2)

which satisfies ‖·‖λ ≤ ‖·‖μ for λ ≤ μ.
This local norm will be used for homotopy considerations.

The edge system is described by considering only a half-plane, which we
take to be N×Z ⊂ Z

2, so that the edge Hilbert space is HE = �2(N×Z)⊗C
N .

Bulk and edge spaces are related through the partial isometry

ι : HE −→ HB, ι∗ : HB −→ HE, (2.3)

where ι is the canonical injection of HE in HB and ι∗ is the canonical truncation
of HB to HE. In particular, they satisfy

ι∗ι = IdHE , ιι∗ = P1, (2.4)

where P1 : HB → HB is the projection on states supported in the right half-
plane n1 ≥ 0.

Definition 2.4 (Edge Hamiltonian). For a given bulk Hamiltonian HB(t), the
edge Hamiltonian HE(t) : HE → HE is the family of self-adjoint operators
defined by

HE(t) = ι∗HB(t)ι. (2.5)

Properties 1–3 of HB, HB are inherited to HE, HE. In particular, ‖HE‖μ ≤
‖HB‖μ.

As a sharp cut of the bulk space, this edge Hamiltonian corresponds to
Dirichlet boundary condition, but an extra term confined near the boundary
can actually be added to the previous definition without changing the topolog-
ical aspects, see Proposition 5.1 below, allowing the implementation of other
local boundary conditions or defects at the edge.
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2.2. Propagator

The spectrum of a time-dependent Hamiltonian H(t) at any given time will
not be of importance. Instead we shall consider the time evolution operator
generated by H(t), see, e.g., [18, Theorem. X.69].

Definition 2.5 (Propagator) Let H(t) be a family of bounded Hamiltonians on
a Hilbert space H, with t �→ H(t) strongly continuous. The unitary propa-
gator U(t, s) ∈ U(H) is a two-parameter family of unitary operators strongly
continuous in t and s satisfying

U(t, t) = IdH, U(t, r)U(r, s) = U(t, s), (2.6)

and so that for any ψ ∈ H, ϕs(t) = U(t, s)ψ is the unique solution of

i
d
dt

ϕs(t) = H(t)ϕs(t), ϕs(s) = ψ. (2.7)

where we have set � = 1. H(t) is called the generator of U(t, s).

If the Hamiltonian has jump discontinuities, the propagator is defined
piecewise but remains strongly continuous even at the discontinuity points
thanks to (2.6). Note that in the case of a time-independent Hamiltonian H,
the propagator is given by

U(t, s) = e−i(t−s)H (2.8)

and satisfies U(t + τ, s + τ) = U(t, s) for any τ ∈ R. If H(t + T ) = H(t)
is periodic in time, then that property survives for τ = T , which implies
U(t + T, s) = U(t, 0)U(T, s) by (2.6). As a result, the whole family U(t, s) is
determined by its restriction U(t) ≡ U(t, 0) to the compact interval 0 ≤ t ≤ T ;
and its long-time behavior by just U(T ). The spectrum of U(T ) thus carries
essential information about the solutions of (2.7). This is the so-called Floquet
theory. Because U(t) is unitary, its spectrum σ[U(t)] belongs to S1, and at
t = T we denote

e−iεT ∈ σ[U(T )] ⊂ S1 (2.9)
so that ε has the dimension of an energy. Because it is defined modulo 2π/T ,
it is rather called quasi-energy, in analogy with quasi-momentum in Bloch
theorem. Indeed the eigenstates of U(T ) provide solutions to (2.7) that are
time-periodic up to the phase e−iεT .

2.3. Stroboscopic Gap Assumption

The topological aspects can be characterized through the propagator of a bulk
Hamiltonian.

Definition 2.6 (Floquet Topological Insulator). We say that HB(t), a bulk
Hamiltonian in the sense of Definition 2.1, is a Floquet topological insulator if
the corresponding unitary propagator at t = T , UB(T ) has a spectral gap.

As illustrated in Fig. 1, the spectrum of UB(T ) is typically constituted
of one or several bands (of arbitrary nature) separated by gaps. By extension
we also speak about quasi-energy ε when e−iTε is in a spectral gap of UB(T ).
Moreover, note that assumption of a “stroboscopic” spectral gap, i.e., only for
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Figure 1. Example of spectrum for UB(T ) with two quasi-
energy bands and gaps

UB(T ), is sufficient to define the topological indices. The gap assumption may
fail at some intermediate times, i.e., for UB(t), 0 < t < T .

Remark 2.7. The term “insulator” is somewhat misleading here as its meaning
is purely mathematical: The existence of a spectral gap. The physical interpre-
tation is not obvious since the spectrum of a unitary operator lives on a circle,
so there is no ground state (in fact energy is not even conserved) and thus
no notion of Fermi energy. The analogy with (time independent) topological
insulators should then be used with care. Some attempt of interpretation is
given in Sect. 3.3 below.

3. Bulk–Edge Correspondence

The main result of this paper is to define a bulk and edge index and to show
that they coincide, for each spectral gap of UB(T ). The indices are, respectively,
defined in terms of the bulk and edge propagators UB and UE, generated by
the corresponding Hamiltonians. To do so, the first thing to establish is that
UB and UE are both local when HB is, see Sect. 4.2 below. The operations of
truncating space and generating time evolution do not commute, so that the
truncated bulk propagator does not equal that of the edge. The important
point however is that

|D(t)m,n| ≤ Ce−λ|m2−n2|e−λ|n1|, D(t) ≡ UE(t) − ι∗UB(t)ι (3.1)

for some C > 0 and 0 < λ < μ, see Proposition 4.10. Namely the difference
D is confined near the edge since it is exponentially decaying in direction 1,
compare with (2.1). The bulk and edge indices are then defined using switch
functions [2].

Definition 3.1. A switch function Λ : Z → R is a function so that Λ(n) = 1
(resp. 0) for n large and positive (resp. negative). We also call switch function
and denote by Λ the multiplicative operator acting on �2(Z), and by Λi a
switch function Λi(n) = Λ(ni) in direction i acting on �2(Z2) or �2(N × Z).

For instance Λ can be a step function, in which case it is a projection,
such as P1 in (2.4). The commutator with a switch function allows to confine
a local operator in a particular direction and is a powerful tool to eventually
end up with trace class expressions. This is detailed in Sect. 4.1.
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n1 ∈ N

n2 ∈ Z

n2 ≥ 0

•

•

•

•
σ
[
UE(T )

]

•

σ
[
UB(T )

]
= {1}

Figure 2. (Left) IE compares the density in the upper right
quadrant between times t = 0 and t = T . Only the electrons
localized at the edge contribute since UB(T ) = I. (Right) Bulk
and edge spectra. The latter might be gapless but only with
extra states confined at the boundary

3.1. The Case of a Time-Periodic Propagator

The definition and properties of the indices, as well as the bulk–edge corre-
spondence, are first established under the auxiliary assumption that the bulk
propagator satisfies:

UB(T ) = I, (3.2)
where I is the identity. Although not really physical, this situation still belongs
to the Floquet Topological Insulators in the sense of Definition 2.6 since the
spectrum of UB(T ) is degenerated to {1} so that S1\{1} constitutes a canonical
spectral gap (see Fig. 2 right). The general case, treated in the next section, is
nothing but a reduction to this particular one.

Proposition 3.2 (Edge index definition). Let HB be a bulk Hamiltonian so that
UB(T ) = I. Let HE and UE the associated edge Hamiltonian and propagator,
and Λ2 a switch function in direction 2 on HE. The edge index

IE ≡ TrHE

(
U∗

E(T )[Λ2, UE(T )]
)

(3.3)

is well defined and integer valued, independent of the choice of Λ2, and con-
tinuous in HB (in local norm) as long as UB(T ) = I.

In that case UE(T ) = I + D(T ) so that UE is time-periodic up to a
correction confined at the edge. The index has the interpretation of a non-
adiabatic quantized charge pumping [21]: It counts the net number of particles
that have moved into the upper half-plane within a period. In fact, by the
independence on Λ2, we may pick Λ2 = P2, the projection associated with
that half-plane, so that

IE = TrHE

(
U∗

E(T )P2UE(T ) − P2

)
(3.4)
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indeed computes the difference in the number of particles therein at times
separated by a period. Moreover, the net transport takes place near the edge
because far away from it we may pretend UE(T ) = 1 by (3.1, 3.2). See Fig. 2.
As we shall see (3.4) is the index of a pair of projection [2] and hence an
integer.

Proposition 3.3 (Bulk index definition). Let HB be a bulk Hamiltonian and UB

the corresponding propagator such that UB(T ) = I. The bulk index

IB ≡ 1
2

∫ T

0

dt TrHB

(
U∗

B∂tUB

[
U∗

B[Λ1, UB], U∗
B[Λ2, UB]

])
(3.5)

is well defined and independent of the choice of the switch function Λi in
direction i = 1, 2. It is moreover an integer depending continuously on HB (in
local norm) as long as UB(T ) = I.

The bulk–edge correspondence then provides a physical interpretation of
the bulk index1 through the edge picture. The main result, proved in Sect. 5.1,
is indeed

Theorem 3.4 (Bulk–edge correspondence). Let HB be a bulk Hamiltonian so
that UB(T ) = I. Then

IB = IE. (3.6)

Finally note that this approach generalizes the one from [19] where trans-
lation invariance in space is assumed, namely

HB(t)m,n = HB(t)0,n−m ∀m,n ∈ Z
2, (3.7)

which is then also true for UB(t), HE(t) and UE(t) (only in direction 2 for
the edge operators). We denote by ÛB(t, k1, k2) : T

3 �→ U(CN ) and ÛE(t, k2) :
T

2 �→ U(�2(N) ⊗ C
N ) their corresponding Fourier transform.

Proposition 3.5 (Translation-invariant case). Let HB be a bulk Hamiltonian
that is translation invariant, then IE is the winding number of UE(T ) along
k2, i.e.,

IE =
i

2π

∫ 2π

0

dk2 Tr�2(N)⊗CN

(
ÛE

∗
(T, k2)∂k2ÛE(T, k2)

)
(3.8)

and IB is the 3d-winding number of ÛB, namely

IB = − 1
8π2

∫

T3
dtdk1dk2 trCN

(
ÛB

∗
∂tÛB

[
ÛB

∗
∂k1ÛB, ÛB

∗
∂k2ÛB

])
. (3.9)

Note that a more geometric way to write (3.9) is to use the language of
differential forms, namely

IB = − 1
24π2

∫

T3
trCN

((
ÛB

∗
dÛB

)∧3)
, (3.10)

which is the degree or odd Chern number [4,17]. Finally a disordered system
has been considered in [21] where a finite sample is threaded by fluxes whose

1 It was recently identified with a magnetization density in a particular system [14].
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parameter space is a torus. That torus replaces the Brillouin zone of the space-
periodic case. Thus, the expression of the bulk invariant there is analogue
to (3.9) by averaging over those fluxes, even though it is evident, at least
heuristically, that there is no dependence on them in the thermodynamic limit.

3.2. The General Case

In the general case, UB(T ) �= I, we shall define a bulk and edge index for each
spectral gap of UB(T ) by deforming the latter to I and therefore come back to
the previous case. Before doing that we establish the bulk–edge correspondence
in a more general context. Consider two bulk Hamiltonians HB,1 and HB,2

together with their respective propagators UB,1 and UB,2 which are assumed
to satisfy

UB,1(T ) = UB,2(T ). (3.11)
We join the two Hamiltonians to a single one by placing their times

intervals back to back, so to speak with opposite arrow of time. Explicitly, we
define the relative Hamiltonian as

HB,rel(t) =
{

2HB,1(2t), (0 < t < T/2)
−2HB,2(2(T − t)), (T/2 < t < T ) (3.12)

where the rescaling allows to keep the period T . By periodicity the second
entry can be written more symmetrically to the first one as −2HB,2(−t) for
−T/2 < t < 0. The Hamiltonians comply with Definition 2.1 despite jump
discontinuities at t = T/2 and T . The corresponding evolution is

UB,rel(t) =
{

UB,1(2t), (0 ≤ t ≤ T/2)
UB,2(2(T − t)), (T/2 ≤ t ≤ T ) (3.13)

with continuity at t = T/2 by (3.11). It satisfies UB,rel(T ) = 1 as intended.
Indeed, the construction from the previous section applies.

Corollary 3.6 (Relative bulk–edge correspondence). Let HB,1 and HB,2 be two
bulk Hamiltonians such that UB,1(T ) = UB,2(T ). Consider the relative Hamil-
tonian HB,rel, cf. (3.12), and the associated propagator UB,rel, as well as
HE,rel = ι∗HB,relι and UE,rel. The relative bulk and edge indices, defined by

Irel
B = IB[UB,rel] Irel

E = IE[UE,rel(T )], (3.14)

satisfy all the properties of Propositions 3.2 and 3.5, and moreover Theorem3.4
applies, namely

Irel
B = Irel

E . (3.15)

Given a single bulk Hamiltonian HB, it is still possible to define bulk
and edge indices through this relative construction. The required second
Hamiltonian H0 will be chosen as time independent and in such a way that
UB(T ) = e−iTH0 , i.e., as a logarithm of UB(T ).

Definition 3.7 (Effective Hamiltonian). Let HB be a bulk Hamiltonian and
pick ε so that e−iTε belongs to a gap of UB(T ). The effective Hamiltonian is
defined on HB by

Hε
B =

i
T

log−Tε UB(T ) (3.16)



718 G. M. Graf, C. Tauber Ann. Henri Poincaré

through spectral decomposition of UB(T ), where −Tε is the branch cut of the
logarithm, defined by logα(eiφ) = iφ for α − 2π < φ < α.

It will be shown in Proposition 5.6 that Hε
B is local. It thus conforms with

Definition 2.1, since its other conditions hold true obviously. The pair HB, Hε
B

satisfy (3.11), so that we have the general result:

Theorem 3.8 (Bulk–edge correspondence). Let HB be a bulk Hamiltonian and
ε so that e−iTε belongs to a gap of UB(T ). Consider the relative Hamiltonian
Hε

B,rel, defined by (3.12) with HB,1 = HB and HB,2 = Hε
B from Definition 3.7,

and the associated relative operators Uε
B,rel, Hε

E,rel and Uε
E,rel. The bulk and

edge indices

IB(ε) = IB[Uε
B,rel], IE(ε) = IE[Uε

E,rel(T )] (3.17)

satisfy all the properties of Proposition 3.2 and 3.5, and moreover Theorem3.4
applies, namely

IB(ε) = IE(ε). (3.18)

This is nothing but a specific case of Corollary 3.6: We constructed a
relative evolution that fulfills the assumption of the previous section, namely
Hε

B,rel is a bulk Hamiltonian and Uε
B,rel(T ) = I. The influence of the choice of

ε is summarized by the next two statements:

Lemma 3.9. Let HB be a bulk Hamiltonian and ε, ε′ so that e−iTε and e−iTε′

belong to a gap of UB(T ). Then

H
ε+2π/T
B − Hε

B =
2π

T
I (3.19)

and for 0 ≤ ε′ − ε < 2π/T

Hε′
B − Hε

B =
2π

T
Pε,ε′ , (3.20)

where Pε,ε′ is the spectral projection of UB(T ) associated with the spectrum
between e−iTε and e−iTε′

clockwise.

Proposition 3.10 (Influence of ε). Let HB be a bulk Hamiltonian and ε, ε′ so
that e−iTε and e−iTε′

belong to a gap of UB(T ). Then

IB(ε + 2π/T ) = IB(ε) (3.21)

and for 0 ≤ ε′ − ε < 2π/T

IB(ε′) − IB(ε) = c(Pε,ε′), (3.22)

where
c(P ) = −2πi Tr

(
P

[
[Λ1, P ], [Λ2, P ]

]) ∈ Z (3.23)

is the non-commutative Chern number (or Kubo-Středa formula [2]) of P .

We have IB(ε) = IB(ε′) when ε and ε′ belong to the same gap, by
Pε,ε′ = 0. Similarly (3.22) implies (3.21) by Pε,ε′ = I if ε′ ↗ ε + 2π. Note that
(3.19) also implies (3.21) through U

ε+2π/T
B (t) = Uε

B(t)e−2πit/T . In regard to
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(a) (b)

Figure 3. a Example of spectrum of UB(T ) with gap indices
Ii

B related by Chern numbers ci of the bands through Ii+1
B −

Ii
B = ci. b For a time-independent Hamiltonian, the index of

the “gap at infinity” always vanishes so that gap indices and
Chern numbers are equivalent here

the operator seen in (3.5) that change contributes a commutator, which leaves
the trace and hence the index unaffected.

A typical situation is illustrated in Fig. 3: To each gap of UB(T ) one
associates a single index IB, and indices between two distinct gaps are related
through the Chern number of the band in between, so that the set of Chern
numbers only gives the relative value of the gap indices. Finally note that
Theorem 3.8 generalizes 3.4 since when UB(T ) = I then Hε

B = 0 for every
0 < ε < 2π so that IB(ε) coincides with IB from the previous section.

Remark 3.11. For a time-independent bulk Hamiltonian H0, the set of gap
invariants is equivalent to the set of Chern numbers, as illustrated in Fig. 3b.
Indeed the spectrum of e−iTH0 consists in winding the spectrum of H0 around
the unit circle. Here T is arbitrary but as long as T < (2π)/ΔE where ΔE
is the bandwidth of H0, the propagator e−iTH0 possesses a “gap at infinity”
coming from the gluing of the trivial gaps of H0 at ±∞. When taking the
branch cut in this gap (e.g., at ε = Emin − η for η small enough), one has
Hε

B = H0, so that UB,1 = UB,2 in the relative evolution. A direct computation
shows that I∞

B = 0 which sets a reference value for IB. Thus, the other gap
indices are in one-to-one correspondence with the set of Chern numbers by
(3.22).

Finally, this construction is stable under continuous deformations.

Corollary 3.12 (Homotopy invariance). Let HB,0 and HB,1 be two bulk Hamil-
tonians related by a homotopy HB,s of bulk Hamiltonians for s ∈ [0, 1]. Assume
the existence of ε so that for every s, e−iTε belongs to a gap of UB,s(T ). Then

IB,0(ε) = IB,1(ε) and IE,0(ε) = IE,1(ε) (3.24)
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The proof of it follows from the continuity of the indices, and the fact
that UB �→ Hε

B is continuous, see Proposition 5.7.

Remark 3.13 (Weak disorder). Any disordered configuration can be imple-
mented through HB and the construction works as long as a spectral gap is
open. Moreover, Theorem 3.8 is deterministic in the sense that the definition
of IB and IE and the bulk–edge correspondence are valid for any configuration
and do not rely on ergodicity or average computation. Finally, the indices are
continuous in HB in the sense of Remark 2.3, so that they coincide for two
close configurations.

For example this covers the model developed in [21], but more generally
take Hω

B = H0 + λV ω with H0 translation invariant, {V ω}ω∈Ω a random
potential and small λ so that, from 0 to λ, e−iTε is in a spectral gap of Uω

B (T ).
Then Iω

B(ε) = Iω
E(ε) for any ω ∈ Ω and Iω

B(ε) = IB(ε), the latter corresponding
to λ = 0.

3.3. Index of an Interface and Space–Time Duality

Though the invariants IB(ε) and IE(ε) of Theorem 3.8 are mathematically
well defined and coincide, the physical interpretation of the relative evolution
and effective Hamiltonian are not obvious. Here we propose a more intuitive
reformulation by replacing the edge with an interface.

Consider again the general relative evolution of Corollary 3.6. For two
bulk Hamiltonians HB,1 and HB,2 such that UB,1(T ) = UB,2(T ) we define the
relative Hamiltonian HB,rel and deduce UB,rel, HE,rel = ι∗HB,relι and UE,rel.
In particular,

UE,rel(t) =
{

UE,1(2t), (0 ≤ t ≤ T/2)
UE,2(2(T − t))U∗

E,2(T )UE,1(T ), (T/2 ≤ t ≤ T ) (3.25)

with UE,rel(T ) = U∗
E,2(T )UE,1(T ), so that the edge index of Corollary 3.6 can

be reformulated as, cf. (3.3),

Irel
E = TrHE

([
Λ2, UE,1(T )

]
U∗

E,1(T ) − [
Λ2, UE,2(T )

]
U∗

E,2(T )
)
. (3.26)

The expression looks like the difference of two edge indices from Proposition 3.2
except that the trace cannot be split since UB,1(T ) = UB,2(T ) differ from I.
However that suggests:

Definition 3.14. (Interface Hamiltonian) Let HB,1 and HB,2 be two bulk Hamil-
tonians and Hint be a bulk Hamiltonian that also satisfies |Hint(t)m,n| ≤
Ce−μ|n1|e−μ|m2−n2|. Then define

HI(t) = P1HB,1(t)P1 + (1 − P1)HB,2(t)(1 − P1) + Hint(t). (3.27)

This interface Hamiltonian is a bulk Hamiltonian acting on HB and gluing
HB,1 and HB,2 on each half of the sample through a perturbation Hint confined
to the interface, as illustrated in Fig. 4.

Proposition 3.15 (Interface index). Let HB,1 and HB,2 be two bulk Hamilto-
nians such that UB,1(T ) = UB,2(T ) ≡ UB(T ). Consider the interface Hamil-
tonian HI from Definition 3.14 and its evolution UI. Then the interface index,
defined by
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Figure 4. Interface between two samples

Figure 5. Duality of space and time. Left: relative evolution
on a sample with an edge. Right: evolution on the interface
between two samples

II = TrHB

(
U∗

I UB(T )
[
Λ2, U

∗
BUI(T )

])
, (3.28)

is well defined, integer valued, independent of the choice of Λ2 and independent
of Hint. Moreover,

II = Irel
E , (3.29)

where Irel
E is the relative edge index (3.17) associated with HB,1 and HB,2.

Proposition 3.15 establishes a duality between space and time. It tells
that the relative index Irel

E (and consequently Irel
B through the bulk–edge cor-

respondence) is nothing but the index II of a sharp interface between two
samples ruled by HE,1 and HE,2, as illustrated in Fig. 5. Moreover, a smooth
gluing through Hint confined around the interface leads to the same index.

Remark 3.16 (Effective vacua). In the context of Theorem 3.8, where HB,1 =
HB and HB,2 = Hε

B, we deduce IB(ε) = IE(ε) = II(ε). So the bulk index
counts the number of topological edge modes appearing at the interface
between the original and an effective sample ruled by Hε

B. Hence, the lat-
ter plays the role of a vacuum that selects the gap of UB(T ) around e−iTε,
in analogy with the choice of Fermi energy. This vacuum depends on the sys-
tem but is described by a time-independent and local dynamics, and there are
as many distinct vacua as gaps in UB(T ). By expanding the commutators in
(3.26), we have

IE(ε) = TrHE

(
UE(T )Λ2U

∗
E(T ) − e−iTHε

EΛ2eiTHε
E

)
, (3.30)

so that the interpretation of Fig. 2 still holds: IE(ε) measures the charge
pumped in the upper quadrant, but relatively to the dynamics of the effec-
tive vacuum. This ensures that the index is well defined and the pumping
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remains quantized. Finally if UB(T ) = I then Hε
B = 0 for every 0 < ε < 2π so

the only effective vacuum is the usual one.

4. Properties of Bulk and Edge Propagator

The indices are defined through trace expressions involving UB or UE. In this
section, we study their properties and compare them. Before we recall a series
of lemmas relating local and trace class operators through the notion of con-
finement [5].

4.1. Locality, Confinement and Switch Functions

In the following, we say that f : Z
2 or N × Z → R is a Lipschitz function (of

constant 1) if it satisfies

|f(m) − f(n)| ≤ |m − n|, ∀m,n ∈ Z
2 (4.1)

For λ > 0 we denote by eλf and e−λf the multiplicative operators on HB or
HE. We shall first rephrase the notion of locality appearing in Definition 2.1.

Lemma 4.1. Let A be a local operator on HB or HE with locality exponent
μ > 0, then

‖A‖ ≤ ‖A‖μ c(μ) (4.2)

with c(μ) < ∞ and

∀ 0 ≤ λ < μ ‖e−λfAeλf − A‖ ≤ ‖A‖μ b(λ) < ∞ (4.3)

for any Lipschitz function f where b(λ) → 0, (λ → 0).

Proof. We apply the Holmgren-Schur estimate

‖A‖ ≤ |||A||| ≡ max
(

sup
m∈Z2

∑

n∈Z2

|Am,n| , m ↔ n
)

(4.4)

and estimate |||A||| ≤ Cc(μ) with c(μ) =
∑

n∈Z2 e−μ|n| for any C as in the
definition (2.2) of the local norm. We then pass to the infimum over C. As for
the second inequality we estimate

|(e−λfAeλf − A)m,n| =
∣
∣e−λf(m)Am,neλf(n) − Am,n

∣
∣

≤ Ce−μ|m−n|(eλ|m−n| − 1
)

(4.5)

where we have used |ea − 1| ≤ e|a| − 1 and (4.1), so as to obtain

|||e−λfAeλf − A||| ≤ ‖A‖μ b(λ) (4.6)

with b(λ) =
∑

n∈Z2 e−μ|n|(eλ|n| − 1
)

< ∞. Finally b(λ) → 0, (λ → 0) by
dominated convergence. �

Corollary 4.2. Let A be a local operator on HB or HE with locality exponent
μ, then

∀ 0 ≤ λ < μ
∥
∥e−λfAeλf

∥
∥ ≤ Bλ ‖A‖μ (4.7)
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with Bλ > 0 and for any Lipschitz function f . Conversely if e−λfAeλf is
bounded for some λ > 0 and any f Lipschitz then it is local, namely ‖A‖λ ≤
supf

∥
∥e−λfAeλf

∥
∥.

Proof. The first statement is an immediate consequence of the previous lemma
and the triangle inequality. The second one is proved by taking for any m,n ∈
Z

2, the Lipschitz function f(p) = |p − m| leading to

|Am,n| = |〈m|eλfe−λfAeλfe−λf |n〉| ≤ ∥
∥e−λfAeλf

∥
∥ e−λ|m−n|, (4.8)

where we have used Cauchy-Schwarz inequality and the fact that |m〉 and |n〉
are normalized. �

Thus, locality of A as by Remark 2.3 is equivalent to the boundedness
of e−λfAeλf , up to a change from μ to λ < μ. We then refine this notion by
considering Lipschitz functions in direction i as Lipschitz functions fi(n) =
f(ni). We observe that f1 + f2 is again Lipschitz, i.e., with constant 1.

Definition 4.3. A bounded operator A on HB or HE is called, for i, j = 1, 2,
i �= j:

• i-local (or local in direction i) if it exists λ > 0 so that e−λfiAeλfi is
bounded for any Lipschitz function fi in direction i.

• i-confined (or confined in direction i) if it exists λ > 0 so that Aeλ|ni| is
bounded.

• simultaneously i-confined and j-local if it exists λ > 0 so that e−λfj

Aeλfj eλ|ni| is bounded.

The bounds are meant uniformly in fi. The suprema provide norms associated
with each property.

For example, in analogy with Lemma 4.1 and Corollary 4.2, Eq. (3.1) for
D and Definition 3.14 of Hint means that these two operators are simultane-
ously 1-confined and 2-local. Another way to produce i-confined operators is
to use switch functions from Definition 3.1.

Lemma 4.4. Let A be a local operator and Λi a switch function in direction i.
Then [Λi, A] is simultaneously i-confined and j-local with corresponding norm
bounded in terms of ‖A‖μ.

Proof. We rewrite

e−λfj [Λi, A]eλfj eλ|ni| = e−λfj
(
ΛiA(1 − Λi) − (1 − Λi)AΛi

)
eλfj eλ|ni| (4.9)

The first term reads

e−λfj ΛiA(1 − Λi)eλfj eλ|ni|

= Λie−λni · e−λ(fj−ni)Aeλ(fj−ni) · (1 − Λi)eλ(ni+|ni|) (4.10)

The middle factor is bounded by (4.7) and the other two are by the
support property of the switch function. The second term in (4.9) is similarly
bounded. �
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Lemma 4.5. For i = 1, 2 and j �= i let Ai be simultaneously i-confined and
j-local, and Λj a switch function in direction j. Then [Λj , Ai] and AiAj are
trace class with matching bonds on the norms.

Proof. Similar to the previous proof we write

[Λj , Ai]eλ|ni|eλ|nj | = ΛjAieλ|ni|(1−Λj)eλ|nj | −(1−Λj)Aieλ|ni|Λjeλ|nj | (4.11)

and see that each term is bounded by the same arguments. Then we write

[Λj , Ai] = [Λj , Ai]eλ|ni|eλ|nj | · e−λ|ni|e−λ|nj |. (4.12)

The second factor is obviously trace class, and so is [Λj , Ai]. Similarly

AiAjeλ|ni|eλ|nj | = Aieλ|ni| · e−λ|ni|Ajeλ|ni|eλ|nj | (4.13)

is bounded, so that AiAj is trace class. �

This lemma, combined with the previous one, will be of particular interest
when Ai = [Λi, A] for A local or Ai = D from Proposition 4.10 below. We
finally need:

Lemma 4.6. Let Λi be a switch function in direction i = 1, 2 and A an operator
such that [Λi, A] is trace class. Then

Tr
(
[Λi, A]

)
= 0. (4.14)

Proof. Note that only [Λi, A] is trace class so that we cannot open the com-
mutator and separate the traces. However this allows to compute the trace
through the diagonal kernel (take H = �2(Z2) for concreteness)

Tr
(
[Λi, A]

)
=

∑

n∈Z2

([Λi, A])n,n =
∑

n∈Z2

Λ(ni)An,n − An,nΛ(ni) = 0. (4.15)

This result is the analogue of a vanishing integral of a total derivative. �

4.2. Locality and Continuity of Propagators

In this section, we show that the propagator is local when the Hamiltonian is,
and that the propagator is continuous in the Hamiltonian with respect to the
local norm.

Proposition 4.7. Let HB be a bulk Hamiltonian in the sense of Definition 2.1,
μ its locality exponent, and UB the corresponding unitary propagator. Then

∀ t ∈ [0, T ] ∀ 0 ≤ λ < μ
∥
∥e−λfUB(t)eλf − UB(t)

∥
∥ ≤ αλ (4.16)

for any Lipschitz function f on Z
2, and with αλ independent of t and αλ → 0,

(λ → 0).

Proof. In order to work with bounded operators we define for a Lipschitz
function f its bounded version fn = nf/(n + |f |) for n ∈ N, which is again
Lipschitz and so that fn → f when n → ∞. Define

Vn(t) = e−λfnUB(t)eλfn − UB(t), (4.17)
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which is bounded for every n ∈ N, with Vn(0) = 0. Thus,

‖Vn(t)‖ ≤
∫ t

0

∥
∥
∥
∥

dVn(s)
ds

∥
∥
∥
∥ ds. (4.18)

Using that UB(t)ϕ satisfies Schrödinger equation (2.7) for every ϕ ∈ HB, we
deduce

∥
∥
∥
∥

dVn(s)
ds

∥
∥
∥
∥ =

∥
∥e−λfnHB(s)UB(s)eλfn − HB(s)UB(s)

∥
∥

=
∥
∥(

e−λfnHB(s)eλfn − HB(s)
)
e−λfnUB(s)eλfn

+HB(s)
(
e−λfnUB(s)eλfn − UB(s)

)∥∥ . (4.19)

Since HB is local it is bounded uniformly in time by Lemma4.1 and ‖HB(s)‖ ≤
‖HB‖μ c(μ), we furthermore deduce

‖Vn(t)‖ ≤
∫ t

0

( ‖HB‖μ (c(μ) + b(λ)) ‖Vn(s)‖ + ‖HB‖μ b(λ)
)
ds, (4.20)

where c(μ) and b(λ) are independent of t and n and b(λ) → 0 when λ → 0.
We then get by application of Grönwall Lemma and the fact that ex −1 ≤ xex

for x > 0

‖Vn(t)‖ ≤ ‖HB‖μ b(λ)te‖HB‖μ(c(μ)+b(λ))t

≤ ‖HB‖μ b(λ)T e‖HB‖μ(c(μ)+b(λ))T ≡ αλ (4.21)

uniformly in t ∈ [0, T ] and n ∈ N. Thus, V = e−λfUBeλf − UB is well defined
and Vn(t) converges strongly to V (t). In particular, ‖V (t)‖ ≤ αλ, and from
the previous expression we see that αλ → 0 when λ → 0. �

By Corollary 4.2, this last proposition shows that UB is local for any
exponent λ < μ. Furthermore we have:

Proposition 4.8. Let HB be a bulk Hamiltonian in the sense of Definition 2.1,
with locality exponent μ. Then the map HB �→ UB is continuous (uniformly in
time) with the respective norms ‖·‖μ and ‖·‖λ for λ < μ.

Proof. Let HB,1 and HB,2 be two bulk Hamiltonians and UB,1, UB,2 their
propagators. For λ < μ and f a Lipschitz function we compute

∥
∥e−λf (UB,1 − UB,2)(t)eλf

∥
∥

≤
∫ t

0

ds
∥
∥e−λf (HB,1UB,1 − HB,2UB,2)(s)eλf

∥
∥

≤
∫ t

0

ds
(
B ‖HB,1‖μ

∥
∥e−λf (UB,1 − UB,2)(s)eλf

∥
∥

+ B ‖HB,1 − HB,2‖μ

∥
∥e−λfUB,2(s)eλf

∥
∥

)
(4.22)

where we have used Corollary 4.2 for HB,1 and HB,1−HB,2 with some constant
B > 0. Adding UB,2 − UB,2 in the last norm, by Proposition 4.7 and Grönwall
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inequality as in the previous proof we deduce
∥
∥e−λf (UB,1 − UB,2)(t)e−λf

∥
∥ ≤ B′ ‖HB,1 − HB,2‖μ (1 + αλ)T eB‖HB,1‖μT

(4.23)
uniformly in time so that ‖UB,1 − UB,2‖λ is similarly bounded. �

Finally note that all this discussion naturally extends to the edge Hilbert
space HE since HE satisfies similar properties of HB by construction, thus all
the proofs remain unchanged.

Corollary 4.9. Let HB be a bulk Hamiltonian in the sense of Definition 2.1,
HE the corresponding edge Hamiltonian defined in 2.4 and UE the associated
propagator. Then Lemma 4.1 holds for HE and Proposition 4.7 and 4.8 hold
for UE.

4.3. Comparing Bulk and Edge Propagator

As announced in the beginning of Sect. 3, we prove identity (3.1) that compares
the edge propagator and the truncated bulk one and is crucial for the proof of
bulk–edge correspondence.

Proposition 4.10. Let HB and HE be a bulk and its corresponding edge Hamil-
tonian, and UB and UE the respective propagators. Define

D(t) = UE(t) − ι∗UB(t)ι. (4.24)

Then for 0 ≤ λ < μ where μ is the locality exponent of HB, D(t) is 1-confined
and 2-local on HE, uniformly in t ∈ [0, T ]. Moreover, the map HB �→ D(t) is
continuous in the relevant norms.

Proof. As in proof of Proposition 4.7 we start with bounded version of Lipschitz
functions, namely fp

2 = pf2/(p + |f2|), and similarly fp
1 = pn1/(p + n1). Then

for t ∈ [0, T ] we compute

e−λfp
2 D(t)eλfp

2 eλfp
1

= e−λfp
2
(
UE(t) − ι∗UB(t)ι

)
eλfp

2 eλfp
1

= −e−λfp
2 UE(t)

∫ t

0

ds ∂s

(
U∗

E(s)ι∗UB(s)ι eλfp
2 eλfp

1

)

= −e−λfp
2 UE(t)

∫ t

0

ds U∗
E(s)i

(
HE(s)ι∗ − ι∗HB(s)

)
UB(s)ι eλfp

2 eλfp
1

= i
∫ t

0

ds e−λfp
2 UE(t)U∗

E(s)ι∗HB(s)(1 − P1)UB(s)ι eλfp
2 eλfp

1 , (4.25)

where we used ∂sUB = −iHBUB and ∂sU
∗
E = iU∗

EHE, Definition 2.4 of HE and
property (2.4). Then we write

ιe±λfp
2 = e±λfp

2 ι e±λfp
2 ι∗ = ι∗e±λfp

2 , (4.26)

where on the right-hand side each equation is the natural extension of e±λfp
2 on

HB, that we denote by the same symbol, and similarly for e±λfp
1 since fp

1 → n1

has also a natural extension on Z
2. Thus, we can rewrite the integrand as
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e−λfp
2 UE(t)U∗

E(s)ι∗HB(s)(1 − P1)UB(s)ιeλfp
2 eλfp

1

= e−λfp
2 UE(t)eλfp

2 · e−λfp
2 U∗

E(s)eλfp
2 · ι∗ e−λfp

2 HB(s)eλfp
2 · (1 − P1)eλfp

1

· e−λfp
1 e−λfp

2 UB(s)e−λfp
2 eλfp

1 ι (4.27)

Note that (1 − P1)eλfp
1 is bounded uniformly in p ∈ N. By Lemma 4.1, Propo-

sition 4.7 and Corollary 4.9, each one of the remaining factor is uniformly
bounded in s ∈ [0, T ] and p ∈ N. Then so is the operator appearing on the
l.h.s. of (4.25). Since the estimate is independent of p, it strongly converges to
e−λf2D(t)eλf2

eλn1 which is also bounded uniformly in t ∈ [0, T ]. More precisely
∥
∥e−λf2D(t)eλf2eλn1

∥
∥ ≤ BT ‖UE‖2

μ ‖HB‖μ ‖UB‖μ (4.28)

with a constant B > 0. The continuity follows from (4.27) by Corollary 4.9. �

5. Proofs

We mostly follows the order of statements of Sect. 3. First we assume that
UB(T ) = I and prove the bulk–edge correspondence, then check that it also
applies to the relative evolution with effective Hamiltonian in the general case.
In between some extra properties are established, such as the invariance under
change in boundary condition and additivity property of the bulk index.

5.1. Periodic Unitary Propagator

Proof of Proposition 3.2. When UB(T ) = I, Proposition 4.10 reduces to
UE(T ) = I + D(T ) with D(T ) simultaneously 1-confined and 2-local. In par-
ticular,

[Λ2, UE(T )] = [Λ2,D(T )] (5.1)
is trace class according to Lemma 4.5, so that IE is well defined. Then for two
switch functions Λ2 and Λ̃2, the difference in the corresponding indices reads

IE − ĨE = TrHE

(
U∗

E(T )
(
(Λ2 − Λ̃2)D(T ) − D(T )(Λ2 − Λ̃2)

))
. (5.2)

Since Λ2 − Λ̃2 is compactly supported in direction 2, it is 2-confined, and even
obviously simultaneously 1-local and 2-confined. Applying again Lemma4.5,
we deduce that (Λ2 − Λ̃2)D(T ) and D(T )(Λ2 − Λ̃2) are separately trace class,
so that we can split the trace into two parts that are actually equal by cyclicity
and the fact that U∗

E(T ) and D(T ) = I − UE(T ) commute, so that IE = ĨE.
In particular, we can compute IE with Λ2 = P2 that is also a projection.

Rewriting

IE = TrHE

(
U∗

E(T )P2UE(T ) − P2

)
= Ind(U∗

E(T )P2UE(T ), P2) (5.3)

we recognize the index of a pair of projections (see [2]) defined by

Ind(P,Q) = dim ker(P − Q − 1) − dim ker(P − Q + 1) ∈ Z. (5.4)

Indeed, when (P − Q)2n+1 is trace class for some n ≥ 0 , then

∀m ≥ n Tr((P − Q)2m+1) = Tr((P − Q)2n+1) = Ind(P,Q). (5.5)
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In our case, P = U∗
E(T )P2UE(T ), Q = P2 and n = 0 gives (5.3) which is an

integer by the definition above. The continuity of HB �→ Tr([P2,D(T )]) follows
by Proposition 4.10 and Lemma 4.5. It implies that of IE by (5.1). �

Since IE is continuous and integer valued, it is constant. As a conse-
quence, we have:

Proposition 5.1 (Influence of the boundary condition). Let HB be a bulk Hamil-
tonian so that UB(T ) = I. Consider the alternative edge Hamiltonian

H̃E(t) = ι∗HB(t)ι + Hbc(t) (5.6)

with Hbc a self-adjoint operator on HE that is simultaneously 1-confined and
2-local. Let ŨE and ĨE the associated propagator and edge index. Then ĨE = IE

where IE corresponds to Hbc = 0.

Proof. First note that H̃E is still local. Thus, adapting the proof of Proposi-
tion 4.10 where we replace HE by HE + Hbc and using the fact that Hbc is
1-confined and 2-local, we end up with

ŨE(T ) = I + D̃(T ) (5.7)

with D̃(T ) 1-confined and 2-local, so that ĨE is well defined and shares the
properties of Proposition 3.2. In particular, it is now continuous in both HB

and Hbc in the relevant norms. Moreover, note that HE and H̃E are homotopic
through

Hs(t) ≡ ι∗HB(t)ι + sHbc(t) (5.8)

for s ∈ [0, 1]. By Corollary 4.9 this induces a homotopy Uλ from UE to ŨE

which preserves HB and UB. Thus, ĨE = IE. �

In the translation-invariant case, the bulk Hamiltonian satisfies (HB)m,n

(t) = (HB)0,n−m(t) and induces this property on UB, but also on the edge oper-
ators HE and UE in direction 2, namely (UE)m,n(t) =
(UE)(m1,0),(n1,n2−m2)(t). In that case, we define the Fourier transform of UE in
direction 2 by

ÛE(t, k2) =
∑

n2∈Z

e−ik2n2(UE)0,n2(t). (5.9)

Noticing that �2(N × Z) ∼= �2(N) ⊗ �2(Z), this operator is defined for each pair
(m1, n1) ∈ N

2 so that ÛE(t, k2) acts on �2(N) ⊗ C
N . Since UE is local from

Corollary 4.9, this Fourier transform is well defined and even smooth in k2.

Lemma 5.2. Let A and B be bounded and translation-invariant operators on
�2(Z) with C1-Fourier transform Â(k) and B̂(k), and Λ a switch function. If
A[Λ, B] is trace class then

Tr�2(Z)

(
A[Λ, B]

)
= (AXB)00 = i

∫ 2π

0

dk

2π
Â(k)∂kB̂(k), (5.10)

where X is the position operator.
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Proof. Since A[Λ, B] is trace class, its trace can be computed through its diag-
onal kernel:

Tr�2(Z)

(
A[Λ, B]

)
=

∑

p,q∈Z

Ap,qBq,p(Λ(q) − Λ(p)) =
∑

p′∈Z

A0,p′p′Bp′,0 (5.11)

which gives the first equality. We have used Ap,q = A0,q−p, similarly for B,
the change in variables q �→ p′ = q − p and the fact that

∑

p∈Z

(Λ(p′ + p) − Λ(p)) = p′ (5.12)

for any p′ ∈ Z and any switch Λ. The second equality is a standard Fourier
computation. �

By Proposition 3.2, we know that U∗
E(T )[Λ2, UE(T )] is trace class, so that

we can apply the previous lemma in direction 2

IE = iTr�2(N)⊗CN

∫ 2π

0

dk2

2π

(
ÛE

∗
(T, k2)∂k2ÛE(T, k2)

)
(5.13)

Finally, since UE(T ) = I + D(T ) where both D and UE are 2-local, their
respective Fourier transform D̂(T, k2) and ÛE(T, k2) are smooth in k2, so that
∂k2ÛE(t, k2) = ∂k2D̂(T, k2) is 1-confined on �2(N)⊗C

N , namely it is trace class
for each k2. Hence, trace and integral can be exchanged in the last formula.
This proves identity (3.8) of Proposition 3.5.

Proof of Proposition 3.3. By Proposition 4.7 UB is local, then by Lemma 4.4
U∗

B[Λi, UB] is i-confined and j-local so that the product of two such terms for
i �= j is trace class according to Lemma 4.5, so IB is well defined. Then for
two switch functions in direction 1, consider their difference ΔΛ1 and the cor-
responding difference of indices. We open the inner commutator and separate
traces, as we can by Lemma 4.5. Then we conjugate by UB the expression
under the first one, so as to obtain

ΔIB =
1
2

∫ T

0

dt TrHB

(
(∂tUB)U∗

B

[
ΔΛ1, [Λ2, UB]U∗

B

])

−TrHB

(
U∗

B∂tUB

[
ΔΛ1, U∗

B[Λ2, UB]
])

. (5.14)

Each term is vanishing: Since ΔΛ1 is 1-confined, one can open the outer com-
mutator in each one. Up to algebraic manipulation, we get for the first one

TrHB

(
(∂tUB)U∗

B

[
ΔΛ1, [Λ2, UB]U∗

B

])

= ∂tTrHB

(
[UB,Λ2]U∗

BΔΛ1

)
+ TrHB

(
[UBΛ2U

∗
B, (∂tUB)U∗

BΔΛ1]
)

(5.15)

The first term vanishes when integrated over t since UB is t-periodic. As for
the second

[UBΛ2U
∗
B, (∂tUB)U∗

BΔΛ1] = UB[Λ2, U∗
B(∂tUB)U∗

BΔΛ1UB]U∗
B (5.16)
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Since ΔΛ1 is compactly supported it is 1-confined, so that U∗
B(∂tUB)

U∗
BΔΛ1UB is simultaneously 1-confined and 2-local and the commutator of

it with Λ2 is trace class according to Lemma 4.5, and with vanishing trace
according to Lemma 4.6. Thus, the first part of (5.14) vanishes, and similarly
for the second, so that IB is independent of the choice of Λ1. We proceed
analogously for Λ2.

To show that IB is an integer, we identify it with a non-commutative odd
Chern number [17]. Since UB is periodic in time, consider its inverse Fourier
transform along the time direction. Namely for p, q ∈ Z define Ǔp,q = Ǔ0,q−p

where

Ǔ0,p =
1
T

∫ T

0

UB(t)ei 2π
T ptdt (5.17)

that acts on HB ⊗ �2(Z). Then consider the following operator appearing in
(3.5) up to cyclicity

O =
[
U∗

B[Λ1, UB], U∗
B[Λ2, UB]

]
U∗

B ⇒ Ǒ =
[
Ǔ∗[Λ1, Ǔ ], Ǔ∗[Λ2, Ǔ ]

]
Ǔ∗

(5.18)
since UB and U∗

B are t-periodic and Λ1, Λ2 naturally extends to HB ⊗ �2(Z).
Hence, by Lemma 5.2 in direction t for A = O, B = UB and Λt a switch
function in direction t, we finally get

IB = −iπTrHB⊗�2(Z)

(
Ǔ∗[Λt, Ǔ ]

[
Ǔ∗[Λ1, Ǔ ], Ǔ∗[Λ2, Ǔ ]

])
= C3. (5.19)

This identifies IB with C3, the non-commutative version of the odd Chern
number in dimension 3, see [17]. In particular, IB ∈ Z. Finally the continuity
is given by opening the double commutator in expression (3.5) of IB, and
noticing that

U∗
B(t)[Λ1, UB(t)]U∗

B(t)[Λ2, UB(t)] = −[Λ1, U
∗
B(t)][Λ2, UB(t)] (5.20)

is trace class by Lemma 4.5, and similarly for the second term where 1 ↔ 2.
Then consider UB,1 and UB,2 so that UB,1(T ) = UB,2(T ) = I and denote by
ν one of their common locality exponent. By introducing a mixed term, and
inspecting the proof of Lemma 4.4

∥
∥
∥
(
[Λ1, U

∗
B,1(t)][Λ2, UB,1(t)] − [Λ1, U

∗
B,2(t)][Λ2, UB,2(t)]

)
eλ|n1|eλ|n2|

∥
∥
∥

≤ B
( ‖UB,1‖ν + ‖UB,2‖ν

) ‖UB,1 − UB,2‖ν (5.21)

for λ < ν, uniformly in time, so that UB �→ [Λ1, U
∗
B][Λ2, UB] is continuous with

respect to ‖·‖ν and trace norm ‖·‖1. By composition with continuous functions,
we deduce that UB �→ IB is continuous in ‖·‖ν , and by Proposition 4.8 that
HB �→ IB is continuous in ‖·‖μ as long as UB(T ) = I. �

Before proving the bulk–edge correspondence, we establish another prop-
erty of the bulk index that will be used in the general case when UB is not
anymore time-periodic. The proof of this proposition is purely algebraic but
quite tedious, we postpone it to “Appendix A.1,” so as not to overburden the
reading.
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Proposition 5.3 (Additivity of the bulk index). Consider U and V two unitary
propagators satisfying U(T ) = V (T ) = I. Then

IB[UV ] = IB[U ] + IB[V ] (5.22)

where UV (t) = U(t)V (t) on HB.

As we did for the edge index, we can also at the expression of IB when the
bulk Hamiltonian is translation invariant in space. In that case (UB)m,n(t) =
(UB)0,n−m(t) and we define its Fourier transform

ÛB(t, k1, k2) =
∑

n∈Z2

e−ik·n(UB)0,n(t) (5.23)

that defines ÛB : T
3 → U(N), where T

3 = [0, T ] × [0, 2π]2, namely a
matrix valued function periodic in time and quasi-momentum. In analogy with
Lemma 5.2, we have

Lemma 5.4. Let A, B and C be three bounded and translation-invariant oper-
ators on �2(Z2) with C2 Fourier transform denoted by Â, B̂ and Ĉ. Let Λ1

and Λ2 be two switch functions in direction 1 and 2. If A[Λ1, B[Λ2, C]] is trace
class then

Tr�2(Z2)

(
A[Λ1, B[Λ2, C]]

)
= (AX1BX2C)00 = i2

∫
d2k

(2π)2
Â(k)∂k1

(
B̂ ∂k2Ĉ

)
.

(5.24)

The proof is completely similar to the one of Lemma 5.2, one dimension
higher. If we rewrite the operator appearing in the definition (3.5) of the bulk
index as

[
U∗

B[Λ1, UB], U∗
B[Λ2, UB]

]
= −[

Λ1, U
∗
B[Λ2, UB]

]
+

[
Λ2, U

∗
B[Λ1, UB]

]
, (5.25)

each term is separately trace class by Lemma 4.5 since UB is local. The locality
also implies that ÛB is smooth in k1 and k2. We then apply Lemma 5.4 to each
part of (5.25) to end up with identity (3.9) of Proposition 3.5.

Finally, the proof of the bulk–edge correspondence is based on a partial
result that improves Proposition 4.10.

Lemma 5.5. Let HB be a bulk Hamiltonian and HE, UB, UE the corresponding
edge Hamiltonian and bulk and edge propagator. For any switch function in
direction 2

Δ(t) ≡ [Λ2, UE(t)]U∗
E(t) − ι∗[Λ2, UB(t)]U∗

B(t)ι (5.26)

is trace class on HE for every t ∈ [0, T ].

Proof. From Proposition 4.10, we have that UE(t) = ι∗UB(t)ι + D(t). We put
this expression of UE in the definition of Δ, use the fact that ι∗Λ2 = Λ2ι

∗ and
Λ2ι = ιΛ2 where on the right-hand side we mean the extension of Λ2 on HB,
and that ιι∗ = P1. We end up with

Δ = ι∗[Λ2, UB][P1, U
∗
B]ι + ι∗[Λ2, UB]ιD∗ + [Λ2,D](ι∗U∗

Bι + D∗) (5.27)
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where each term is separately trace class by using that UB is local, D is 1-
confined and 2-local, P1 is also a switch function and by applying Lemmas 4.4
and 4.5. �

Proof of Theorem 3.4. We start by the edge index that we rewrite for con-
venience

IE = TrHE

(
[Λ2, UE(T )]U∗

E(T )
)
. (5.28)

In order to restore a time dependence we introduce a cutoff in direction 1.
For r ∈ N take Q1,r = χn1<r on HE and note that Q1,r = I − P1,r where
P1,r is a also a switch function. Since UB(T ) = I the operator in the previous
expression of IE is nothing but Δ(T ) which is trace class. Moreover, Q1,r → I
strongly when r → ∞, so that

IE = lim
r→∞ Ir

E Ir
E = TrHE

(
[Λ2, UE(T )]U∗

E(T )Q1,r

)
(5.29)

Then we can rewrite

Ir
E =

∫ T

0

dt ∂tTrHE

(
[Λ2, UE(t)]U∗

E(t)Q1,r

)
≡

∫ T

0

dt Ir(t) (5.30)

Indeed

Ir(t) = TrHE

(
[Λ2, ∂tUE(t)]U∗

E(t)Q1,r

)

−TrHE

(
[Λ2, UE(t)]UE(t)∗(−iHE)(t)Q1,r

)
(5.31)

is trace class by Lemmas 4.4 and 4.5 since UE, HE and ∂tUE = −iHEUE are
local and Q1,r is trivially 1-confined and 2-local simultaneously. From now on
we drop the time dependence in Ir(t). By Lemma 4.6, we have

0 = TrHE

([
Λ2, (∂tUE)U∗

EQ1,r

])

= TrHE

(
[Λ2, ∂tUE]U∗

EQ1,r

)
+ TrHE

(
∂tUE[Λ2, U

∗
EQ1,r]

)
(5.32)

where on the r.h.s the first term appears in Ir(t) and the second one can
be expanded by using that [Λ2, Q1,r] = 0, [Λ2, U

∗
E] = −U∗

E[Λ2, UE]UE and
(∂tUE)U∗

E = −iHE. We end up with

Ir(t) = TrHE

(
[Λ2, UE]U∗

E [P1,r , iHE]
)

(5.33)

where we have also used that [HE, Q1,r] = [P1,r,HE]. This expression can now
be recast as a bulk expression. By Lemma 5.5, Definition 2.4 of HE, and by
denoting ι∗P1,r = P1,rι

∗ where on the right-hand side P1,r = χn1≥r on HB,
and similarly with ι, we get

Ir(t) = TrHE

(
ι∗[Λ2, UB]U∗

B [P1,r , iHB]ι + ι∗
[
[Λ2, UB]U∗

B, P1

]

[P1,r , iHB ]ι + Δ[P1,r , iHE]
)

(5.34)
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where we have used that ιι∗ = P1 and ι∗ι = I. The traces of the last two terms
vanish in the limit r → ∞. Indeed both [[Λ2, UB]U∗

B, P1

]
and Δ are trace class

according to Lemmas 4.5 and 5.5, respectively, and P1,r → 0 strongly, so that

TrHB

(
ι∗

[
[Λ2, UB]U∗

B, P1

]
[P1,r , iHB ]ι + Δ[P1,r , iHE]

)
−→
r→∞ 0. (5.35)

Finally note that for any trace class operator O on HE one has TrHE(O) =
TrHB(ιOι∗), so that

Ir(t) = TrHB

(
[Λ2, UB]U∗

B[P1,r , iHB]P1

)
+ o(1) (5.36)

where we have used again that ιι∗ = P1, P 2
1 = P1 and the cyclicity of trace.

The next step is to show that P1 can be omitted in the previous expres-
sion. Intuitively, [P1,r ,HB] is confined along n1 = r so that its contribution
for n1 < 0 vanishes exponentially when r is big enough. More explicitly we
compute

TrHB

(
[Λ2, UB]U∗

B[P1,r , iHB](1 − P1)
)

= −TrHB

(
P1,r[(1 − P1), iHB][Λ2, UB]U∗

B

)
→ 0 (5.37)

where we used that P1,r(1 − P1) = 0 and the cyclicity of the trace. Since
[(1−P1), iHB][Λ2, UB]U∗

B is trace class and P1,r → 0 strongly then the previous
expression vanishes in the limit r → ∞. Moreover, the trace on the l.h.s. can
be split into two traces so that

Ir(t) = TrHB

(
[Λ2, UB]U∗

B[P1,r , iHB]
)

+ o(1) (5.38)

as announced. This expression is nothing but (5.33) where we have replaced
every E by B and up to corrections vanishing in the limit r → ∞, even when
integrated over the compact interval [0, T ].

The final step is to get back the expression of the bulk index as in (3.5).
First we rewrite iHB = −(∂tUB)U∗

B. Then we have the following identity

TrHB

(
[Λ2, UB]U∗

B[(∂tUB)U∗
B, P1,r]

)

=
1
2
TrHB

(
(∂tUB)U∗

B

[
[P1,r, UB]U∗

B, [Λ2, UB]U∗
B

])

+
1
2
∂tTrHB

([
[Λ2, UB], P1,r

]
U∗

B

)
. (5.39)

This identity is purely algebraic but quite tedious to show so we postpone
the computation to “Appendix A.2.” Since UB is periodic, the second term
vanishes when integrated over time. Conjugating the first one by U∗

B and UB

and putting all together, we get

IE = lim
r→∞

1
2

∫ T

0

dt TrHB

(
U∗

B∂tUB

[
U∗

B[P1,r , UB], U∗
B[Λ2, UB]

])
(5.40)

but on the right-hand side we recognize the bulk index expression, that is
independent of the choice of switch function. In particular, P1,r can be replaced
by P1 or any Λ1, so that the limit is trivial and we get IE = IB. �
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5.2. General Case

In the general case, the bulk–edge correspondence is a corollary of Theorem 3.4,
so we only need to check that this theorem applies, namely that the effective
Hamiltonian Hε

B from Definition 3.7 has the required properties, in particular
that it is local. By spectral decomposition

UB(T ) =
∫

S1
λdP (λ) ⇒ Hε

B =
i
T

∫

S1
log−Tε(λ)dP (λ) (5.41)

where the integration is done over the unit circle and dP (λ) is the spectral
measure of UB(T ).

Proposition 5.6. Let Hε
B be an effective Hamiltonian constructed from a bulk

Hamiltonian HB. Then Hε
B is local, namely it exists λ∗ > 0 such that for

0 ≤ λ < λ∗

‖e−λfHε
Beλf − Hε

B‖ ≤ βλ (5.42)
for any Lipschitz function f . Moreover, βλ → 0 for λ → 0.

Proof. As in the proof of Proposition 4.7, we consider bounded fn instead of
f to work with bounded operators, get a uniform estimate independent of n
allowing to consider the n → ∞ limit. We compute Hε

B through the resolvent
formula

Hε
B = − 1

2πi
i
T

∫

Γ

dz log−Tε(z)RUB(z) (5.43)

where RUB(z) ≡ (UB(T )−z)−1 and Γ is illustrated in Fig. 6. In particular, one
has

e−λfnHε
Beλfn = − 1

2πi
i
T

∫

Γ

dz log−Tε(z)RUn
(z), (5.44)

where we defined Un(T ) ≡ e−λfnUB(T )eλfn .
The usual resolvent identity leads to

RUn
(z)

(
1 + (Un(T ) − UB(T )))RUB(z)

)
= RUB(z). (5.45)

First we have
‖RUB(z)‖ ≤ 1

dist(z, σ(U(T )))
≤ 1

η
(5.46)

Figure 6. Contour Γ to compute the logarithm with branch
cut in the spectral gap of UB(T )
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where η = infz∈Γ

(
dist(z, σ(U(T )))

)
> 0. Then from Proposition 4.7, we know

that for λ sufficiently small, let say λ < λ∗ one has

‖Un(T ) − UB(T )‖ ≤ αλ < η (5.47)

independently from n. This implies that 1+(Un(T )−UB(T ))RUB(z) is invert-
ible for z ∈ Γ. Thus,

‖RUn
(z)‖ =

∥
∥
∥
∥RUB(z)

(
1 + (Un(T ) − UB(T ))RUB(z)

)−1
∥
∥
∥
∥ ≤ 1

η − αλ
, (5.48)

so that RUn
(z) is bounded independently from n. We compute

e−λfnHε
Beλfn − Hε

B = − 1
2πi

i
T

∫

Γ

dz log−Tε(z)(RUn
(z) − RUB(z)) (5.49)

then again by the resolvent identity and the previous estimates

‖RUn
(z) − RUB(z)‖ = ‖RUn

(z)(UB(T ) − Un(T ))RUB(z)‖ ≤ 1
η − αλ

αλ
1
η
.

(5.50)

Finally
∥
∥e−λfnHε

Beλfn − Hε
B

∥
∥ ≤ |Γ|

2πT
sup
z∈Γ

{| log(z)|} αλ

η(η − αλ)
≡ βλ (5.51)

for λ < λ∗ such that αλ < η. The term on the r.h.s. is finite, independent of n
and goes to 0 when λ → 0. Thus, we have the same when n → ∞, leading to
the result. �

We then study the influence on the choice of ε, first on Hε
B then on the

bulk index. The proof of Lemma3.9 is straightforward. Both identities come
from the spectral decomposition (5.41) and the properties of the logarithm.
The first one from the fact that logα+2π = logα +2πi and the second from

logα′(eiφ) − logα(eiφ) =

⎧
⎨

⎩

0, (0 ≤ φ < α)
2πi, (α < φ < α′)
0, (α′ < φ < 2π)

. (5.52)

As we shall see, (3.19) tells us that we can restrict ε to any interval of
length 2π/T and (3.20) compares two effective Hamiltonians in that interval.
In particular, they coincide when e−iTε and e−iTε′

belong to the same gap.

Proof of Proposition 3.10. By construction, Hε
B is time independent, so

that the relative evolution is

Uε
B,rel(t) =

{
UB(2t), (0 ≤ t ≤ T/2)
exp

( − i2(T − t)Hε
B

)
, (T/2 ≤ t ≤ T ) . (5.53)

From (3.19), we deduce U
ε+2π/T
B,rel = Uε

B,relUId where

UId(t) =

{
I, (0 ≤ t ≤ T/2)

exp
(

− i2(T − t)
2π

T
I
)
, (T/2 ≤ t ≤ T )

(5.54)
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that also satisfy UId(T ) = I. Moreover, IB[UId] = 0 since UId acts trivially on
HB, so that by the additivity from Proposition 5.3 we deduce IB(ε + 2π/T ) =
IB(ε).

Similarly, for 0 ≤ ε′ − ε < 2π we get from (3.20) that Uε′
B,rel = Uε

B,relUPε,ε′

where UPε,ε′ is similar to UId but with Pε,ε′ instead of I in (5.54). It is then
shown in “Appendix A.3” that

IB[UP,ε,ε′ ] = −2πi Tr
(
Pε,ε′

[[
Λ1, Pε,ε′

]
,
[
Λ2, Pε,ε′

]]
Pε,ε′

)
= c(Pε,ε′) ∈ Z

(5.55)
which is the Kubo-Středa formula or non-commutative Chern number of Pε,ε′

from the Quantum Hall effect [2]. We conclude by the additivity property of
IB from Proposition 5.3. �

We finally deal with continuity properties.

Proposition 5.7. It exists λ, ν > 0 such that UB �→ Hε
B is continuous with

respect to ‖·‖ν and ‖·‖λ as long as e−iTε lies in a spectral gap of UB(T ).

Proof. Let UB,1(T ) and UB,2(T ) with e−iTε belonging to a common spectral
gap. Take 0 < λ < λ∗ from Proposition 5.6 so that Hε

B,1 and Hε
B,2 are both

local with common exponent λ. Similarly to the proof of Proposition 5.6

e−λf (Hε
B,1 − Hε

B,2)e
λf

= − 1
2πi

i
T

∫

Γ

dz log−Tε(z)RU1f
(z)e−λf (UB,1 − UB,2)(T )eλfRU2f

(z)

(5.56)

where Uif = e−λfUB,i(T )eλf , Γ is a contour common to UB,1(T ) and UB,2(T ),
and where we have used the resolvent identity. We know from the previ-
ous proof that RU1f

and RU2f
are both bounded for z ∈ Γ. By Proposi-

tion 4.7 and Corollary 4.2, we know that e−λf (UB,1−UB,2)(T )eλf is bounded by
‖(UB,1 − UB,2)‖ν for some ν > λ. Thus,

∥
∥e−λf (Hε

B,1 − Hε
B,2)e

λf
∥
∥ ≤ B ‖(UB,1 − UB,2)‖ν (5.57)

and consequently we have a similar estimate for ‖(Hε
B,1 − Hε

B,2)‖λ. �

Together with Proposition 4.8, we deduce that HB �→ Uε
B,rel is continu-

ous, respectively, with ‖·‖μ and ‖·‖λ. This proves Corollary 3.12 on homotopy
invariance of IB.

5.3. Interface Index Properties

Note that one can also embed the edge Hamiltonians instead of gluing the bulk
ones. Namely by considering N− = Z\N, H−

E = �2(N− × Z) ⊗ C
N , ι− : H−

E →
HB and ι∗− : HB → H−

E , one has

HI = ιHE,1ι
∗ + ι−H−

E,2ι
∗
− + Hint (5.58)

where we have defined H−
E = ι∗−HBι, namely the edge Hamiltonian on the

other half space, and used (2.4) and similarly ι∗−ι− = IdH−
E

and ι−ι∗− = 1−P1.
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Lemma 5.8. Let HI be the interface Hamiltonian from Definition 3.14. Then
the corresponding propagator satisfies

UI(t) = ιUE,1(t)ι∗ + ι−U−
E,2(t)ι

∗
− + DI(t) (5.59)

where U−
E,2 is generated by H−

E and DI(t) is simultaneously 1-confined and
2-local.

Proof. From (5.58) and Definition 3.14

ι∗HIι = HE,1 + ι∗Hintι, (5.60)

where ι∗Hintι being simultaneously 1-confined and 2-local on HE plays the
role of a boundary condition as in Proposition 5.1, and HI that of the bulk
Hamiltonian for HE,1. In particular, by adapting the proof of Proposition 4.10

UE,1(t) = ι∗UI(t)ι + DI,1(t) ⇒ P1UIP1 = ι(UE,1 − DI,1)ι∗ (5.61)

where DI,1 is simultaneously 1-confined and 2-local and where we have used
(2.4). Similarly:

(1 − P1)UI(1 − P1) = ι−(U−
E,2 − DI,2)ι∗− (5.62)

on the other half space. By decomposing UI over subspaces associated with P1

and 1 − P1 we get

UI = ιUE,1ι
∗ + ι−U−

E,2ι
∗
− − ιDI,1ι

∗ − ι−DI,2ι
∗
− + P1UI(1 − P1) + (1 − P1)UIP1

(5.63)
Each of the last four terms is simultaneously 1-confined and 2-local from the
properties of DI,1, DI,2 and the fact that UI is local. Together they define
DI. �

Proof of Proposition 3.15. From Lemma 5.8 we get UI(T ) in terms of
UE,1(T ) and UE,2(T ), but since the corresponding bulk propagator are not
I, we need to normalize UI(T ) as in (3.28). In particular, consider the special
interface

HB,2(t) = ιHE,2ι
∗ + ι−H−

E,2ι
∗
− + P1HB,2(1 − P1) + (1 − P1)HB,2P1 (5.64)

which is nothing but an interface decomposition of HB,2. Lemma 5.8 gives

UB,2(T ) = ιUE,2(T )ι∗ + ι−U−
E,2(T )ι∗− + D̃I(T ) (5.65)

Hence, by Lemma 5.8 applied for UI and UB,2 we deduce after some algebra

U∗
B,2UI(T ) = ιU∗

E,2UE,1(T )ι∗ + ι−IdH−
E
ι∗− + D̂(T ) (5.66)

where we have used ι∗−ι = 0 and ι∗ι− = 0 and where D̂(T ) is simultaneously 1-
confined and 2-local. Finally, from Proposition 4.10 and the fact that UB,1(T ) =
UB,2(T ) we deduce at t = T

U∗
E,2UE,1 = I + ι∗U∗

B,2[P1, UB,1]ι + ι∗U∗
B,2ιD1 + D∗

2(ι∗UB,1ι + D1) (5.67)

where each term except I is simultaneously 1-confined and 2-local. Putting
all together, we deduce that [Λ2, U

∗
B,2UI(T )] is trace class so that II is finite.

Similarly to the proof of Proposition 3.5, II can be identified with an index of
a pair of projections so it is integer valued, independent of Λ2 and continuous
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(with the local norm) in UB,2 and UI. In particular, consider the deformation
of the previous derivation to the sharp interface where the two halves are
disconnected

HI = ιHE,1ι
∗ + ι−H−

E,2ι
∗
−, H̃B,2 = ιHE,2ι

∗ + ι−H−
E,2ι

∗
− (5.68)

In that case the corresponding evolutions are also disconnected so that in (5.66)
D̂(T ) = 0, and we deduce II = Irel

E from expression (3.26) and TrHB(ιOι∗) =
TrHE(O). �

Appendix A. Some Algebraic Computations

A.1. Additivity of the Bulk Index

Here we prove Proposition 5.3. It is purely algebraic but quite tedious. From
the definition (3.5) of IB, we compute

Tr (UV )∗∂t(UV )
[
(UV )∗[

Λ1, UV
]
, (UV )∗[

Λ2, UV
]]

= Tr U∗∂tU
[
U∗[

Λ1, U
]
, U∗[

Λ2, U
]]

+ Tr V ∗∂tV
[
V ∗[

Λ1, V
]
, V ∗[

Λ2, V
]]

+Tr U∗∂tU
[[

Λ1, V
]
V ∗, U∗[

Λ2, U
]]

+ Tr U∗∂tU
[
U∗[

Λ1, U
]
,
[
Λ2, V

]
V ∗

]

+Tr U∗∂tU
[[

Λ1, V
]
V ∗,

[
Λ2, V

]
V ∗

]
+ Tr (∂tV )V ∗

[
U∗[

Λ1, U
]
, U∗[

Λ2, U
]]

+Tr (∂tV )V ∗
[[

Λ1, V
]
V ∗, U∗[

Λ2, U
]]

+ Tr (∂tV )V ∗
[
U∗[

Λ1, U
]
,
[
Λ2, V

]
V ∗

]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≡ R

(A.1)

where we have used Leibniz rule for ∂t and [Λi, · ] and the cyclicity of trace
(note that each written term is trace class by Lemma 4.5 as long as U and V
are local). The two first terms in the latter equation correspond to the index
of U and V when integrated over time. After a bit of algebra, one can check
that the remaining last three lines are actually equal to

R = − Tr
[
Λ1, U

∗[Λ2, U
]
(∂tV )V ∗ − U∗∂tU

[
Λ2, V

]
V ∗

]

− Tr
[
Λ2, U

∗∂tU
[
Λ2, V

]
V ∗ − U∗[Λ1, U

]
(∂tV )V ∗

]

− Tr ∂t

(
U∗[Λ1, U

][
Λ2, V

]
V ∗ − U∗[Λ2, U

][
Λ1, V

]
V ∗

)
. (A.2)

The first two terms are trace class with vanishing trace according to
Lemma 4.6, and the last one is a total time derivative that vanishes when
integrated over time since U and V are periodic by assumption. Thus, R van-
ishes when integrated from 0 to T so that (A.1) leads to the expected result.
Note that this proof is nothing but the one given in [4] in the periodic case
adapted to the derivatives [Λi, · ] for the space directions.

A.2. Proof of Identity (5.39)

In the following, all the traces involved are finite using that UB is local and
Lemma 4.4 and 4.5. On the one hand, we can expand
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TrHB

(
[Λ2, UB]U∗

B [(∂tUB)U∗
B, P1,r]

)
= TrHB

(
[Λ2, UB]U∗

B [∂tUB, P1,r]U∗
B

)

− TrHB

(
[Λ2, UB]U∗

B ∂tUBU∗
B [UB, P1,r]U∗

B

)
(A.3)

and on the other hand we notice that, due to Lemma4.6

0 = TrHB

[
[Λ2, UB]U∗

B (∂tUB)U∗
B, P1,r

]
= TrHB

(
[Λ2, UB]U∗

B [(∂tUB)U∗
B, P1,r]

)

+ TrHB

([
[Λ2, UB]U∗

B , P1,r

]
(∂tUB)U∗

B

)
. (A.4)

The first term is the one of interest, and the second can be expanded

TrHB

([
[Λ2, UB]U∗

B , P1,r

]
(∂tUB)U∗

B

)
= TrHB

([
[Λ2, UB], P1,r

]
U∗

B (∂tUB)U∗
B

)

− TrHB

(
[Λ2, UB]U∗

B [UB, P1,r]U∗
B ∂tUBU∗

B

)
. (A.5)

Then we rewrite the first term appearing here using an integration by parts,
namely

TrHB

([
[Λ2, UB], P1,r

]
U∗

B (∂tUB)U∗
B

)

= −∂tTrHB

([
[Λ2, UB], P1,r

]
U∗

B

)
+ TrHB

([
[Λ2, ∂tUB], P1,r

]
U∗

B

)
. (A.6)

Finally, similarly as before,

TrHB

([
[Λ2, ∂tUB], P1,r

]
U∗

B

)

= −TrHB

([
[∂tUB, P1,r],Λ2

]
U∗

B

)

= −TrHB

([
[∂tUB, P1,r]U∗

B,Λ2

])
+ TrHB

(
[∂tUB, P1,r][U∗

B,Λ2]
)

(A.7)

where the first term vanishes by Lemma 4.6. Putting together the last three
equations, we deduce

TrHB

(
[Λ2, UB]U∗

B [(∂tUB)U∗
B, P1,r]

)

= ∂tTrHB

([
[Λ2, UB], P1,r

]
U∗

B

)
− TrHB

(
[U∗

B,Λ2][∂tUB, P1,r]
)

+ TrHB

(
[Λ2, UB]U∗

B [UB, P1,r]U∗
B ∂tUBU∗

B

)
. (A.8)

Noticing that [U∗
B,Λ2] = −U∗

B[UB,Λ2]U∗
B and summing (A.3) and (A.8) we get

identity (5.39).

A.3. Proof of Identity (5.55)

We first rewrite P = Pε,ε′ and Tr = TrHB . Note that P is a spectral projector
of UB(T ) so it is also local and all the following traces are finite. By definition
the first half of the time integral is trivial for UP,ε,ε′ (defined similarly to
(5.54)). So that up to a change in variables

IB[UP,ε,ε′ ] =
iπ
T

∫ T

0

dtTr
(
P

[
e2πi t

T P
[
Λ1, e−2πi t

T P
]
, e2πi t

T P
[
Λ2, e−2πi t

T P
]])

,

(A.9)
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where we have used the fact that e−2πi t
T P = e−2πi t

T P + I −P . Then we notice
that, since P 2 = P

P
[[

Λ1, P
]
,
[
Λ2, P

]]
P = −PΛ1(I − P )Λ2P + PΛ2(I − P )Λ1P

= P
[[

Λ1, P
]
, P

[
Λ2, P

]]
P + P

[
P

[
Λ1, P

]
,
[
Λ2, P

]]
P

(A.10)

and
Tr

(
P

[
P

[
Λ1, P

]
, P

[
Λ2, P

]]
P

)
= 0 (A.11)

Then expanding e−2πi t
T P = e−2πi t

T P + I − P in the trace of the previous
integral we are left after some algebra with

Tr
(
P

[
e2πi t

T P
[
Λ1, e−2πi t

T P
]
, e2πi t

T P
[
Λ2, e−2πi t

T P
]])

= 2
(

cos
(2πt

T

)
− 1

)
Tr

(
P

[[
Λ1, P

]
,
[
Λ2, P

]]
P

)
, (A.12)

which leads to (5.55) after integration over t.
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